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Atomic spectroscopy
Principle of operation

In atomic spectroscopy, generally we
study the electronic transitions in atoms,
therefore these spectroscopic methods
provide analytical information about
the elemental composition of a
sample. With the exception of a few
special methods (see later), the
electronic transitions of valence
shell electrons in free atoms are
studied.

Emission, absorption and fluorescence
spectra of free atoms are line spectra,
which means they consist of very narrow
peaks (FWHM is on the order of 0.01 nm
or less). A line spectrum is produced,
because electronic energy levels in
atoms are well defined, quantized.
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Atomic spectroscopy
Principle of operation
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Atomic spectroscopy
Atomization

No matter what measurement mode
we use, the first step in atomic
spectroscopy is to break down the
sample to produce free atoms. This is
done in the atomizer of an atomic

spectrometer, which is a source of '
high temperature (several thousand @
of Kelvins, locally). This can be, for iy

o=

example, realized in the form of:

» flames

= furnaces

= electric arcs or sparks
= plasmas




Atomic spectroscopy
Atomization

In atomic absorption spectroscopy (AAS), the atomizer is only
needed to atomize the sample, but electronic excitation is done by an
external line light source (hollow cathode Ilamp, laser, etc.).
Consequently, a too high temperature of the atomizer (above ca. 3000
K) is inadvantageous, because ionization of many of the sample atoms
(for example alkalis) would also occur. Remember, that AAS typically
based on line absorption of ground state atoms, therefore the AAS
signal is proportional to the population of the ground level.

In atomic emission spectroscopy (AES), the high temperature
source is also responsible for the thermal (collisional) excitation of
atoms. The efficiency of collisional excitation increases with the
temperature. Also, the emission signal is proportional to the
population of the excited levels, so in AES, an as high as possible
temperature of the atomizer is required (min. ca. 5000K). Ionization
therefore is common, and AES often measures emission from
elemental ions too.

Atomic spectroscopy
Flame atomizers

Various combinations of fuel and
oxidant gases can be used to
produce a flame atomizer. The
most populars are acetylene/air,
acetylene/N,O and propane-
butane/air. The sample is
introduced into the flame in the
form of an aerosol, mixed into the
resure— OXidant gas flow.

TABLE 26-2
Flames Used in Atomic Spectroscopy

Fuel and Oxidant Temperature, “C

Gas/Air 1700- 1900
Gas/0, 2700 - 2800
HylAir 2000-2100
2550-2700
2100 - 2400

*Acetylene




Atomic spectroscopy
Graphite furnace atomizers

Graphite tube furnaces are heated by electric current (up to a couple
of thousands A) in a controlled way, up to about 3000 K. The graphite
tube is surrounded by an inert gas to prevent oxidation/burn of the
graphite. The sample introduction is done usually by micropipette; a
droplet of liquid is placed onto a graphite platform in the tube.

Atomic spectroscopy
Plasma atomizer (ICP)

Inductively coupled plasma
(ICP) atomizers are popular, very
high temperature atom sources that
operate on 7000-10000 K
temperature  work, employing an
inert gas environment (typically Ar).
Sample introduction is done in the
form of an aerosol, mixed with the
argon gas.
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Atomic spectroscopy
Liquid sample introduction by nebulizers

[
As was alluded to before, many atomizers require the sample to be
introduced in the form of an aerosol (usually wet aerosol, or mist).
The most popular devices that produce aerosols from liquids by the
action of a pressurized gas are called pneumatic nebulizers. The
picture below show a common concentric type pneumatic nebulizer.
Atomic spectroscopy
Solid sample introduction by laser ablation

[

Laser ablation is a modern way
of solid sample introduction into
atomic spectrometers. An
intense, pulsed laser light is oco
focused onto the surface of the

sample, which causes the —
sample to ablate (break down,

evaporate, fragment) in the focal Puised Laser \ “;> '|\>
=

spot. The resulting fine, dry
aerosol is the n swept into the
spectrometer with the aid of an
inert gas flow (e.g. Ar)




Flame atomic absorption spectrometry (FAAS)
Instrument schematic

Flame atomizer
(in a slotted burner for best sensitivity)
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Flame atomic absorption spectrometry (FAAS)
Instrument schematic — optical system

[
AAS instruments incorporate a @] - -\ -- - .-
complex optical system. This optical )
system helps to free the L ( m
transmitted intensity of many 74\‘_;
background radiation (e.g. thermal Rotaing chopper
atomic and flame emission,
fluorescence, non-specific

absorption, etc.).

