CALCULATIONS RELATED TO STOICHIOMETRY

STB type calculations

- 1. Determine the oxidation numbers of each atoms for H₂S. Answer: +1, -2
- 2. Determine the oxidation numbers of each atoms for calcium carbonate CaCO₃. Answer: +2, +4, -2
- 3. Determine the oxidation numbers of each atoms for sodium nitrate NaNO₃. Answer: +1, +5, -2
- 4. Determine the oxidation numbers of each atoms for sodium dichromate K₂CrO₇. Answer: +1, +6, -2
- 5. Determine the oxidation numbers of each atoms for ammonium ion NH₄⁺. Answer: -3, +1
- 6. Determine the oxidation numbers of each atoms for manganate ion MnO_4^{2-} . Answer: +6, -2
- 7. Determine the oxidation numbers of each atoms for hydrogen peroxide H_2O_2 . Answer: +1, -1
- 8. Determine the oxidation numbers of each atoms for sodium superoxide NaO₂. Answer: +1, -0.5
- 9. Determine the oxidation numbers of each atoms for calcium hydride CaH₂. Answer: +2, -1

STC type calculations

- 1. Determine the oxidation state of carbon in ethane CH₃ CH₃. Answer: 0, 0
- 2. Determine the oxidation state of carbon in propane $CH_3 CH_2 CH_3$. Answer: 0, 0, 0
- 3. Determine the oxidation state of carbon in ethanol CH₃ CH₂ OH. Answer: 0, +1
- 4. Determine the oxidation state of carbon in chloroethane $CH_3 CH_2 Cl$. Answer: 0, +1
- 5. Determine the oxidation state of carbon in dimethyl ether $CH_3 O CH_3$. Answer: +1, +1
- 6. Determine the oxidation state of carbon in 1,2-dibromoethane Br CH₂ CH₂ Br. Answer: +1, +1
- 7. Determine the oxidation state of carbon in acetaldehyde $CH_3 CH = O$. Answer: 0, +2
- 8. Determine the oxidation state of carbon in acetone $CH_3 C(=O) CH_3$. Answer: 0, +2, 0
- 9. Determine the oxidation state of carbon in 1,1-dibromoethane Br₂CH CH₃. Answer: +2, 0
- 10. Determine the oxidation state of carbon in acetic acid $CH_3 C(= O)OH$. Answer: 0, +3
- 11. Determine the oxidation state of carbon in chloroacetic acid $Cl CH_2 C(= O)OH$. Answer: +1, +3
- 12. Determine the oxidation state of carbon in acetyl chloride $CH_3 C(= O)Cl$. Answer: 0, +3

- 13. Determine the oxidation state of carbon in 1,1,1-trichloroethane $Cl_3C CH_3$. Answer: +3, 0
- 14. Determine the oxidation state of carbon in tetrachloromethane (or carbon tetrachloride) CCl₄. Answer: +4

STD type calculations

1. Balance the following equation:

 $MnO_4^- + (COOH)_2 + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$

Answer: $2MnO_4^- + 5(COOH)_2 + 6H^+ \longrightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$

2. Balance the following equation:

$$Mn^{2+} + PbO_2 + H^+ \longrightarrow MnO_4^- + Pb^{2+} + H_2O_4^-$$

Answer: $2Mn^{2+} + 5PbO_2 + 4H^+ \longrightarrow 2MnO_4^- + 5Pb^{2+} + 2H_2O_4^-$

3. Balance the following equation:

$$Pb + HNO_3 \longrightarrow Pb(NO_3)_2 + NO_2 + H_2O_3$$

Answer: $1Pb + 4HNO_3 \longrightarrow 1Pb(NO_3)_2 + 2NO_2 + 2H_2O_3$

4. Balance the following equation:

$$I^- + IO_3^- + H^+ \longrightarrow I_2$$

Answer: $5I^- + 1IO_3^- + 6H^+ \longrightarrow 3I_2 + 3H_2O$

5. Balance the following equation:

 $Cl_2 + NaOH \longrightarrow NaCl + HOCl$

Answer: $1Cl_2 + 1NaOH \longrightarrow 1NaCl + 1HOCl$

6. Balance the following equation:

$$I_2 + S_2O_3^{2-} \longrightarrow I^- + S_4O_6^{2-}$$

Answer: $I_2 + 2S_2O_3^{2-} \longrightarrow 2I^- + S_4O_6^{2-}$

Titration type calculations

1. The concentration of oxalic acid can be determined by titration with sodium hydroxide. Calculate the concentration of the oxalic acid solution if a volume of 20.00 cm³ reacts with 24,15 cm³ sodium hydroxide solution of 0.09987 mol/dm³ molarity according to the following balanced equation:

