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We report the implementation of a previously suggested method to constrain a molecular system to
have mode-specific vibrational energy greater than or equal to the zero-point energy in
quasiclassical trajectory calculations �J. M. Bowman et al., J. Chem. Phys. 91, 2859 �1989�; W. H.
Miller et al., J. Chem. Phys. 91, 2863 �1989��. The implementation is made practical by using a
technique described recently �G. Czakó and J. M. Bowman, J. Chem. Phys. 131, 244302 �2009��,
where a normal-mode analysis is performed during the course of a trajectory and which gives only
real-valued frequencies. The method is applied to the water dimer, where its effectiveness is shown
by computing mode energies as a function of integration time. Radial distribution functions are also
calculated using constrained quasiclassical and standard classical molecular dynamics at low
temperature and at 300 K and compared to rigorous quantum path integral calculations. © 2010
American Institute of Physics. �doi:10.1063/1.3417999�

I. INTRODUCTION

The quasiclassical trajectory �QCT� method is widely
used in gas-phase reaction dynamics calculations. In this
method molecular vibrations are typically initially “quan-
tized,” most commonly by giving reactant molecules vibra-
tional energy equal to the quantum mechanical zero-point
energy �ZPE� and if desired rovibrationally excited states.1

This initial condition has been shown over many years to
produce results for chemical reactions that are far more ac-
curate and realistic when compared to accurate quantum cal-
culations than if no vibrational energy is initially given to
molecules. The method was originally introduced for atom-
diatom reactions1 and then used very widely for this class of
reactions. It has also been used recently for polyatomic
reactants;2–7 however, in this context the application is prob-
lematic because of what is now generally known as “zero-
point leak” �ZPL�.8–11 This leak is largely due to the use of
an approximate harmonic model for vibrational quantization
instead of “exact” semiclassical quantization of multimode
systems which remains a very challenging computational
problem, even for the ZPE. �Note that ZPL may result from
classical chaotic motion as discussed in Ref. 12.� In any ap-
proximate model classical intramolecular vibrational relax-
ation of the ZPE from high-frequency modes to lower fre-
quency ones will occur. The rate at which it occurs is of
course the practical issue. In reactive scattering it often oc-
curs on a time scale long compared to the reaction time.7 In
this case it appears that ZPL is not a major concern. �It is
worth noting that these issues are not present for diatomic
reactants, i.e., for A+BC reactions.�

As the system size grows so does the total ZPE and with
it the concern about ZPL. For physical/chemical processes in

the condensed phase ZPL is clearly a concern and in fact
ZPE is generally ignored in classical molecular dynamics
�MD� simulations in the condensed phase. Instead canonical
or microcanonical sampling of the classical phase space is
done. Roughly speaking in the former case this amounts to
giving each vibrational mode RT of total energy, which at
room temperature is roughly 0.6 kcal/mol. However the ZPE
of a typical OH stretch is roughly eight times larger. An
obvious consequence of this additional energy for a realistic
Morse-like OH stretch potential is an increase in the average
bond length and a broader radial distribution function �RDF�
compared to the results using room temperature classical in-
ternal energy. Indeed, recent approximate/semiquantum ap-
proaches to the study of various properties of water have
clearly shown the importance of ZPE,11–17 and now point to
the absence of this as a significant issue in standard classical
MD simulations. �It is also worth noting that Habershon and
Manolopoulos11 recently pointed out the ZPL issue in some
of these semiquantum approaches.�

So, motivated both by the importance of ZPE for simu-
lations involving water �and more generally for systems with
hydride modes� and the issue of ZPL we have reinvestigated
an active approach introduced in 1989 �Refs. 8 and 9� to
prevent ZPL. �Other approaches to deal with ZPL have been
proposed and these have recently been reviewed in Ref. 11
and so for brevity, we refer the interested reader to that pa-
per.� In this approach a hard shell representing the ZPE in a
given mode is introduced in the phase space of each pair of
canonically conjugate coordinate and momentum. If a trajec-
tory attempts to cross this shell it is “kicked away” by flip-
ping the sign of the momentum. We will also refer to this
method as “constrained dynamics.”

