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a b s t r a c t

A recently suggested constrained quasiclassical trajectory (c-QCT) method for avoiding the zero-point
leak in the water dimer [11] is applied to the water trimer, employing an ab initio full-dimensional poten-
tial energy surface. We demonstrate the failure of the standard/unconstrained QCT method for (H2O)3

and show the utility of c-QCT dynamics. In addition, standard classical molecular dynamics and c-QCT
dynamics are contrasted for the time-dependence of isomerizations between the multiple global and
local minima as well as radial distribution functions are obtained at low temperature and at 300 K.
Results from these calculations are compared with rigorous quantum path integral Monte Carlo
calculations.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

A well-known issue in classical molecular dynamics (MD) sim-
ulations is that the intramolecular vibrational zero-point energy
(ZPE) is unphysically reallocated into the low-frequency intermo-
lecular modes, which is the so-called ‘zero-point leak’ [1–5]. Since
ZPE is not described classically this ‘leak’ is simply the response of
system of non-linearly coupled modes to relax to the microcanon-
ical limit. Therefore, in applications in the condensed phase ZPE is
ignored and instead a purely classical phase space sampling is
done. However, several applications have demonstrated the impor-
tance of ZPE in MD calculations, thus the absence of the ZPE in the
standard classical MD is a significant issue [6–10]. Indeed, in gas-
phase reaction dynamics calculations the quasiclassical trajectory
(QCT) method is frequently used, in which the reactants have
ZPE. However, the application of QCT in the condensed phase
and for clusters is problematic due to the above-mentioned zero-
point leak, which results in the dissociation of the cluster during
the time scale of the MD simulation as we demonstrated [11] for
the water dimer.

We recently proposed a practical method (see Ref. [11]) based
on Refs. [1,2,12,13] for avoiding the zero-point leak in QCT calcula-
tions. The method employs ‘on the fly’ normal-mode analysis dur-
ing the course of a trajectory and the mode energies are obtained
using the normal coordinates and momenta of a minimum ‘closest’
to the actual structure. If the mode energy is below the corre-
ll rights reserved.

, jmbowma@emory.edu (J.M.
sponding ZPE (or in practice it is not in a given energy interval),
the sign of the relevant normal-mode momentum is changed. After
applying this constraint for each normal mode the momenta are
transformed back to the Cartesian space and we continue to prop-
agate the trajectory. In the case of the water dimer we have dem-
onstrated that this so-called constrained QCT (c-QCT) method
keeps all the mode energies close to their zero-point value for
the duration of the simulation and prevents the dissociation of
the dimer. We have also shown that the c-QCT gives much more
realistic radial distribution functions (RDFs) for (H2O)2 than the
standard classical MD when the RDFs are compared to quantum
path integral [14] Monte Carlo (PIMC) results. Note that Lim and
McCormack proposed another active constraint employing trajec-
tory projection onto ZPE orbit (TRAPZ) [15]. The TRAPZ method
was recently modified by Bonhommeau and Truhlar [16] applying
the momentum transformation when the total instantaneous
vibrational energy is below the total local ZPE.

In the present Letter, we apply the c-QCT method to the water
trimer. For a detailed overview of the extensive research on the
water trimer, the interested reader should consult the review writ-
ten by Keutsch et al. [17]. The trimer is the smallest water cluster
with a ring-like structure capturing the three-body effects, which
play important role in the liquid water and ice. Furthermore, the
trimer is the smallest water cluster that has multiple hydrogen
bonds (H-bonds), where the H-bond rearrangement dynamics
can be studied. Since the liquid water is considered as a continu-
ously rearranging H-bonded network, the trimer ring, stabilized
by three H-bonds, is an excellent model of the condensed-phase
H-bonded network. Beside the c-QCT, we employ standard classical
MD and quantum PIMC computations as well. In Section 2, the
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Figure 1. Expectation values of the OO-distances of (H2O)3 as a function of
integration time obtained from constrained and unconstrained QCT (0 K) calcula-
tions initialized in the ground vibrational state of (H2O)3 using standard normal
mode sampling. The r(OO) is averaged over 10 trajectories and the time interval
[0, t].
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computational details are given. We demonstrate the issues of the
standard QCT method by monitoring the OO-distances of (H2O)3 as
a function of time in Section 3, where we also discuss the isomer-
ization and H-bond rearrangement dynamics of (H2O)3 at low tem-
perature and 300 K. In Section 3, the RDFs obtained from different
classical and quantum simulations are also presented.

