
Ternary phase diagrams
Theory: P.W. Atkins: Physical Chemistry (6th Ed.) Chapters 8.1–8.7.
Type of practice: Individual.
Purpose of practice: To study partially miscible ternary systems, practice the Gibbs’ phase rule and use a
triangular phase diagram.

1 Introduction
The Gibbs’ phase rule describes the relation between the number of degrees of freedom (F),1 the number of
phases (P), and the number of components (C):

F = C−P+2 .

According to this rule the maximum number of degrees of freedom for a three-component system is four,
since the minimum number of the phases is one. Hence, the system can be described by four state variables,
like temperature (T), pressure (p) and mole fractions of two components. The full representation is possible
in four dimensions. If two of the state variables are kept constant (e.g. T and p), then the system can be
depicted in two dimensions (at a given T and p). This illustration can also show the number of phases for a
given composition.

The regular Descartes coordinate system can be used when the mole fraction of B (vertical axis) is plotted
as a function of the mole fraction of A (horizontal axis). This method, however, hinders the equivalence of the
three components as the composition of the third component C can be obtained indirectly from xA+xB+xC=
1 relation. Therefore the ternary systems are illustrated in the so-called triangular phase diagrams where the
points are drawn in an equilateral triangle (all sides have the same length) as shown in Figure 1 applying the
following rules:

– The length of each side of the triangle is one in mole fraction unit.

– The vertices of the triangles correspond to a one-component system, i.e., to single component A, B and
C.

– Along the edges of the triangles, the composition of two-component systems can be given. For exam-
ple, the side connecting vertices A and B gives the composition of a system containing only A and B,
and no C. When a point is farther from vertix A, the mole fraction of component A is smaller. The
scaling is linear, e.g. point xA = 0.8, xB = 0.2 and xC = 0.0 is along the line (side) connecting vertices
A and B, its distance is 0.2 unit from apex A and its distance is 0.8 from apex B.

– The interior points correspond to a three-component system. Figure 1 shows how a point can be
represented in a triangular diagram. The most practical method is to mark the mole fractions of each
component along the edges of the triangle, then connect these points with straight lines as shown with
dashed lines in Figure 1. Points A1 and A2 give the mole fraction of component A along the two edges
of the triangle. This points are connected with a dashed line. For point A1 a bold line and a bracket
shows the mole fraction starting from apex B. Dashed lines illustrate the mole fractions of components
B and C as well.

– The three dashed lines intersect in a single point. This intersection, point (P) is the position of the
system with the desired composition in the triangular diagram. The intersection can be determined
from two lines, therefore the use of any two lines from the three is sufficient, i.e., in a three-component
system, from the mole fraction of any two components the third can be calculated.

When we want to read the mole fractions of any points in the diagram, we have to draw a parallel line to
the edges through the point (dashed lines in Figure 1). From the intersections of these lines with the edges
of the triangle we can read the desired mole fractions.

1The number of degrees of freedom is the number of freely variable intensive parameters.
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Figure 1: The use of the triangular diagram to represent the composition of a three-component system (A,
B and C). The example case is point P with composition xA =0.44, xB =0.25 and xC =1−xA−xB =0.31.
Detailed explanation in the text.

2 Construction and interpretation of a triangular phase diagram
One of the most significant ternary systems is that of the partially miscible liquids which, depending on their
composition, can be one-, two- and three-phase system. Phase curves (so-called binodal curves) separating
the one- and two-phase systems are presented in triangular phase diagrams. There are several possibilities to
obtain partially miscible systems. In the practice we will consider one where from the three liquids, liquid A
and B are partially miscible, while liquid C is fully miscible with both A and B as illustrated in Figure 2. The
phase curve divides the diagram into two:

1. At certain compositions the system has a single phase (e.g. point P). The exact composition of the
mixture can be read from the triangular phase diagram.

