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A black-box-type algorithm is presented for the variational computation of energy levels and wave
functions using a �ro�vibrational Hamiltonian expressed in an arbitrarily chosen body-fixed frame
and in any set of internal coordinates of full or reduced vibrational dimensionality. To make the
required numerical work feasible, matrix representation of the operators is constructed using a
discrete variable representation �DVR�. The favorable properties of DVR are exploited in the
straightforward and numerically exact inclusion of any representation of the potential and the kinetic
energy including the G matrix and the extrapotential term. In this algorithm there is no need for an
a priori analytic derivation of the kinetic energy operator, as all of its matrix elements at each grid
point are computed numerically either in a full- or a reduced-dimensional model. Due to the simple
and straightforward definition of reduced-dimensional models within this approach, a fully
anharmonic variational treatment of large, otherwise intractable molecular systems becomes
available. In the computer code based on the above algorithm, there is no inherent limitation for the
maximally coupled number of vibrational degrees of freedom. However, in practice current personal
computers allow the treatment of about nine fully coupled vibrational dimensions. Computation of
vibrational band origins of full and reduced dimensions showing the advantages and limitations of
the algorithm and the related computer code are presented for the water, ammonia, and methane
molecules. © 2009 American Institute of Physics. �DOI: 10.1063/1.3076742�

I. INTRODUCTION

The Born–Oppenheimer �BO� approximation1,2 defines
two fields of research for computational quantum chemistry,
namely, electronic structure and nuclear motion theories. Al-
though the approximate approaches and related algorithms
employed in solving the time-independent Schrödinger equa-
tions in the two areas have a lot of common features, from
the perspective of the present investigation on variational
rovibrational spectroscopy it is more important to point out
the differences in these algorithms than to emphasize their
similarities. Note that �low-order� perturbational algorithms,
used with considerable success in both fields,3–6 are outside
of the scope of this paper.

Nonrelativistic electronic structure theory almost always
utilizes a universal Hamiltonian expressed in Cartesian coor-
dinates, whereby not only the kinetic but also the potential
energy operator is known exactly in a simple analytic form.
One is usually interested in the lowest or the few lowest
electronic states and wave functions and it has also become
common to use standard basis sets for these computations.
Consequently, single codes could be written irrespective of
the size of the system to be treated and the arrangement of its
constituent atoms. Apart from relatively minor though very
important technical differences in the algorithms utilized in

the different electronic structure codes, it is the different ap-
proximations introduced to treat the electron correlation
problem which lead to codes applicable to drastically differ-
ent molecular sizes and result in varying accuracy in the
electronic energies and related properties.5,7

In contrast to electronic structure computations, most of
the algorithms used to solve the nuclear motion Schrödinger
equation variationally and the codes based on them are spe-
cialized in more than one respect.8–12 Most importantly, the
potential energy operator is never known in an exact form;
only approximations to the potential energy surfaces
�PES�7,13 can be developed. The first class of approaches,
based on tailor-made analytic kinetic energy operators14–16

and codes utilizing them, proved to be especially useful for
tri-, tetra-, and pentatomic species.17–25 Within this class, al-
most without exception, separate codes had to be developed
for molecules of different size and bonding arrangements.
Obviously, there have been initiatives to develop universal
variational nuclear motion codes. The traditional type of
such universal codes uses the Eckart–Watson �EW�
Hamiltonian�s�26,27 expressed in the Eckart frame and built
upon rectilinear normal coordinates. We are aware of several
computer codes based on the EW Hamiltonians capable of
yielding variationally computed vibrational spectra for poly-
atomic systems.8,10,11,28–39 The principal advantage of these
codes is their universality while their most important short-
coming is connected with the rectilinear nature of normala�Electronic mail: csaszar@chem.elte.hu.
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coordinates and the use of the Eckart frame. As a result,
floppy molecular systems and those having PESs with mul-
tiple minima cannot be treated straightforwardly within this
approach. There have also been attempts to use arbitrarily
chosen body-fixed frames and curvilinear internal
coordinates,40,41 for example by Luckhaus and
co-workers,42–45 Lauvergnat et al.,46,47 Yurchenko et al.,48

and Makarewicz.49 This third class of approaches seems to
be the only one which offers the possibility of a true black-
box-type algorithm to compute rovibrational spectra of com-
plex and floppy molecules, similar to the widely appreciated
black-box approaches of electronic structure theory. Never-
theless, as it is also shown here, practical realization of such
a universal algorithm for nuclear motion computations is far
from being straightforward.

In nuclear motion computations rotation-vibration �rv�
energy levels and wave functions �and properties based on
them� are computed. Often, however, only the rotationless
vibrational levels �and transition wavenumbers� are required,
which are obtained by the solution of a Hamiltonian con-
strained to zero total angular momentum �J=0, where J is
the quantum number of the overall molecular rotation�. Fur-
thermore, adding the capability of the computation of
rotational-vibrational states to an existing vibrations-only
code is straightforward. Thus, it is deemed to be sufficient to
concentrate here on the constrained, J=0 problem.

In order to obtain quantum dynamical results on large�r�
molecular systems variationally, approximations in the quan-
tum treatment must be introduced. The much needed savings
on the computational effort can be achieved along two
routes. First, reduced-dimensional models can be introduced
by means of stopping or constraining the motions of the
subsystem considered to be irrelevant. These techniques in-
volve approximations in the physical model. Second, math-
ematical approximations �e.g., truncated n-mode representa-
tion, grid reduction� can be introduced in the solution of a
given physical model, constrained or not, in order to reduce
the numerical effort.

In this paper we present �a� the theory behind an ap-
proach leading toward a black-box-type procedure to com-
pute rovibrational spectra, with special emphasis on the nu-
merical evaluation of the kinetic energy matrix, �b� our
carefully tested implementation of this procedure in a com-
puter code, built upon the use of discrete variable represen-
tation �DVR�50,51 and a direct-product basis, especially use-
ful when a large number of eigenstates is to be computed
from the resulting sparse Hamiltonian matrix of special
structure, and �c� numerical results on simple model-type
molecular systems, water, ammonia, and methane in order to
demonstrate the flexibility and utility of our code. The code
developed during this work is called GENIUSH, in reference to
its main characteristics: general �GE� �ro�vibrational code
with numerical �N�, internal-coordinate �I�, user-specified
�US� Hamiltonians �H�. Indeed, GENIUSH is able to compute
eigenpairs of a �ro�vibrational operator corresponding to any
body-fixed frame and internal coordinates defined by the
user. Furthermore, inclusion of the user-defined representa-
tion of the PES is numerically exact.

II. KINETIC ENERGY OPERATORS

A. The classical Hamiltonian in internal coordinates

Let us consider a molecule with N nuclei, whose posi-
tions are specified by 3N rectilinear Cartesian coordinates,
Xi�, i=1, . . . ,N ��=X ,Y ,Z�, in the laboratory-fixed frame.
The corresponding Lagrangian is

L =
1

2�
i=1

N

miẊi
TẊi − V , �1�

where dots denote time derivatives, mi denotes the mass as-
sociated with the ith nucleus, and V is the potential energy
depending only on the coordinates of the nuclei. In anticipa-
tion of a computationally more efficient representation, the
3N rectilinear Cartesian coordinates are replaced52 by coor-
dinates of the center of mass of the nuclei �NCM�,
�XX

NCM,XY
NCM,XZ

NCM�, which describe the translational motion
of the system, the Euler angles, �� ,� ,��, which specify the
instantaneous orientation of a body-fixed frame with respect
to the laboratory-fixed frame, and coordinates describing the
internal motion of the system, �q1 ,q2 , . . . ,qD�, where D
�3N−6. In this new set of coordinates the Lagrangian has
the form, using the compact notation q= �q1 ,q2 , . . . ,qD+6�
and qD+1=�, qD+2=�, qD+3=�, qD+4=XX

NCM, qD+5=XY
NCM,

and qD+6=XZ
NCM,

L =
1

2 �
kl=1

D+6 ��
i=1

N

mi

�Xi
T

�qk

�Xi

�ql
�q̇kq̇l − V =

1

2 �
kl=1

D+6

q̇kgklq̇l − V ,

�2�

where

gkl = �
i=1

N

mi

�Xi
T

�qk

�Xi

�ql
, k,l = 1,2, . . . ,D + 6, �3�

was introduced. The momentum pk, conjugate to qk, is

pk =
�L

� q̇k

= �
l=1

D+6

gklq̇l, �4�

and hence for nonsingular g ’ s , q̇=g−1p. After appropri-
ate rearrangements the Hamiltonian is written as

H =
1

2 �
kl=1

D+6

pk�g−1�klpl + V =
1

2 �
kl=1

D+6

pkGklpl + V , �5�

where the notation G=g−1 was introduced.

