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1. Introduction

1.1. Minimal clones. A (concrete) clone is a collection C of finitary operations on a set that
is closed under composition of functions and contains all projections. An (abstract) clone is a
heterogeneous algebra that captures the compositional structure of concrete clones. The notion
of a subclone, clone homomorphism and factor clone can be defined in a natural way, and the
isomorphism theorems can be proved for abstract clones. Every concrete clone can be regarded
as an abstract clone, and every abstract clone is isomorphic to a concrete clone, so in the
following we will not always make a sharp distinction between concrete and abstract clones.

If A = (A; F ) is an algebra, then the set of its term functions, denoted by Clo A, is a clone
on A, called the clone of the algebra A. This is the smallest clone containing F , therefore we
say that F generates Clo A, and we write [F ] = Clo A. Clearly, every clone arises as the clone
of an algebra: we just need to pick a generating set for the clone, and let these be the basic
operations of the algebra.

A representation of an abstract clone C is (the image of) a clone homomorphism from C to the
clone of operations on some set. The representations of C form a variety (which is determined
only up to term equivalence). On the other hand, a clone can be assigned to any variety, namely
the clone of the countably generated free algebra of the variety. These assignments are inverses
of each other (up to term equivalence and clone isomorphism), thus we can say that abstract
clones are the same as varieties up to term equivalence. The elements of C(n), the n-ary part of C,
may be identified with the elements of the n-generated free algebra of the variety corresponding
to C. Projections correspond to variables under this identification, therefore we will use the
notation x1, . . . , xn for the n-ary projections. In the binary case we will also use x and y instead
of x1 and x2, and x, y, z will stand for the three ternary projections.

All clones on a given set A form a lattice with respect to inclusion; the smallest element of
this lattice is the trivial clone, the clone of all projections on A (denoted by IA), while the
greatest element is the clone of all finitary operations on A. Minimal clones are the atoms of
the clone lattice, i.e. a clone is minimal if its only proper subclone is the trivial clone. On finite
sets there are finitely many minimal clones, and every clone contains a minimal one. Clearly,
a nontrivial clone is minimal iff it is generated by any of its nontrivial elements. Therefore
all minimal clones are one-generated, thus they arise as clones of algebras with a single basic
operation. We usually define a minimal clone by a generating function.

It is convenient to choose a function of the least possible arity as a generator of a minimal
clone. These generators are called minimal functions : f is a minimal function iff [f ] is a minimal
clone and there is no nontrivial function in [f ] whose arity is less than the arity of f . A minimal
function must be of one of five types according to the following theorem of I. G. Rosenberg.

Theorem 1.1 [Ros]. Let f be a nontrivial operation of minimum arity in a minimal clone.
Then f satisfies one of the following conditions:

(I) f is unary, and f 2(x) = f(x) or fp(x) = x for some prime p;
(II) f is a binary idempotent operation, i.e. f(x, x) = x;

(III) f is a ternary majority operation, i.e. f(x, x, y) = f(x, y, x) = f(y, x, x) = x;
(IV) f(x, y, z) = x + y + z, where + is a Boolean group operation;
(V) f is a semiprojection, i.e. there exists an i (1 ≤ i ≤ n) such that f(x1, . . . , xn) = xi

whenever the values of x1, . . . , xn are not pairwise distinct.

In cases (I) and (IV) the conditions ensure the minimality of f , while in the other three cases
they do not, and a general characterization seems to be far beyond reach. There are numerous
partial results that describe minimal clones under certain restrictions. We will quote some of
these results later.

Trivial and minimal abstract clones can be defined naturally as well (though we cannot speak
about atoms of clone lattices in this context), and Rosenberg’s theorem holds almost verbatim
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(semilattices) SL : (xy) z = x (yz) , xy = yx

(rectangular bands) RB : (xy) z = x (yz) , xyz = xz

(right normal bands) RNB : (xy) z = x (yz) , xyz = yxz

(right regular bands) RRB : (xy) z = x (yz) , xyx = yx

B : x (yx) = (xy) x = (xy) y = (xy) (yx) = x (xy) = xy

D : x (yx) = (xy) x = (xy) y = (xy) (yx) = xy,

x · ←−−−−−−−−−x · y1 · . . . · yn = x (n = 1, 2, . . .)

D ∩A : x (yz) = xy, xy2 = xy

(right semilattices) RSL : x (yz) = xy, xy2 = xy, (xy) z = (xz) y

(p-cyclic groupoids) Cp : x (yz) = xy, xyp = x, (xy) z = (xz) y

Table 1. Some groupoid varieties with minimal clones

in the abstract case. An algebra A has a minimal clone iff the clone of HSP A is minimal, thus
both concrete and abstract minimal clones can be described by varieties having a minimal clone.