2. Computational details

We have computed 10 constrained and 10 unconstrained QCTs
for (H2O)3 using a recent ab initio-based full-dimensional potential
energy surface (PES) denoted PES(1,2,3), which was recently devel-
oped in our group for water clusters (see Ref. [18]). All trajectories
were initiated from the same global minimum. Coordinates and
momenta were sampled randomly from the normal modes, in
the usual way [19], with harmonic ZPE given to each normal mode
for calculations at 0 K. Fixed mode energies were given by xk[1/
2 + 1/(exp(xk/RT) � 1)] at T = 300 K based on the averaged energy
of a harmonic quantum oscillator. Thus, these calculations are
microcanonical, not canonical. We made this choice, which is com-
monly done, for computational convenience.

In order to apply the active constraint we need to relate each ac-
tual configuration, denoted by ri (i = 1, 2, . . . , 9), along the trajec-
tory to normal mode displacements of a reference minimum
geometry. In the present implementation we determine the refer-
ence geometry ½req

i ðiminÞ� by minimizing the expression

X9

i¼1

kri � Cðh;/;wÞreq
i ðiminÞk2 ð1Þ

with respect to the three Euler angles ðh;/;wÞ and imin, where imin

goes through all the 96 global and 32 local minima of the trimer
(see more details about the minima in Section 3). Employing the
normal coordinates and momenta corresponding to the above
determined reference geometry, which may vary as the system
moves on the PES, the vibrational energy as well as a non-integer
classical harmonic action number for each normal mode can be cal-
culated. If an action number is not in the interval of [�0.1, 0.1 + 1/
(exp(xk/RT) � 1)], i.e., [�0.1, 0.1] at 0 K, we apply the momentum
flip for the corresponding mode. (For more details about the c-
QCT method see Ref. [11].)

The total energy is about 16 000 and 17 000 cm�1 in the QCT
simulations at 0 and 300 K, respectively. For both unconstrained
and constrained trajectories the total integration time was roughly
17 ps. For the latter the normal-mode/energy analysis was per-
formed at every 5th time step. A time step of 0.242 fs was used
for unconstrained trajectories and a smaller time step, 0.0484 fs,
was used for the constrained trajectories. (The momentum flipping
is equivalent to an impulse; therefore, c-QCT requires a smaller
time step to achieve good energy conservation.)

In order to demonstrate the utility of the c-QCT method and the
importance of ZPE we have compared the constrained quasiclassi-
cal results to standard classical MD ones, which is commonly used
for simulations in condensed phase. These standard MD trajecto-
ries were propagated for 9.2 ps after selecting 100 initial phase
points (p, q) at 10 and 300 K from the normal distributions ex-
p(�p2/(2mRT)) and exp(�V(q)/RT) by performing a random walk
at each temperature in 27 dimensions [20]. Thus the classical MD
results are canonical while the c-QCT ones are microcanonical, as
noted above.

The reference quantum mechanical results at 6.25 K (which
provides the 0 K benchmark results, since all the modes remain
in their zero-point level) and 300 K were obtained by performing
PIMC simulations using the same high-quality PES as in the QCT
and MD calculations. Following our previous work [11] we used
P = 212 (6.25 K) and P = 27 (300 K) for the numerical evaluation of
the density operator expð�bbHÞ ¼ ½expð�ðb=PÞbHÞ�P , where b=P is
the effective inverse temperature [21]. The Monte Carlo procedure
was carried out using the standard Metropolis sampling methods
[20] developed for PIMC simulations. In this work we utilized the
staging algorithm to sample paths [22]. The number of neighboring
‘beads’ to be sampled simultaneously in the staging procedure was
adjusted to keep the acceptance ratio around 40%; the final chosen
value for the staging parameter was 12 (17) which resulted in the
overall acceptance ratio of 29% (33%), at 6.25 (300) K. The RDFs
(converged to within about 1% standard deviation for all atom
pairs) were obtained from 12 (6.25 K) and 8 (300 K) independent
PIMC calculations with each run extending to 50 000 (6.25 K) and
100 000 (300 K) imaginary time steps.
3. Results and discussion