2. At other compositions, like point Q, the system exhibits two phases: one phase rich in component A
(namely water), the other is rich in component B (propyl acetate). Component C is partitioned between
the two phase. In such heterogeneous systems the mole fraction in point Q describes the average mole
fraction of the two phases. The composition of each phases is given by the composition of points QA
and QB: from composition QA the acetone content in a water saturated with propyl acetate, while from
composition QB the acetone content in a propyl acetate saturated with water can be determined along
with the overall composition of Q.

Straight lines in infinite number can be drawn through point Q and intersecting the binodal curve in two
points. There is only one line, the tie line, which gives the real composition (QA and QB). This line can
be determined experimentally by extracting the two phases and analyze their composition seperately.
There exists a simple, Tarasenkov’s rule which states that the tie lines intersect in a single point T
outside of the triangular diagram (more precisely the point lies in the extension of the appropriate side
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Figure 2: Representation of the liquid-liquid ternary phase diagram with components A: water, B: propyl
acetate and C: acetone at atmospheric pressure and at 30◦C. Component A and B are partially miscible, while
component C is miscible with the other two.

of the traingle) and helps to locate the tie lines. The amount of the individual phases are given by the
lever rule.

There are two practical applications for these type of ternary systems where the phase diagram is essen-
tial:

– For certain liquid-phase reactions, the reactants have no common solvents. Therefore, the reactants
are dissolved in seperate, partially miscible solvents and with a use of a third solvent single phase is
created where the reaction can take place.

– Under certain conditions, the separation of fully miscible liquids is also possible by using an ap-
propriate ternary system. For example Figure 2 shows that propyl acetate is an adequate solvent to
remove acetone from water. It is clear from the graph that at composition Q, there are two phases: in
QA (water-rich phase) the acetone content is much lower than in QB which is the propyl-acetate-rich
phase.

3 Experimental construction of the phase diagram
The aim of the practice is to determine a ternary phase diagram with a series of titrations. Typically two-
component systems are titrated with the third component and find the end point where the number of phases
changes. A titration curve corresponds to straight line in the triangular diagram which connects a apex with
a point lying in the opposite side of the triangle. For example in Figure 3a the line connecting apex A with
the opposite side at point xB = 0.4 corresponds to a titration of solution B and C with mole fraction ratio of
0.4 : 0.6 with solution A. During the tiration we recede from the BC side approaching apex A. When the
line intersects the binodal curve (as in our case), the number of phases changes. The titration lines will be
presented with gray lines in the figures.

To determine the binodal curve, a series of titrations should be carried out. Prepare several two-component
systems and titrate them individually with the third component until the number of phases changes. This
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Figure 3: Skatch of the titration curves. The arrows illustrate the titration started from compositions marked
with bullets. The shaded areas are outside of the titration regions. Further explanation in the text.

method is the so-called individual titration method. See, e.g., the solid arrows in Figure 3a where solutions
of B and C are titrated with component A. The end point is the appearance of the second phase. Another ex-
ample the dashed arrows in Figure 3a where solution of A and C are titrated with solution B. There is a third
possibility when the partially miscible solution containing A and B is titrated with solution C (see arrows in
Figure 3b). The end point is the disappearance of the second phase. All three cases and their combination
can be used to locate the binodal line.

4 Experimental
The system to be investigated consists of water (always component A) and components B and C as unknowns.
Component B is the component which is partially miscible with water, while component C is fully miscible
with it. Always use the hood as the unknowns are organic chemicals.

• At the beginning of the practice pick up the two unknowns and note their molar masses.

• Identify the unknowns as B and C by adding ∼1 cm3-1 cm3 into two test tubes separately and add
∼1 cm3-1 cm3 water to each test tube. Shake the solutions and look at the test tubes. One will have a
single phase (component C) , the other will be heterogeneous corresponding to component B.

• The density of the unknowns should be determined during the practice. Measure the mass of a dry Er-
lenmeyer flask of 50 cm3 volume with stopper. Add into the flask 5.00 cm3 unknown by an appropriate
buret. Measure the mass of the flask with the solution. Calculate the solution density as the ratio of its
mass to its volume.