B. Formulation of the g and G matrices

1. t-vector formalism

The relationship between Cartesian coordinates in the
laboratory-fixed frame, Xi�, and those in the body-fixed
frame, xia, is given by

Xi� = X�
NCM + �

a

C�axia, �6�

where xia�q1 ,q2 , . . . ,qD� denotes the Cartesian coordinates of
the ith nucleus in the body-fixed frame with the axis
a=x ,y ,z, while C�� ,� ,�� denotes the �orthogonal� direction
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cosine matrix between the laboratory-fixed and the body-
fixed frames. The so-called t vectors9,53 are now introduced
as

ti�k� =
�Xi�

�qk
and tiak = �

�

C�ati�k� , k = 1,2, . . . ,D + 6. �7�

It can be demonstrated41 that the translational and rotational
t vectors are

tiak+D+3 = �ak, tiak+D = �e�k � x�i�a, k = 1�x�,2�y�,3�z� ,

�8�

where �ak is the Kronecker delta symbol, and e�k denotes the
unit vector pointing along the kth axis of the body-fixed
frame; the vibrational t vectors can be expressed as

tiak =
�xia

�qk
, k = 1,2, . . . ,D . �9�

Elements of the g matrix can now be given in terms of the t
vectors as

gkl = �
i=1

N

mi�
a

tiaktial = �
i=1

N

mitik
T til. �10�

It follows from Eq. �10� that g �and also G=g−1� is specified
entirely by the actual values of the internal coordinates and
the definition of the body-fixed frame. Furthermore, it can be
demonstrated that the translational motion of the NCM can
be separated exactly from the rest of the coordinates, which
allows introduction of the rv Hamiltonian as

Hrv =
1

2 �
kl=1

D+3

pkGklpl + V . �11�

2. s-vector formalism

A possible construction of the G matrix is offered by its
definition introduced below Eq. �5� using the t vectors. An
alternative formulation, based on the chain rule, is often
used,

Gkl = �
i=1

N
1

mi
�
�

�qk

�Xi�

�ql

�Xi�
, �12�

which is the well-known El’yashevich–Wilson54,55 G matrix.
Similarly to the t vectors �Eq. �7��, the so-called s vectors54

are defined as

si�k� ª

�qk

�Xi�
and siak ª �

�

C�asi�k� , k = 1,2, . . . ,3N .

�13�

It can be shown that the vibrational s vectors assume the
form

siak =
�qk

�xia
. �14�

A detailed procedure for the evaluation of translational and
rotational s vectors can be found in Ref. 41, which relies
only on the translational and rotational t vectors and the

vibrational s vectors but does not assume the knowledge of
the vibrational t vectors. Finally, the G matrix can also be
written in terms of the s vectors as

Gkl = �
i=1

N
1

mi
�

a

siaksial = �
i=1

N
1

mi
sik

Tsil. �15�

From a theoretical point of view, the t- and s-vector formal-
isms are equivalent, but numerically the computation of ei-
ther the �xia /�qk- or �qk /�xia-type derivatives can be more
favorable.

C. Reduced-dimensional models in classical
mechanics

In nuclear motion computation of larger systems ap-
proximations based on physical considerations must often be
introduced, yielding effective Hamiltonians. As inspired by
the given application, certain types of internal coordinates
may be decoupled from the rest.

Let us consider 3N−6 internal coordinates, out of which
there are only D�3N−6 active variables �q1 ,q2 , . . . ,qD� in
our model, and the rest of the coordinates
�	1 ,	2 , . . . ,	3N−6−D� are fixed at a given value �or are pre-
scribed functions of the active coordinates�. In classical
mechanics, constraining coordinates 	i is equivalent to
choosing 	̇i=0 �i=1,2 , . . . ,3N−6−D�. The Lagrangian of
such a constrained model is already derived in Eq. �2� with
D�3N−6. This is equivalent to deleting rows and columns
corresponding to the constrained coordinates in the full g
�R�3N−3���3N−3�.

Another possible approximation can be introduced if
those rows and columns of the full-dimensional G
�R�3N−3���3N−3� matrix are deleted which correspond to the
constrained coordinates.

D. Quantum mechanical formulation

In order to rewrite Eq. �11� to its quantum mechanical
counterpart, a method advocated by Podolsky56 can be ap-
plied, whereby

Ĥrv =
1

2 �
kl=1

D+3

g̃−1/4p̂k
†Gklg̃

1/2p̂lg̃
−1/4 + V , �16�

where g̃=det g, and p̂k has the form

p̂k = − i

�

�qk
, k = 1,2, . . . ,D , �17�

and

p̂D+1 = Ĵx, p̂D+2 = Ĵy , p̂D+3 = Ĵz, �18�

if the volume element is �using Wilson’s normalization�
dq1dq2¯dqD sin �d�d�d�. Elements of G and g̃ are ex-
pressed in terms of the internal coordinates and they are not
functions of the Euler angles �see Sec. II B�. Thus an effec-
tive vibrational operator can be introduced,
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ĤvP =
1

2 �
kl=1

D

g̃−1/4p̂k
†Gklg̃

1/2p̂lg̃
−1/4 + V . �19�

From now on this form will be referred to as the Podolsky

form, ĤvP, in order to distinguish it from a “rearranged”

form, ĤvR, that can be obtained after trivial manipulations as

ĤvR =
1

2 �
kl=1

D

p̂k
†Gklp̂l + U + V , �20�

where

U =

2

32 �
kl=1

D �Gkl

g̃2

� g̃

�qk

� g̃

�ql
+ 4

�

�qk
�Gkl

g̃

� g̃

�ql
�	 �21�

or after a useful rearrangement

U =

2

32 �
kl=1

D �Gkl

G̃2

�G̃

�qk

�G̃

�ql
− 4

�

�qk
�Gkl

G̃

�G̃

�ql
�	 . �22�

U, often called the extrapotential term, is an inherently quan-
tum mechanical term in the Hamiltonian. Both the vibration-
only Podolsky form, Eq. �19�, and the rearranged form, Eq.
�20�, contain the determinant of the rotational-vibrational
g�R�D+3���D+3� matrix �or that of the G matrix� irrespective
of whether the full rovibrational or only the effective vibra-
tional problem is solved. Consequently, even if only the vi-
brations are studied, the choice of the body-fixed frame
might affect the convergence rate of the computed vibra-
tional levels and also, for instance, the singular regions
�g̃=0� of the Hamiltonian.

From a theoretical point of view the Podolsky and the
rearranged forms of the �ro�vibrational Hamiltonian are
equivalent; however, their numerical behavior is different.

E. Reduced-dimensional models in quantum
mechanics

Approximations inspired by physical considerations dis-
cussed in Sec. II C in a classical mechanical context remain
valid also in the quantum mechanical treatment. Constrained
models constructed by reducing the g and also G matrices
will be presented later. It is perhaps worth pointing out that
the two reduction strategies in general provide different mod-
els of the system, and thus numerically different results.

III. MATRIX REPRESENTATION OF THE
HAMILTONIAN AND THE ITERATIVE EIGENSOLVER

Traditionally, the Hamiltonians given in Eqs. �19� and
�20� are further rearranged to a simpler symbolic form con-
sidering the actually chosen body-fixed frame and internal
coordinates. The matrix representation of this system-
adapted symbolic form is then implemented to compute
�ro�vibrational eigenpairs. In the algorithm and computer
code presented here and called GENIUSH the problem is
solved in a reversed manner. The Hamiltonians given in Eq.
�19� or Eq. �20� are not rearranged further but connected
directly to an eigensolver dealing explicitly only with the
universal Gkl, g̃, and U quantities. This allows one to write a
universal computer code. In each application the Gkl, g̃, and

U quantities, specific for the chosen body-fixed frame and
internal coordinates, are determined numerically.

In what follows the essential parts of GENIUSH are pre-
sented in detail. First, the DVR50,51 is considered which is
used to construct the matrix representation of the operators.
Second, technical difficulties of the numerical construction
of the kinetic energy are discussed. Due to the usage of a
DVR coupled with a direct-product grid the resulting Hamil-
tonian matrix is very sparse but is often of extreme size. To
avoid the explicit construction of this large Hamiltonian ma-
trix or even of its nonzero elements, a Lanczos iterative
eigensolver57 is used, which requires only an efficient multi-
plication of the Hamiltonian matrix with a vector. Finally, an
efficient matrix-vector multiplication scheme parallelized
with OPENMP and issues related to the eigensolver part are
presented.

A. Discrete variable representation

Normalized, standard orthogonal polynomials �such as
Hermite, Laguerre, Legendre, and Chebyshev�, Hj�q�, can be
employed to construct a basis. Instead of using spectral func-
tions, the corresponding DVR basis58 is employed in GE-

NIUSH. So far, the Hermite and the Legendre DVR bases
have been implemented. Other DVR bases can trivially be
added and they may prove useful for certain applications.

In order to build a DVR, the coordinate matrix of dimen-
sion Nk

0�Nk
0 is constructed having the elements �qk�ij

= 
Hi�qk��qk�Hj�qk�� for each active vibrational degree of
freedom, k=1,2 , . . . ,D. For the kth vibrational degree of
freedom the quadrature points, �k,nk

, are the eigenvalues of
the kth coordinate matrix, and the DVR basis is defined as

Hnk
�qk�=� j=0

Nk
0−1�Tk�nk,jHj�qk�, where columns of Tk are the

eigenvectors of qk. The DVR direct-product basis is con-

structed as �k=1
D Hnk

�qk��n1=1, n2=1,. . .,nD=1
N1

0,N2
0,. . .,ND

0

. As a result, the ma-
trix of the coordinate operator is diagonal. Furthermore, due
to the Gaussian quadrature approximation and the special
properties of the DVR basis functions, the matrix represen-
tation of an operator that depends only on the coordinates is
also always diagonal.

