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1 Introduction

The research problems considered in the thesis originate from the area

of polytopal approximation of convex bodies. The results fall into two

broad categories, one is the best approximation of convex bodies by

polytopes, the other is approximation of convex bodies by random poly-

topes.

The dissertation is based on the following papers of the author.

• I. Bárány, F. Fodor, V. Vı́gh: Intrinsic volumes of inscribed ran-

dom polytopes in smooth convex bodies, Adv. Appl. Probab.

(2009), 1–17, submitted for publication, available at arXiv:0906.0309v1.

• K. J. Böröczky, F. Fodor, M. Reitzner, V. Vı́gh: Mean width of

random polytopes in a reasonable smooth convex body, J. Multi-

variate Anal., 100 (2009), 2287–2295.

• K. J. Böröczky, F. Fodor, V. Vı́gh: Approximating 3-dimensional

convex bodies by polytopes with a restricted number of edges,

Beiträge Algebra Geom., 49 (2008), no. 1, 177–193.

• V. Vı́gh: Typical faces of best approximating polytopes with a

restricted number of edges, Acta Sci. Math. (Szeged), 75 (2009),

no. 1-2, 313–327.

In this outline we use the same numbering and labeling as in the

thesis.

2 Best approximaton of convex bodies by

polytopes

Let K be a convex body in Ed and let 0 ≤ k ≤ d − 1 be an integer.

One of the most often studied questions is how well one can approxi-
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mate K with polytopes that have a restricted number of k-faces. These

problems have become well understood in the last 30 years in the case

if k = 0 or k = d− 1, that is, when the number of vertices or facets is

restricted. Almost all results are asymptotic in nature, they are mainly

due to R. Schneider, P. M. Gruber, M. Ludwig and K. J. Böröczky.

There is a lack of results for the case when the number of intermediate

dimensional faces is prescribed. In 2000 K. J. Böröczky [17] partially

solved these problems, he gave upper and lower estimates of matching

order of magnitude. Precise asymptotic formulas were not known till

very recently. In Theorem 2.2.1 we solved the first interesting case,

when d = 3 and k = 1. We measure the distance between convex

bodies with the Hausdorff-metric. The analogous statement for volume

approximation was proved by K. J. Böröczky, S. S. Gomez and P. Tick

[22].

A more precise formulation of the problem is as follows. Let K be

a 3-dimensional convex body with C2 smooth boundary and let Pc
n be

the set of 3-polytopes with at most n edges that contain K, similary,

let P i
n be the set of 3-polytopes with at most n edges contained in K:

Pc
n := {P | P ⊃ K is a polytope with at most n edges} ,

P i
n := {P | P ⊂ K is a polytope with at most n edges} .

There exist (not necessarily unique in general) polytopes P c
n ∈ Pc

n and

P i
n ∈ P i

n such that

δH(P c
n, K) = inf

P∈Pc
n

δH(P,K) and δH(P i
n, K) = inf

P∈Pi
n

δH(P,K),

that is their Hausdorff distances δH(P c
n, K) and δH(P i

n, K) from K are

minimal. The first major result of Chapter 2 of the thesis is Theorem

2.2.1.
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Theorem 2.2.1 (page 13, [21] Böröczky, Fodor, Vı́gh)

δH(K,P c
n), δH(K,P i

n) ∼ 1

2

∫
∂K

κ1/2(x) dx · 1

n
, as n→∞. (1)

Here κ(x) denotes the Gauss-curvature of ∂K at x and we integrate

with respect to the 2-dimensional Hausdorff-measure on ∂K.

The following natural question arises here following the work of Gru-

ber [36], [37], and Böröczky, Tick and Wintsche [24]. Can we say some-

thing more about the geometry of the best approximating polytopes?

The answer is yes, we can determine the approximate shape and size of

almost all of its faces. The second major result of Chapter 2 is Theorem

2.2.2.

Theorem 2.2.2 (page 14, [72] Vı́gh)

The typical faces of both P i
n and P c

n are squares with respect to the

density function κ1/2(x) as n→∞.

