Tárgy
kód és cím
|
MAL
03 Gyûrûelmélet
|
Meghirdetés
|
Minden
második õszi félévben 2+0 bontásban
kerúl meghirdetésre. Elõfeltétel: algebrai
alapkurzus.
|
Hallgatóság
|
Matematika
tanár szakosoknak Algebra blokktárgy, matematikusoknak választható
tárgy az 5. félévtõl.
|
A
kurzus célja
|
A
gyûrûelméleti alapismeretek elsajátítása.
|
Tematika
|
Kommutatív
gyûrû hányadosgyûrûje. Gauss-gyûrû
feletti polinomgyûrûk. Noether gyûrûk, Hilbert-tétel,
Noether-Lasker-tétel. Dedekind gyûrûk. Irreducibilis
modulusok, Schurölemma, Jacobson-radikál, féligegyszerû
gyûrûk, Weddenburn-Artin-tétel. Féligegyszerû
gyûrû fölötti modulusok és véges dimenziós
algebrák.
|
Irodalom
|
J.
Lambek: Lectures on rings and modules, 1-3. fejezet; B.L. van der Waeden:
Algebra, 15-16. fejezet.
|