It is desirable to employ as compact of a representation
of the Hamiltonian as possible. The first step toward this goal
is to optimize the primitive DVR grid points employing a
suitable one-dimensional �1D� model Hamiltonian. In the
present work the potential-optimized �PO� DVR approach59

was utilized. In the PO-DVR approach the operator

ĥk
1D = 1

2 p̂k
†Gkk�qk;qe��p̂k + V�qk;qe��, k = 1,2, . . . ,D ,

�23�

provides an excellent choice for simplifying the full operator
given in Eq. �20�, where all the coordinates, except the kth
active mode, are fixed at their equilibrium values. The ex-
trapotential term is left out from this 1D operator. Eigenval-
ues and eigenvectors corresponding to Eq. �23� are then
evaluated using a large number of primitive grid points, Nk

0,
distributed on a wide interval of the kth coordinate.

Next, the first few eigenvectors, Nk
PO�Nk

0, of the 1D

problem ordered in a matrix, uk�RNk
0
�Nk

PO
, are used to con-

134112-4 Mátyus, Czakó, and Császár J. Chem. Phys. 130, 134112 �2009�

Downloaded 07 Apr 2009 to 170.140.191.135. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



struct the kth “optimized” coordinate matrix, �qk
PO�ij

=�l=1
Nk

0

�uk�li�k,l�uk�lj �i , j=1,2 , . . . ,Nk
PO�. The eigenvalues of

qk
PO are the PO-DVR quadrature points, �k,nk

PO �nk

=1,2 , . . . ,Nk
PO�. The eigenvectors of qk

PO ordered in a matrix,
Tk

PO, are used to set up the PO-DVR of the differential op-
erators via the so-called transformation method.50

There are several advantages of the use of this optimiza-
tion method. First, it offers an inexpensive and valuable test
of the actual coordinate definition, as it also provides the
“energy levels” of a 1D but already meaningful model of the
system. Second, it automatically provides an optimized inter-
val for the quadrature points corresponding to each internal
coordinate. Third, and this is the main advantage of PO-
DVR, due to the optimization a reduced number of grid
points is sufficient to obtain eigenpairs with the desired ac-
curacy.

In what follows Nk denotes the number of grid points
corresponding to the kth degree of freedom. If PO-DVR is
used Nk=Nk

PO; otherwise Nk=Nk
0 �k=1,2 , . . . ,D�. The direct-

product grid constructed from these points has the size N
=�k=1

D Nk. In computations a direct-product grid can be used
directly or truncated based on geometrical or energetic re-
quirements, thus resulting in a nondirect-product grid. Due to
a simple indexing scheme used in the implementation of GE-

NIUSH the matrix-vector multiplication and eigensolver algo-
rithms developed for the direct-product case can be em-
ployed also for a reduced �nondirect-product� case.

B. Numerical construction of the kinetic energy

In order to construct the matrix of a kinetic energy op-
erator corresponding to an arbitrarily chosen body-fixed
frame and internal coordinates, only the numerical values of
G, g̃, and U are required at the quadrature points. These
quantities are constructed point by point on the DVR grid
using directly the �ro�vibrational Hamiltonian operators in
the Podolsky form, Eq. �19�, or in the rearranged form, Eq.
�20�. The fact that in DVR any quantity depending only on
the coordinates can be represented as a diagonal matrix
makes the present approach efficient without the need of in-
troducing any approximations in the kinetic energy terms.

1. t-vector formalism

The rotational and vibrational t vectors introduced in
Eqs. �8� and �9� are used to construct g, the central quantity
in the present treatment. It is inverted to obtain G=g−1

�R�D+3���D+3�. If the vibration-only operator is used, it is
sufficient to evaluate the vibrational sub-block of the G ma-
trix.

If the Podolsky form of the Hamiltonian, Eq. �19�, is
employed, g̃=det g is left to be computed, which is numeri-
cally straightforward. Within this formalism only the first
derivatives of the body-fixed Cartesian coordinates in terms
of the internal coordinates, �xi /�qk, are required. These de-
rivatives can be evaluated either by numerical �using stan-
dard double precision arithmetic� or analytic differentiation.

If the rearranged form of the Hamiltonian, Eq. �20�, is
used, the extrapotential term, U, must also be computed. In
full-dimensional models or reduced-dimensional models

constructed by reduction in g, it is better to use Eq. �21� for
U. In reduced-dimensional models constructed by reduction
in G, it is more straightforward to use the formulation of Eq.
�22�. Our numerical tests show that brute-force numerical
differentiation of the formulas in Eqs. �21� and �22� can in-
troduce numerical instabilities in the treatment. In order to
avoid such numerical instabilities each term in Eqs. �21� and
�22� are expressed numerically �not necessarily in a symbolic
form� in terms of the first, second, and third derivatives of
the body-fixed Cartesian coordinates in terms of the internal
coordinates, �xi /�qk, �2xi /�qk�ql, and �3xi /�qk�ql�qm,
which are evaluated in an accurate procedure. An accuracy of
�0.01 cm−1 in the eigenvalues can be firmly achieved only
if the higher-order derivatives of the body-fixed Cartesian
coordinates in terms of internal coordinates are evaluated by
analytic differentiation using standard double precision arith-
metic �64 bit reals� or by numerical differentiation using in-
creased numerical precision �128 bit reals�. Details of the
approach are discussed in the Appendix. In the current ver-
sion of GENIUSH analytic derivatives are available for an ar-
bitrary set of internal coordinates defined with a Z-matrix
and an xxy �scattering�41 body-fixed frame. Any other coor-
dinate definition can be treated by �quadruple precision� nu-
merical derivatives.

2. s-vector formalism

The s-vector formalism offers an alternative to the
t-vector formalism toward the numerical use of kinetic en-
ergy operators. The extrapotential term, U, can be formulated
entirely also in terms of s vectors, as it was given in Ref. 9.
In this expression of U first derivatives of the rotational s
vectors and first and second derivatives of the vibrational s
vectors in terms of internal coordinates appear.

After having studied the numerical behavior of the dif-
ferent possible formalisms in detail, we prefer to use the
t-vector formalism over the s-vector formalism. In theory,
the two representations are equivalent; however, technically
the first requires the computation of �xia /�qk, �2xia /�ql�qk,
and �3xia /�qm�ql�qk, whereas the second assumes the
knowledge of �qk /�xia, �2qk /�ql�xia, and �3qk /�qm�ql�xia.
To explain our preference, we note that �a� in the s-vector
formalism, implementation of internal coordinates defined
for ammonia in Sec. IV B using a dummy atom turned out to
be numerically unstable and �b� introduction of reduced-
dimensional models having approximations in the g matrix is
more straightforward in the t-vector formalism.

C. Numerical representation of the potential energy

Numerical inclusion of any representation of the PES is
straightforward due to the favorable properties of DVR.
There is no need to adapt a specific representation of the
actual PES �Taylor expansion, n-mode representation, etc.�.
Inclusion of potentials with multiple minima separated by
low-energy barriers is numerically exact, which is necessary
for reliable description of a molecular system with large am-
plitude motions.
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D. The vibrational Hamiltonian in DVR

Matrix representations of the vibrational Hamiltonians
given in Eqs. �19� and �20� are constructed on the direct-
product grid specified above. Matrices of the quantities de-
pending only on the coordinates assume a simple diagonal
form, e.g.,

�V�nm = V��1,n1
,�2,n2

, . . . ,�D,nD
��

i=1

D

�ni,mi
, �24�

n , m=1,2 , . . . ,N. The matrices of g̃, U, and Gkl �k , l
=1,2 , . . . ,3N−3� are similarly constructed. Note that an un-
ambiguous correspondence can be established between the
index n of the direct-product grid and the subindices
�n1 ,n2 , . . . ,nD� of the grid points of each vibrational degree
of freedom, for instance, n= �n1−1��i=2

D Ni+ ¯ +
�nD−1−1�ND+nD.

To make the computation of the matrix elements more
feasible, insert the truncated resolution of identity four times
in Eq. �19� and twice in Eq. �20�, resulting in

HvP =
1

2 �
kl=1

D

g̃−1/4pk
†Gklg̃

1/2plg̃
−1/4 + U + V �25�

and

HvR =
1

2 �
kl=1

D

pk
†Gklpl + U + V , �26�

where

�pk�nm = − i�Dk
�1��nk,mk

�1 − �nk,mk
� �

i=1, i�k

D

�ni,mi
, �27�

and Dk
�1��RNk�Nk is the matrix of the differential operator

� /�qk in DVR constructed by the transformation method.

E. Iterative eigensolver

In order to compute up to the lowest few hundred eigen-
pairs of the Hamiltonian matrix, a Lanczos iterative eigen-
solver is used in GENIUSH. The present implementation is
based on a single-vector Lanczos algorithm.57 The Hamil-
tonian matrix is transformed using either the conjugate gra-
dient or a shift-power method60,61 to obtain the eigenpairs
corresponding to the lowest eigenvalues.

1. Matrix-vector multiplication and efficiency
considerations

In the Lanczos iterative eigensolver the most time-
consuming step is the computation of the product of the
Hamiltonian matrix with a vector, y=Hx. Thus, the efficient
evaluation of y is crucial for the efficient computation of
eigenpairs. Storage of the whole Hamiltonian matrix or even
its nonzero elements in the main memory �or even on the
hard disk� is unfeasible already for a four-atomic application.