In order to generalize this method to realistic general
systems, Miller et al.9 suggested using the instantaneous
normal-mode method at each time step. Apart from the early
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applications for Al3 and C2H6 �see Ref. 10�, this suggestion
has not been implemented for other systems to our knowl-
edge, perhaps in part because of the associated well-known
issues with imaginary frequencies and also because the full
normal-mode analysis at every time step renders the method
very computationally intensive for large systems.

Here we propose a different approach to implement the
constrained “kick” dynamics to prevent ZPL. The approach
is based on a recent publication7 where the goal was to as-
sign harmonic quantum numbers to the polyatomic products
of the F+CHD3 reaction, CD3 and CHD2. The method is to
transform Cartesian coordinates and momenta of these poly-
atomics to the normal coordinates of a minimum that is de-
termined by a steepest descent path from the instantaneous
configuration of the molecular system. We note that Still-
inger and Weber18 also used a steepest descent method to
assign any arbitrary configuration in liquids and solids to a
minimum. �A related normal-mode approach has also been
suggested recently by Espinosa-García,4,19 and indeed much
earlier by Schatz,20 who used a more rigorous semiclassical
analysis of product vibrational motion.� Then by simply re-
lating the instantaneous configuration and momenta to the
normal-mode coordinates and momenta the analysis of mode
energies was done. This approach has the advantage that
only real-frequency modes are used in the analysis, and sec-
ond for many �perhaps all� time steps the same minimum and
therefore the same normal modes can be used in the analysis.
Clearly this method can immediately be used to apply the
hard-shell constraint to prevent ZPL. We do that here by
applying these combined methods to the water dimer. This
application is motivated in large part by the above discussion
about the importance of the effects of ZPE in simulations of
water.

This paper is organized as follows. In Sec II we briefly
review the method and its implementation for �H2O�2 and we
show how to apply the active constraint introduced in Refs. 8
and 9. The computational details of the different dynamics
investigated in the present study are given in Sec. III. We
present the mode energies and OO-distance of �H2O�2 as a
function of time and RDFs obtained from different dynamics
simulations in Sec. IV. The paper is ended by conclusions
and remarks �Sec. V� on possible techniques, which can be
further investigated in the future to make the method more
efficient for larger systems.

II. METHOD

First, standard normal-mode initial conditions2 are ap-
plied for each trajectory. Harmonic ZPE is given to each
mode, standard transformations to Cartesian coordinates and
momenta are made, and small adjustments to the total angu-
lar momentum are applied such that it equals zero. Each
trajectory is propagated and at nearly every time step a
“reverse-normal-mode analysis” is done, as described in de-
tail in Ref. 7. Here we give the details of the present imple-
mentation for the water dimer.

Let the Cartesian coordinates and corresponding veloci-
ties in the center of mass frame be denoted by ri and vi �i
=1,2 , . . . ,N�, respectively. �N=6 for the present applica-

tion.� Since the molecule configuration is generally not at a
stationary point, we need to relate the actual configuration to
normal-mode displacements of a reference minimum geom-
etry. The potential energy surface �PES� of �H2O�2 has eight
equivalent minima denoted as ri

eq�imin�, where imin

=1,2 , . . . ,8. In the present implementation for �H2O�2 we
determine the reference geometry by minimizing the expres-
sion

�
i=1

N

�ri − C��,�,��ri
eq�imin�� �1�

with respect to the three Euler angles �� ,� ,�� and imin. In
Eq. �1� C is an orthogonal rotational matrix depending on the
Euler angles. The determined reference structure �denoted as
ri

eq� is one of the minima on the PES with an optimized
orientation �in the present calculations this is always the
starting global minimum for the constrained trajectories�;
thus, a normal-mode analysis there provides nonzero real
frequencies �k �k=1,2 , . . . ,3N−6� and the orthogonal trans-
formation matrix l. Normal coordinates, Qk �k=1,2 , . . . ,3N
−6�, and conjugate momenta, Pk �k=1,2 , . . . ,3N−6�, can
then be obtained using the straightforward transformation
from Cartesian displacement coordinates ��ri=ri−ri

eq� and
vi, respectively. Note that this approach should not be con-
fused with the instantaneous normal-mode method in which
a normal-mode analysis is done at the given configuration,
which, in general, leads to imaginary frequencies and poten-
tially large mode coupling, which is ignored if one restricts
attention to only the real-frequency modes.
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FIG. 1. Expectation values of the harmonic vibrational energies correspond-
ing to the normal modes of �H2O�2 as a function of integration time obtained
from constrained QCT �0 K� calculations. The harmonic energies are aver-
aged over 100 trajectories and the time interval �0, t�. The initial quasiclas-
sical ground vibrational state of �H2O�2 was set by standard normal-mode
sampling. The harmonic frequencies corresponding to the 12 normal modes
are given in cm−1.
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Employing these normal coordinates and momenta the
vibrational energy for each normal mode can be calculated as