Several types of such systems are i
in use (Deuterium lamp, Zeeman,
Smith-Hieftje); below the operation
of the simplest, essential system
(rotating chopper) is shown.
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Flame atomic absorption spectrometer (FAAS)
Analytical performance

Pros

+ Low efficiency of sample introduction (low signal)

+ Short residence time in the light pathway (low signal)
» Reasonably low detection limits (ppm-ppb range)

+ Relative ease of use

* Medium range costs of operation

Cons

* Narrow linear dynamic range (ca. 2 orders of magnitude)
* Monoelemental method (small sample throughput)

» Reasonably high sample volume requirement (2-5 mL)

+ Inability to measure non-metals

+ For each analyte we need a different hollow cathode lamp
+ Chemical intereference effects

Graphite furnace AAS (GFAAS)
The instrument

In GFAAS, the graphite furnace replaces the flame atomizer, and
there is no need for a nebulizer to introduce the sample.
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Graphite furnace AAS (GFAAS)
Analytical performance

Pros

« High efficiency of sample introduction (high signal)

« Long residence time in the light pathway (high signal)

« Possibility for thermal pretreatment of the sample

« Principal ability to handle liquid and solid samples as well
« Small sample volume requirement (10-20 pL)

« Low detection limits (ppt-ppb range)

Cons

« Narrow linear dynamic range (2-3 orders of magnitude)

« Monoelemental method (small sample throughput)

« Poor repeatability (5-10%)

« Increased memory effects

« Inability to measure non-metals

« For each analyte we need a different hollow cathode lamp
« High operating and maintenance costs

Flame atomic emission spectroscopy (FAES)
The instrument

The flame photometer, or flame atomic emission spectrometer
(FAES) is the simplest atomic emission spectrometer. The atomizer is
a small, circular propane-butane/air flame, and instead of a
monochromator, it uses color (interference) filters for wavelength
selection. The sample is introduced by a nebulizer. This construction
is optimized for cost and the measurement of alkalis.
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amplifier
and
display




Flame atomic emission spectrometer (FAES)
Analytical performance

Pros

» Low efficiency of sample introduction (low signal)

» Short residence time in the light pathway (low signal)
+ Reasonably low detection limits (ppm-ppb range)

+ Relative ease of use

» In principle, it can be run in a simultaneous mode

* Low costs of operation

Cons

* Narrow linear dynamic range (ca. 2-3 orders of magnitude)
+ Reasonably high sample volume requirement (2-5 mL)

» Strong ionization intereference effects

* Only a small number of analytes can be measured

ICP atomic emission spectrometer (ICP-AES)
Instrument schematic
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ICP atomic emission spectrometer (ICP-AES)
Analytical performance

Pros

» High efficiency atomization/excitation

+ Robust and reliable

» Principal ability to handle liquid and solid samples as well

* Low detection limits (ppb range)

» \Very wide linear dynamic range (5-6 orders of magnitude)

* No or very limited chemical intereferences

* Multielemental, simultaneous method (sample throughput is high)
» Ability to measure 80+ elements of the periodic table

Cons
* Moderately high sample volume requirement (2-5 mL)
* Moderately high purchase and maintenance costs

ICP mass spectrometry (ICP-MS)
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ICP mass spectrometry (ICP-MS)
Schematic of the instrument
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ICP mass spectrometry (ICP-MS)
Example spectra