1.2. Examples. The simplest examples of minimal clones of type (II), i.e. groupoids with a
minimal clone, are semilattices and rectangular bands. We give the defining identities of some
more groupoid varieties with a minimal clone in Table 1. To save parentheses we write ←−−−−−−−x1 · . . . · xn

for the left-associated product (· · · ((x1x2) x3) · · · ) xn, and similarly −−−−−−−→x1 · . . . · xn for the right-
associated product x1 (· · · (xn−2 (xn−1xn)) · · · ). We abbreviate ←−−−−−−−−x · y · . . . · y to xyn (where n is
the number of y’s appearing in the product). Analogously nxy stands for −−−−−−−−→x · . . . · x · y. We have
omitted the identity xx = x everywhere, but of course these are all idempotent varieties.

The varieties SL and RB are selfdual; the duals of right normal bands, right regular bands,
right semilattices are left normal bands (LNB), left regular bands (LRB), left semilattices
(LSL), respectively. (The variety A is defined by the identity x (y (zu)) = x ((yz) u); we will
need it later, for the study of almost associative operations.) Figure 1 shows the meet-semilattice
generated by these varieties and their duals (LZ and RZ denote the variety of left and right
zero semigroups, and the bottom element is the variety of one-element groupoids).

The minimality of the clone of B and D is proved in [LP]; J. PÃlonka introduced p-cyclic
groupoids in [PÃl2], and he showed that Clo Cp is minimal iff p is a prime [PÃl1].

Affine spaces provide further examples of binary minimal clones. An affine space is an algebra
whose base set is a vector space, and its clone is the full idempotent reduct of the clone of that
vector space. The clone of an affine space is minimal iff the base field is isomorphic to Zp for
some prime number p. If p = 2, then this clone is of type (IV); if p > 2, then the clone is of
type (II). In the following affine spaces are always meant to be affine spaces over Zp (for an
arbitrary prime p).

There are much less examples of minimal clones of type (III). The simplest ones are those
containing just one nontrivial ternary operation. The clone generated by the median function
(x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x) on any lattice is an example of such a clone [PK].

There is no minimal clone with exactly two majority functions (see Theorem 3.4), so the
next simplest examples are those that contain three majority functions. The dual discriminator
function [FP] on any set defined by

d (a, b, c) =

{

a if a = b

c if a 6= b

generates such a clone (cf. [CsG]).
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Figure 1. Some groupoid varieties with minimal clones

1.3. Characterizations. It seems to be a very hard problem to characterize minimal clones
in full generality, but there are some results that describe minimal clones or minimal functions
under certain assumptions. We mention some of these results; we formulate precisely only the
theorems that we will need in the sequel.

One of the most natural approaches is to restrict the size of the underlying set of a concrete
clone. E. Post determined all clones on the two-element set [Po]; seven of them are minimal.
Minimal clones on the three-element set were described by B. Csákány [Cs1]; we quote the
result for type (III) below. For the four-element set minimal clones of type (II) were described
by B. Szczepara [Szcz]. A nontrivial semiprojection on a four-element set has to be of arity 3 or
4, and the latter case was settled in [JQ]. We are going to describe minimal majority functions
on the four-element set in Theorem 2.6; the case of ternary semiprojections remains open.

Theorem 1.2 [Cs1]. There are twelve minimal majority functions on {1, 2, 3} up to isomor-
phism, and they belong to three minimal clones containing 1, 3 and 8 majority operations re-
spectively. These clones are generated by the majority operations m1, m2, m3 that are defined
for {a1, a2, a3} = {1, 2, 3} by

m1(a1, a2, a3) = 1;

m2(a1, a2, a3) = a1;

m3(a1, a2, a3) = ai+1 if ai = 2 (subscripts taken modulo 3).

Based on this theorem, B. Csákány obtained a characterization of minimal majority operations
which are conservative, i.e. which preserve all subsets of the underlying set [Cs2]. Conservative
binary minimal operations are also determined in [Cs2]; for semiprojections there are only partial
results [JQ].

One may restrict the size of the clone instead of the underlying set as well. There is a result
in this direction by L. Lévai and P. P. Pálfy; they described binary minimal clones with at most
seven binary operations [LP]. (The cases 5 and 7 are actually due to J. Dudek and J. GaÃluszka,
cf. [Du, DG].) In Theorem 3.7 we characterize minimal majority clones with at most seven
ternary operations.

Another possibility is to look for minimal functions satisfying certain identities. Probably
the most natural problem of this kind is to characterize semigroups with a minimal clone. This
problem was solved by M. B. Szendrei; she determined all bands whose subclone lattice is a
chain [SzM] (see also [P3]).
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Theorem 1.3 [P3,SzM]. A semigroup with a minimal clone is either a left regular band, a right
regular band or a rectangular band.

In Theorems 5.7 and 5.8 we generalize this theorem by characterizing minimal clones generated
by almost associative binary operations for two different interpretations of the term ‘almost
associative’.

Á. Szendrei and K. Kearnes investigated minimal clones generated by an operation that
commutes with itself [KSz]. In the binary case this commutativity property is equivalent to the
so-called entropic or medial law (xy) (zu) = (xz) (yu), and the result is the following.

