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Preface

So then it is not of him who wills, nor of him who runs,
but of God who has mercy.

Romans 9,16

While this Bible verse above primarily tells us about attaining salvation, its truth
may be discovered in everyday life. Our salvation is not simply the product of human
will and effort, but a gift of God. In a similar way, God’s undeserved goodness can be
observed in many areas of a person‘s life and activities. In research work this may be
even more apparent, where the outcome of a challenging initiation usually can not be
predicted. Sometimes the result of a thoroughly performed, promising work becomes
average, and at other times a sudden idea is accepted and honored. I believe that
writing this thesis was made possible by the grace of God.
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on joint work. My thanks also goes to my colleagues and friends, including Fedor
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and support during the time I spent in his research group in Bremen. I am also grateful
to András Kolozsi, Ferenc Havasi, Miklós Árgyelán and Zoltán Tasnády-Szeőcs, who
are friends of mine; and especially to my love Katalin Horváth for her patience and
support. Finally, I would like to thank my family for their continuous support and
encouragement.

iii





Contents

1 Introduction 1
1.1 Structure of the dissertation . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Summary of research results . . . . . . . . . . . . . . . . . . . . . . . 5

2 Software maintenance in the presence of directives 11
2.1 Preprocessor issues in software maintenance . . . . . . . . . . . . . . 11

2.1.1 Fact extraction and representation . . . . . . . . . . . . . . . 12
2.1.2 Preprocessor issues . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Preprocessor features . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Standard preprocessor directives . . . . . . . . . . . . . . . . . 14
2.2.2 Extensions, usual and strange constructs . . . . . . . . . . . . 18

2.3 The preprocessor in various languages . . . . . . . . . . . . . . . . . . 20

I Modelling and refactoring preprocessor directives 23

3 Metamodel for the C/C++ preprocessor language 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 The Columbus Schema for C/C++ Preprocessing . . . . . . . . . . . 26

3.2.1 Motivating example . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 The preprocessor schema . . . . . . . . . . . . . . . . . . . . 29

3.3 Usability of models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Static schema instances . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Dynamic schema instances . . . . . . . . . . . . . . . . . . . . 38
3.3.3 How to get information out of the schema instances . . . . . . 40

3.4 Building schema instances . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Utilization of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

v



CONTENTS

3.5.1 Applications in the Columbus framework . . . . . . . . . . . . 43
3.5.2 Industrial and academic research projects . . . . . . . . . . . . 45

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Refactoring at the model level 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Refactoring on the C/C++ preprocessor metamodel . . . . . . . . . . 49

4.2.1 Refactoring using graph transformation . . . . . . . . . . . . . 49
4.2.2 The preprocessor metamodel . . . . . . . . . . . . . . . . . . 50
4.2.3 Add parameter refactoring . . . . . . . . . . . . . . . . . . . . 51

4.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . 58

II Slicing methods for change impact analysis 61

5 Background and motivation 63
5.1 Program slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Motivating example . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.2 Real world example . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Impact analysis of macros 71
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3 Macro slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.4 Discussion on macro and procedural slices . . . . . . . . . . . . . . . 80
6.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.6 Experiments on large software . . . . . . . . . . . . . . . . . . . . . . 82
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Combining preprocessor and C/C++ language slicing 85
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2 Combining C/C++ language and macro slices . . . . . . . . . . . . . 86
7.3 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

vi



CONTENTS

7.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.4.1 Backward algorithm . . . . . . . . . . . . . . . . . . . . . . . 92
7.4.2 Forward algorithm . . . . . . . . . . . . . . . . . . . . . . . . 93

7.5 Details on matching and graph coloring . . . . . . . . . . . . . . . . . 95
7.6 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.6.1 Subject programs . . . . . . . . . . . . . . . . . . . . . . . . 98
7.6.2 Slices in detail . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.7 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . 101

8 Related work 105
8.1 Preprocessor-related problems and solutions in general . . . . . . . . . 105
8.2 Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.3 Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9 Conclusions 113