As noted already, the water trimer has a ring-like structure
where the monomers are connected by single H-bonds. The water
dimer has only one H-bond (half H-bond/monomer), whereas in
the trimer there are three H-bonds (one H-bond/monomer). There-
fore, one expects that the trimer is more stable than the dimer. In-
deed, the electronic dissociation energies (De) of water trimer on
the PES(1,2,3) [18] (with good agreement with benchmark ab initio
values [18]) are 10.74 and 15.72 kcal/mol for (H2O)3 ? H2O + (-
H2O)2 and (H2O)3 ? 3H2O, respectively, whereas the De of (H2O)2

is 4.98 kcal/mol. However, even the 15.72 kcal/mol total dissocia-
tion energy is below the total energy in the QCT simulations
(�46 kcal/mol at 0 K) and so dissociation of the trimer can cer-
tainly occur for unconstrained trajectories. Thus, we monitored
the OO-distances as a function of time for constrained and uncon-
strained trajectories. Figure 1 shows the expectation value (aver-
aged over 10 trajectories and the time interval [0, t]) of the OO-
distances of (H2O)3 as a function of time. The c-QCT provides al-
most steady hrij(OO)i values, whereas the trimer begins to dissoci-
ate rapidly if no constraint is employed. Thus, Figure 1 clearly
shows that standard QCT cannot be used for the water trimer
and we need to apply the constrained dynamics.

There are several energetically accessible minima on the PES of
the water trimer. The global minimum has three free OH in the
‘down-up-up’ (duu) conformation [C1 symmetry and chiral],
whereas the local minimum, above the global one by 0.82 kcal/



Figure 2. Global (left) and local (right) minima of (H2O)3.
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mol [18], has (uuu) or (ddd) conformation (see Figure 2). One can
obtain six equivalent global minimum configurations by the per-
mutations of the monomers as shown in Fig. S1 of the Supplemen-
tary material. In the case of the local minimum the cyclic
permutations result in the same configurations, i.e., these can be
transformed to each other by overall rotation. Thus, only two dis-
tinct equivalent local minima, (ddd) and (uuu), can be obtained
by monomer permutations. Furthermore, the inversion of each
structure provides another set of equivalent conformations, see
the structures denoted by * in Fig. S1. Finally, considering the min-
ima shown in Fig. S1 one can get further minima by exchanging the
H atoms within the monomers. Thus, 23 = 8 configurations can be
obtained for each structure shown in Fig. S1. Altogether there are
6 (monomer permutation) � 2 (inversion) � 8 (H atom ex-
change) = 96 equivalent global minima and 2 � 2 � 8 = 32 equiva-
lent local minima on the water trimer PES. (Here we do not
consider the permutations of the atoms of different monomers,
since the resulting configurations are separated by extremely high
barrier.)

The investigation of the rearrangement dynamics between the
above-described minima is an active research area [17,23,24].
One can consider three classes of motions, which connect the 96
energetically equivalent global minima of the water trimer. First,
a torsional (flipping motion) connects six minima via a very low en-
ergy (0.29 kcal/mol) [18] saddle point ‘up-planar-down’ (upd). A
single flip can be described by a cyclic monomer permutation (P)
followed by an inversion (I) (through the center of mass). For
example, flipping the third free OH of (duu) from up to down can
be described by the following operations: ðduuÞ !cyclic-PðuduÞ!I

ðuduÞ�, see Fig. S1. Second, the bifurcation motion breaks a single
H-bond and a free H of the same monomer becomes H-bonded
[23,24]. This is the lowest energy pathway, which connects minima
by breaking H-bond through a barrier of 2.16 kcal/mol [18]. The
eight minima of the trimer connected by the bifurcation motion
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Figure 3. Probability of the fact that the actual configuration of (H2O)3 in the time inte
initiated (left panel) and that the H-bond structure is the same from t = 0 to t as that
minimum (see Figure 2) and the left panel considers any isomerizations (flips between
only shows H-bond breaking and reforming via bifurcation motion (exchange of H atom
can be obtained by exchanging H atoms within the monomers.
Considering a certain minimum, three other can be accessed by
single H-bond breaking, three can be obtained by double events,
and one is accessed by breaking and reforming all the three H-
bonds. Third, a concerted proton transfer, that breaks and reforms
all the three H-bonds in the ring, can connect left- and right-
handed trimer minima. These minima are related to each other
by a non-cyclic permutation of the monomers.