• Determine the points of the binodal curve by titration. If it is not specified otherwise, solutions con-
taining components B and C with compositions 95, 90, 80, . . . , 10 V/V% for component B is titrated
with solution A. The volume of the sample to be titrated is 10 cm3 in all cases and the titration should
be stopped if the endpoint is greater than 25 cm3.

• Determine the missing base point of the binodal line by individual titration. Measure out 10.00 cm3

solution A into a clean and dry Erlenmeyer flask with stopper and titrate with solution B.

Difficulties during the titrations:

1. When the appropriate solution aliquots are added, close the flask with the stopper and shake it effi-
ciently.
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2. The end point is difficult to identify. Any of the following observations indicate the appearance of a
new phase:

– the mixture becomes opaque and this turbidity stays even after shaking it;
– tiny drops appear in the sample
– drops stay in the inner wall of the titration flask (mainly observed at the first titrations)

If the end point is not the appearance of a new phase but the disappearance of an existing phase then
none of the above should be observed.
Do not be afraid to call your instructor in case of difficulties to identify the end point

3. Be patient. The titration volumes can differ by several magnitudes.

4. When there is no information about the endpoint of the titration, titrate dropwise not to overtitrate the
solution.

5. If the Erlenmeyer flasks have to be dried, rinse the flasks 3 – 4 times with technical quality acetone and
dry it with a water pump. Do not use dryers as the flasks with thick walls cool down slowly.

After finishing the experiments, show the results to the instructor because further titration may be needed.
Collect the used chemicals in the appropriate waste container. It is forbidden to pour them into the sink.

5 Evaluation
1. Briefly describe the change of which physical property/properties marked the end point of the titration.

2. Summarize the experimental data and the results of the calculations according to the table below:

A = H2O, B = ..... unknown, C = ..... unknown

Mr(A)= ..... , Mr(B)= ..... , Mr(C)= .....

ρ(A) = .....g/cm3, ρ(B) = .....g/cm3, ρ(C) = .....g/cm3

VA VB VC nA nB nC ntotal xA xB xC

(cm3) (cm3) (cm3) (mol) (mol) (mol) (mol)

3. Ask for a triangular diagram from the instructor.
Plot the phase diagram of the (A, B, C ) ternary system using the calculated mole fractions. Discuss
the diagram in 4 – 5 sentences (e.g., the ratio of the area of one- and two-phase regions, gentle/steep
changing character of the phase diagram, etc.).
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Questions
1. Give the Gibbs phase rule. Define each symbol.

2. Give the maximum number of phases at equilibrium for a three-component system. Explain.

3. Mark the places of one-, two-, and three-component systems in a triangular phase diagram.

4. Describe in 4 – 5 sentences how to draw a point in a triangular diagram (any method can be used).

5. What is a phase curve?

6. Draw schematically a phase curve in a triangular phase diagram for a ternary system where two com-
ponents are partially miscible and the third one is miscible with the two. Give the number of phases in
each area.

7. Give the Taraszenkov rule. Define each symbol.

8. What practical application is possible for the ternary system given in 6. question?

9. Describe the process of titration in 4 – 5 sentences.

10. Draw in a triangular phase diagram the changes in the composition of a three-component system with
components A, B and C when component A is added.

11. How the densities of the unknowns are determined?

12. 10 cm3 of a solution containing B and C components is to be titrated with component A. The solution
must be 85 V/V% with respect to B. How to prepare such a solution?

13. A single-phase sample consisting of 3 cm3 B and 7 cm3 C components is titrated up to 12.8 cm3 con-
sumption of A when the new phase appeared. State the mole fraction of component A at this titration
point.
ρA = 0.997; ρB = 0.867; ρC = 0.792; Mr,A = 18.02; Mr,B = 116.16; Mr,C = 32.04
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