Appendices 117

A Summary in English 119

B Magyar nyelvű összefoglaló 123

C Further details on the preprocessor schema 129
C.1 Sample PPML output . . . . . . . . . . . . . . . . . . . . . . . . . . 129
C.2 CANPP command line options . . . . . . . . . . . . . . . . . . . . . . 131

vii



CONTENTS

viii



List of Figures

3.1 math.h: an example of a dynamic schema instance . . . . . . . . . . . 29
3.2 Class diagram of the schema . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Dynamic (a) and static (b) schema instances of the include example . . 36
3.4 Static schema instance . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Dynamic schema instance . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Preprocessor reverse engineering process . . . . . . . . . . . . . . . . 42
3.7 Folding in Visual Studio . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Object diagram-like notation of the graph . . . . . . . . . . . . . . . . 50
4.2 Add parameter transformation - left hand side of the rule . . . . . . . 53
4.3 Add parameter transformation - right hand side of the rule (result) . . 53

4.4 Add parameter to object like macro - left hand side and right hand side
of the rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Refactoring architecture . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6 An object-like macro after refactoring in the USE environment . . . . . 57

6.1 Example macro call . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Macro sets and relations . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Elements of the MC set . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.4 The callm and the depm relations on the simplified MC set . . . . . . 77
6.5 Potential macro problem: (a) program code (b) basic graph (c) MDG

with edge coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.6 Histogram of slice sizes relative to the graph size . . . . . . . . . . . . 83

7.1 The forward direction for combining the slices, with the dependency
relation between macros and C/C++ program points . . . . . . . . . 88

ix



LIST OF FIGURES

7.2 The backward direction for combining the slices, with the dependency
relation between macros and C/C++ program points . . . . . . . . . 89

7.3 Nodes and slices of the motivating example . . . . . . . . . . . . . . . 90
7.4 Logical tool architecture - forward and backward slicing . . . . . . . . 91
7.5 Computing combined backward slices . . . . . . . . . . . . . . . . . . 94
7.6 The combined forward slicing algorithm . . . . . . . . . . . . . . . . . 95
7.7 Matching based on common characters in an expansion . . . . . . . . 96
7.8 Edge coloring example . . . . . . . . . . . . . . . . . . . . . . . . . . 97

x



List of Tables

1.1 Thesis contributions and supporting publications . . . . . . . . . . . . 6

4.1 Refactored programs . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1 Summary of macro definitions and expansions . . . . . . . . . . . . . 82
6.2 Summary of macro calls and slice sizes . . . . . . . . . . . . . . . . . 82

7.1 Subject programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Summary of forward slices . . . . . . . . . . . . . . . . . . . . . . . . 100
7.3 Summary of backward slices . . . . . . . . . . . . . . . . . . . . . . . 103

C.1 CANPP command line options . . . . . . . . . . . . . . . . . . . . . . 131

xi



LIST OF TABLES

xii



Listings

2.1 Include types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Two forms of macro definitions . . . . . . . . . . . . . . . . . . . . . 15
2.3 The #undef directive . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Example variadic macro definition . . . . . . . . . . . . . . . . . . . . 16
2.5 Example #line directive . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Unusual macro definition . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Preprocessor conditional example . . . . . . . . . . . . . . . . . . . . 20
3.1 Example code fragment from math.h . . . . . . . . . . . . . . . . . . 28
3.2 The searched macro definition from math.h . . . . . . . . . . . . . . 28
3.3 Scope of macro definitions . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Example include directive . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Include example for static instance . . . . . . . . . . . . . . . . . . . 37
3.6 Dynamic macro expansion example . . . . . . . . . . . . . . . . . . . 39
3.7 Macro folding example . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1 Schematic left hand side of the transformation . . . . . . . . . . . . . 54
4.2 Schematic right hand side of the transformation . . . . . . . . . . . . 54
5.1 Motivating example for combined slices . . . . . . . . . . . . . . . . . 66
5.2 Motivating example source code after preprocessing . . . . . . . . . . 67
5.3 Example macro definition from flexdef.h . . . . . . . . . . . . . . . 67
C.1 PPML sample: source code fragment . . . . . . . . . . . . . . . . . . 129
C.2 PPML sample: the corresponding XML code . . . . . . . . . . . . . . 130

xiii





to my family with love





1
Introduction

Software development today has a considerable history. A large amount of effort
has been invested in supporting the software development process. Many tools and
programming IDEs have been developed and a large number of theoretical research
papers have been published. The best-known methods and methodologies support
the development phase of the software life-cycle. The need for software solutions in
various economic areas, and the spreading rapid development techniques have enabled
developers to produce thousands of lines of program code in a relatively short time. Due
to the increasing number of software systems in operation worldwide, software houses
and even end-users faced new problems about how to keep the software operating. The
standard definition of the term software maintenance is as follows: The modification
of a software product after delivery to correct faults, to improve performance or other
attributes, or to adapt the product to a modified environment. Correcting defects,
keeping the software up to date with the changed environment and changing user
requirements are costly activities. Any change in a system in the production stage
costs much more than the same kind of change in an earlier phase.

