Vibrational mode-specificity in the dynamics of the $\mathrm{OH}^{-}+$ $\mathrm{CH}_{3} \mathrm{I}$ multi-channel reaction ${ }^{\text {EREB }}$
Domonkos A. Tasi \boldsymbol{D} (${ }^{\text {(Gábor Czakó }} \boldsymbol{D}$ (1)

W) Check for updates

J. Chem. Phys. 160, 044305 (2024)
https://doi.org/10.1063/5.0189561

CrossMark

The Journal of Chemical Physics Special Topic: Time-resolved Vibrational Spectroscopy

Vibrational mode-specificity in the dynamics of the $\mathrm{OH}^{-}+\mathrm{CH}_{3}$ multi-channel reaction

Cite as: J. Chem. Phys. 160, 044305 (2024); doi: 10.1063/5.0189561
Submitted: 29 November 2023 • Accepted: 25 December 2023 •
Published Online: 24 January 2024

Export Citation
CrossMark

Domonkos A. Tasi ${ }^{\text {a) (D }}$ (and Gábor Czakóa)

Abstract

AFFILIATIONS MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary

${ }^{\text {a) }}$ Authors to whom correspondence should be addressed: dtasi@chem.u-szeged.hu and gczako@chem.u-szeged.hu

Abstract

We report a comprehensive characterization of the vibrational mode-specific dynamics of the $\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction. Quasi-classical trajectory simulations are performed at four different collision energies on our previously-developed full-dimensional high-level ab initio potential energy surface in order to examine the impact of four different normal-mode excitations in the reactants. Considering the 11 possible pathways of $\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{I}$, pronounced mode-specificity is observed in reactivity: In general, the excitations of the OH^{-}stretching and CH stretching exert the greatest influence on the channels. For the $S_{N} 2$ and proton-abstraction products, the reactant initial attack angle and the product scattering angle distributions do not show major mode-specific features, except for $\mathrm{S}_{\mathrm{N}} 2$ at higher collision energies, where forward scattering is promoted by the CI stretching and CH stretching excitations. The post-reaction energy flow is also examined for $\mathrm{S}_{\mathrm{N}} 2$ and proton abstraction, and it is unveiled that the excess vibrational excitation energies rather transfer into the product vibrational energy because the translational and rotational energy distributions of the products do not represent significant mode-specificity. Moreover, in the course of proton abstraction, the surplus vibrational energy in the OH^{-}reactant mostly remains in the $\mathrm{H}_{2} \mathrm{O}$ product owing to the prevailing dominance of the direct stripping mechanism.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0189561

INTRODUCTION

Regulating reactions under controlled conditions is a fundamental objective in chemistry. Since the second half of the 20th century, the substantial progress of computational chemistry has facilitated progressively extensive and in-depth investigations on the dynamics of chemical reactions, ${ }^{1,2}$ notably focusing on the modespecific behavior. ${ }^{3}$ The scope of the mode-specific dynamics studies of the ion-molecule reaction types in the gas phase, such as bimolecular nucleophilic substitution $\left(\mathrm{S}_{\mathrm{N}} 2\right)$, is still somewhat lacking in contrast to the atom-molecule reactions. ${ }^{3-11}$ However, in the case of the $\mathrm{X}^{-}+\mathrm{CH}_{3} \mathrm{Y}[\mathrm{X}, \mathrm{Y}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}] \mathrm{S}_{\mathrm{N}} 2$ reactions, a few modespecific theoretical and experimental examinations were carried out utilizing quasi-classical trajectory (QCT) simulations, ${ }^{12-15}$ quantum dynamics method, ${ }^{13,16-20}$ as well as kinetic, ${ }^{21}$ spectroscopic ${ }^{22,23}$ and crossed-beam ion-imaging measurements. ${ }^{15}$ Reduced dimensionality wave packet dynamics calculations were reported for $\mathrm{Cl}^{-}+\mathrm{CH}_{3} \mathrm{I}$ by Kowalewski et al. ${ }^{24}$ and showed that the excitation of
the CI stretching mode provides the most significant increase in the reactivity of the $\mathrm{S}_{\mathrm{N}} 2$ channel. For $\mathrm{Cl}^{-}+\mathrm{CH}_{3} \mathrm{Br}$, Schmatz et al. ${ }^{18}$ performed quantum dynamics calculations suggesting the probable involvement of the CH stretching in the $\mathrm{S}_{\mathrm{N}} 2$ channel, which was formerly considered a spectator mode. In cases of $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{Cl}^{2} / \mathrm{CH}_{3} \mathrm{I}$, collaborative studies involving our group revealed that the $\mathrm{CCl} / \mathrm{CI}$ stretching and CH_{3} umbrella excitations have the most pronounced impact on $\mathrm{S}_{\mathrm{N}} 2$, while the CH stretching excitation promotes the corresponding proton-abstraction channel. ${ }^{13,15}$ Following these examinations, more detailed experimental investigations were carried out for $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$ regarding the influence of the symmetric CH stretching excitation on the dynamics of $\mathrm{S}_{\mathrm{N}} 2$, proton abstraction and two other less-probable halide-abstraction channels of $\mathrm{FI}^{-}+\mathrm{CH}_{3}$ and $\mathrm{FHI}^{-}+\mathrm{CH}_{2}{ }^{25,26}$ Moreover, it is also notable that the mode-specific dynamics of the $\mathrm{F}^{-}+\mathrm{CHD}_{2} \mathrm{Cl}$ and $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ reactions were characterized by our group. ${ }^{12,27}$