An efficient algorithm that avoids the storage of the
Hamiltonian matrix and which can be parallelized with
OPENMP �Ref. 62� is based on the following considerations.
The matrix-vector multiplication using HvP is computed as

y = HvPx =
1

2
g̃−1/4�

k=1

D �pk
†�

l=1

D

�Gkl� �plx���� + Vx , �28�

where

Gkl� = Gklg̃
1/2 and x� = g̃−1/4x . �29�

Using HvR the multiplication is done as

y = HvRx =
1

2�
k=1

D �pk
†�

l=1

D

�Gkl�plx��� + �U + V�x , �30�

where Gkl �k , l=1,2 , . . . ,D�, g̃−1/4, g̃1/2, U, and V are diago-
nal matrices. Furthermore, the special structure of pk, Eq.
�27�, due to the direct-product basis and grid can be ex-
ploited in the matrix-vector multiplication, yk=pkx, as

yk�n + pNk� = �
j=1

Nk

Dk
�1��nk + p, j� · x��n + �j − nk�Nk�� ,

�31�

where p=−�nk−1� , . . . ,0 , . . . ,Nk− �nk−1�, and n=�k=1
D �nk

−1�Nk+1, where Nk=� j=k+1
D Nj. Apart from the x and the

product yk vectors only the small Dk
�1� matrices are stored. It

is important to point out that using this multiplication
scheme the elements of the product vector yk are directly
�not iteratively� computed, which is required for the parallel-
ization of this time-consuming step �see Table I�.

The total memory requirement of the algorithm using
HvR corresponds to the storage of �D�D+1� /2+D+5�N
number of 64 bit reals, which corresponds to the storage of
Gkl=Glk �k , l=1,2 , . . . ,D�, �U+V�, the yl �l=1,2 , . . . ,D�
scratch vector, and further four working vectors of the size
N. If the Podolsky form, HvP, is used, an additional vector of
size N must be stored in the main memory containing the
elements of the g̃−1/4 �diagonal� matrix.

Besides the matrix-vector multiplication, there is another
important issue to consider. In principle, the Lanczos vectors
spanning the Krylov subspace are orthogonal to each other
by construction. However, due to the finite numerical preci-
sion of the calculation, this orthogonality is lost during the

TABLE I. Algorithm of the matrix-vector multiplication in GENIUSH using
the rearranged form of the vibrational Hamiltonian �Eq. �20��.

aN=N1=N2= ¯ =ND was assumed in the computation of the total operation
count. N is the size of the direct product grid, in this case N=ND.
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course of the Lanczos iteration. If the original orthogonality
is not maintained artificially, spurious eigenvalues and copies
of real eigenvalues enter the computed spectrum. Conse-
quently, maintaining the orthogonality is highly desirable.
Orthogonality of Lanczos vectors can be maintained by a
simple Schmidt reorthogonalization in each Lanczos step
�complete reorthogonalization� or by other more sophisti-
cated techniques.63 It is common to each technique that they
require the storage of all the previous Lanczos vectors. In
GENIUSH the Lanczos vectors of size N are stored on the hard
disk.

The number of iteration steps required to converge the
Lanczos procedure is approximately proportional to the num-
ber of required eigenpairs. The scaling of the total central
processing unit �CPU� time in terms of the size of the direct-
product grid for HvR is tCPU� �No. of required
eigenpairs� ��1+2DN+D2�N. If the Podolsky form is em-
ployed, two additional vector-vector multiplications are re-
quired in each matrix-vector multiplication step.

IV. NUMERICAL RESULTS

In order to demonstrate the robustness and flexibility of
the program GENIUSH, three-, four-, and five-atomic ex-
amples both in full and reduced vibrational dimensionality
and using different sets of internal coordinates are presented
in the next sections. The actual choice of the internal coor-
dinates affects the convergence properties of the eigenpairs.

In most of the following examples the rearranged form
of the vibrational Hamiltonian, Eq. �20�, is employed. Usage
of the Podolsky form, Eq. �19� affects principally the con-
vergence of the levels influenced by the singular region of
the Hamiltonian.

Before giving details about the computations and their
results, let us summarize how the vibrational model can be
defined in the current version of the code GENIUSH.

First, Cartesian coordinates expressed in the chosen
body-fixed frame must be specified in terms of the chosen set
of internal coordinates. This work is helped by a Z-matrix
reader implemented in GENIUSH based on the Z-matrix reader

TABLE II. ZPVE and the first 20 VBOs of H2
16O, in cm−1, obtained with GENIUSH using three different full, 3D

models �V: valence coordinates, J: Jacobi coordinates, I: interatomic coordinates� and the CVRQD PES of Ref.
21.

Label DOPI
a �̃ �3D,V�b,c �̃ �3D,J�b,d �̃ �3D,I�b,e

�0 0 0� 4638.31 4638.31 �0.00� 4638.31 �0.00� 4638.31 �0.00�
�0 1 0� 1595.08 1595.08 �0.00� 1595.08 �0.00� 1595.07 �0.00�
�0 2 0� 3152.20 3152.20 �0.00� 3152.20 �0.00� 3152.19 �0.01�
�1 0 0� 3657.05 3657.05 �0.00� 3657.05 �0.00� 3657.05 �0.00�
�0 0 1� 3755.73 3755.73 �0.00� 3755.73 �0.00� 3755.73 �0.00�
�0 3 0� 4667.57 4667.57 �0.00� 4667.57 �0.00� 4667.47 �0.11�
�1 1 0� 5235.49 5235.49 �0.00� 5235.49 �0.00� 5235.49 �0.00�
�0 1 1� 5331.51 5331.51 �0.00� 5331.51 �0.00� 5331.51 �0.00�
�0 4 0� 6135.08 6135.08 �0.00� 6135.08 �0.00� 6136.19 �1.11�
�1 2 0� 6775.96 6775.96 �0.00� 6775.96 �0.00� 6775.91 �0.06�
�0 2 1� 6872.15 6872.15 �0.00� 6872.15 �0.00� 6872.14� �0.01�
�2 0 0� 7201.19 7201.19 �0.00� 7201.19 �0.00� 7201.19 �0.00�
�1 0 1� 7249.22 7249.22 �0.00� 7249.22 �0.00� 7249.22 �0.00�
�0 0 2� 7444.88 7444.88 �0.00� 7444.88 �0.00� 7444.88 �0.00�
�0 5 0� 7543.86 7543.86 �0.00� 7543.86 �0.00� 7550.89 �7.04�
�1 3 0� 8275.08 8275.08 �0.00� 8275.08 �0.00� 8275.39 �0.31�
�0 3 1� 8374.77 8374.77 �0.00� 8374.77 �0.00� 8374.75 �0.02�
�2 1 0� 8761.92 8761.92 �0.00� 8761.92 �0.00� 8761.93� �0.01�
�1 1 1� 8807.03 8807.03 �0.00� 8807.03 �0.00� 8807.03 �0.00�
�0 6 0� 8872.17 8872.17 �0.00� 8872.17 �0.00� 8942.88 �70.71�
�0 1 2� 9000.39 9000.39 �0.00� 9000.39 �0.00� 9000.40 �0.00�

aConverged 3D reference results were obtained with the DOPI algorithm �Ref. 17�. Exactly the same CVRQD PES
and nuclear masses were applied as in the GENIUSH calculations.
bResults obtained with GENIUSH. Nuclear masses mH=1.007 276 5 u and mO=15.99 052 6 u and an xxy body-
fixed frame were used throughout the calculations. Underlined digits did not converge upon the increase in the
basis size due to the singularity of the Hamiltonian. Deviations from results of DOPI are given in parentheses
��̃�DOPI�− �̃�.
cThe active internal coordinates, r1v, r2v, and cos�v and the Podolsky-form of the vibrational Hamiltonian, given
in Eq. �19�, were used. �30,30� PO-DVR grid points, each optimized on a primitive grid of 80 points and the
interval �0.5,2.5� Å were used for the r1v and r2v coordinates, and 30 primitive Legendre-DVR grid points
were utilized for cos�v.
dThe active internal coordinates, r1j, r2j, and cos�j, and the Podolsky-form of the vibrational Hamiltonian, given
in Eq. �19�, were used. �30,30� PO-DVR grid points, each optimized on a primitive grid of 80 points and the
interval �0.5,2.5� Å were used for the r1j and r2j coordinates, and 30 primitive Legendre-DVR grid points
were utilized for cos�j.
eThe active internal coordinates were r1, r2, and r3. A �40,40,40� primitive grid was used on r1 ,r2

� �0.6,1.5� Å and r3� �1.0,2.5� Å intervals.
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program developed by Lopata and Kiss,64 which allows vari-
ous definitions of simple internal coordinates. Furthermore,
the three interatomic coordinates and the orthogonal Jacobi
coordinates have also been implemented for the case of tri-
atomic molecules. In general, any subroutine would be ap-
propriate which provides the Cartesian coordinates in the
body-fixed frame in terms of internal coordinates.

Then, the active and constrained sets of coordinates are
specified. An interval must be defined for grid points along
each active vibrational coordinate. The position of the grid
points can be optimized �PO-DVR�. Otherwise, primitive
scaled and shifted �see Ref. 18� Hermite-DVR points are
used. If there are constrained coordinates, their constrained
value also needs to be specified. If there are special math-
ematical requirements on the range of internal coordinates,
e.g., in the case of the three interatomic coordinates the tri-
angle inequality, the range of internal coordinates is auto-
matically tested. After construction of the direct-product
grid, those grid points are omitted which do not fulfill the
prescribed requirements, e.g., on the ranges of coordinates.
Furthermore, not only geometrical restrictions but also ener-
getical �potential energy� requirements can be employed in
order to reduce the number of grid points involved in the
computation.