Mass (Da) o :
17198 189 200 201 202 208 204 06 206 207 208
Alormic s (m's

ICP mass spectrometry (ICP-MS)
Analytical properties

Pros

« High efficiency atomization and ionization

+ Robust and reliable

« Handling ability of liquids and solids

« Very low detection limits (parts per trillion, ppt)

« Very wide linear dynamic range (8-9 orders of magnitude)
+ Only a few interference effects

« Multielemental method (high sample througput)

* Most elements in the periodic table can be measured (80+)
« Isotopic information

Cons

« Relatively high sample volume (2-5 mL)
« High investment and maintenance costs
+ Some isobaric intereference




ICP mass spectrometry (ICP-MS)
Interferences - space charge effect

lons with high inertia (high mass) will be slightly over-represented,
because these will repel lighter ions — thus the focusing of the latter will
be poorer. This effect can be largely eliminated by using an internal
standard.
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ICP mass spectrometry (ICP-MS)
Interferences - isobar effect
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X-ray fluorescence spectroscopy (XRF)
Principle of operation

In this method, the sample is subjected to continuum X-ray radiation
(Bremsstrahlung from an X-ray tube or synchrotron). This radiation, if
energetic enough, will eject an electron from a closed electronic shell -
this vacancy will be filled in by one of the electrons in the atom with a
lower bond energy (outer orbital). Energy difference between the two
levels will then be emitted as X-ray radiation. This process, of course,
takes place in the sample for all atoms and in a cascade-style manner.
Emitted radiation is characteristic of the elemental composition.

Incident Radiation from
Primary X-ray Source

X-ray fluorescence spectroscopy (XRF)
Energy and wavelength dispersive systems

XRF spectrometers come in two flavours: energy dispersive (ED-
XRF) and wavelength dispersive (WD-XRF). The performance of
these two types of instruments is different, as can be seen in the next
slide.

Common (major) properties of all XRF instruments include:

+ solid samples can be best measured

+ samples have to be flat-like :

» chemical information is only obtained from 5
the surface layer (top ca. 1-2 um) %ﬁﬁ -

« analysis is practically non-destructive B .

« light elements (below Na) can be poorly detected v 4
ight elem ( ) poorly < ‘{

ED-XRF instruments are more compact, they
can be made fully portable.




» energy-based detection

* more sensitive (LODs: 1-10 ppm), as monochromator is applied)
the detector collects radiation from a
wider solid angle

» poorer spectral resolution
» operation is easy
* less costly

X-ray fluorescence spectroscopy (XRF)
ED-XRF vs. WD-XRF, a comparison

ED-XRF WD-XRF

wavelength-based detection (X-ray

less sensitive (LODs: 10-100 ppm)
better spectral resolution

« fast recording of the whole spectrum -« slower measurement
» operation is more complicated
* more costly

Automatic analyzers




Automatic analyzers
Introduction

Today, when a large number of samples have to analyzed day-by-day, it common
that automatic sample changers are used with practically any instrument. These
devices are practically robotic devices, which are capable of a programmed
dosibng (injection) of liquid samples, mixing, reagent addition, etc.
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an x-y positionable, table-based rotary autosampler

autosampler

Automatic analyzers
Introduction

Usually however, it takes more to fully automate the analytical process. Sample
preparation also has to be (fully) automated, as this is the step in the analytical
process which takes the most time and chemicals. At the same time, effort is made
to make the sample preparation (and detection) to work with as small samples as
possible, because it conserves chemicals and increases the sample throughput.

There are two distinct concepts, along which automatic analyzers are constructed.

Discrete analyzers handle samples in parallel; all samples have their assigned
analytical channel (cartridge/flow channel, etc.)

Flow analyzers work more in a serial fashion; samples are sequentially injected in
a carrier flow (together with reagents), and then this will flow through devices
(coils, reactors, separators, etc.) which help the mixing, reaction, separation, etc. of
components. At the end of the tube there is a detector, which analyzes each
sample zone one-by-one. As this concept is based on the operation of pumps and
valves, it is sometimes also called ,Lab-on-a-valve" (LOV).