Exploring more complex systems is crucial to broadening our understanding of the $\mathrm{S}_{\mathrm{N}} 2$ reactions. Therefore, in the past $20-30$
years, more emphasis has been placed on investigating $\mathrm{S}_{\mathrm{N}} 2$ reactions that include di- or polyatomic nucleophiles (e.g., $\mathrm{OH}^{-}, \mathrm{SH}^{-}$, $\mathrm{CN}^{-}, \mathrm{NH}_{2}{ }^{-}$, and $\mathrm{PH}_{2}{ }^{-}$). ${ }^{28-47}$ The mechanisms of these $\mathrm{S}_{\mathrm{N}} 2$ reactions can be even more complex enabling novel, previously unidentified reaction routes and pathways. ${ }^{30,31,33,48}$ In 2002, direct dynamics simulations for the $\mathrm{S}_{\mathrm{N}} 2$ reaction between OH^{-}and $\mathrm{CH}_{3} \mathrm{~F}$ performed by Hase and co-workers unveiled that the post-reaction H -bonded $\mathrm{CH}_{3} \mathrm{OH} \cdots \mathrm{F}^{-}$global minimum is avoided in the product channel. ${ }^{41}$ Since then, several other theoretical studies confirmed the role of the $\mathrm{CH}_{3} \mathrm{OH} \cdots \mathrm{F}^{-}$deep well in dynamics. ${ }^{49-51}$ Furthermore, a novel oxide ion substitution was uncovered, which led to the formation of $\mathrm{HF}+\mathrm{CH}_{3} \mathrm{O}^{-}$products. ${ }^{52-54}$ By utilizing the crossed-beam ion imaging technique, ${ }^{55}$ Wester and co-workers examined the $\mathrm{S}_{\mathrm{N}} 2$ reactions of $\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{I}$ and $\mathrm{CN}^{-}+\mathrm{CH}_{3} \mathrm{I}$. $88,56-59$ To explore the dynamics and kinetics of the $\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{I} \mathrm{S}_{\mathrm{N}} 2$ reaction, direct dynamics simulations were also carried out in Refs. 57 and 60, selected ion flow tube technique was applied in Ref. 61, and the influences of the microsolvation on dynamics were considered in Refs. 56 and 62-65. In 2020, eight different analytical $a b$ initio potential energy surfaces (PESs) were constructed for $\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{I}$ using the Robosurfer program package in order to analyze the impact of the employed levels of theory. ${ }^{66,67}$ The methodology test concluded that the most promising opponent for single-point calculations is a composite method based on the Brueckner coupled cluster approach. ${ }^{68}$ In collaboration with the Wester group, the present authors reported a detailed theoretical-experimental dynamical characterization for the vibrationally ground-state reaction of $\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{I} .{ }^{69}$ The QCT simulations and the crossed-beam measurements were performed at the same initial translational energies (collision energies, $E_{\text {coll }}=11.5,23.1,34.6$, and $46.1 \mathrm{kcal} / \mathrm{mol}$) and computations revealed 11 distinct reaction pathways, while experimentally, three product ions were detected. In conclusion, a satisfactory agreement was found between theory and experiment. Recently, Rao and Wang ${ }^{70}$ fulfilled a quantum dynamics study on the $\mathrm{S}_{\mathrm{N}} 2$ pathway of the $\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction using our analytical PES with an application of a reduced-dimensional four-degree-of-freedom dynamics model treating the three H atoms of $\mathrm{CH}_{3} \mathrm{I}$ as one pseudo atom. For the ground-state reaction, the computed integral cross sections (ICSs) of the quantum dynamics simulations were in excellent agreement with our previous QCT data. The examination of two vibrational excitations was also implemented, exposing that the CI stretching excitation enhances the reactivity, while, in contrast to the $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{3} \mathrm{I}$ cases, the excitation of the CH_{3} vibration mode inhibits the $\mathrm{S}_{\mathrm{N}} 2$ reaction.

In the present work, following our previous studies and the recently-reported reduced-dimensional quantum dynamics simulations, ${ }^{66,69,70}$ we investigate the mode-specificity of the title reaction in a much more comprehensive manner considering all of the possible 11 different paths. We excite four selected vibrational modes of the OH^{-}and $\mathrm{CH}_{3} \mathrm{I}$ reactants and perform QCT simulations on our previously-developed full-dimensional high-level $a b$ initio PES applying the same $E_{\text {coll }}$ as in the QCT examination of the ground-state reaction ${ }^{69}$ in order to describe the effects of the initial vibrational excitations on the reaction dynamics. Thus, our main aim is to assess how different types of excitations impact the reaction probabilities and the energy distributions of the products for the two dominant reaction routes of $\mathrm{S}_{\mathrm{N}} 2$ and proton abstraction.

COMPUTATIONAL DETAILS

QCT simulations are performed at $E_{\text {coll }}$ of 11.5, 23.1, 34.6, and $46.1 \mathrm{kcal} / \mathrm{mol}$ for the $\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction on our PES, which was previously developed using the in-house Robosurfer program package. ${ }^{66,67}$ The influence of the one-quantum excitations of four different reactant normal modes is considered [v_{3} CI stretching (1.61), $v_{2} \mathrm{CH}_{3}$ umbrella (3.53), v_{1} symmetric CH stretching (8.77), and $v_{\mathrm{OH}^{-}} \mathrm{OH}^{-}$stretching (10.55), with the fundamental harmonic energies obtained on the PES and given in $\mathrm{kcal} / \mathrm{mol}$ in parentheses] in comparison with the results of the unexcited ground-state case, which are derived from Ref. 69. The representative motions of the selected normal mode vibrations are shown in Fig. 1. At the beginning of the trajectories, the zero-point energies (ZPE) and the different vibrational mode excitations of the reactants are prepared by standard normal-mode sampling and the rotational angular momenta are set to zero. The initial orientations of the reactants are randomly chosen and the initial distance of the center of masses of the OH^{-}and $\mathrm{CH}_{3} \mathrm{I}$ reactants is 40 bohr with a given impact parameter (b). For each different excitation, 5000 trajectories are run at each b. Moreover, at each $E_{\text {coll }}, b$ is scanned from 0 to $b_{\text {max }}$ (where the possibility of the reactive trajectories becomes 0) and the step size is 0.5 bohr. The trajectories are propagated with a time step of 0.0726 fs until the longest atom-atom distance becomes larger than the longest initial one by 1 bohr.

The ICSs of the possible pathways are calculated by a b-weighted numerical integration of the opacity function $[P(b)$, reaction probabilities of the reaction pathways as a function of b,

$$
\begin{equation*}
I C S=2 \pi \int_{0}^{b_{\max }} P(b) b \mathrm{~d} b \tag{1}
\end{equation*}
$$

employing the trapezoidal rule for the numerical integration,

$$
\begin{equation*}
I C S=\pi \sum_{k=1}^{k_{\max }}\left[b_{k}-b_{k-1}\right]\left[b_{k} P\left(b_{k}\right)+b_{k-1} P\left(b_{k-1}\right)\right], \tag{2}
\end{equation*}
$$

where the range $\left[0, b_{\text {max }}\right.$] is divided into $k_{\text {max }}$ equidistant parts and $b_{k}=0.5 k$ bohr $\left(k=0,1,2, \ldots, k_{\max }\right)$. To consider product ZPE