Then, the step size for the numerical differentiation is to
be defined. If internal coordinates are defined within the
framework of a Z matrix, first, second, and third analytic
derivatives are also available.

After appropriate choices have been made for all of the
above options, the representation of the kinetic energy part is
completely specified. The potential energy is obtained from
electronic structure computations and usually available as a
force field or a �semi�global PES as implemented in a sub-
routine. In order to call this subroutine a user-supplied inter-

face might be required, which converts the values of the
internal coordinates actually defined for the kinetic energy
operator to the input coordinates of the potential energy sub-
routine. If the potential energy subroutine requires the Car-
tesian coordinates as input parameters, it can be automati-
cally linked to GENIUSH.

A. H2O

H2
16O was extensively studied during the validation of

the code GENIUSH for two reasons. First, accurate benchmark
results in full vibrational dimensionality are easily available
for this system. Second, as the system is small, full- and
reduced-dimensional calculations can be carried out very
fast, and numerous internal coordinate choices are possible
either in full or reduced dimensionality. It is important to
emphasize that all these computations are done with a single
code which constructs automatically the kinetic energy rep-
resentation once the coordinates are defined. From a techni-
cal point of view it is not straightforward to have a numeri-
cally robust implementation of such a universal protocol
�Sec. III B and Appendix�, especially if one is interested in
the energy levels with spectroscopic accuracy, �0.01 cm−1,
which corresponds typically to six or seven significant digits.

In the light of the discussed numerical difficulties the
accuracy and flexibility of the program were carefully tested.
The most relevant results are collected in Tables II and III. In
all computations the CVRQD PES �Ref. 21� and the corre-
sponding nuclear masses were used. Three-dimensional �3D�
benchmark data were obtained with the DOPI code17,18 using
the same PES and masses.

TABLE III. ZPVE and VBOs of H2
16O, in cm−1, obtained with GENIUSH using 2D vibrational models �J: Jacobi coordinates, I: interatomic coordinates, g:

reduction in the g matrix, G: reduction in the G matrix� and the CVRQD PES of Ref. 21.

Label 3Da �̃ �2D,J ,g�b,c,e �̃ �2D,I ,g�b,d,e �̃ �2D,J ,G�b,c,f �̃ �2D,I ,G�b,d,f

�0 0 0� 4638.31 2723.50 2723.50 2723.50 3018.04�
�0 1 0� 1595.08 1616.08 �21.00� 1616.08 �21.00� 1616.08 �21.00� 2182.56 �587.48�
�0 2 0� 3152.20 3197.45 �45.26� 3197.45 �45.26� 3197.45 �45.26� 3697.43 �545.23�
�0 0 1� 3755.73 3711.56 �44.17� 3711.56 �44.17� 3711.56 �44.17� 4386.53 �630.80�
�0 3 0� 4667.57 4739.03 �71.46� 4739.06� �71.49� 4739.03 �71.46� 5830.27 �1162.70�
�0 1 1� 5331.51 5309.39 �22.12� 5309.39 �22.12� 5309.39 �22.12� 6633.76 �1302.25�
�0 4 0� 6135.08 6232.92 �97.84� 6233.43� �98.35� 6232.92 �97.84� 7231.02 �1095.94�
�0 2 1� 6872.15 6874.32 �2.17� 6874.33� �2.18� 6874.32 �2.17� 7982.54 �1110.39�
�0 0 2� 7444.88 7257.58 �187.31� 7257.58 �187.31� 7257.58 �187.31� 8950.92 �1506.04�
�0 5 0� 7543.86 7665.34 �121.49� 7671.84 �127.98� 7665.34 �121.49� 9314.84 �1770.99�
�0 3 1� 8374.77 8402.03 �27.26� 8402.14� �27.37� 8402.03 �27.26� 10171.87 �1797.10�

aConverged 3D results obtained with the GENIUSH and DOPI �Ref. 17� algorithms. Exactly the same CVRQD PES and nuclear masses were applied in the two
calculations.
bResults obtained with GENIUSH. r1�HO�=0.957 82 Å was fixed throughout the computations. Nuclear masses, mH=1.007 276 5 u and mO=15.990 526 u,
and an xxy body-fixed frame were used. Underlined digits did not converge upon the increase in the basis size due to the singularity of the Hamiltonian.
Deviations from 3D results are given in parentheses, ��̃�3D�− �̃�2D��.
cThe active internal coordinates were the second Jacobi distance, r2j and cos�j in the Podolsky-form of the vibrational Hamiltonian, given Eq. �19�, used here.
30 PO-DVR grid points, optimized on a grid of 80 points and the interval �0.3,2.5� Å, were used for r2j, and 30 primitive Legendre-DVR points were used
for the cos�j coordinate.
dThe active internal coordinates were r2�HO� and r3�HH�. A �30,30� primitive grid was used on r2� �0.3,2.0� Å and r3� �0.8,3.2� Å intervals.
e2D models constructed with reduction in g.
f2D models constructed with reduction in G.
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1. Three-dimensional results

In Table II full 3D results obtained with GENIUSH using
valence, Jacobi, and interatomic coordinates and an xxy
body-fixed frame are compared with independent benchmark
data. To switch between the different sets of coordinates
used, only the coordinate definition was changed; the repre-
sentation of the Hamiltonian was generated automatically by
the program.

The numerical results meet the fundamental physical ex-
pectation that the converged values of computed vibrational
energy levels are independent of the actual coordinate repre-
sentation, and they also reproduce the benchmark data. How-
ever, it is important to point out that the convergence prop-
erties of the different sets of coordinates are different. The
required number of grid points and the computational effort
to achieve an expected accuracy differ significantly. In this
case, the convergence is fastest for the Jacobi coordinates.

2. Two-dimensional results

Table III contains the most interesting reduced-
dimensional test results. Fixing one of the O–H distances and
letting the rest of the molecule move freely does not provide
a numerically valuable approximation to the 3D results. Nev-
ertheless, important theoretical relationships are reflected by
these numerical results—they provide a valuable tool for
checking the accuracy and consistency of reduced-
dimensional models automatically constructed by GENIUSH

for a given choice of coordinates.
Reductions introduced in g and G �Secs. II C and II E�

were studied in these two-dimensional �2D� numerical ex-
amples. Theoretically, the reduction in g corresponds to fix-
ing the constrained coordinates at given values, while reduc-
tion in G is merely another possible mathematical route to
neglect the coupling terms between sets of coordinates. The
results presented in Table III reflect this difference. If the
reduction is introduced in g, the converged energy levels are
independent of the actual choice of coordinates if the same
constraints are introduced. However, if the G matrix is used
to construct a reduced-dimensional model, the results do de-
pend on the choice of the active coordinates even if the same
coordinates were fixed at a given value. Thus, these numeri-
cal results exemplify the preference of constructing reduced-
dimensional models via the g matrix.

Due to the difference of reduction in g and G the results
of the two reduction strategies are, in general, different even
if the same set of coordinates is used. The case of Jacobi
coordinates with constraining the first Jacobi distance to a
given value is an exception. This specific coordinate is de-
coupled from the rest both in the vibrational and in the rovi-
brational block of the g �G� matrix. The special behavior of
this coordinate is reproduced by the reduced-dimensional re-
sults of GENIUSH.

B. NH3

The inversion-tunneling motion makes ammonia an in-
teresting molecule for spectroscopic and dynamical
studies.36,65–69 Reliable computations are straightforward
only with properly chosen body-fixed frames and curvilinear

internal coordinates. In the present computations the body-
fixed frame was the xxy �scattering� frame and the primitive
internal coordinates are given in Table IV. A dummy atom,
X, is introduced in order to define the inversion coordinate,
�, symmetrically.44 Symmetry adapted stretching coordinates
are introduced in terms of the primitive stretching coordi-
nates as

s1 =
1
�3

�r1 + r2 + r3�, s2 =
1
�6

�2r1 − r2 − r3�,

s3 =
1
�2

�r2 − r3� .

It is worth emphasizing that only the number of degrees of
freedom and the coordinate definitions were changed to
specify the kinetic energy part for ammonia, which was then
automatically generated by the program. In all computations
the “refined” PES of Ref. 67 and the corresponding atomic
masses were employed.

The effect of couplings of stretching coordinates to the
tunneling-inversion motion was monitored through the com-
parison of inversion splittings, resulting from the low inver-
sion barrier,68,69 obtained from 1D, 2D, four-dimensional
�4D�, and �full� six-dimensional �6D� vibrational models.

1. Six-dimensional results

The full, 6D variational results obtained with GENIUSH

for 14NH3 are presented in Table V. For comparison, ap-
proximate variational results are also given there, taken from
the reference publication of the actually employed PES.67

Our converged results �convergence on the order of
0.05 cm−1� up to �6000 cm−1 are the first benchmark re-
sults with this PES, without introducing any approximation
in the variational treatment. They improve the approximate
variational results of Ref. 67 only slightly for the first few
vibrational band origins �VBOs�; however, for higher-lying
vibrational levels substantial improvements can be observed.