Due to its nature, software maintenance requires activities other than the usual ones
in the development phase. Program understanding is a crucial part of any maintenance
tasks. The developers who want to modify the existing system needs both a high level,
overall view of the system and detailed implementation level information. All this
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CHAPTER 1. INTRODUCTION

information may be the result of the reverse engineering process. Reverse engineering
is the process of analyzing a subject system in order to identify the system’s components
and their interrelationships and create representations of the system in another form or
at higher levels of abstraction [18]. Impact analysis also benefits from the information
obtained by reverse engineering. Change impact analysis helps in determining the
affected parts of the system by a particular change. Thus, it provides support in cost
estimation and test planning.

The real importance of source code based reverse engineering approaches (including
ours) is shown by the fact that during software maintenance, the most reliable doc-
umentation is the source code itself. Other specifications, plans, documentations are
becoming incomplete or inaccurate over the years of operation. In addition, outdated
documentation may mislead the maintainer and create additional costs.

Although development and maintenance are strongly related, rapid development
and good maintenance are often opposing notions. This phenomenon can be observed
especially in the case of preprocessed languages. The usefulness of the preprocessor has
been proven by many years of use by developers. Features improving productivity, like
the flexible control over program configurations, the structured hierarchy of source files
using includes, and the practical utility of the text-based macros (even parameterized),
all provide reasons for the extensive use of the tool. An empirical study based on the
analysis of commonly used unix software shows that preprocessor directives make up a
relatively high 8.4% of source code lines on average [25]. The view taken by most is just
the opposite when one has to assist in software maintenance or program understanding
tasks: the presence of preprocessor directives is always mentioned as an obstacle [99].
The fundamental problem about preprocessing from a program comprehension point
of view is that the compiler gets the preprocessed code and not the original source
code that the programmer sees. In many cases the two codes are markedly different.
These differences make program understanding harder for programmers and analyzers,
and they can cause problems with program understanding tools. Reverse engineering
techniques are often used when the maintainer has an insufficient knowledge of the
system. The need for tool support is even greater in the presence of preprocessing
directives, where the maintainer only sees the unprocessed code.

Our research efforts have concentrated on reverse engineering preprocessor direc-
tives. C/C++ source code analyzer tools frequently suffer from a common problem:
the preprocessor directives are not part of the C/C++ language, therefore they need

2



a separate parser to analyze them. The problem affects a wide range of areas from
calculating simple metrics through carrying out refactoring transformations to mainte-
nance tasks like retrieving dependencies between software components and recovering
the architecture of legacy systems. Without handling the preprocessor constructs, only
partial and imprecise results can be obtained. Alas, preprocessor issues are often com-
pletely neglected by C/C++ analyzer tools, or at least, handled rather poorly. The
basic idea behind our work was to respond to the current lack of general solutions and
precise tool support. In the core of our work there is a detailed metamodel for pre-
processing (in a reverse engineering context it is often called a schema). The schema
describes the source code from a preprocessing point of view. It is an object-oriented
model of preprocessor related language elements and their relationships. Our aim was
to collect as much information as possible about the source code. Schema instances
are concrete instantiations of the schema, produced by the analysis of the source code.
Our tool implementations are part of the Columbus Reverse Engineering Framework.
Based on the information obtained, maintenance tasks are supported in various ways.
Preprocessor directives are usually taken in the account when refactoring C/C++ pro-
grams, but in the area of refactoring the directives themselves are rarely studied. In
our recent work, we adapted a graph transformation approach to refactor directives at
the model level. At the model level controlled and validated transformations can be
performed, where model checking includes the checking of the metamodel itself.