FIG. 1. Schematic representation of the normal-mode vibrations of the reactants $\left(\mathrm{CH}_{3} I\right.$ and $\left.\mathrm{OH}^{-}\right)$studied in the present work: $v_{3} \mathrm{Cl}$ stretching, $v_{2} \mathrm{CH}_{3}$ umbrella, v_{1} symmetric CH stretching, and $v_{\mathrm{OH}^{-}} \mathrm{OH}^{-}$stretching, where $v_{x}[x=1,2,3]$ refer to the standard Mulliken notations.
violation, two different ZPE constraints are used: (1) soft and (2) hard. In case of (1), those trajectories are accepted, where the sum of the classical vibrational energies of the products is higher than the sum of their ZPEs on the PES, and in case of (2), those trajectories are considered, where the vibrational energies of both products are higher than the corresponding ZPEs on the present PES. The initial attack angle (α) is the angle of the velocity vector of the corresponding reactant and an interatomic vector assigned as the $\mathrm{O}-\mathrm{H}$ bond for OH^{-}and the C-I bond for $\mathrm{CH}_{3} \mathrm{I}$. The scattering angle (θ) is the angle of the relative velocity vectors of the center of masses of the reactants and products. The distributions of α and θ are determined by binning the cosine of α and θ into ten equidistant bins from -1 to 1 , where $\cos (\theta)=1$ corresponds to forward scattering, and for OH^{-}, $\cos (\alpha)=1(-1)$ identifies that OH^{-}approaches $\mathrm{CH}_{3} \mathrm{I}$ with its H -side (O-side), while for $\mathrm{CH}_{3} \mathrm{I}, \cos (\alpha)=1(-1)$ signifies that $\mathrm{CH}_{3} \mathrm{I}$ attacks OH^{-}with its I-side (C-side). Note that, in the case of proton abstraction, the cosine of θ is binned into 20 equidistant bins. In the present work, B-spline functions are applied for the curve fitting of the calculated data. For the distinction of the possible pathways, the same procedure is applied as in Ref. 69.

RESULTS AND DISCUSSION

The schematic representation of the $\mathrm{S}_{\mathrm{N}} 2$ and protonabstraction pathways along the stationary points is shown in Fig. 2. The benchmark energies ${ }^{32,69}$ of the structures are compared with the corresponding PES values, and as it can be seen, the PES reproduces the benchmark data within chemical accuracy ($1 \mathrm{kcal} / \mathrm{mol}$) in nearly all cases. Note that the examined four single-excited vibrational energy levels of the OH^{-}and $\mathrm{CH}_{3} \mathrm{I}$ reactants determined on the PES are also depicted in Fig. 2. $\mathrm{S}_{\mathrm{N}} 2$ can proceed through three different pathways: the submerged back-side attack Walden inversion with a nontraditional H -bonded transitional state of HTS ($-16.65 \mathrm{kcal} / \mathrm{mol}$) as well as the less feasible front-side attack and double-inversion routes, which result in the retention of the initial $\mathrm{CH}_{3} \mathrm{I}$ configuration. ${ }^{71}$ Proton abstraction has three distinct transition states (TS1' ${ }^{\prime}$ TS1 ${ }^{\prime \prime}$, and TS2); however, $\mathrm{TS1}^{\prime}$ and TS1 ${ }^{\prime \prime}$ are only conformational isomers and both are below HTS. The global minimum is located at the H-bonded PostHMIN complex with a classical energy of $-78.78 \mathrm{kcal} / \mathrm{mol}$. Considering the reaction energies of $\mathrm{S}_{\mathrm{N}} 2$ and proton abstraction, $\mathrm{S}_{\mathrm{N}} 2$ is substan-

FIG. 2. The schematic potential energy diagram of the $\mathrm{S}_{\mathrm{N}} 2$ and proton-abstraction pathways of the $\mathrm{OH}^{-}+\mathrm{CH}_{3}$ I reaction comparing benchmark classical relative energies ${ }^{32}$ of the stationary points with the values calculated on our previously-developed PES. ${ }^{66,69}$ Four single-excited vibrational energy levels of the reactants obtained on the PES are shown as well.
tially more endothermic ($-66.64 \mathrm{kcal} / \mathrm{mol}$) than proton abstraction $(-1.49 \mathrm{kcal} / \mathrm{mol})$.

QCT computations are carried out at $E_{\text {coll }}=11.5,23.1,34.6$, and $46.1 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{I}$, and as shown in Fig. 1, in order to compare the results with the unexcited case, a particular normal vibrational mode is excited with one quantum at the start of the simulations. ${ }^{69}$ The ICSs of $\mathrm{S}_{\mathrm{N}} 2$ and proton abstraction (with/without applying the ZPE constraints) as a function of $E_{\text {total }}$ ($E_{\text {total }}=$ initial translational + vibrational energy $)$ and $E_{\text {coll }}$, as well as the ratios of ICSs of the excited- and ground-state $\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reactions are presented in Fig. 3. It is notable that for each vibrational mode, the ZPE restrictions are ineffective for the $\mathrm{S}_{\mathrm{N}} 2$ pathway in nearly all instances: For the examined excitations of $\mathrm{CH}_{3} \mathrm{I}$ (v_{1}, v_{2}, and v_{3}), a small, negligible ZPE violation can be obtained at $E_{\text {coll }}=46.1 \mathrm{kcal} / \mathrm{mol}$. The pathways of $\mathrm{S}_{\mathrm{N}} 2$ and proton abstraction are exothermic and barrier-less, and thus their ICSs suffer a major decline as $E_{\text {coll }}\left(E_{\text {total }}\right)$ increases. Considering the $E_{\text {total }}$ dependence for $\mathrm{S}_{\mathrm{N}} 2$, interestingly, it appears that the spectator vibrational modes of the OH^{-}stretching and CH stretching have the most pronounced enhancements on the reactivity, as shown in Fig. 3. This
phenomenon emerges from the fact that, since these two modes require higher excitation energies, the relative quantity of the initial translational energy within total energy is smaller compared to the other excitations. Therefore, the relatively lower amount of the initial translational energy in the cases of these higher frequency excitations leads to higher reactivity in $\mathrm{S}_{\mathrm{N}} 2$. At $E_{\text {total }}=\sim 22 \mathrm{kcal} / \mathrm{mol}$, the $v_{\mathrm{OH}^{-}}$excited ICS of $\mathrm{S}_{\mathrm{N}} 2$ is almost four times larger than the ground-state ICS, while at higher $E_{\text {total }}$ of $\sim 45 \mathrm{kcal} / \mathrm{mol}$, the former ICS values are almost the same. For proton abstraction at lower $E_{\text {total }}$, comparable increases in the ICSs can be observed, as well. Moreover, the employed ZPE constraints enhance the reactivity of proton abstraction more significantly, an increase of over 600% can be eventuated among the hard-restricted mode-specific ICS values. It should also be noted that as $E_{\text {coll }}$ increases, the vibrational enhancement decreases in accordance with the reduced time of the possible interaction between the OH^{-}and $\mathrm{CH}_{3} \mathrm{I}$ reactants. The excitations of the OH^{-}stretching and CH stretching vibrational modes have a similar impact on the ICS values of proton abstraction with and without soft restrictions; however, considering hard restrictions, the proton-abstraction ICSs of the OH^{-}stretching are notably