2. Reduced inversion models

In Table VI 1D, 2D, and 4D reduced inversion models
are compared with our full, 6D benchmark results. Reduced-
dimensional models were constructed by reducing the g ma-
trix, as this is the preferred route based on both theoretical
�Secs. II C and II E� and numerical �Sec. IV A� observations
discussed above.

In the 1D model, the only active coordinate was the �
inversion angle; the rest of the internal coordinates were
fixed at their equilibrium values �their values at the minimum
of the PES employed�. For convenience, a 2D model was
also introduced by adding the s1 symmetric stretching coor-

TABLE IV. Z-matrix representation of the internal coordinates of NH3.

N
X N 1.0
H1 N r1 X �

H2 N r2 X � H1 �1

H3 N r3 X � H1 −�2
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TABLE V. ZPVE and VBOs of 14NH3, in cm−1, obtained with GENIUSH using a full, 6D vibrational model and
the refined PES of Ref. 67 compared to approximate variational results of Ref. 67.

Label Ref. 67 �̃ �6D�a

ZPVE A1� –b 7436.82 

ZPVE A2� 0.79 0.79 �0.00�
v2 A1� 932.46 932.41 �0.05�
v2 A2� 968.14 968.15 �0.01�
2v2 A1� 1597.38 1597.26 �0.11�
v4 E1� 1626.22 1625.62 �0.00� �0.60�
v4 E1� 1627.33 1626.73 �0.00� �0.60�
2v2 A2� 1882.09 1882.18 �0.09�
3v2 A1� 2384.06 2384.20 �0.14�
v2+v4 E1� 2540.27 2539.61 �0.00� �0.67�
v2+v4 E1� 2585.94 2585.39 �0.00� �0.55�
3v2 A2� 2895.50 2895.74 �0.24�
2v2+v4 E1� 3189.80 3189.11 �0.00� �0.68�
2v4 A1� 3215.55 3214.47 �1.09�
2v4 A2� 3217.23 3216.15 �1.07�
2v4 E1� 3239.85 3238.55 �0.00� �1.29�
2v4 E1� 3241.34 3240.05 �0.00� �1.28�
v1 A1� 3336.04 3335.78 �0.26�
v1 A2� 3337.10 3336.84 �0.26�
v3 E1� 3443.68 3443.92 �0.00� �0.24�
v3 E1� 3444.02 3444.27 �0.00� �0.24�
4v2 A1� 3462.69 3463.00 �0.31�
2v2+v4 E1� 3502.85 3502.44 �0.00� �0.41�
3v2+v4 E1� 4008.38 4008.04 �0.00� �0.33�
4v2 A2� 4062.10 4062.47 �0.37�
v2+2v4 A1� 4113.78 4112.42 �1.36�
v2+2v4 E1� 4134.67 4133.22 �0.00� �1.45�
v2+2v4 A2� 4172.03 4171.08 �0.95�
v2+2v4 E1� 4192.28 4191.09 �0.00� �1.20�
v1+v2 A1� 4294.26 4294.13 �0.13�
v1+v2 A2� 4319.95 4319.77 �0.18�
v2+v3 E1� 4416.71 4416.94 �0.00� �0.24�
v2+v3 E1� 4435.33 4435.58 �0.00� �0.25�
3v2+v4 E1� 4531.53 4531.32 �0.00� �0.21�
5v2 A1� 4695.51 4695.92 �0.41�
2v2+2v4 A1� 4754.99 4753.71 �1.28�
2v2+2v4 E1� 4773.61 4772.19 �0.01� �1.42�
3v4 E1� 4798.66 4796.02 �0.00� �2.64�
3v4 E1� 4800.92 4798.30 �0.01� �2.62�
3v4 A1� 4840.78 4838.67 �2.11�
3v4 A2� 4841.68 4838.83 �2.86�
3v4 A2� 4842.73 4840.64 �2.09�
3v4 A1� 4843.70 4840.88 �2.83�
v3+v4 E1� 4955.37 4954.10 �0.00� �1.27�
v3+v4 E1� 4956.62 4955.35 �0.00� �1.27�
v1+2v2 A1� 4999.36 4999.21 �0.15�
v1+v4 A2� 5049.93 5049.17 �0.76�
v1+v4 A1� 5050.57 5049.82 �0.76�
v3+v4 E1� 5052.31 5051.78 �0.00� �0.53�
v3+v4 E1� 5052.90 5052.37 �0.00� �0.53�
v3+v4 A2� 5066.32 5065.64 �0.68�
v3+v4 A1� 5066.33 5065.65 �0.68�
2v2+2v4 A2� 5093.43 5092.98 �0.45�
4v2+v4 E1� 5106.36 5106.21 �0.00� �0.15�
2v2+2v4 E1� 5113.71 5112.82 �0.01� �0.89�
v1+2v2 E1� 5143.62 5143.77 �0.00� �0.15�
v1+2v2 A2� 5233.03 5232.82 �0.21�
v1+2v2 E1� 5352.59 5352.86 �0.00� �0.27�
5v2 A2� 5362.03 5362.51 �0.47�
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dinate while restricting s2=s3=0, which is also equivalent to
requiring r1=r2=r3. A next step to increment this 2D model
is to add all the stretching vibrations either by using
�� ,s1 ,s2 ,s2� or the �� ,r1 ,r2 ,r3� set of the coordinates. The
converged results are independent of the active coordinates
as the reduction was introduced in the g matrix.

Concerning the splittings resulting from these reduced-
dimensional models, it can be observed that already the 1D
results are reliable in a semiquantitative sense. Not surpris-
ingly, adding the symmetric stretching and then all the
stretching coordinates improve the inversion splittings and
the absolute value of the VBOs �referenced to the corre-
sponding zero-point vibrational energies �ZPVEs��. Interest-
ingly, the inversion splittings of the lower-lying levels
�v2 ,2v2 ,3v2� changes unpredictably, whereas splittings of
highly excited levels �4v2 ,5v2� are clearly improved by turn-
ing on the stretching contributions.

C. CH4

CH4 is a typical semirigid molecule with a single well-
defined and deep minimum on its ground-state PES. Accu-
rate variational computation of the VBOs is still not a
straightforward task25,70 because of the molecule’s nine fully
coupled vibrational degrees of freedom.

In the previous sections the accuracy and flexibility of
the GENIUSH code was demonstrated by computations pre-
sented for water and ammonia both in full and reduced vi-
brational dimensionality and using a variety of internal coor-
dinates. Besides these virtues, a universal code must be
numerically efficient not to be constrained to low-
dimensional systems. Results of a full, 9D computation are
presented in Table VIII in order to demonstrate the largest
system �the maximally coupled vibrational degrees of free-
dom� whose study is computationally feasible with the cur-
rent version of GENIUSH. For convenience, bond lengths,
angles, and torsions, defined in Table VII, were employed as
internal coordinates. It is worth emphasizing again that only
the coordinate definitions are to be specified; the representa-

tion of the kinetic energy is automatically generated by the
program for the computation of energy levels and wave func-
tions. Table VIII shows VBOs of the largest feasible compu-
tation for CH4 using the T8 force field;71 they are converged
to about 0.5 cm−1.

In order to improve these results one can �a� further in-
crease the size of the direct-product grid until convergence;
�b� introduce another set of internal coordinates in the hope
of an increased convergence rate; �c� make use of the high
symmetry of the actual system to split up the whole problem
into independent subproblems, thus reducing the size of ma-
trices; and �d� adopt sophisticated contraction techniques in
order to make the representation more compact. Along all
these four directions work is in progress. It is also worth
pointing out that the DEWE code,39,61 working in normal co-
ordinates, produces converged energy levels using a rela-
tively small direct-product grid. This result shows that nor-
mal coordinates and the corresponding basis are very well
suited for the vibrational computations on this semirigid
molecule having a single, well-defined potential energy mini-
mum.

V. SUMMARY AND CONCLUSIONS

Using the variational method with a full-dimensional vi-
brational Hamiltonian the numerically exact vibrational en-
ergy levels and wave functions can be obtained, limited only
by the accuracy of the actual representation of the PES and
the BO approximation. Due to the exponential scaling of the
size of the problem with the number of degrees of freedom,
accurate variational treatment in full vibrational dimension-
ality is still a challenge for systems containing more than
four nuclei. Apart from the enormous size, the versatility of
the possible choices of body-fixed frames and internal coor-
dinates for systems consisting more than four particles has
also been a source of difficulty in dynamical computations.
The unfavorable scaling means that the choice of physically

TABLE V. �Continued.�

Label Ref. 67 �̃ �6D�a

3v2+2v4 A1� 5604.17 5603.91 �0.26�
3v2+2v4 E1� 5624.11 5623.30 �0.02� �0.81�
v2+3v4 E1� 5676.16 5672.94 �0.01� �3.22�
4v2+v4 E1� 5709.68 5709.42 �0.01� �0.25�
v2+3v4 A1� 5714.66 5712.38 �2.28�
v2+3v4 A2� 5717.11 5713.59 �3.53�
3v2+v1 A1� 5736.80 5736.53 �0.28�
v2+3v4 E1� 5752.79 5750.80 �0.02� �2.00�
v2+3v4 A2� 5786.64 5784.87 �1.76�
v2+3v4 A1� 5788.34 5785.52 �2.82�
3v2+v3 E1� 5855.40 5855.64 �0.00� �0.24�
aResults obtained with GENIUSH. Number of optimized grid points along the actual internal coordinates
�r1 ,r2 ,r3 ,� ,�1 ,�2� was �13,13,13,27,13,13�. Each set of points was optimized on a primitive grid of 80 points
and on r1 ,r2 ,r3� �0.35,2.00� Å, �� �5,175�o, and �1 ,�2� �20,220�o intervals. Atomic masses, mH

=1.007 825 u and mN=14.003 074 u, and an xxy body-fixed frame were employed. Deviations between de-
generate levels due to the incomplete convergence are given in brackets, ��̃�higher�− �̃�lower��. Deviations from
approximate variational results of Ref. 67, ��̃�Ref. 67�− �̃�6D��, are given in parentheses.
bZPVE was not reported in Ref. 67.
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meaningful and thus efficient body-fixed frames and internal
coordinates is of extreme importance when one is aimed at
tackling medium-sized systems.

