Advanced Bioinorganic Chemistry (KDIT115)

Lecturer:

Dr. Gyurcsik Béla (gyurcsik@chem.u-szeged.hu)

Curriculum:

- Oxygen metabolism – role of metal ions

Dioxygen carrier and storage (hemoglobin, mioglobin, hemerythrin, hemocianine)

Oxidation by dioxygen (iron/copper/manganese enzymes)

The respiratory chain and cytochrome c oxidase $(O_2 \rightarrow H_2O)$

Reactive oxygen species (ROS) and the defense system against them

- Photosynthesis – role of metal ions

Mg²⁺ in the light harvesting process

Cu^{+/2+}, Fe^{2+/3+} in electron transport processes

 Mn^{x+} and Ca^{2+} in photosynthetic oxygen evolution ($H_2O \rightarrow O_2$)

Mg²⁺ in organic synthesis

- Metalloenzymes in the nitrogen cycle

Mo, W and V - in nitrogen fixation

Fe^{2+/3+} in electron transport processes

Cu²⁺ and Fe^{2+/3+} in redox chemistry of nitrogen compounds

- Metalloenzymes involved in the metabolism of C1 compounds

Methanogenesis

Methanotrophy (Methane Monoxygenases)

CO/CO₂ interconversion (monofunctional Carbon Monoxide Dehydrogenases, BifunctionalNi,Fe-Containing Carbon Monoxide Dehydrogenases/Acetyl coenzymA synthase)

- The complex physiological effects of metal ions

Signal transmission along the axons

Muscle function

Unique properties achievable by the finetuning of metal ion environment

- A molecular biology approach to bioinorganic chemistry problems

Methods of protein synthesis and purification.

Methods of protein modification

- Journal club: 15-20 minutes presentation of a selected bioinorganic chemistry publication from a high ranked international journal (Science, Nature) and 15-20 min discussion with all participants.