FIG. 3. Mode-specific integral cross-sections of $S_{N} 2$ and proton abstraction without as well as with soft and hard ZPE restrictions as a function of total energy (collision energy + vibrational excitation energy, first column) and collision energy (second column) and the ratios of the corresponding integral cross sections of the $\mathrm{OH}^{-}\left(v_{\mathrm{OH}}{ }^{-}=0\right)$ $+\mathrm{CH}_{3} \mathrm{l}\left(v_{x}=1\right)$ and the $\mathrm{OH}^{-}\left(v_{\mathrm{OH}^{-}}=1\right)+\mathrm{CH}_{3} \mathrm{l}\left(v_{x}=0\right), x=3,2,1$, reactions with respect to the ground-state $\mathrm{OH}^{-}\left(v_{\mathrm{OH}^{-}}=0\right)+\mathrm{CH}_{3} 1(v=0)$ reaction as a function of collision energy (third column).

FIG. 4. Mode-specific integral cross-sections for proton abstraction with dissociation, $\mathrm{S}_{N} 2$ with proton exchange, proton abstraction with proton exchange, proton exchange, $\mathrm{S}_{\mathrm{N}} 2$ retention, and iodine abstraction of the $\mathrm{OH}^{-}\left(v_{\mathrm{OH}^{-}}=0\right)+\mathrm{CH}_{3}\left(v_{x}=0,1\right), x=3,2,1$, and $\mathrm{OH}^{-}\left(v_{\mathrm{OH}^{-}}=1\right)+\mathrm{CH}_{3} \mathrm{l}(v=0)$ reactions as a function of collision energy.
higher. By plotting the ICSs as a function of $E_{\text {coll }}$, the reactivity of $\mathrm{S}_{\mathrm{N}} 2$ is improved by the CI stretching excitation the most, as expected, owing to the breaking of the C-I bond during the mechanism. This finding is in accordance with the quantum dynamics study of Rao et al., ${ }^{70}$ although our computations revealed a promotion of the CH_{3} umbrella excitation on the $\mathrm{S}_{\mathrm{N}} 2$ reactivity in agreement with the previous QCT results of the $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{3} \mathrm{I}$ reactions. ${ }^{13,15}$ It is important to highlight that at a lower $E_{\text {coll }}$ of $11.5 \mathrm{kcal} / \mathrm{mol}$, the CH stretching excitations inhibit the $\mathrm{S}_{\mathrm{N}} 2$ reactivity by about 1.5%. For proton abstraction, the CH stretching excitation is the most efficient for enhancing the reactivity due to the $\mathrm{C}-\mathrm{H}$ bond cleavage in the progress. Nevertheless, as applying ZPE constraints for proton abstraction, the OH^{-}stretching excitation becomes more dominant in the promotion of the reactivity: By employing soft restrictions, an enhancement of $140 \%-160 \%$ can be recognized for the OH^{-}stretching compared to the groundstate reaction at each $E_{\text {coll }}$, while in the case of the hard-restricted proton abstraction, the OH^{-}stretching vibrational mode gains utmost significance among the excitations. The mode-specific ICS values of the possible pathways at each $E_{\text {coll }}$ are presented in the
supplementary material (Tables S1-S4), and for the ground-state ICSs, see electronic supplementary information of Ref. 69.

In addition to $\mathrm{S}_{\mathrm{N}} 2$ and proton abstraction, numerous other possible pathways can be identified for $\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{I}$ as discussed in Ref. 69: proton exchange $\left(\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{I} \rightarrow \mathrm{HOH}^{\prime}+\mathrm{CH}_{2} \mathrm{I}^{-}\right.$ $\rightarrow \mathrm{OH}^{-}+\mathrm{CH}_{2} \mathrm{H}^{\prime} \mathrm{I}$), proton abstraction with dissociation (following proton abstraction, the C-I bond of $\mathrm{CH}_{2} \mathrm{I}^{-}$breaks), $\mathrm{S}_{\mathrm{N}} 2$ with proton exchange (preceding back-side attack, a proton exchange occurs between the reactants), proton abstraction with proton exchange (preceding proton abstraction, a proton exchange occurs between the reactants), and iodine abstraction (generation of the $[\mathrm{I} \cdots \mathrm{OH}]^{-}$ $+\mathrm{CH}_{3}$ products). The mode-specific ICSs of the aforementioned pathways along with the $\mathrm{S}_{\mathrm{N}} 2$ retention channel as the function of $E_{\text {coll }}$ are shown in Fig. 4. Within proton abstraction with dissociation, four distinct pathways can be exposed and their ICSs are depicted in Fig. 5. In the course of the separation of the double-inversion and front-side attack pathways, we found that the transition-state attack-angle-based approach is not definitive for the $\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction; ${ }^{72}$ nonetheless, according to the trajectory simulations, double inversion is the more feasible process at low $E_{\text {coll }}$

FIG. 5. Mode-specific integral cross-sections for the different types of the proton abstraction with dissociation pathway of the $\mathrm{OH}^{-}\left(v_{\mathrm{OH}}-=0\right)+\mathrm{CH}_{3}\left(v_{x}=0,1\right), x=3,2,1$, and $\mathrm{OH}^{-}\left(v_{\mathrm{OH}^{-}}=1\right)+\mathrm{CH}_{3} \mathrm{I}(v=0)$ reactions as a function of collision energy.