The meaning of this theorem is the following. Let F be a face of Pn

and xF ∈ ∂K a point where the outer normal is also a normal of the

affine hull of F . Almost every face F of Pn is such a quadrilateral that

is very close to a square with respect to the second fundamental form

of ∂K at xf , and that has area∫
∂K κ

1/2(x)dx

f(n)κ1/2(xF )
,

where f(n) stands for the number of the faces of Pn.

The proof of Theorem 2.2.1 consists of two parts, we established

matching upper and lower bounds on δH(K,P c
n). In both parts the

main idea was to divide the boundary of K into small enough pieces,

and over each piece we used the osculating paraboloid of the surface to

approximate ∂K locally. In the course of the proof of the upper bound,

we constructed a polyhedral surface with a prescribed number of edges,
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which approximates ∂K well. To obtain the lower bound we applied

various algebraic and geometric inequalities. To prove Theorem 2.2.2

we needed the stability version of the inequalities we used to obtain the

lower bound in (1).

The heart of the proofs is the following lemma, which resembles to

the famous Momentum Theorem of L. Fejes Tóth [28].

Lemma 2.5.5 (page 19, [21] Böröczky, Fodor, Vı́gh and [72] Vı́gh)

Let q(x) be a positive definite quadratic form on R2 and α ≤ 0 a real

number. Let G = [p1, p2, . . . , pk] be a k-gon with vertices {pi}. Then

max
x∈G

(q(x)− α) =
2

k
· A(G)

√
det q. (2)

Furthermore, if k 6= 4, then

max
x∈G

(q(x)− α) > 1.04 · 2

k
· A(G)

√
det q. (3)

If

max
x∈G

(q(x)− α) ≤ (1 + ε) · 2

k
· A(G)

√
det q, (4)

then G is O( 4
√
ε)-close to a q-square.

3 Random polytopes

In Chapter 3 we consider another aspect of polytopal approximation

of convex bodies, that is we consider random polytopes. The most

widely used model is the following. Let K be a convex body in Ed

with volume 1, so the uniform probability measure and the Lebesgue-

measure coincide in K. Choose n random points x1, x2, . . . , xn from K

independently and according to the uniform distribution. The convex

hull conv(x1, . . . , xn) of these points is called a random polytope in K,

and we denote it by Kn. One of the central problems in stochastic
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geometry is to understand the behavior of Kn. The main goals are to

obtain information on the distribution of key geometric functionals of

Kn.

It is clear, that the behavior of Kn strongly depends on the boundary

structure of the mother body K, which implies, that the cases when K

is a polytope or K has smooth boundary are quite different. For the

case when ∂K is C3
+, and hence κ(x) > 0 for all x ∈ ∂K, R. Schneider,

J.A. Wieacker [66] proved that

W (K)− EW (Kn) ∼
2Γ( 2

d+1)

d(d+ 1)
d−1
d+1κdκ

2
d+1

d−1

∫
∂K

κ(x)
d+2
d+1 dx · 1

n
2

d+1

, (5)

where W ( · ) denotes the mean width, κd is the volume of the Euclidean

d-dimensional unit ball and E( · ) is the expectation. Recently, the

smoothness condition was relaxed to C2
+ by M. Reitzner [53].

Our first goal is to prove a further generalization of (5). We say that

a convex body K has a rolling ball if there exists a % > 0 such that

any x ∈ ∂K lies in some ball of radius % contained in K. According to

D. Hug [41], the existence of a rolling ball is equivalent saying that the

exterior unit normal at x ∈ ∂K is a Lipschitz function of x. The first

major result of Chapter 3 extends (5) in the following way.

Theorem 3.1.2 (page 45, [20] Böröczky, Fodor, Reitzner, Vı́gh)

The asymptotic formula (5) holds for any convex body K of volume one

which has a rolling ball.

Furhermore, Example 3.1.3 on page 45 states that there exists a K

which has C∞+ boundary except at one point where it is only C1 and

(5) does not hold for K. This shows that Theorem 3.1.2 is essentially

optimal.