Theorem 1.4 [KSz]. Let A be an entropic groupoid with a minimal clone. Then A or its dual is
an affine space, a rectangular band, a left normal band, a right semilattice or a p-cyclic groupoid
for some prime p.

We show in Theorem 4.5 that we get the same list of minimal clones if we assume only
distributivity (which is weaker than entropicity for idempotent groupoids). We also characterize
groupoids satisfying the identity x (yz) = xy and having a minimal clone (cf. Lemma 4.3).

Finally, let us quote a result of K. Kearnes describing abelian algebras with a minimal clone
[Kea]. In Theorem 4.8 we generalize this theorem to weakly abelian algebras.

Theorem 1.5 [Kea]. If a minimal clone has a nontrivial abelian representation, then it is
either unary, or the clone of an affine space, a rectangular band or a p-cyclic groupoid for some
prime p.

2. Minimal majority clones on the four-element set

Our goal in this chapter is to determine the minimal majority functions on the four-element
set. This is a finite task, since it is possible to test in finitely many steps whether a function is
minimal or not, and there are finitely many majority operations on a finite set. However, the
four-element set is already very big from this point of view. There is only one majority operation
on the two-element set, and 36 = 729 on the three-element set, while on the four-element set
we have 424 = 281 474 976 710 656 majority functions. Thus it seems hopeless to test them one
by one, even with the help of a computer.

2.1. Minimal majority functions on finite sets. We reduce the number of functions to
be checked by proving that on a finite set every minimal majority clone can be generated by a
function satisfying a certain identity.

Theorem 2.1 [Wa1]. Let f be a majority function on a finite set. Then there exists a majority
function g ∈ [f ] which satisfies the following identity.

(2.1) g
(

g(x, y, z) , g(y, z, x) , g(z, x, y)
)

= g(x, y, z)

Next we describe how the validity of identity (2.1) can be seen in the operation table of a
majority operation. We need the following notation for this. Let us put 〈abc〉 = {(a, b, c),
(b, c, a), (c, a, b)}, and we will use the symbol f |〈abc〉 ≡ u to mean that f(a, b, c) = f(b, c, a) =
f(c, a, b) = u, and f |〈abc〉 = p to mean that f(a, b, c) = a, f(b, c, a) = b, f(c, a, b) = c. (Here ‘p’
stands for ‘projection’: f |〈abc〉 = p means that f agrees with the first projection on the set 〈abc〉.
If both f |〈abc〉 = p and f |〈bac〉 = p hold, then f |{a,b,c} looks like a first projection – except that it
is a majority function. Similarly, f |〈abc〉 ≡ u ≡ f |〈bac〉 means that f is as constant on {a, b, c} as
a majority function can be.)

Lemma 2.2 [Wa1]. Let f be a majority function on a set A satisfying (2.1), and let a, b, c
be pairwise distinct elements of A. Let u = f(a, b, c), v = f(b, c, a), w = f(c, a, b). Then
|{u, v, w}| 6= 2, and if u, v, w are pairwise different, then f |〈uvw〉 = p.

This lemma reduces the number of functions to consider to about 60 million. The next
theorem shows that we can say a bit more, if we suppose that f is a minimal function, leaving
about 4 million functions.
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M1 M2 M3

(1, 2, 3) 4 4 2 3 3 3 4 3 4 4 3 4
(2, 3, 1) 4 2 3 4 3 4 3 3 4 3 4 4
(3, 1, 2) 4 3 4 2 3 3 3 4 4 4 4 3
(2, 1, 3) 4 2 4 3 4 3 4 4 3 4 3 3
(1, 3, 2) 4 4 3 2 4 4 4 3 3 3 3 4
(3, 2, 1) 4 3 2 4 4 4 3 4 3 3 4 3
{1, 2, 4} 4 4 4 4 4 4 4 4 4 4 4 4
{1, 3, 4} 4 4 4 4 4 4 4 4 4 4 4 4
(4, 2, 3) 4 4 2 3 3 3 4 3 4 4 3 4
(2, 3, 4) 4 2 3 4 3 4 3 3 4 3 4 4
(3, 4, 2) 4 3 4 2 3 3 3 4 4 4 4 3
(2, 4, 3) 4 2 4 3 4 3 4 4 3 4 3 3
(4, 3, 2) 4 4 3 2 4 4 4 3 3 3 3 4
(3, 2, 4) 4 3 2 4 4 4 3 4 3 3 4 3

Table 2. Nonconservative minimal majority functions on the four-element set

Theorem 2.3 [Wa1]. Let f be a minimal majority function on a set A satisfying (2.1), and
let a, b, c be pairwise distinct elements of A. If u = f(a, b, c), v = f(b, c, a), w = f(c, a, b) are
pairwise different, then f |〈uvw〉= p and also f |〈vuw〉= p.

2.2. The four-element case. Next we show that in the four-element case we can assume even
more regularity about our minimal function.