Ek =
Pk

2

2
+

�k
2Qk

2

2
, k = 1,2, . . . ,3N − 6, �2�

and a noninteger classical harmonic action number for each
mode can be obtained �in atomic units� as

nk =
Ek

�k
−

1

2
, k = 1,2, . . . ,3N − 6. �3�

Having determined the actual harmonic action numbers at a
given integration step �step in Eq. �5��, we apply the active
constraint employing the following equations:

Pk = �
i=1

N

�milkivi, k = 1,2, . . . ,3N , �4�

Pk
new = − Pk� if nk � nmin and nk�step� � nk�step − 1�

if nk � nmax and nk�step� � nk�step − 1� 	 k = 1,2, . . . ,3N − 6, �5�

vi
new = �

k=1

3N

lkiPk
new/�mi and ri

new = ri. �6�

At this point a few comments are in order.

�1� In Eq. �4� all the 3N momenta are computed.
�2� According to Refs. 8 and 9 if nk is less than zero the

sign of Pk is changed. In practice �see Eq. �5�� we have
applied a window constraint such that the momentum is
flipped only if nk is not in the interval �nmin,nmax�.

�3� In Eq. �5� we also consider if nk has decreased or in-
creased since the previous integration step �step–1�,
i.e., nk goes to the right or wrong direction.

�4� The momentum flip conserves the mode energy since it
depends on the square of Pk �see Eq. �2��.

�5� Eq. �6� conserves the total energy exactly since l is an
orthogonal matrix and comment �1� ensures the lack of
any numerical errors due to the uncertainties of the 6
“zero” frequencies and corresponding momenta.

�6� We continue to propagate the trajectory in the Cartesian
space using the new velocities �vi

new�. The constraint
has no effect on the Cartesian coordinates.

For future use we refer to unconstrained trajectories as
being those with the usual quasiclassical conditions but with-
out preserving the ZPE. These are the standard QCT results.
In addition we will also consider standard MD calculations
in which ZPE is not initially added to each mode but a purely
classical phase space sampling is used instead, as described
below in Sec. III.

III. COMPUTATIONAL DETAILS

We have computed 100 constrained and 100 uncon-
strained QCTs for �H2O�2 using a recent ab initio-based full-
dimensional PES called HBB2 �Ref. 21�. All trajectories
were initiated from the global minimum and coordinates and
momenta were sampled randomly from the normal modes, in
the usual way,2 with harmonic ZPE given to each normal
mode. The energy interval noted above corresponds to an
action number interval of �0.1 for each mode. So provided

the energy of the given mode is within this interval no mo-
mentum switching in that mode was done.

Trajectories were integrated using the velocity Verlet
algorithm.22 For both unconstrained and constrained trajec-
tories the total integration time was roughly 17 ps. For the
latter the normal-mode/energy analysis was performed at ev-
ery fifth time step. A time step of 0.242 fs was used for
unconstrained trajectories and a smaller time step, 0.0484 fs,
was used for the constrained trajectories. �Evidently the mo-
mentum flipping, which is equivalent to an impulse, requires
a smaller time step to achieve good energy conservation.�

These constrained and unconstrained trajectories with
these initial conditions obviously correspond to 0 K. We will
also consider constrained and standard MD trajectories run at
300 K. The initial conditions for the constrained QCTs at
temperature T are identical to those at 0 K but with the initial
mode energies �in atomic units� given by �k�1 /2
+1 / �exp��k /RT�−1�� based on the quantum mechanical
mean energy of a harmonic oscillator. The interval for apply-
ing the momentum flip is �−0.1, 0.1+a / �exp��k /RT�−1��
for each harmonic action number as this achieves the goal of
preventing significant ZPL and the dissociation of the dimer.
The real parameter a was set to 1 in this study. Standard MD
trajectories were run for 24.5 ps after selecting roughly 100
initial phase points �p ,q� at 10 and 300 K by sampling p
from the normal distribution exp�−p2 / �2mRT�� and q from
exp�−V�q� /RT� by performing a random walk at each tem-
perature in 18 dimensions.23 For more details about the clas-
sical MD, see Ref. 21.