In this paper a simple but universal strategy is presented
allowing variational vibrational computations using arbi-
trarily defined embeddings and internal coordinates and full-
or reduced-dimensional models, all this in a single code. A
highly desirable feature of the GENIUSH protocol, where GE-

NIUSH stands for general �GE� �ro�vibrational code with nu-
merical �N�, internal-coordinate �I�, user-specified Hamilto-
nians �USH�, is that the vibrational Hamiltonian of arbitrarily
chosen body-fixed frame and internal coordinates is con-
structed automatically during the course of the calculation
through numerical evaluations. This means that there is no
need to know the often complicated form of the kinetic en-
ergy operator in internal coordinates a priori. The matrices
corresponding to this Hamiltonian are constructed using a
DVR on a direct-product or truncated �preoptimized� DVR
grid. The useful features of DVR allow a straightforward and
exact inclusion of an arbitrary representation of the potential
energy surface �PES�, as well as terms of the kinetic energy
operator corresponding to the actual coordinate choice. Ei-
genvalues and eigenvectors of the huge but sparse Hamil-

tonian matrix are provided by an iterative eigensolver.
Concerning the technical details of the implementation,

we found that the t-vector formalism is much better adapt-
able to our scheme than the s-vector one,9,48 though the two
are equivalent from a theoretical point of view. In the
t-vector formalism the rearranged form of the vibrational
Hamiltonian, Eq. �20� is often used.44,46 In order to construct
the kinetic energy part of the Hamiltonian matrix of this
form, first, second, and third derivatives of the Cartesian co-
ordinates in terms of the internal coordinates must be com-
puted with increased numerical precision if derivatives are
evaluated numerically. Otherwise, analytic derivatives are re-
quired. In the current version of GENIUSH numerical deriva-
tives of any kind of coordinate choice can be evaluated using
128 bit reals �quadruple precision in FORTRAN�, and analytic
derivatives are available for the xxy �scattering� frame and a
Z-matrix-type definition of internal coordinates.

The DVR allows an efficient implementation of the
Podolsky-form, Eq. �19�, of the �ro�vibrational Hamiltonian,
which requires only the computation of the first coordinate
derivatives on the expense of a slightly higher memory re-
quirement and CPU usage in the eigensolver part. Evaluation
of only the first derivatives of body-fixed Cartesian coordi-

TABLE VI. ZPVE and VBOs of 14NH3, in cm−1, as obtained with GENIUSH using full- and reduced-dimensional inversion models �constructed by reduction
in the g matrix� and the refined PES of Ref. 67.

Label �̃ �6D�a,b �̃ �1D�a,c �̃ �2D�a,d �̃ �4D�a,e

ZPVE A1� 7436.82 521.43 2256.74 5828.91
ZPVE A2� 0.79 0.79� 1.13 1.13� 1.28 1.28� 0.58 0.58�
v2 A1� 932.41 930.57 900.48 945.65
v2 A2� 968.15 35.74� 979.80 49.23� 952.80 52.31� 973.89 28.23�
2v2 A1� 1597.26 1586.98 1537.60 1626.11
2v2 A2� 1882.18 284.91� 1918.86 331.88� 1868.39 330.78� 1884.43 258.32�
3v2 A1� 2384.20 2439.66 2375.33 2383.23
3v2 A2� 2895.74 511.55� 2986.24 546.58� 2906.55 531.22� 2882.32 499.09�
v1 A1� 3335.78 — 3442.02 3337.87
v1 A2� 3336.84 1.06� — 3443.99 1.97� 3338.97 1.11�
v3 E1� 3443.92 — — 3458.51
v3 E1� 3444.27 0.35� — — 3458.75 0.25�
4v2 A1� 3463.00 3586.52 3488.33 3441.38
4v2 A2� 4062.47 599.47� 4225.87 639.35� 4102.63 614.31� 4033.36 591.97�
v1+v2 A1� 4294.13 — 4376.79 4313.56
v1+v2 A2� 4319.77 25.64� — 4412.84 36.05� 4332.32 18.76�
v2+v3 E1� 4416.94 — — 4442.40
v2+v3 E1� 4435.58 18.64� — — 4456.17 13.77�
5v2 A1� 4695.92 4901.01 4750.52 4660.07
v1+2v2 A1� 4999.21 — 5041.58 5040.47
v1+2v2 E1� 5143.77 — — 5190.63
v1+2v2 A2� 5232.82 233.61� — 5322.62 281.04� 5241.47 201.00�
v1+2v2 E1� 5352.86 209.10� — — 5372.45 181.82�
5v2 A2� 5362.51 666.59� 5608.26 707.24� 5429.90 679.38� 5320.99 660.92�
aResults obtained with GENIUSH. Inversion splittings are given in braces �i�upper�−�i�lower��. Atomic masses, mH=1.007 825 u and
mN=14.003074 u, and an xxy body-fixed frame were used in the calculations.
bResults obtained with a 6D vibrational model, see Table V.
cResults obtained with a 1D vibrational model. The single active internal coordinate was �. Converged results were obtained by using 40 grid points optimized
on a primitive grid of 100 points and on a �� �5,175�o interval. Constrained coordinates were fixed at r1=r2=r3=1.010 31 Å and �1=�2=120°.
dResults obtained with a 2D vibrational model. The active internal coordinates were � and s1. �25,15� PO-DVR grid points, each optimized on a primitive grid
of 80 points and on �� �5,175�o and s1��3�0.35,2.5� Å intervals, were utilized. The rest of the coordinates were fixed at s2=0, s3=0, and �1=�2=120°.
eResults obtained with a 4D vibrational model. The active internal coordinates were � and r1 , r2 , r3. �25,15,15,15� PO-DVR grid points, each optimized on
a primitive grid of 80 points and on �� �5,175�o and r1 , r2 , r3� �0.35,2.5� Å intervals, were utilized. The rest of the coordinates were fixed at �1=�2

=120°.
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nates in terms of the internal coordinates is not only compu-
tationally less expensive but requires a less robust numerical
procedure than that for second and especially third deriva-
tives.

Test vibrational computations for H2O were carried out
in full and reduced vibrational dimensionality. Validation of
the results was made by comparing the 3D results with inde-
pendent benchmark data and by checking the fulfillment of
fundamental theoretical relationships. If numerical deriva-
tives were computed only with 64 bit reals �double precision
in FORTRAN� an error of a couple of wavenumbers appeared
in the results compared to the accurate reference data or re-
sults obtained with increased precision �128 bit reals� nu-
merical or standard precision �64 bit reals� but exact, analytic
derivatives.

Due to the universal ideas lying behind the GENIUSH al-
gorithm, the implementation of reduced-dimensional vibra-
tional models is straightforward. Reduced-dimensional mod-
els can be constructed either by reducing the g or the G
matrices. Both routes are implemented in GENIUSH; however,
theoretical considerations and their numerical demonstra-
tions through 2D models of H2O indicate that reduction in g
should be the preferred route. A simple physical requirement,
the independence of the converged eigenpairs from the
choice of the active coordinates, holds only if the reduced

model is constructed by reducing the g matrix but fails, in
general, if the G matrix is reduced.

Once the main technical difficulties in the implementa-
tion of such a universal vibrational algorithm were properly
addressed and solved, the inversion tunneling in ammonia
was examined through a variety of full- and reduced-
dimensional models. The freedom of using a range of vibra-
tional models strongly relies on the automatic construction of
the actual kinetic energy representation provided by GE-

NIUSH. Our computations show that already the 1D
inversion-only model provides a semiquantitative approxi-
mation to the exact inversion splittings �the constrained co-
ordinates are fixed at their equilibrium values�. Incrementing
this 1D model by stretching coordinates allows the construc-
tion of 2D and 4D stretching-inversion models. Improvement
in the splittings of lower-lying states is not systematic, while
the higher excited states are clearly improved. Furthermore,
our 6D results are the first benchmark data, without introduc-
ing any approximations, obtained with the actually employed
refined PES of Ref. 67.

Based on our experience, in molecules most reduced-
dimensional vibrational models provide only a semiquantita-
tive approximation to the full-dimensional results. We expect
that the main virtues of reduced-dimensional models can be
exploited in at least two ways. First, wave functions of
reduced-dimensional Hamiltonians can serve as a kind of
“preoptimized basis” to the solution of the full-dimensional
problem. This philosophy has already been exploited in the
present work via usage of preoptimized DVR points �PO-
DVR�. In order to carry out such a preoptimization in higher
dimensions one would likely adopt one of the well-known
contraction techniques25,72 using two- or multiple-stage con-
tractions. Our preliminary results on contraction techniques
adopted in GENIUSH indicate that this is a promising way of

TABLE VII. Z-matrix representation of internal coordinates of CH4.