Lemma 2.4 [Wa1]. Let f be a minimal majority function on the four-element set A = {a, b, c, d}
satisfying (2.1). If f(〈abc〉) ⊆ {a, b, c} then either f |〈abc〉= p and f |〈bac〉= p or f |〈abc〉≡ u and
f |〈bac〉≡ v for some u, v ∈ A.

After Theorem 2.3 and Lemma 2.4, we are left with about a million functions, and this number
can be reduced further by taking into account the possible symmetries (isomorphisms). Our
strategy is to show that certain local patterns in the operation table imply that the function
is not minimal. It turns out that only a few functions can avoid all of these patterns. The
details are quite tedious, and things get harder and harder as we get closer and closer to
the minimal functions. In the process we make use of Theorem 1.2 and the description of
conservative minimal majority operations (see [Cs2]). The result is the following (see Table 2
for the definition of the functions M1,M2,M3).

Theorem 2.5 [Wa1]. If f is a nonconservative minimal majority function on A = {1, 2, 3, 4}
satisfying (2.1), then f is isomorphic to M1, M2, M3 or M3 (y, x, z).

2.3. The minimal clones. Only three nonconservative functions remained up to isomorphism
and permutation of variables that have a chance to be minimal. They are indeed minimal;
actually their clones are isomorphic to the three minimal majority clones on the three-element
set. (Let us recall that the conservative case is settled in [Cs2].)

Theorem 2.6 [Wa1]. If f is a minimal majority function on the set {1, 2, 3, 4}, then f is either
conservative, or isomorphic to one of the twelve majority functions shown in Table 2. These
functions belong to three minimal clones containing 1, 3 and 8 majority operations respectively, as
shown in the table. Moreover, the clone generated by Mi is isomorphic to [mi] (cf. Theorem 1.2)
for i = 1, 2, 3. (The middle two rows of the table mean that if {a, b, c} equals {1, 2, 4} or {1, 3, 4},
then the value of the functions on (a, b, c) is 4.)

There are 4, 12, 24 majority operations on A = {1, 2, 3, 4} that are isomorphic to M1, M2, M3

respectively, so there are 4 + 12 + 24 = 40 nonconservative majority minimal clones on a four-
element set. These clones contain 4 · 1 + 12 · 3 + 24 · 8 = 232 majority operations, hence there
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conservative nonconservative all
minimal functions 32646 232 32 878
minimal functions up to isomorphism 1653 12 1665
minimal clones 2401 40 2441
minimal clones up to algebra isomorphism 126 3 129
minimal clones up to clone isomorphism 123 3 124

Table 3. The number of minimal majority functions and clones on the four-
element set

are 232 nonconservative minimal majority operations on A, and they fall into 1 + 3 + 8 = 12
isomorphism classes.

There are 74 = 2401 conservative minimal majority clones on A; this follows easily from the
description given in [Cs2]. It is harder to count the conservative functions and clones up to
isomorphism. Here we can use the correspondence between clones and varieties, and we take
advantage of the fact, that algebras with a majority operation generate congruence distributive
varieties. The numerical results are summarized in Table 3.

3. Minimal clones with few majority functions

In this chapter we describe minimal clones of type (III) with at most seven ternary operations.
A unique property of clones generated by a majority operation is that the minimality of such a
clone depends only on its ternary functions. We denote the ternary part of C by C(3), and we
regard it as an algebra with one quaternary operation (the composition of ternary functions) and
three constants (the projections). If C is generated by a majority function, then C is minimal
iff C(3) has no proper nontrivial subalgebras.

3.1. Symmetries of minimal majority functions. In this section we prove a general theo-
rem about the symmetries of the majority functions in a minimal clone. We say that a majority
operation is cyclically symmetric, if it is invariant under cyclic permutations of its variables,
and we say that it is totally symmetric, if it is invariant under all permutations of its variables.

Let us introduce the following three binary operations on ternary operations [!]:

f ∗ g = f (g (x, y, z) , g (y, z, x) , g (z, x, y)) ;

f • g = f (g (x, y, z) , y, z) ;

f } g = f (x, g (x, y, z) , g (x, z, y)) .

The next theorem extends Theorem 2.1 (note that the left hand side of (2.1) is g∗g). Concerning
the operation • see also Lemma 4.4 of [HM].

Theorem 3.1 [Wa4]. The operations ∗, • and } are associative, and if C is a clone generated
by a majority function, then C(3) \ I is closed under them. Therefore if C(3) is finite, then it
contains a nontrivial idempotent element for each of these operations.

The above theorem is the basis for the main result of this section, which is an analogue of a
theorem of J. Dudek and J. GaÃluszka concerning minimal clones containing only commutative
nontrivial binary operations [DG].

Theorem 3.2 [Wa4]. Let C be a majority minimal clone with finitely many ternary operations.
If every nontrivial ternary operation in C is cyclically symmetric, then C contains only one
nontrivial ternary operation.



7

3.2. Minimal clones with at most four majority operations. If C is a majority clone with
just one majority operation, then the majority rule and the clone axioms completely determine
the structure of C(3), and it is clear that in this case C is minimal. For example, [m1] is such a
clone, so we have the following theorem.

