Dispersions of nanoparticles and macromolecules: basic features and characterization with scattering techniques (KDIT117)

Instructor: Dr. István Szilágyi (szistvan at chem.u-szeged.hu)

- Week 1: Classification of nanomaterials and macromolecules by their origin, structure and shape
- Week 2: Methods for preparation of nano-sized organic and inorganic materials
- Week 3: Static light scattering I: electromagnetic radiation and its interaction with matter
- Week 4: Static light scattering II: theories and their application in dispersions
- Week 5: Static light scattering III: determination of molecular mass and radius of gyration
- Week 6: Dynamic light scattering I: Brownian motion, intensity fluctuation and correlation
- Week 7: Dynamic light scattering II: Stokes-Einstein relation and size distribution
- Week 8: Dynamic light scattering III: effects of light absortion and interparticle interaction
- Week 9: Dynamic light scattering IV: determination of hydrodynamic radius and polydispersity
- Week 10: Electrophoretic light scattering I: the basis of the Laser Doppler Velocimetry method
- Week 11: Electrophoretic light scattering II: frequency and phase analysis of the scattered light
- Week 12: Electrophoretic light scattering III: electrophoretic mobility and zeta potential
- Week 13: Small angle X-ray scattering I: X-Ray radiation and its interaction with matter
- Week 14: Small angle X-ray scattering II: theories and applications in nanostructured systems

Literature:

- 1. P. Lindner, T. Zemb: Neutrons, X-rays and Light: Scattering Methods Applied to Soft Matter
- 2. B.J. Berne, R. Pecora: Dynamic Light Scattering
- 3. L.A. Feigin, D.I. Svergun: Structure Analysis by Small-Angle X-Ray and Neutron Scattering