Results were achieved in the area of change impact analysis, especially program
slicing, which is an appropriate method for impact analysis. We introduced novel
notions and methods for dependency-based slicing preprocessor constructs, using the
Macro Dependence Graph and macro slices. On top of schema instances, macro slices
are computed by our tools even for large programs like the Mozilla. Another novel result
is the combination of traditional C/C++ slices with macro slices, providing a more
complete dependency set for a specific slicing task. Hence we shall present a possible
way to implement a preprocessor-aware C/C++ slicer, our implementation being based
on existing tools (a well-known C/C++ slicer and our macro slicer) extended with
a slice combiner. Traditional C/C++ and macro slices were evaluated by a set of
experiments carried out using our tools.

After demonstrating how our work is related to software maintenance and develop-
ment, and outlining research fields in which our results were achieved, the remaining
part of this chapter gives a short summary on the structure of the thesis, and a summary
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CHAPTER 1. INTRODUCTION

of the results achieved, also mentioning related publications of the author.

1.1 Structure of the dissertation

The dissertation is organized as follows. Chapter 2 introduces the background of our
research. First, preprocessing aspects of reverse engineering C/C++ programs are dis-
cussed in detail. Next, the reader unfamiliar with the preprocessor can get information
about its basic features, the standards and some implementation-dependent extensions
of two mainstream preprocessor tools. Although the whole work is presented in the
C/C++ language context, a separate section is dedicated to examples on how prepro-
cessor is used within the environment of other programming languages, demonstrating
the general nature of our work. After the introductory chapters, the thesis is divided
into two parts along research results lines.

Part I - Modelling and refactoring preprocessor directives

The theme of the first part is the field of reverse engineering, with an emphasis on mod-
elling preprocessor directives, and model level refactoring of macros. In Chapter 3 we
focus on a metamodel (schema) called Columbus Schema for C/C++ Preprocessing.
The metamodel plays a key role in the fact extraction and representation process, and
serves as a basis for all other investigations here. The metamodel controls the building
process of the model instances based on concrete programs. The two types (dynamic
and static) of model instances are explained through various examples. Details on the
implementation and the utilization of results are shown as well.

Chapter 4 presents our most recent work in the field of model level refactoring.
A graph transformation approach is used with model checking, the USE specification
environment served as graph transformation engine. Refactorings are performed on
reverse engineered program models exported to the USE environment. The specialities
of macro-related transformations and the necessary steps are shows through the add
parameter refactoring on macros. Finally the tool architecture is outlined with the
results of the performed experiments.

Part II - Slicing methods for change impact analysis

The second part presents our research results on slicing as a method for impact analysis.
Chapter 4 contains background information on slicing in procedural languages. A small
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motivating example is discussed and a real-world source code example is given in the
next section, showing the need for our solution for macro slicing and for combining the
two kinds of slicing. Afterwards, the utilization of macro slices and combined slices are
depicted.

Chapter 6 introduces macro slicing, a novel notion for the impact analysis of macros.
The basic theory and formal definitions are given for the dependency-based slicing of
macros. The method is implemented using the existing metamodel, and experiments
on a real-life software are reported. Chapter 7 is concerned with the idea of combining
C/C++ language slices with macro slices. The theoretical background is outlined for
the combined dependence graph of a C/C++ program, which contains information
on C/C++ language elements and preprocessor macros as well. Combined slices are
defined and illustrated in both forward and backward directions. The tool architec-
ture and the slicing algorithms used are also presented. Then an evaluation of using
combined slices on large number of open source software is presented.

Related research papers and tools are elaborated on in Chapter 8. The main part of
the thesis is rounded out with some pertinent conclusions in Chapter 9. The appendix
contains a summary of the thesis in Hungarian and English, and some details on the
reverse engineering process.

1.2 Summary of research results

Our research work in the field of reverse engineering includes basic research on fact
representation and metamodelling; and the utilization of extracted information in soft-
ware maintenance, namely in program understanding, refactoring and slicing. Novel
results are achieved in key, theoretical areas (metamodelling, definition of macro slic-
ing, algorithms), but as good results were achieved in practice as well. The expected
outcome of our theoretic work was always empirically evaluated with the several tools
which have been implemented. Research results were successfully applied in several
Hungarian and international research projects, both in industry and in the academic
sphere.

The thesis result statements have been grouped into five contributions, divided into
two parts according to the research topics. The relation between contribution points
and supporting publications can be seen in Table 1.1.
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Contribution - short title Publications

I/1 Preprocessor metamodel [VB03] [VBF04]
I/2 Model level refactoring [VGF06] [Vid09]
II/1 Macro slicing [VBF07]
II/2 Combining slicing [VJBG08] [VBG09]
II/3 Evaluation of slicing methods [VBG09]

Table 1.1: Thesis contributions and supporting publications

Part I - Modelling and refactoring preprocessor directives

Contributions of the first part are related to preprocessor models extracted from the
source code.