Theorem 3.3 [Wa4]. If C is a minimal clone with one majority operation, then C(3) is isomor-

phic to [m1]
(3).

If f is the unique majority operation in such a clone, then every nontrivial ternary superposi-
tion of f yields f itself. In particular, f is totally symmetric, and satisfies f (f (x, y, z) , y, z) =
f (x, y, z). It is easy to check that this identity together with the total symmetry ensures that
f does not generate any nontrivial ternary operation other than f , hence the clones described
in the above theorem are exactly the clones of the subvarieties of the variety M1 defined by the
following identities:

f (x, y, z) = f (y, z, x) = f (y, x, z) = f (f (x, y, z) , y, z) , f (x, x, y) = x.

This variety has infinitely many subvarieties, therefore there are infinitely many nonisomor-
phic minimal clones with just one majority operation. To see this, we construct a subdirectly ir-
reducible (in fact, simple) algebra An ∈ M1 of size n for every n > 6. Let An = ({1, 2, . . . , n} ; f),
where f is a totally symmetric majority operation defined for 1 ≤ a < b < c ≤ n by

f (a, b, c) =











a if
⌈

a+c
2

⌉

< b < c;

b if b =
⌊

a+c
2

⌋

or b =
⌈

a+c
2

⌉

;

c if a < b <
⌊

a+c
2

⌋

.

It can be shown that An is simple if n > 6. Since M1 is congruence distributive, Am /∈ HSP(An)
if m > n by Jónsson’s lemma, hence the subvarieties HSP(An) are all different, and the clones
Clo An are pairwise nonisomorphic.

The case of two majority operations is easily settled with the help of Theorem 3.2.

Theorem 3.4 [Wa4]. There is no minimal clone with exactly two majority operations.

Dual discriminator functions generate minimal clones with three majority operations. The
next theorem shows that this is the only example up to isomorphism of the ternary part of the
clone.

Theorem 3.5 [Wa4]. If C is a minimal clone with three majority operations, then C(3) is iso-

morphic to [m2]
(3).

The previous theorem can be formulated in terms of algebras and varieties as follows. Let
M2 be the variety defined by the three-variable identities satisfied by ({1, 2, 3} ; m2). If f is a
majority operation on a set A, then (A; f) is term equivalent to an element of M2 \M1 iff [f ]
is a minimal clone with exactly three majority operations. The variety M2 has infinitely many
subvarieties that are not contained in M1, therefore there are infinitely many nonisomorphic
minimal clones with three majority operations. Indeed, if dA is the dual discriminator function
on a set A with at least three elements, then (A; dA (z, y, x)) ∈ M2 \ M1, and by Jónsson’s
lemma we have (B; dB (z, y, x)) /∈ HSP (A; dA (z, y, x)) if A is finite and |A| < |B|.

Theorem 3.6 [Wa4]. There is no minimal clone with exactly four majority operations.

Summarizing the last four theorems we get the main result of this chapter.

Theorem 3.7 [Wa4]. There is no minimal clone with exactly two or four majority operations.

If C is a minimal clone with one or three majority operations, then C(3) is isomorphic to [m1]
(3)

or [m2]
(3), respectively (cf. Theorem 1.2).
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4. Minimal clones with weakly abelian representations

The main result of this chapter is a generalization of Theorem 1.5 using a weaker term
condition. Let us first recall the definition of four variants of abelianness (cf. [KK]). For an

algebra A let M(A) denote the set of 2 × 2 matrices of the form
(

t(a,c) t(a,d)
t(b,c) t(b,d)

)

where t is a

polynomial of A of arity n + m and a,b ∈ An, c,d ∈ Am. We say that the algebra A is

(1) weakly abelian, if
(

u u
u v

)

∈ M(A) implies u = v;

(2) abelian, if
(

u u
v w

)

∈ M(A) implies v = w;

(3) rectangular, if
(

u v
w u

)

∈ M(A) implies u = v = w;
(4) strongly abelian, if it is both abelian and rectangular.

It was proved in [Kea] that minimal clones of type (III) and (V) do not have nontrivial abelian
representations, and the proof actually shows that they do not have nontrivial weakly abelian
representations either. Every representation of a minimal clone of type (I) or (IV) is clearly
abelian, therefore we only need to consider weakly abelian groupoids with a minimal clone.

4.1. Weak abelianness and distributivity. In the theory of quasigroups a different notion
of ‘weak abelianness’ is defined by the identities

(4.1) (xx)(yz) = (xy)(xz), (yz)(xx) = (yx)(zx),

and a groupoid is called ‘abelian’ (or medial, or entropic) if (xy)(zu) = (xz)(yu) holds (see
[Kep]). To avoid confusion with the universal algebraic definitions, we will use the word entropic
in the latter case. Minimal clones are always idempotent, and in this case the identities (4.1)
are equivalent to the distributive laws :

x(yz) = (xy)(xz), (yz)x = (yx)(zx).