Discrete automatic analyzers
Example: centrifugal (rotary) analyzers

In centrifugal analyzers, each liquid sample has its
own radial channel in a disk for sample preparation
and detection. Driving of the liquid flow is achieved
by the centrifugal force induced when the disk is
spinned. Detection of the prepared samples is
performed in the outer section of the disk (channels),
in a similar manner as CDs/DVDs are read.

h' Bio-Disk with microfluidics

http://www.imtek.de/anwendungen/index_en.php

Flow analyzers
Example: flow injection analyzers (FIA)

The FIA concept was introduced in the 1970's by Jaromir Ruzicka and Elo
Hansen. In this concept, the samples are injected in the carrier flow and pumped
forward with a multi-channel peristaltic pump. Using T or Y-pieces, reagent
portions are added to this flow and then typically a reaction coil helps the
reaction to complete. During propagation, sample zones will suffer dispersion,
hence detector signals (measured by the detector placed at the end of the tube)
will be peaks, which decrease in height and widen with the time/length spent in
the tube. Detection of the sample zones will have to be therefore done with a
tight control of time. Advantage of this system is that the sample throughput is

high and it has a great flexibility.

diffilz mintazéna




Flow injection analyzers
The look of it

Flow injection analyzers
The reaction coil
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Flow injection analyzers
The use of membranes

Membranes can be used for:
= gas/liquid separation

A

A A A A A
« dilution e
= liquid/liquid extraction m Y h S Y

= filtering, etc.
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Flow injection analyzers
Dilution and calibration

Dilution/calibration can be done in several ways:
1.) ,electronically” (by changing the detection time or the length of tubing)

2.) zone sampling
3.) membrane transport

Zone Sampling
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Flow injection analyzers
The use of kinetic discrimination

Kinetics is an important part of the operation of

electrochemical detectors. This is strongly p b merference ofton fon ATISE
related to the flow rate in FIA. Thus, by
changing/optimizing the flow rate, one cane.g.:

+ maximize the net analytical signal (when /
interferents are present)
+ make the calibration curves to be more linear

\

®7 A
w0
o Fig. 7.4-5. a) FIA manifold for the detection
of glucose with an amperometric sensor to
o detect enzymatically generated hydrogen
peroxide; b) Calibration graphs for glucose in
the concentration range 0-40 mmol/(L at three
"'“ different flow rates: () 0.50, (A) 0.75, and
(%) 1.0OmL/min
° L From [7.4-5] courtesy Elsevier Science
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Flow injection analyzers
Applications: determination of rodanide ions

SCN™ + 5-Br-PADAP + Oxidant 2% Coloured Product
{metastable)
mi/min  S{S0uD) Fig. 7.4-7. Reaction scheme for thiocyanate
1 with 5-Br-PADAP which in the presence of an

oxidant (e.g., dichromate] in acidic media
results in the generation of a metastable
product, which has analytically interesting
characteristics. FIA manifold for
determination of the metastable reaction
Dichromate |0.23] uct

From |7.4-7] courtesy Royal Society of
P Chemistry
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Flow injection analyzers
Applications: discrete sample introduction in FAAS

s

Advantage:  lower  sample carrior | 7] iﬁ .

consumption, higher tolerance u ]

towards viscous/concentrated

samples. A Zn 213.9 nm D
| @ ® |

Fig. 7.4-6. Single-line FIA manifold for

determination of metal ions by flame atomic 1.3

absorption spectrometry (AA). Recordings

obtained at a flow rate of 4.9 mL/min and an 93 -2

injected sample volume of 150 uL.

a) Calibration run for zinc as obtained by
injection of standards in the range 0.10-

2.0 ppm; b) Recorder response for the 1.5 ppm
standard as obtained by (A) injection via the
FIA system and (B) continuous aspiration in
the conventional mode (also at 4.9 mL/min).
D represents the dispersion coefficient value,
which in (B) is equal to 1; ¢) Calibration runs
for a series of lead standards (2-20 ppm)
recorded without (0%4) and with (3.3%)
sodium chloride added to the standards

After [7.4-3] courtesy John Wiley & Sons