FIG. 6. Normalized initial attack angle (α) distributions of the reactants, normalized scattering angle (θ) distributions of the products, opacity functions $[P(b)]$, and the normalized relative translation energy ($E_{\text {trans }}$) distributions of the products for the $\mathrm{OH}^{-}\left(v_{\mathrm{OH}^{-}}=0\right)+\mathrm{CH}_{3} 1\left(v_{x}=0,1\right), x=3,2,1$, and $\mathrm{OH}^{-}\left(v_{\mathrm{OH}^{-}}=1\right)+\mathrm{CH}_{3} 1(v=0) \mathrm{S}_{\mathrm{N}} 2$ reactions at different collision energies.
in agreement with the submerged barrier of DITS ($-3.85 \mathrm{kcal} / \mathrm{mol}$). In contrast to $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$, where the CH stretching is clearly the most effective mode for the promotion of double inversion, in the present reaction, the excitation of the OH^{-}stretching mode happens to be the most preferable choice to facilitate double inversion, as shown in Fig. 4. With an increase in $E_{\text {coll }}$, the probability of
the front-side attack pathway increases, resulting in a more substantial impact for the CH stretching and CI stretching vibrational modes. In the case of other pathways involving proton transfer between reactants ($\mathrm{S}_{\mathrm{N}} 2$ with proton exchange, proton abstraction with proton exchange, and proton exchange), the largest enhancement is found upon the OH^{-}stretching excitation as it is coupled to
the reaction coordinate the strongest. Note that certain vibrational excitations inhibit the above-mentioned proton-exchange-involved pathways since they rather promote the competitive $\mathrm{S}_{\mathrm{N}} 2$ and protonabstraction channels. For the channels of proton abstraction with dissociation and iodine abstraction, the excitation of the CH stretching exerts the greatest influence on the reactivity. With regard to
the $E_{\text {coll }}$ dependence of the mode-specificity of the channels, the ground-state ICSs as well as the corresponding ICS-increasements of the excitations shrink toward higher $E_{\text {coll }}$, excluding proton abstraction with dissociation and $\mathrm{S}_{\mathrm{N}} 2$ retention, where the ICSs do not display a decreasing trend as a function of $E_{\text {coll }}$. As seen in Fig. 5, the mode-specific behavior is clearly observable for the four sepa-

FIG. 7. Normalized initial attack angle (a) distributions of the reactants, normalized scattering angle (θ) distributions of the products, opacity functions $[P(b)]$, and the normalized relative translation energy ($E_{\text {trans }}$) distributions of the products for the $\mathrm{OH}^{-}\left(v_{\mathrm{OH}^{-}}=0\right)+\mathrm{CH}_{3} \mathrm{l}\left(v_{x}=0,1\right), x=3,2,1$, and $\mathrm{OH}^{-}\left(v_{\mathrm{OH}^{-}}=1\right)+\mathrm{CH}_{3} \mathrm{I}(v=0)$ proton-abstraction reactions at different collision energies.

FIG. 8. Normalized internal energy ($E_{\text {int }}$), vibrational energy ($E_{\text {vib }}$), and rotational energy ($E_{\text {rot }}$) distributions of the products for the $\mathrm{OH}^{-}\left(v_{\mathrm{OH}^{-}}=0\right)+\mathrm{CH}_{3} \mathrm{I}\left(v_{x}=0,1\right), x=3$, 2,1 , and $\mathrm{OH}^{-}\left(v_{\mathrm{OH}^{-}}=1\right)+\mathrm{CH}_{3} \mathrm{I}(v=0) \mathrm{S}_{\mathrm{N}} 2$ reactions at different collision energies. The orange vertical dotted line refers to the zero-point energy of the $\mathrm{CH}_{3} \mathrm{OH}$ product ($32.37 \mathrm{kcal} / \mathrm{mol}$) on the PES.
rated paths of proton abstraction with dissociation, and almost in all instances, the most prominent effect is seen for the excitation of the CH stretching vibrational mode for each channel. By comparing our results of the title reaction with the crossed-beam measurements performed for $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I},{ }^{25,26}$ several similar findings can be stated regarding the influence of the CH stretching excitation. At low $E_{\text {coll }}$, $\mathrm{S}_{\mathrm{N}} 2$ is not influenced or even inhibited, and as $E_{\text {coll }}$ increases, the CH stretching excitation promotes the reactivity by $5 \%-10 \%$. In the case of proton abstraction, the enhancement is significant at each $E_{\text {coll }}$. However, in contrast to $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{I}$, the iodine-abstraction pathway of $\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{I}$ is also enhanced by the CH stretching excitation.

Mode-specific opacity functions as well as the product scattering angle and reactant initial attack angle distributions are plotted at different $E_{\text {coll }}$ for the $\mathrm{S}_{\mathrm{N}} 2$ and proton-abstraction channels in Figs. 6 and 7 , respectively. For $S_{\mathrm{N}} 2$, the promotion of the CI stretching excitation can be more commonly observed at larger b, whereas in the case of smaller b values, the CH stretching excitation hinders the reaction probability at $E_{\text {coll }}=11.5 \mathrm{kcal} / \mathrm{mol}$. On the other hand, proton abstraction is enhanced by exciting the CH stretching mode, as discussed earlier, and with increasing $E_{\text {coll }}$, the effect on the reactivity is more pronounced at larger b. It should also
be highlighted that the mode-specific character of the $b_{\max }$ values is insignificant. Initial attack angle distributions show that, in the case of $\mathrm{S}_{\mathrm{N}} 2$ and proton abstraction, $\mathrm{CH}_{3} \mathrm{I}$ prefers to attack with its C -side in accordance with the structures of the corresponding transition states (HTS and TS1 ${ }^{\prime}$, TS1 ${ }^{\prime \prime}$, respectively), and at higher $E_{\text {coll }}$, this preference is more pronounced, as the indirect character of the pathways is more and more diminishing. ${ }^{69}$ Regarding OH^{-}, the attack angle distributions are rather isotropic. However, it is noteworthy that at $E_{\text {coll }}=34.6$ and $46.1 \mathrm{kcal} / \mathrm{mol}$, the O-side attack is slightly preferred by proton abstraction in conformity to the gaining dominance of the direct stripping mechanism. In both pathways, for the initial attack angle distributions of the OH^{-}and $\mathrm{CH}_{3} \mathrm{I}$ reactants, only a minor mode-specificity can be identified. With regard to the scattering angle distributions of the products, an apparent forward-scattering and no mode-specificity can be found for proton abstraction, while $\mathrm{S}_{\mathrm{N}} 2$ shows a mixed backward/forwardscattering and isotropic pattern, and upon increasing $E_{\text {coll }}$, the CI stretching and CH stretching excitations enhance the generation of the forward-scattered products.