Any idempotent abelian groupoid is entropic [Kea], and one might expect that idempotent
weakly abelian groupoids are distributive. We do not know if this is true or not, but for our
present purposes the weaker properties stated in the next lemma are sufficient.

Lemma 4.1 [Wa2]. Every idempotent weakly abelian groupoid satisfies the following identities:

(i) (xy)(xz) = (x(yz))((xy)(xz));
(ii) (yx)(zx) = ((yx)(zx))((yz)x);
(iii) (xy)x = x(yx).

To make the connection between distributivity and weak abelianness more explicit, we will
define a relation ∼ on our groupoid by a ∼ b iff ab = a. Identity (ii) says that idempotent
weakly abelian groupoids are right distributive ‘modulo ∼’. This does not make perfect sense
yet, since ∼ may not be a congruence, maybe not even an equivalence relation. Our strategy
will be to reduce the problem to the case when ∼ is a congruence relation. As a preparation,
we first show that assuming that the clone of the groupoid is minimal, we can conclude that it
satisfies at least one-sided distributivity.

Lemma 4.2 [Wa2]. A weakly abelian groupoid with a minimal clone must satisfy at least one
of the distributive laws.

4.2. Left distributive weakly abelian groupoids with minimal clones. Let A be a
weakly abelian groupoid with a minimal clone. By Lemma 4.2 we can suppose without loss of
generality that A is left distributive. First we prove that if ∼ is not a congruence relation, then
our groupoid must be a p-cyclic groupoid. We use the following lemma, which describes binary
minimal operations satisfying a certain identity.

Lemma 4.3 [Wa2]. If a groupoid has a minimal clone and satisfies the identity x(yz) = xy,
then it belongs to the variety D ∩A or Cp for some prime p.
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Theorem 4.4 [Wa2]. If A is a weakly abelian left distributive groupoid with a minimal clone
such that the relation ∼ defined by a ∼ b ⇔ ab = a is not a congruence, then A is a p-cyclic
groupoid for some prime p.

Now we can suppose that A is a left distributive weakly abelian groupoid with a minimal
clone, and ∼ is a congruence of A. The corresponding factor groupoid A/∼ is distributive (right
distributivity holds because A satisfies identity (ii) of Lemma 4.1). Furthermore, A/∼ has a
minimal or trivial clone. To describe this factor groupoid, we need to characterize distributive
groupoids with a minimal clone. It turns out that the distributive and entropic properties are
equivalent for groupoids with a minimal clone, hence we get the same list of groupoids as in
Theorem 1.4.

Theorem 4.5 [Wa2]. Every distributive groupoid having a minimal clone is entropic, therefore
such a groupoid must be (the dual of ) an affine space, a rectangular band, a left normal band,
a right semilattice or a p-cyclic groupoid for some prime p.

Using the list of entropic groupoids with a minimal clone, we can prove that A itself is
entropic, too. The key observation in passing form A/∼ to A is that by the definition of ∼ we
have for any terms t1, t2

A/∼ |= t1 = t2 ⇐⇒ A |= t1t2 = t1.

Theorem 4.6 [Wa2]. If A is a weakly abelian left distributive groupoid with a minimal clone
such that the relation ∼ defined by a ∼ b ⇔ ab = a is a congruence, then A is entropic.

Combining Theorems 4.4 and 4.6 with Theorem 1.4 we get the following result; we just need
to observe that nontrivial left (right) normal bands and nontrivial left (right) semilattices cannot
be weakly abelian.

Theorem 4.7 [Wa2]. A left distributive weakly abelian groupoid with a minimal clone is either
a rectangular band, an affine space or (the dual of ) a p-cyclic groupoid for some prime p.

4.3. Minimal clones with term conditions. Only minimal clones of types (I), (II) and
(IV) can have nontrivial weakly abelian representations, and in case of types (I) and (IV) all
representations are abelian. A weakly abelian groupoid with a minimal clone is left or right
distributive by Lemma 4.2, therefore we can apply Theorem 4.7 (after dualizing if necessary) to
see that such a groupoid must be a rectangular band, an affine space or (the dual of) a p-cyclic
groupoid. This list does not contain any new items compared to Theorem 1.5, thus the two
abelianness concepts coincide at the level of abstract minimal clones.

Theorem 4.8 [Wa2]. If a minimal clone has a nontrivial weakly abelian representation, then it
also has a nontrivial abelian representation. Therefore such a clone must be a unary clone, the
clone of an affine space, a rectangular band or a p-cyclic groupoid for some prime p.

Unary algebras, rectangular bands and affine spaces are abelian. This fact together with the
following lemma yields an interesting homogeneity property for weakly abelian representations.

Lemma 4.9 [Wa2]. Every p-cyclic groupoid is weakly abelian.

Theorem 4.10 [Wa2]. If a minimal clone has a nontrivial weakly abelian representation, then
all representations are weakly abelian.