The quantum mechanical thermal energy contributions at
300 K above �k /2 �the frequencies are given in Fig. 1� are
152, 146, 143, 131, 80, and 34 cm−1 for the intermolecular
modes in order of increasing frequency and �1 cm−1 for all
the intramolecular modes of �H2O�2, whereas the classical
RT corresponds to 208 cm−1 for each mode. Thus, the total
energy is about 10 100 and 10 800 cm−1 in the QCT simu-
lations at 0 and 300 K, respectively. In the standard classical
MD calculations the total energy is lesser, i.e., 150 and
1900 cm−1 on average at 10 and 300 K, respectively.

The path integral24 Monte Carlo �PIMC� simulations
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provide our benchmark quantum mechanical RDFs at 6.25
and 300 K. The temperature of 6.25 K is low enough to
ensure that all the modes of the dimer remain in their zero-
point level and so provide the 0 K benchmark results. Nu-

merical evaluation of the density operator exp�−	Ĥ�
= �exp�−�	 / P�Ĥ��P requires that the effective inverse tem-
perature 	 / P is sufficiently small.25 A suitable criterion is to
take P large enough so that the product �	 / P�� is smaller
than 1, where � is the highest fundamental frequency of the
system. Following some exploratory calculations, we chose
P=212 �4096�, which makes the target product with the OH
fundamental 
0.2 at 6.25 K. For 300 K simulations, we used
P=27 �128� to yield the target product 
0.14. The Monte
Carlo procedure was carried out using the standard Metropo-
lis sampling methods23 developed for PIMC simulations. In
this work we utilized the staging algorithm to sample paths.26

The number of neighboring “beads” to be sampled simulta-
neously in the staging procedure was adjusted to keep the
acceptance ratio around 40%; the final chosen value for the

staging parameter was 12 �17�, which resulted in the overall
acceptance ratio of 38% �42%�, at 6.25 �300� K. In all, we
averaged the RDFs from eight independent PIMC calcula-
tions with each run extending to 50 000 �100 000� imaginary
time steps for 6.25 �300� K. The resulting statistics showed
tightly converged RDFs �to within about 1% standard devia-
tion� for all atom pairs: OO, OH, and HH.

IV. RESULTS AND DISCUSSIONS

Figure 1 shows the time evolution of the 12 harmonic
mode energies of �H2O�2 for constrained dynamics. As seen
the constrained QCT �0 K� method described above is suc-
cessful in keeping the mode energies very close to the ZPE.
By contrast if no constraint is employed, some normal-mode
quantum numbers increase very rapidly in the first 0.1 ps.
Since the energy flows from the intramolecular modes to the
intermolecular modes, the water dimer exhibits extremely
large amplitude motion and therefore, the normal-mode
analysis, which is based on small displacements from a mini-
mum energy structure, breaks down. The fastest quantum
number increase at t�6 ps can be observed in the cases of
the two modes �149 and 181 cm−1� that have O–O stretching
character. It is interesting to see that there is one intermo-
lecular mode �611 cm−1� that remains close to the zero-point
level �without any constraint� during the 17 ps integration
time.