C
H1 C r1

H2 C r2 H1 �1

H3 C r3 H2 �2 H1 �1

H4 C r4 H3 �3 H1 −�2

TABLE VIII. ZPVE and VBOs of 12CH4, in cm−1, obtained with GENIUSH using, a full, 9D, vibrational model
and the T8 force field of Ref. 71.

Label DEWE
a,c �̃ �9D�b,c

�00��00� A1 9691.54 9691.39 �0.14�
�00��01� F2 1311.74 1311.74 �0.03� �0.01�
�00��10� E 1533.25 1533.23 �0.00� �0.01�
�00��02� A1 2589.77 2589.10 �0.67�
�00��02� F2 2616.23 2616.10 �0.26� �0.13�
�00��02� E 2627.29 2626.90 �0.00� �0.39�
�00��11� F2 2831.52 2830.92 �0.34� �0.60�
�00��11� F1 2846.90 2846.84 �0.15� �0.07�
�10��00� A1 2913.76 2912.52 �1.24�
�01��00� F2 3013.60 3012.53 �0.02� �1.07�
�00��20� A1 3063.48 3062.87 �0.61�
�00��20� E 3065.00 3064.66 �0.00� �0.35�

aConverged results obtained with the DEWE program �Ref. 39� using eight grid points for the bending-type and
seven grid points for the stretching-type normal coordinates.
bResults obtained with GENIUSH. 7 PO-DVR points for the stretching, r1 , r2 , r3 , r4, 7 PO-DVR points for the
bending �1 , �2 , �3, and 11 PO-DVR points for the torsion coordinates, �1 , �2, were used. Each set of points
was optimized on a primitive grid of 80 points and on r1 , r2 , r3 , r4� �0.3,2.5� Å, �1 , �2 , �3� �1,179�o,
and �1 , �2� �50,190�o intervals. An xxy body-fixed frame was employed. Deviations between degenerate
levels due to the incomplete convergence are given in brackets ��̃�largest�− �̃�lowest��. Deviations from the
converged results obtained with DEWE are given in parentheses, ��̃�DEWE�− �̃�9D��.
cNuclear masses, mC=11.996 709 u and mH=1.007 276 0 u were used throughout the computations.
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extending our current limits toward larger systems treatable
in full vibrational dimensionality. As for the current compu-
tational limitations, a maximum of nine coupled vibrational
degrees of freedom can be handled, as was demonstrated for
methane. Second, a possible fruitful application of reduced-
dimensional models could be the study of intramolecular dy-
namics of complexes consisting of semirigid monomer units.
For such systems, reliable results can be expected from an
approximate model in which the vibrational degrees of free-
dom of the monomers are fixed �or perhaps relaxed along the
active dimensions� and only the intramolecular degrees of
freedom are included explicitly.

The present implementation of GENIUSH suffers from
two bottlenecks. We think the main deficiency of the current
version is that symmetry properties of the molecular systems
are not exploited. At this point, it is worth emphasizing that
in spite of the fact that our actual test systems have symme-
try, all computations were carried out as if the symmetry
operators of the systems corresponded to the C1 point group.
Working in DVR, exploitation of symmetry in a universal
code is not as straightforward as it is in finite basis
representation.48 Nevertheless, we are currently working, for
example, on the usage of eigenfunctions of reduced-
dimensional model Hamiltonians as a preoptimized basis for
the full problem. Such preoptimized basis functions carry the
symmetry properties of the reduced Hamiltonians; conse-
quently, utilization of symmetry properties for the solution of
the full problem is expected to be more straightforward. Be-
sides the apparent gain in the required computational re-
sources �memory, disk, CPU�, exploitation of symmetry
would provide symmetry labels to the computed vibrational
levels that is also of considerable utility.

As to the second deficiency, one could point out that in
this study vibration-only computations have been presented.
However, we do not consider this point as a serious defi-
ciency, as we are not aware of any fundamental limitation
which would prohibit the extension of the current approach
to the computation of rotational-vibrational energy levels and
the subsequent determination of, for example, line-by-line
absorption intensities. Work is in progress along this line, as
well.
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APPENDIX: COMPUTATION OF THE
EXTRAPOTENTIAL TERM

Logarithmic derivatives can be determined very effi-
ciently by using Gauss elimination,46 k=1,2 , . . . ,D+2,

gij
�k+1�

ª gij
�k� −

gik
�k�

gkk
�k�gkj

�k�, i = 1,2, . . . ,D + 3,

�A1�

j = k + 1, . . . ,D + 3,

and g�1�=g. In the course of the Gauss elimination steps de-

rivatives of ln g̃ and ln G̃ are computed iteratively, as
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In the kth step of the Gauss elimination, the �g�k+1� /�qm and
�2g�k+1� /�qn�qm matrices are computed by using the ele-
ments of �g�k� /�qm and �2g�k� /�qn�qm matrices. In the kth
step the �k+1�th elements of the expressions in Eqs. �A2�
and �A3� are evaluated. In each elimination step always only
the kth and �k+1�th derivative matrices are stored, so the
procedure has only a modest memory requirement.
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where i=1,2 , . . . ,D+3, j=k+1, . . . ,D+3, and n ,m
=1,2 , . . . ,D. In some cases the form Eq. �22� is more favor-
able to use �see the reduced-dimensional models�. The quan-

tities � ln G̃ /�qm and �2 ln G̃ /�qn�qm are evaluated similarly
to the procedure described in Eqs. �A1�–�A5�.

Next, derivatives �G /�qm and, if Eq. �22� is used, also
�2G /�qn�qm must be considered. Exploiting the relationship
G=g−1�R�D+3���D+3�, the missing derivatives can be ex-
pressed as

�G

�qm
= − G

�g

�qm
G , �A6�
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�2G

�qn � qm
= G

�g

�qn
G

�g

�qm
G + G

�g

�qm
G

�g

�qn
G

− G
�2g

�qn � qm
G . �A7�

Then the matrices �g /�qm and �2g /�qn�qm also involved in
the above formulae are left to be considered,

�gkl

�qm
= �

i=1

N

mi�
a
� �tiak

�qm
tial + tiak

�tial

�qm
� , �A8�

�2gkl

�qn � qm
= �

i=1

N

mi�
a
� �2tiak

�qn � qm
tial +

�tiak

�qn

�tial

�qm
+

�tiak

�qm

�tial

�qn

+ tiak
�2tial

�qn � qm
� , �A9�

where n ,m=1,2 , . . . ,D and k , l=1,2 , . . . ,D+3.
Now, all the terms in the kinetic energy operator are

expressed in terms of tim , � tim /�ql , �2tim /�qk�ql, i
=1,2 , . . . ,N, m=1,2 , . . . ,D+3, k , l=1,2 , . . . ,D �t-vector
formalism�. For the vibrational part, i.e., k , l , m
=1,2 , . . . ,D, the t vectors and their derivatives are

tim =
�xi

�qm
, �A10�

�tim

�ql
=

�2xi

�ql � qm
, �A11�

�2tim

�qk � ql
=

�3xi

�qk � ql � qm
, �A12�

whereas for the rotational part, m=D+1, D+2, D+3, k , l
=1,2 , . . . ,D they are

tim = em � xi, �A13�

�tim

�ql
= em �

�xi

�ql
, �A14�

�2tim

�qk � ql
= em �

�2xi

�qk � ql
, �A15�

where xi= �xix ,xiy ,xiz� are the Cartesian coordinates in the
body-fixed frame. First, second, and third derivatives,
�xia /�qm, �2xia /�ql�qm, and �3xia /�qk�ql�qm are determined
numerically or analytically.

Let us first consider the numerical procedure. The pro-
cedure evaluating numerical derivatives uses an expression
�a subroutine� which provides the Cartesian coordinates in
the body-fixed frame, xia, in terms of the internal coordi-
nates, qm �m=1,2 , . . . ,D�. Primarily, the central difference
formula is used to compute the numerical derivatives.

In the case of numerical differentiation the accuracy is a
central question. For instance, if the terms in Eq. �21� were
directly computed by means of inserting their arguments in
the finite difference formulas, numerical instabilities or lim-
ited accuracy of the results might arise. In GENIUSH, the flex-

ible type declaration of FORTRAN 90 is employed; thus, the
accuracy of the numerical representation of the variables in-
volved in the computation of �xia /�qm, �2xia /�ql�qm, and
�3xia /�qk�ql�qm can be easily increased to the required
level. In this work �0.01 cm−1 was the prescribed accuracy
of the computed eigenvalues. The step of differentiation and
the number representation were chosen accordingly, typically
10−5 and �33 digits �similar to quadruple precision� turned
out to be safe and appropriate choices.

Although the numerical derivative routines provide a
perfectly black-box treatment of the actual choice of internal
coordinates and the body-fixed frame, they are generally
slower than their analytic counterparts. Due to efficiency rea-
sons, first, second, and third analytic derivatives of Cartesian
coordinates in the body-fixed frame in terms of internal co-
ordinates are also implemented in GENIUSH for the case of an
arbitrary Z-matrix and the xxy frame. The analytic derivative
part of the program relies on the chain rule, and it is based on
the collection of derivative subroutines of several elementary
functions �product, ratio, sine, cosine, etc.�, providing a
modular and easily expandable structure.
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