The product relative translation energy distributions of the $\mathrm{S}_{\mathrm{N}} 2$ and proton-abstraction pathways at different $E_{\text {coll }}$ are presented in Figs. 6 and 7, in order. The internal, vibrational, and rotational

FIG. 9. Normalized internal energy $\left(E_{\text {int }}\right)$, vibrational energy ($E_{\text {vib }}$), and rotational energy ($E_{\text {rot }}$) distributions of the $\mathrm{H}_{2} \mathrm{O}$ product for the $\mathrm{OH}^{-}\left(v_{\mathrm{OH}^{-}}=0\right)+\mathrm{CH}_{3} \mathrm{I}\left(v_{x}=0,1\right)$, $x=3,2,1$, and $\mathrm{OH}^{-}\left(v_{\mathrm{OH}^{-}}=1\right)+\mathrm{CH}_{3} \mathrm{l}(v=0)$ proton-abstraction reactions at different collision energies. The orange vertical dotted line refers to the zero-point energy of the $\mathrm{H}_{2} \mathrm{O}$ product ($13.82 \mathrm{kcal} / \mathrm{mol}$) on the PES .
energy distributions of the $\mathrm{S}_{\mathrm{N}} 2\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ and proton-abstraction $\left(\mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{I}^{-}\right)$products are given in Figs. 8-10, respectively. In concordance with the product scattering angle distributions, as $E_{\text {coll }}$ increases, the translational energy of the proton-abstraction products is more and more impacted signifying the dominance of the direct stripping mechanism, while for $\mathrm{S}_{\mathrm{N}} 2$, the post-reaction energy distributions show a rather indirect character. ${ }^{69}$ For both pathways, a slight mode-specificity can be observed in the case of the product relative translation energy distributions; however, internal energy distributions have a more significant mode-specific feature showing that the initial vibrational excitation energies evolve into the internal degrees of freedom of the products. Moreover, the product rotational energy distributions have a minor dependence on the vibrational excitations of the reactants, and thus, it can be stated that the energies of the reactant vibrational excitations mostly convert into the vibrational energies of the products. Nevertheless, this picture is more complicated in some instances: For example, the excitation of CH stretching shifts the vibrational energy of the $\mathrm{CH}_{2} \mathrm{I}^{-}$and $\mathrm{H}_{2} \mathrm{O}$ products toward larger energies, but their translation energy distributions marginally broadened as well, and therefore, it can be
declared that the excess initial reactant energy is separated between the translational and vibrational energies of the products. With regard to the influence of the OH^{-}stretching excitation on the $\mathrm{H}_{2} \mathrm{O}$ product of proton abstraction, the blue shifts of the internal and vibrational energy distributions are nearly equivalent to the energy of the excitation itself, and thus, in the course of the mechanism, the vibrational energy of the OH^{-}reactant particularly remains in the $\mathrm{H}_{2} \mathrm{O}$ product. Likewise, regarding $\mathrm{S}_{\mathrm{N}} 2$, an increase in the internal energy distribution of $\mathrm{CH}_{3} \mathrm{OH}$ can be seen for each vibrational excitation and each enhancement is roughly proportional to the energy of the initial vibrational excitation of the reactants. The combination of different indirect mechanisms is also reflected in the post-reaction energy flow for the $\mathrm{S}_{\mathrm{N}} 2$ channel: At higher $E_{\text {coll }}$, the vibrational and rotational energy distributions of the $\mathrm{CH}_{3} \mathrm{OH}$ product have a twopeak shape suggesting that, in the course of the reaction, the energy is significantly transformed into either the vibrational or the rotational degrees of freedom of the product. Moreover, one can see that as a result of the vibrational excitations, the two-peaked form of the vibrational energy distribution of $\mathrm{CH}_{3} \mathrm{OH}$ becomes more flattened at $E_{\text {coll }}=46.1 \mathrm{kcal} / \mathrm{mol}$.

FIG. 10. Normalized internal energy $\left(E_{\text {int }}\right)$, vibrational energy ($E_{\text {vib }}$), and rotational energy ($E_{\text {rot }}$) distributions of the $\mathrm{CH}_{2} I^{-}$product for the $\mathrm{OH}^{-}\left(v_{\mathrm{OH}^{-}}=0\right)+\mathrm{CH}_{3} \mid\left(v_{x}=0,1\right)$, $x=3,2,1$, and $\mathrm{OH}^{-}\left(v_{\mathrm{OH}^{-}}=1\right)+\mathrm{CH}_{3} \mathrm{l}(v=0)$ proton-abstraction reactions at different collision energies. The orange vertical dotted line refers to the zero-point energy of the $\mathrm{CH}_{2} \mathrm{I}^{-}$product $(13.78 \mathrm{kcal} / \mathrm{mol})$ on the PES.

CONCLUSIONS

In this paper, we have performed vibrational mode-specific QCT computations for the seven-atomic $\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction at four different $E_{\text {coll }}$ utilizing our previously-developed fulldimensional PES. One-quantum excitations of four different vibrational modes have been considered and their impact on reactivity, mechanism, and energy distribution has been examined. Considering the ICSs as a function of $E_{\text {coll }}$, prominent mode-specificity has been assessed for proton abstraction, especially when ZPE constraints are applied, an increase of over 400% can be recognized in the reactivity. Despite that, the excitations of the vibrational modes have a smaller impact on the ICSs of the $\mathrm{S}_{\mathrm{N}} 2$ pathway: The reactant vibrational excitation promotes the reaction by $15 \%-25 \%$ for the CI stretching excitation and by $5 \%-15 \%$ for the other modes, except for the CH stretching excitation at lower $E_{\text {coll }}$, where a minor inhibition of about 1.5% can be seen. In the case of the other possible pathways, a significant mode-specific feature can be obtained, as well. Our findings are consistent with the recently-reported results by Rao and Wang, ${ }^{70}$ indicating that the excitations of CI stretching facilitate the $\mathrm{S}_{\mathrm{N}} 2$ reaction; however, our QCT results uncovered that the
CH_{3} umbrella excitation also promotes the reaction. By inspecting the opacity functions of $\mathrm{S}_{\mathrm{N}} 2$ and proton abstraction, it can be stated that with increasing $E_{\text {coll }}$, the influence of the most effective excitations is more pronounced at larger b. The mode-specificity of the reactant initial attack angle and product scattering angle distributions is negligible for proton abstraction, while for $\mathrm{S}_{\mathrm{N}} 2$ at higher $E_{\text {coll }}$, the CI stretching and CH stretching excitations enhance the generation of the forward-scattered products. For the post-reaction energy distributions, it has been revealed that, in general, the product translational energy distributions have only a minor mode-specificity, and the excess vibrational excitation energies rather flow into the product vibrational energy, because the initial excitations have only a slight effect on the rotational energy of the products.

This work substantiates the fact that even in the case of the submerged-barrier $S_{N} 2$ reactions, a significant mode-specific character can be unveiled, and for more complex systems, the in-depth theoretical investigation of this phenomenon necessitates the utilization of the QCT method. We hope that our study motivates future theoretical and experimental examinations of the mode-specificity for the seven-atomic $\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{I}$ reaction.