We conclude with a theorem about rectangular and strongly abelian representations of min-
imal clones. A nontrivial affine space or p-cyclic groupoid cannot be rectangular, but unary
algebras and rectangular bands are all strongly abelian. Thus these two term conditions are
equivalent for groupoids with minimal clones.

Theorem 4.11 [Wa2]. If a minimal clone has a nontrivial rectangular representation, then it
also has a nontrivial strongly abelian representation; moreover, all representations are strongly
abelian. Such a clone must be unary or the clone of rectangular bands.
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5. Almost associative operations generating a minimal clone

In this chapter we generalize Theorem 1.3 by characterizing minimal clones generated by
almost associative binary operations. To explain what we mean by this, we need a way to mea-
sure how far a binary operation is from being associative. First we discuss two such measures of
associativity, and then we describe binary minimal operations that are close to being associative
according to these two measures.

5.1. Measuring associativity. One way to measure associativity is to count the nonassocia-
tive triples in the groupoid; this number is called the index of nonassociativity, and is denoted
by ns. Formally, we have ns (A) = |{(a, b, c) ∈ A3 : (ab) c 6= a (bc)}|. This notion was studied
in [Cl1, Cl2, DK, KT1, Szá]. Clearly A is a semigroup iff ns (A) = 0, and it is natural to say
that the multiplication of A is almost associative if ns (A) = 1. Such groupoids are called
Szász-Hájek groupoids (SH-groupoids for short). SH-groupoids were investigated in [Há1,Há2]
and [KT3–KT6] in much detail.

Clearly, a subgroupoid of an SH-groupoid A with nonassociative triple (a, b, c) is an SH-
groupoid or a semigroup, depending on whether it contains a, b and c or not. Specially, A is
generated by {a, b, c} iff all proper subgroupoids of A are semigroups. Such a groupoid is called
a minimal SH-groupoid.

Another way of measuring associativity is possible by considering the identities implied by
associativity, and somehow counting how many of these are (not) satisfied. To make this more
precise, let us say that B is a bracketing, if B is a groupoid term, and each variable occurs
exactly once in B. If these variables are x1, x2, . . . , xn and they appear in this order (as we
suppose most of the time), then B is nothing else but a way to put brackets into the product
x1 · . . . · xn such that the order of the n − 1 multiplications is well determined. We express this
fact by writing B = B (x1, . . . , xn).

The number of bracketings of the product x1 · . . . ·xn is Cn−1 = 1
n

(

2n−2
n−1

)

, the (n − 1)st Catalan
number. In a semigroup all of these Cn−1 many terms induce the same term function, but in an
arbitrary groupoid they may induce more than one term function. Intuitively, the more term
functions of this kind there are, the less associative the multiplication is. Therefore we define
the associative spectrum of a groupoid A to be the sequence sA (1) , sA (2) , . . . , sA (n) , . . ., where
sA (n) is the number of different term functions on A arising from bracketings of x1 · . . . · xn.
Thus the associative spectrum gives (only quantitative) information about identities of the
form B1 (x1, . . . , xn) = B2 (x1, . . . , xn) satisfied by the groupoid. The associative spectrum was
introduced and investigated in [CsW].

Clearly, sA (1) = sA (2) = 1 for every groupoid A, and sA (3) = 1 iff A is a semigroup. In
the latter case sA (n) = 1 for all n by the general law of associativity. The smallest possible
spectrum for a nonassociative multiplication is 1, 1, 2, 1, 1, . . ., so we could say that a binary
operation is almost associative if its spectrum is this sequence. However, there is no groupoid
having a minimal clone with this spectrum (not even an idempotent one) as we will see later.
Therefore we have to be more generous: in Theorem 5.7 we determine groupoids with a minimal
clone satisfying s (4) < 5 = C3.

The two ways of measuring associativity introduced here do not seem to be closely related.
For example, the three-element groupoid of Theorem 5.9 is an SH-groupoid, with the largest
possible associative spectrum: s (n) = Cn−1 for every n.

Let us mention finally that there is a third possibility to measure associativity with the help
of the Hamming distance of multiplication tables. This yields the notion of the semigroup
distance of a groupoid. Groupoids with small semigroup distance and connections between the
semigroup distance and the index of nonassociativity were studied in [KT2].

5.2. Minimal clones with small spectrum. In this section we describe nonassociative bi-
nary operations generating a minimal clone that have a relatively small associative spectrum.
The first three theorems show that the spectrum of such an operation cannot be too small.
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Theorem 5.1 [Wa3]. If an idempotent groupoid satisfies the identity

←−−−−−−−x1 · . . . · xn = −−−−−−−→x1 · . . . · xn

for some n ≥ 3, then it is a semigroup.

Theorem 5.2 [Wa3]. An idempotent groupoid satisfying the following two identities for some
n ≥ 3 must be a semigroup.

x0 ·
←−−−−−−−x1 · . . . · xn = x0 ·

−−−−−−−→x1 · . . . · xn

←−−−−−−−x1 · . . . · xn · x0 = −−−−−−−→x1 · . . . · xn · x0

Theorem 5.3 [Wa3]. If a groupoid has a minimal clone and satisfies

←−−−−−−−x1 · . . . · xn = x1 ·
←−−−−−−−x2 · . . . · xn

for some n ≥ 3, then it is a semigroup.