$$(\text{COOH})_2 + 2\text{NaOH} = (\text{COONa})_2 + 2\text{H}_2\text{O}$$

Answer: 0.06030 mol/dm³

2. Calculate the silver ion (Ag⁺) concentration in the silver nitrate (AgNO3) solution, if a volume of 25.00 cm³ was titrated (based on precipitation) with 22.73 cm³, 0.05525 mol/dm³ sodium phosphate (Na₃PO₄) solution according to the following balanced equation:

$$3\mathrm{Ag}^{+} + \mathrm{PO}_{4}^{3-} = \mathrm{Ag}_{3}\mathrm{PO}_{4}$$

Answer: 0.1507 mol/dm³

3. The concentration of $K_2Cr_2O_7$ can be determined by titrating it with KI. Calculate the concentration of $K_2Cr_2O_7$ in the solution if 50.05 cm³ of it reacts with 29.30 cm³ KI solution of 0.1081 mol/dm³ molarity according to the following balanced equation:

$$\mathrm{Cr}_2\mathrm{O}_7^{2-}$$
 + 6 I⁻ + 14 H⁺ \longrightarrow 2 Cr^{3+} + 3 I₂ + 7 H₂O

Answer: 0.01055 mol/dm³

1. Calculate the concentration of the solution containing Fe^{2+} , when 20.0 cm³ of it reacts with 19.2 cm³ K₂Cr₂O₇ solution of 0.104 mol/dm³ molarity according to the following balanced equation:

$$Cr_2O_7^{2-}$$
 + 6 Fe²⁺ + 14 H⁺ \longrightarrow 2 Cr³⁺ + 6 Fe³⁺ + 7 H₂O

Answer: 0.599 mol/dm³

2. The concentration of iodine can be determined by titration with arseneous acid. Calculate the concentration of the I₂ solution if 0.360 g H₃AsO₃ reacts with 27.7 cm³ I₂ solution according to the following balanced equation and $M_r(H_3AsO_3)=125.9$:

$$I_2 + H_3AsO_3 + H_2O \longrightarrow 2I^- + H_3AsO_4 + 2H^+$$

Answer: 0.103 mol/dm³

3. The concentration of $K_2Cr_2O_7$ can be determined by titrating it with KI. Calculate the concentration of $K_2Cr_2O_7$ in the solution if 50.5 cm³ of it reacts with 28.3 cm³ KI solution of 0.102 mol/dm³ molarity according to the following balanced equation:

$$Cr_2O_7^{2-} + 6 I^- + 14 H^+ \longrightarrow 2 Cr^{3+} + 3 I_2 + 7 H_2O$$

Answer: 9.53×10^{-3} mol/dm³

4. Calculate the volume (in dm³) of N₂ gas evolved at 60048 Pa pressure and 299 K temperature upon the dissolution of 42.0 g cobalt in concentrated nitric acid according to the following balanced equation with A_r(Co)=58.93 and R=8.314 J/(mol K)

$$5 \text{ Co} + 12 \text{ HNO}_3 \longrightarrow 5 \text{ Co}(\text{NO}_3)_2 + \text{N}_2 + 6 \text{ H}_2\text{O}$$

Answer: 5.90 dm³

5. Calculate the volume (in dm³) of NO gas evolved at 10^5 Pa pressure and 290 K temperature upon the dissolution of 53.5 g vanadium in concentrated nitric acid according to the following balanced equation with A_r (V)=50.94 and R=8.314 J/(mol K)

$$6 \text{ V} + 10 \text{ HNO}_3 \longrightarrow 3 \text{ V}_2\text{O}_5 + 10 \text{ NO} + 5 \text{ H}_2\text{O}$$

Answer: 42.2 dm³

- 6. Calculate the concentration of Ag⁺ in the AgNO₃ solution if 20.0 cm³ of it reacts with 3.45 cm³ Na₃PO₄ solution of 0.102 mol/dm³ molarity according to the following balanced equation: 3 Ag⁺ + PO₄^{3−} → <u>Ag₃PO₄</u> Answer: 0.0528 mol/dm³
- 7. Calculate the concentration of $(COOH)_2$ in a solution if 10.12 cm³ of it reacts with 13.02 cm³ KMnO₄ solution of 0.0199 mol/dm³ molarity according to the following balanced equation:

$$2 \text{ KMnO}_4 + 5 (\text{COOH})_2 + 3\text{H}_2\text{SO}_4 \longrightarrow 2 \text{ MnSO}_4 + \text{K}_2\text{SO}_4 + 10 \text{ CO}_2 + 8 \text{ H}_2\text{O}_4$$

Answer: 0.0640 mol/dm³