SUPPLEMENTARY MATERIAL

See the supplementary material for mode-specific integral cross sections (bohr ${ }^{2}$) of the possible pathways [$\mathrm{S}_{\mathrm{N}} 2$, proton abstraction (with ZPE-constraints), iodine abstraction, $\mathrm{S}_{\mathrm{N}} 2$ retention, proton abstraction with proton exchange, $\mathrm{S}_{\mathrm{N}} 2$ with proton exchange, proton exchange, and proton abstraction with dissociation $\left(\mathrm{CH}_{2}+\mathrm{I}^{-}\right.$ $\left.\left.+\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}+\left[\mathrm{I} \cdots \mathrm{CH}_{2}\right]^{-}, \mathrm{CH}_{2}+\left[\mathrm{I} \cdots \mathrm{H}_{2} \mathrm{O}\right]^{-}, \mathrm{I}^{-}+\left[\mathrm{CH}_{2} \cdots \mathrm{H}_{2} \mathrm{O}\right]\right)\right]$ of the $\mathrm{OH}^{-}\left(v_{\mathrm{OH}^{-}}=0\right)+\mathrm{CH}_{3} \mathrm{I}\left(v_{x}=1\right), x=3,2,1$ and $\mathrm{OH}^{-}\left(v_{\mathrm{OH}^{-}}\right.$ $=1)+\mathrm{CH}_{3} \mathrm{I}(v=0)$ reactions.

ACKNOWLEDGMENTS

We acknowledge the financial support of the National Research, Development and Innovation Office-NKFIH, K-125317 and K-146759; Project No. TKP2021-NVA-19 provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding scheme; the National Young Talent Scholarship (Grant No. NTP-NFTÖ-22-B-0050 for D. A. T.); and the Momentum (Lendület) Program of the Hungarian Academy of Sciences.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Domonkos A. Tasi: Data curation (lead); Formal analysis (lead); Investigation (lead); Methodology (equal); Validation (lead); Visualization (lead); Writing - original draft (lead); Writing - review \& editing (lead). Gábor Czakó: Conceptualization (lead); Data curation (supporting); Formal analysis (supporting); Funding acquisition (lead); Investigation (supporting); Methodology (equal); Project administration (lead); Resources (lead); Supervision (lead); Validation (supporting); Visualization (supporting); Writing - review \& editing (supporting).