In order to study the isomerization of (H2O)3 between the
above-mentioned minima we consider the c-QCT and classical
MD trajectories and coordinates obtained from PIMC and assign
each actual configuration at time t (imaginary time for PIMC) to
one of the 96 global or 32 local minima, which is the ‘closest’
[see Eq. (1)] to the actual structure. Figure 3 shows the probability
whether the assigned minimum in the time interval [0, t] is the
same global minimum where from the trajectory was initiated
and Figure 3 also shows the time scale of the H-bond rearrange-
ments via bifurcation motion. The distributions of the minima ob-
tained from different simulations are presented in Figure 4. At this
point a note is given regarding the PIMC distributions. Ideally,
PIMC should show identical probabilities for all the equivalent
minima. However, due to the fact that our path sampling does
not explicitly include identical particle exchange and the number
of imaginary time steps is finite, the PIMC runs can be trapped in
one of the minimum wells and the PIMC distributions can depend
on the starting geometry and atom labeling. On the other hand this
artifact of PIMC can indicate the different pathways and barrier
heights which connect a particular minimum to the others. The re-
sults presented in Figures 3 and 4 can be summarized as follows:

(i) At 10 K the classical MD shows no isomerization, the trajec-
tory stays in the vicinity of the global minimum where from
the simulation was initiated. However, the PIMC calculations
show that at 6.25 K single flips do happen, which demon-
strates that the classical MD does not capture the physics
at very low temperatures. These flips shown by PIMC may
be due to quantum mechanical tunneling, which obviously
cannot be described in a classical MD simulation.

(ii) At 300 K the flips between up and down conformations are
more frequent than those at very low temperatures. Classi-
cal MD and PIMC show bifurcation events at 300 K, which
happen much more often in the classical simulation.
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rval [0, t] is in the vicinity of the global minimum where from the trajectory was
was at t = 0 (right panel). All the trajectories were initiated from the (duu) global
up and down conformations and H-bond rearrangements), whereas the right panel
s within a monomer).
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Figure 4. Distributions of the (H2O)3 global [(duu), . . . , (ddu)] and local [(ddd) and (uuu)] minima assigned to the actual configurations at each {imaginary} time step of the c-
QCT, classical MD, and {PIMC} simulations at low temperature and at 300 K. The structures of the global and local minima (upper and middle panels) are shown in Fig. S1. The
lower panels show the H atom permutations at 300 K within the monomers [(12)(34)(56) corresponds to the H atom arrangements in Figure 2]. At low temperatures we have
not found exchange between free and H-bonded H atoms; therefore, the lower panels are only shown at 300 K. All the simulations were initiated from (duu) with (12)(34)(56)
H atom arrangement.
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(iii) At 300 K classical MD and c-QCT show that single flips occur
on femtosecond and picosecond time scales, respectively.
For example, considering the 0–0.1 ps time range the classi-
cal probability that (H2O)3 is in the initial configuration is
less than 20%, whereas the c-QCT stays close to the initial
minimum during 0.1 ps. The bifurcation motion, however,
is slower by a few orders of magnitude. Classical MD at
300 K allows breaking H-bonds on a picosecond time scale,
whereas it does not happen during 17 ps when the c-QCT
method is employed. Averaging over 9 ps long classical
(300 K) trajectories the probability of the initial H-bond
arrangement (0.154) tends to its asymptotic value (1/
8 = 0.125).