Let us now turn to the investigation of four-variable ‘associativity conditions’. There are five
bracketings of a product of four variables:

B1 = x (y (zu)) ;

B2 = x ((yz) u) ;

B3 = (xy) (zu) ;

B4 = ((xy) z) u;

B5 = (x (yz)) u.

Specializing the previous three theorems to n = 4 we can see that many of the possible
(

5
2

)

identities cannot be satisfied by a nonassociative groupoid with a minimal clone. It turns out
that if a groupoid A has a minimal clone, and 1 < sA (4) < 5 holds for its spectrum, then
sA (4) = 4, and A satisfies either B1 = B2 or its dual, but not both. Thus the right notion
of almost associativity seems to be that A or its dual belongs to the variety A defined by
x (y (zu)) = x ((yz) u). If Clo A is minimal, then V = HSP A has a minimal clone too, therefore
we can apply Theorem 1.3 to describe the semigroups in this variety. The following lemma
shows how we can use this to derive information about V itself.

Lemma 5.4 [Wa3]. Let V be a subvariety of A, and let W be the intersection of V and the
variety of semigroups. If an identity t1 = t2 holds in W, then xt1 = xt2 holds in V (where x is
an arbitrary variable).

The next lemma is based on the method of minimal monoids [KSz].

Lemma 5.5 [Wa3]. Suppose that A is a groupoid with a minimal clone, and M is a subset of

Clo(2) (A) containing the first projection and at least one nontrivial element, such that for all
f, g, h ∈ M we have

(i) f (g, h) = g;
(ii) f

(

g, hd
)

= f (g, e2) ∈ M.

Then A or its dual belongs to the variety D or Cp for some prime number p.

These two lemmas allow us to determine which algebras of the variety A have a minimal
clone.

Theorem 5.6 [Wa3]. Let V ⊆ A be a variety with a minimal clone. Then V or its dual is a
subvariety of B, Cp, D or RB for some prime p.

The main result of this section is the following theorem, which characterizes groupoids with
a minimal clone that are almost semigroups in the ‘spectral’ sense.
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Theorem 5.7 [Wa3]. For any groupoid A the following two conditions are equivalent:

(i) A has a minimal clone and 1 < sA (4) < 5;
(ii) A is not a semigroup and A or its dual belongs to one of the varieties B∩A, Cp or D∩A

for some prime p.

If these conditions are fulfilled, then we have sA (n) = 2n−2 for n ≥ 2.

5.3. Szász-Hájek groupoids with a minimal clone. In this section we determine binary
operations generating a minimal clone that are almost associative in the ‘index’ sense, i.e. SH-
groupoids with a minimal clone.

Theorem 5.8 [Wa3]. For any Szász-Hájek groupoid A the following two conditions are equiva-
lent:

(i) A has a minimal clone;
(ii) A or its dual belongs to the variety B.

Finally we determine minimal SH-groupoids in the varieties B and Bd. In [KT3-KT6] the
project of characterizing minimal SH-groupoids was begun, but completed only for certain types.
However, these types of groupoids do not have minimal clones (except for one groupoid), so the
next theorem gives new minimal SH-groupoids.

Theorem 5.9 [Wa3]. Every minimal SH-groupoid having a minimal clone is isomorphic or
dually isomorphic to one of the following ten groupoids.

· a b c d f g h i · a b c d f g · a b c e f · a b c e g · a b c e
a a d f d f g d g a a d f d f g a a a c f f a a a g e g a a a c e
b h b c h i i h i b d b c d g g b b b e e e b a b e e g b b b e e
c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c
d d d g d g g d g d d d g d g g e e e e e e e e e e e e e e e e e
f f f f f f f f f f f f f f f f f f f f f f g g g g g g
g g g g g g g g g g g g g g g g
h h h i h i i h i
i i i i i i i i i

· a b c d f g h · a b c e f g · a b c d f h · a b c d f · a b c
a a d f d f g d a a a g f f g a a d f d f d a a d f d f a a a c
b h b c h g g h b a b e e f g b h b c h h h b d b c d d b b b b
c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c
d d d g d g g d e e e e e e e d d d d d d d d d d d d d
f f f f f f f f f f f f f f f f f f f f f f f f f f f f
g g g g g g g g g g g g g g g h h h h h h h
h h h g h g g h

Let us note that the class of groupoids found in Theorem 5.7 is disjoint from the class described
in Theorem 5.8, i.e. there is no groupoid with a minimal clone that is almost associative in both
the ‘spectral’ and the ‘index’ sense.
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[Há2] P. Hájek, Berichtigung zu meiner arbeit “Die Szászschen Gruppoide”, Mat.-Fys. Časopis Sloven. Akad.
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Acta Univ. Carol. Math. Phys. 38 (1997), no. 1, 13–22.
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