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

REFERENCES

${ }^{1}$ T. Hollebeek, T.-S. Ho, and H. Rabitz, Annu. Rev. Phys. Chem. 50, 537 (1999).
${ }^{2}$ J. M. Bowman and G. C. Schatz, Annu. Rev. Phys. Chem. 46, 169 (1995).
${ }^{3}$ B. Fu, X. Shan, D. H. Zhang, and D. C. Clary, Chem. Soc. Rev. 46, 7625 (2017).
${ }^{4}$ S. Yan, Y. T. Wu, B. Zhang, X. F. Yue, and K. Liu, Science 316, 1723 (2007).
${ }^{5}$ W. Zhang, H. Kawamata, and K. Liu, Science 325, 303 (2009).
${ }^{6}$ T. Westermann, J. B. Kim, M. L. Weichman, C. Hock, T. I. Yacovitch, J. Palma, D. M. Neumark, and U. Manthe, Angew. Chem., Int. Ed. 53, 1122 (2014).
${ }^{7}$ W. Yan and D. Wang, Chem. Phys. Lett. 603, 41 (2014).
${ }^{8}$ R. Welsch and U. Manthe, J. Chem. Phys. 141, 051102 (2014).
${ }^{9}$ J. Palma and U. Manthe, J. Chem. Phys. 146, 214117 (2017).
${ }^{10}$ D. Lu and J. Li, Theor. Chem. Acc. 139, 157 (2020).
${ }^{11}$ J. Lv, J. Yang, D. Zhang, F. Blauert, B. Jiang, D. Dai, W. Zhang, G. Wu, W. Yang, Q. Shuai, and X. Yang, J. Chem. Phys. 159, 024301 (2023).
${ }^{12}$ I. Szabó and G. Czakó, J. Chem. Phys. 145, 134303 (2016).
${ }^{13}$ Y. Wang, H. Song, I. Szabó, G. Czakó, H. Guo, and M. Yang, J. Phys. Chem. Lett. 7, 3322 (2016).
${ }^{14}$ B. Olasz and G. Czakó, J. Phys. Chem. A 122, 8143 (2018).
${ }^{15}$ M. Stei, E. Carrascosa, A. Dörfler, J. Meyer, B. Olasz, G. Czakó, A. Li, H. Guo, and R. Wester, Sci. Adv. 4, eaas9544 (2018).
${ }^{16}$ S. Schmatz, ChemPhysChem 5, 600 (2004).
${ }^{17}$ C. Hennig and S. Schmatz, J. Chem. Phys. 121, 220 (2004).
${ }^{18}$ C. Hennig and S. Schmatz, J. Chem. Phys. 122, 234307 (2005).
${ }^{19}$ C. Hennig and S. Schmatz, Chem. Phys. Lett. 446, 250 (2007).
${ }^{20}$ C. Hennig and S. Schmatz, Phys. Chem. Chem. Phys. 14, 12982 (2012).
${ }^{21}$ A. A. Viggiano, R. A. Morris, J. S. Paschkewitz, and J. F. Paulson, J. Am. Chem. Soc. 114, 10477 (1992).
${ }^{22}$ D. S. Tonner and T. B. McMahon, J. Am. Chem. Soc. 122, 8783 (2000).
${ }^{23}$ P. Ayotte, J. Kim, J. A. Kelley, S. B. Nielsen, and M. A. Johnson, J. Am. Chem. Soc. 121, 6950 (1999).
${ }^{24}$ M. Kowalewski, J. Mikosch, R. Wester, and R. De Vivie-Riedle, J. Phys. Chem. A 118, 4661 (2014).
${ }^{25}$ T. Michaelsen, B. Bastian, P. Strübin, J. Meyer, and R. Wester, Phys. Chem. Chem. Phys. 22, 12382 (2020).
${ }^{26}$ T. Michaelsen, B. Bastian, A. Ayasli, P. Strübin, J. Meyer, and R. Wester, J. Phys. Chem. Lett. 11, 4331 (2020).
${ }^{27}$ V. Tajti and G. Czakó, Phys. Chem. Chem. Phys. 24, 8166 (2022).
${ }^{28}$ J. D. Evanseck, J. F. Blake, and W. L. Jorgensen, J. Am. Chem. Soc. 109, 2349 (1987).
${ }^{29}$ J. M. Gonzales, R. S. Cox, S. T. Brown, W. D. Allen, and H. F. Schaefer, J. Phys. Chem. A 105, 11327 (2001).
${ }^{30}$ J. Xie and W. L. Hase, Science 352, 32 (2016).
${ }^{31}$ T. A. Hamlin, M. Swart, and F. M. Bickelhaupt, ChemPhysChem 19, 1315 (2018).
${ }^{32}$ D. A. Tasi, Z. Fábián, and G. Czakó, J. Phys. Chem. A 122, 5773 (2018).
${ }^{33}$ D. A. Tasi, Z. Fábián, and G. Czakó, Phys. Chem. Chem. Phys. 21, 7924 (2019).
${ }^{34}$ C. Li, X. Xin, and D. Wang, Phys. Chem. Chem. Phys. 23, 23267 (2021).
${ }^{35}$ S. Zhao, G. Fu, W. Zhen, L. Yang, J. Sun, and J. Zhang, Phys. Chem. Chem. Phys. 24, 24146 (2022).
${ }^{36}$ D. A. Tasi and G. Czakó, J. Chem. Phys. 156, 184306 (2022).
${ }^{37}$ X. Liu, S. Tian, B. Pang, H. Li, and Y. Wu, Phys. Chem. Chem. Phys. 25, 14812 (2023).
${ }^{38}$ A. Gutal and M. Paranjothy, Phys. Chem. Chem. Phys. 25, 15015 (2023).
${ }^{39}$ H. Feng, R. Li, Y. Wu, and X. Liu, ChemPhysChem 25, e202300525 (2023).
${ }^{40}$ J. M. Gonzales, C. Pak, R. S. Cox, W. D. Allen, H. F. Schaefer III, A. G. Császár, and G. Tarczay, Chem. - Eur. J. 9, 2173 (2003).
${ }^{41}$ L. Sun, K. Song, and W. L. Hase, Science 296, 875 (2002).
${ }^{42}$ H. Tachikawa, M. Igarashi, and T. Ishibashi, J. Phys. Chem. A 106, 10977 (2002).
${ }^{43}$ H. Tachikawa and M. Igarashi, Chem. Phys. 324, 639 (2006).
${ }^{44}$ H. Yin, D. Wang, and M. Valiev, J. Phys. Chem. A 115, 12047 (2011).
${ }^{45}$ Y. Xu, T. Wang, and D. Wang, J. Chem. Phys. 137, 184501 (2012).
${ }^{46}$ J. Chen, Y. Xu, and D. Wang, J. Comput. Chem. 35, 445 (2014).
${ }^{47}$ J. Xie, J. Zhang, and W. L. Hase, Int. J. Mass Spectrom. 378, 14 (2015).
${ }^{48}$ E. Carrascosa, M. Bawart, M. Stei, F. Linden, F. Carelli, J. Meyer, W. D. Geppert, F. A. Gianturco, and R. Wester, J. Chem. Phys. 143, 184309 (2015).
${ }^{49}$ L. Sun, K. Song, W. L. Hase, M. Sena, and J. M. Riveros, Int. J. Mass Spectrom. 227, 315 (2003).
${ }^{50}$ T. Tsutsumi, Y. Ono, Z. Arai, and T. Taketsugu, J. Chem. Theory Comput. 14, 4263 (2018).
${ }^{51}$ S. R. Hare, L. A. Bratholm, D. R. Glowacki, and B. K. Carpenter, Chem. Sci. 10, 9954 (2019).
${ }^{52}$ Y. G. Proenza, M. A. F. de Souza, and R. L. Longo, Chem. - Eur. J. 22, 16220 (2016).
${ }^{53}$ D. A. Tasi and G. Czakó, Chem. Sci. 12, 14369 (2021).
${ }^{54}$ J. Qin, Y. Liu, and J. Li, J. Chem. Phys. 157, 124301 (2022).
${ }^{55}$ J. Mikosch, S. Trippel, C. Eichhorn, R. Otto, U. Lourderaj, J. X. Zhang, W. L. Hase, M. Weidemuüller, and R. Wester, Science 319, 183 (2008).
${ }^{56}$ R. Otto, J. Xie, J. Brox, S. Trippel, M. Stei, T. Best, M. R. Siebert, W. L. Hase, and R. Wester, Faraday Discuss. 157, 41 (2012).
${ }^{57}$ J. Xie, R. Sun, M. R. Siebert, R. Otto, R. Wester, and W. L. Hase, J. Phys. Chem. A 117, 7162 (2013).
${ }^{58}$ J. Xie, R. Otto, J. Mikosch, J. Zhang, R. Wester, and W. L. Hase, Acc. Chem. Res. 47, 2960 (2014).
${ }^{59}$ E. Carrascosa, J. Meyer, and R. Wester, Chem. Soc. Rev. 46, 7498 (2017).
${ }^{60}$ J. Xie, J. Zhang, R. Sun, R. Wester, and W. L. Hase, Int. J. Mass Spectrom. 438, 115 (2019).
${ }^{61}$ J. Xie, S. C. Kohale, W. L. Hase, S. G. Ard, J. J. Melko, N. S. Shuman, and A. A. Viggiano, J. Phys. Chem. A 117, 14019 (2013).
${ }^{62}$ R. Otto, J. Brox, S. Trippel, M. Stei, T. Best, and R. Wester, Nat. Chem. 4, 534 (2012).
${ }^{63}$ J. Xie, R. Otto, R. Wester, and W. L. Hase, J. Chem. Phys. 142, 244308 (2015).
${ }^{64}$ J. Xie, X. Ma, J. Zhang, P. M. Hierl, A. A. Viggiano, and W. L. Hase, Int. J. Mass Spectrom. 418, 122 (2017).
${ }^{65}$ X. Ji, C. Zhao, and J. Xie, Phys. Chem. Chem. Phys. 23, 6349 (2021).
${ }^{66}$ D. A. Tasi, T. Győri, and G. Czakó, Phys. Chem. Chem. Phys. 22, 3775 (2020).
${ }^{67}$ T. Győri and G. Czakó, J. Chem. Theory Comput. 16, 51 (2020).
${ }^{68}$ K. A. Brueckner, Phys. Rev. 96, 508 (1954).
${ }^{69}$ D. A. Tasi, T. Michaelsen, R. Wester, and G. Czakó, Phys. Chem. Chem. Phys. 25, 4005 (2023).
${ }^{70}$ S. Rao and D. Wang, Chin. J. Chem. Phys. 36, 169 (2023).
${ }^{71}$ I. Szabó and G. Czakó, Nat. Commun. 6, 5972 (2015).
${ }^{72}$ P. Papp, V. Tajti, and G. Czakó, Chem. Phys. Lett. 755, 137780 (2020).