(iv) c-QCT and (classical MD) (almost) never sample minima
which require the change of the handedness of the trimer
ring via a concerted proton transfer breaking and remaking
all the H-bonds. (Note that it does happen in the classical
MD at 300 K, but the probability is negligible; see Figure 4.)
In the case of the PIMC (300 K) we did find a small prob-
ability of minima, that have different handedness than the
initial minimum. It is important to emphasize that in our
study there is no H atom exchange between different
monomers; thus, this concerted proton transfer shown in
PIMC does not go through the pathway with barrier of
26.99 kcal/mol, which involves the breaking of covalent
bonds described theoretically by Liedl and co-workers
[25]. We note that the effects of this extremely high-
energy motion between the left- and right-handed chiral
clusters have not yet been observed in the trimer THz
spectra [17].

(v) All the simulations, except classical MD at 10 K, show isom-
erization between local and global minima. The populations
at the local minima are similar to those at the global ones.
This is expected since the local minimum is only above the
global one by 0.82 kcal/mol and there are low-energy sad-
dle-points at 0.86 (upu), 0.99 (upp), and 1.47 (ppp) kcal/
mol, where ‘p’ refers to ‘planar’ and the energies are relative
to the global minimum [18].
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Figures 5–7 show the O–O, O–H, and H–H RDFs of (H2O)3,
respectively, obtained by using (a) c-QCT at 0 and (microcanonical)
300 K; (b) classical MD at 10 and 300 K; and (c) PIMC at 6.25 and
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Figure 5. O–O RDFs of (H2O)3 obtained from c-QCT, classical MD, and quantum
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intermolecular distances. The positions of the peaks correspond to
the different types of interatomic distances. Let us denote the tri-
mer as H1O7H2� � �H5O9H6� � �H3O8H4� � �, where the sub- and super-
script Hs correspond to the free-H atoms and the atom
numbering is shown in Figure 2. In the O–H RDF plot one can iden-
tify the peaks corresponding to the (1) intramolecular OH, (2)
HOH2� � �HO9H� � �HOH� � �, (3) HOH2� � �HOH� � �HO8H� � �, and (4)
H1OH� � �HOH� � �HO8H� � � at distances of 1.0, 1.9, 2.8, and 3.4 Å,
respectively. The 10 K classical H–H peaks show the (1) intramo-
lecular HH, (2) HOH2� � �HOH6� � �HOH� � �, (3) HOH2� � �H5OH� � �HOH� � �,
(4) HOH� � �H5OH� � �HOH4� � �, and (5) H1OH� � �H5OH� � �HOH� � � dis-
tances at 1.5, 2.2, 2.6, 3.5, and 4.1 Å, respectively. The PIMC RDFs
at 6.25 K display much broader distributions with slight peak fea-
tures. The c-QCT (0 K) RDFs are in much better agreement with the
quantum results than the classical ones demonstrating the impor-
tance of ZPE in the simulations. At 300 K the classical RDFs become
significantly broader; however, they are still too narrow for the
intramolecular OH and HH distances. By contrast the classical OO
RDF at 300 K is in good agreement with the PIMC result, and in fact
in slightly better agreement than the c-QCT RDF. Furthermore, the
observed, unphysically large temperature effect in the classical MD
for the intramolecular distances does not appear with c-QCT in
agreement with PIMC. The c-QCT intramolecular RDFs show a neg-
ligible change between 6.25 and 300 K indicating the importance
of maintaining a realistic ZPE distribution.

4. Summary and conclusions

The dynamics of H-bond rearrangement and radial distribution
functions of the water trimer have been investigated using an
accurate ab initio-based full-dimensional potential energy surface
[18]. The dynamics studies were done using standard classical
and novel constrained quasiclassical, c-QCT, approaches and radial
distribution functions were obtained with these methods as well as
with exact quantum path integral Monte Carlo method. We have
demonstrated that the ZPE leaks into the intermolecular modes
and the trimer breaks up into monomers within a few picoseconds
if the standard QCT method is employed, whereas c-QCT prevents
the dissociation. The time dependence of the H-bond rearrange-
ments in the trimer using c-QCT and classical dynamics was found
to be very different, with the latter being much faster than the for-
mer. The c-QCT radial distribution functions are in better agree-
ment with the PIMC than are the standard classical ones, in
agreement with previous comparisons for the water dimer [11].
The classical RDFs display narrow peak features at low tempera-
ture and too localized intramolecular OH and HH peaks even at
300 K which distributions are much broader in the c-QCT and PIMC
RDFs showing the importance of the zero-point energy in the
simulations.
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