The �highly accurate� electronic dissociation energy �De�
of water dimer on the HBB2 PES is 1740 cm−1,21 which is
lesser than the total energy in the QCT simulations and so
dissociation of the dimer can certainly occur for uncon-
strained trajectories. Thus we monitored the OO-distance as
function of time for constrained and unconstrained trajecto-
ries. Figure 2 shows the expectation value �obtained from
100 trajectories� of the OO-distance of �H2O�2 as a function
of time. The constrained QCT provides an almost steady
�r�OO��, whereas �r�OO�� begins to increase rapidly at
around 4 ps if no constraint is employed. At t=17 ps the
unconstrained �r�OO�� is about 4.5 Å �with a large variance�
instead of around 3.0 Å; thus, the utility of the constraint is
clearly shown for this observable.
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FIG. 2. Expectation values of the OO-distance of �H2O�2 as a function of
integration time obtained from constrained and unconstrained QCT �0 K�
calculations initialized in the ground vibrational state of �H2O�2 using stan-
dard normal-mode sampling. The r�OO� is averaged over 100 trajectories
and the time interval �0, t�.
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We have computed the RDFs of �H2O�2 using �a� con-
strained QCT at 0 and 300 K, �b� classical MD at 10 and 300
K, and �c� PIMC at 6.25 and 300 K calculations. Figures 3–5
show the O–O, O–H, and H–H RDFs of �H2O�2, respec-
tively. The classical MD at 10 K gives too narrow RDFs
even if the long-range intermolecular distances are consid-
ered. This is expected because the classical MD neglects the
ZPE of the system and 10 K corresponds to very low energy.
If we increase the temperature to 300 K in a classical simu-
lation, the RDFs of the intermolecular distances become
slightly wider than the PIMC �6.25 K�; however, these clas-
sical �300 K� RDFs are still significantly narrower than those
from PIMC �300 K�. Therefore, we can say that 300 K ther-
mal energy roughly corresponds to the quantum ZPE of the
intermolecular modes. On the other hand in the case of the
intramolecular OH and HH RDFs the quantum PIMC �in
agreement with the QCT� results show that the thermal effect
is negligible since the PIMC �QCT� intramolecular RDFs are
roughly the same at 6.25 �0� and 300 K. Considering the
classical results a huge temperature effect can be seen; the
300 K RDFs are much wider than the 10 K ones. However,
the classical intramolecular results at 300 K are still much
more localized than the benchmark PIMC �6.25 and 300 K�
RDFs. The constrained QCT intramolecular RDFs are in

much better agreement with PIMC than the classical MD
ones, even if a temperature of 300 K is employed classically.

V. CONCLUSIONS AND FINAL REMARKS

The comparisons shown here between the constrained
quasiclassical and benchmark RDFs directly confirm the im-
portance of ZPE for these properties. As noted in Sec. I the
importance of ZPE has already been well established for a
variety of properties of bulk water and we show this here for
the water dimer. Of course it remains to be seen whether the
current approach of constraining ZPE can be used for bulk
water. There will clearly be an increase in computational
effort mainly, in doing the analysis of mode energies. If the
system relaxes to a known minimum at each analysis step
then the normal-mode eigenvalues and eigenvectors can be
reused for this analysis and no further normal-mode analysis
is needed. Furthermore, our current test computations show
that the application of the constraint is not necessary at every
0.242 fs. Other possibilities that we are currently investigat-
ing include applying the constraint only to high-frequency
modes, i.e., the monomer stretches and bands. This should
simplify the analysis and perhaps lead to less frequent mo-
mentum flipping than was done here.
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FIG. 4. O–H RDFs of �H2O�2 obtained from different MD simulations. Each RDF is normalized having a maximum value of 1.
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FIG. 5. H–H RDFs of �H2O�2 obtained from different MD simulations. Each RDF is normalized having a maximum value of 1.
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The application of this approach to a variety of proper-
ties seems straightforward. For example, the self-diffusion
constant should be readily obtainable using constrained tra-
jectories. Calculation of spectra, however, is more problem-
atic. The reason for this is using the standard Fourier trans-
form relationship between a correlation function and
spectrum will have to cope with a “noisy” background on
what should be a standard oscillatory correlation function.
We plan to investigate this in detail in the future.

It should also be noted that the method to prevent ZPE
leak described here has its limitations. It is not clear that it
can be used to describe chemical reactions where bonds
break. In this case assigning a minimum configuration that
can be used for the normal-mode analysis as the system
passes near a saddle point appears to be problematic. How-
ever, the method can be useful for preventing intramolecular
vibrational relaxation in bimolecular reactions prior to the
collision.

Finally, we note that the “on the fly” normal-mode
analysis applied here for computing mode energies at each
time step could be a useful tool for any �quasi-� classical MD
analyses if one wishes to track the energy flow between the
normal modes of a molecular system.
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