Example 3.1.3 (page 45, [20] Böröczky, Fodor, Reitzner, Vı́gh) If K

is a convex body in Rd such that o ∈ ∂K, ∂K is C∞+ on ∂K\o, and the
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graph of f(x) = ‖x‖ 3d+1
3d on Rd−1 ∩ Bd is part of ∂K then E(W (K) −

W (Kn)) ≥ γ n
−4d

3d2+1 where γ > 0 depends on d and 4d
3d2+1 <

2
d+1.

Asymptotic upper and lower bounds for the variance are needed to

prove the strong law of large numbers and central limit theorems, see

[12] and [13]. As a second major result of Chapter 3, we estimate the

variance of all intrinsic volumes of Kn, if the body K has a C2
+ smooth

boundary.

Theorem 3.1.5 (page 48, [10] Bárány, Fodor, Vı́gh)

Let K be a convex body in Ed with a C2
+ smooth boundary. For all

s = 1, . . . , d there exist positive constants γ1 and γ2 depending only on

d,s and K such that

γ1n
−d+3

d+1 ≤ VarVs(Kn) ≤ γ2n
−d+3

d+1 (6)

as n→∞, where Vs( · ) stands for the sth intrinsic volume.

In addition, in the case of mean width we relaxed the smoothness

condition on K, similarly to Theorem 3.1.2.

Theorem 3.1.6 (page 48, [20] Böröczky, Fodor, Reitzner, Vı́gh)

If K is a d-dimensional convex body of volume one with a rolling ball

then

γ1 n
−d+3

d+1 < VarW (Kn) < γ2 n
−d+3

d+1 ,

where the positive constants γ1, γ2 depend on K and d.

We note that for Theorem 3.1.5 we gave a detailed proof only if K

is the unit ball, and only sketched the proof for the general case. The

reason for this is that the proof of the C2
+ case is essentially the same

as the case of the ball except some minor technical details. The proofs

of the lower bounds in Theorem 3.1.5 and in Theorem 3.1.6 are very
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similar, hence we a gave a proof only for Theorem 3.1.5. The main idea

of the proof of the lower bound is that we define small independent

caps, and we show that the variance is “large” in each cap. From the

properties of the variance the required estimate follows.

The proofs of the upper bounds in Theorem 3.1.5 and Theorem

3.1.6 are, however, completely different. To obtain the upper bound

in Theorem 3.1.6 we applied integral geometric tools. In the case of

Theorem 3.1.5 the key idea is to use the Economical Cap Covering

Theorem of Bárány and Larman [11].

If K is a convex body, then a cap of K is a set C = K ∩H+, where

H+ is closed half-space. We define the function v : K → R as

v(x) := min{λd(K ∩H+) |x ∈ H+ and H+ is a closed half-space}.

The set K(t) = K(v ≤ t) = {x ∈ K | v(x) ≤ t} is called the wet part of

K with parameter t > 0.

Economical Cap Covering Theorem ([11] Bárány, Larman)

Assume that K is a convex body with unit volume, and 0 < t < t0 =

(2d)−2d. Then there are caps C1, . . . , Cm and pairwise disjoint convex

sets C ′1, . . . , C
′
m such that C ′i ⊂ Ci for each i, and

(i)
⋃m

1 C
′
i ⊂ K(t) ⊂

⋃m
1 Ci,

(ii) Vd(C
′
i)� t and Vd(Ci)� t for each i,

(iii) for each cap C with C ∩K(v > t) = ∅ there is a Ci containing C.

The upper bound in (6) combined with the main results of [3] and

[53] implies the strong law of large numbers by standard arguments, as

it is stated in Theorem 3.1.7.

Theorem 3.1.7 (page 49, [10] Bárány, Fodor, Vı́gh)

If K is a convex body with C2
+ boundary and Kn is the random polytope
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inscribed in K, then

lim
n→∞

(Vs(K)− Vs(Kn)) · n
2

d+1 = cd,j · κ
2

d+1

d

∫
S

(τd−1(x))
1

d+1τd−j(x) dx.

with probability 1.
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