1. Metamodel for the C/C++ preprocessor language

Our first result is the preprocessor schema (metamodel), which plays a key role
in reverse engineering. The schema covers all preprocessor-related elements in
a C/C++ source file, and also contains information on preprocessor operations
(macro calls). To our knowledge this was the first publicly available general-
purpose preprocessor schema. The schema consists of entities with attributes,
and their relations, hence it is presented using the UML class diagram notation.
A schema instance (model) is a graph that belongs to a concrete C/C++ pro-
gram and contains all preprocessor-related information in a concrete form. From
the schema instance the original source code, the preprocessed source code and
all immediate states of the preprocessing process can be obtained. In addition,
the schema describes both dynamic (configuration dependent) and static (con-
figuration independent) instances. Therefore the solution is applicable for fully
analyzing preprocessor usage at a fine-grained level. A programming API is de-
veloped for handling the graph from graph building to information extraction. To
facilitate tool inter-operability and program understanding, the graph obtained
can be exported to GXL and PPML (our XML format) as well.

We implemented a preprocessor for building schema instances. The tool is called
CANPP, it belongs to the Columbus Framework and it can analyze industrial size
software projects with millions of lines of code. It is capable of building dynamic
instances only, but this still offers a wide range of possibilities. The preprocessor
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1.2. SUMMARY OF RESEARCH RESULTS

is designed to imitate the behavior of the GNU gcc/cpp and the Microsoft cl
preprocessors, but intended to be fault tolerant, e.g. a missing include file will
not prevent it from analyzing other parts of the program.

Our results were utilized in several industrial and academic research projects. All
four of the following thesis contributions rely heavily on these results.

The schema and the related API is the work of the author. The implementation of
model building is the work of the author, but the source code analysis technique
and the building strategy of schema instances are based on the technology of
the Columbus C++ Analyzer, hence these are shared results. The results of this
contribution point are published in research papers [VB03, VBF04].

2. Model level refactoring of macros

Model level refactoring has the advantage that it formally checks specific condi-
tions, which is necessary when a high level refactoring has many concrete forms.
Our first contribution is the set of viewpoints/steps for elaborating concrete
macro-related refactorings with regard to the preprocessor metamodel. Based
on the given criteria, we have presented a detailed discussion and elaboration of
the refactoring named add parameter to macros. We applied a graph transfor-
mation approach by possessing left-hand side and right-hand side graphs.

A special aspect of our work is that transformations are carried out on reverse
engineered, real-life program models. We designed a tool architecture, mainly
based on existing tools, capable for planning (important in elaborating concrete
transformations), performing and checking refactorings on macros. We have
implemented an exporter which transforms schema instances to an understand-
able form for an UML specification environment, in which the transformations
are handled. During experiments we have found that the proposed tool-set is
appropriate for middle size programs, but was good for validating preprocessor
models and the metamodel itself.

The above-mentioned contributions are the work of the author and published
in research paper [Vid09]. Some notions used in this contribution point are
published in an earlier work in C++ context [VGF06]. The used C++ metamodel
is not the work of the author, the basic notions of model level transformations
using the metamodel are shared results, while the elaboration and implementation
of C++ refactorings are results of the author.
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Part II - Slicing methods for change impact analysis

In the second part we integrate macro-related analysis to slicing.

1. Macro slicing

The area of slicing is fairly diverse, and there exist lots of slicing methods and
strategies. Their common attribute, however, is not to consider preprocessor
macros as program points, the basic unit of slicing.

Borrowing ideas from traditional dependency-based slicing, we introduced the
novel notion of the Macro Dependence Graph. The dependency relation of
the graph is derived from the macro call relation of directives and macro calls
contained in the C/C++ program code. To ensure appropriate properties for
slicing, dependency edges are colored in the graph. Therefore dependence graphs
of complete software projects (not just compilation units or individual programs)
can be built and used for slicing purposes. We defined both forward and backward
type of macro slices, computable on the dependence graph. Using macro slices,
complex macro-related questions may be answered in a change impact analysis
context.

Elaboration of macro dependency related definitions and the construction of the
Macro Dependence Graph are the work of the author. Discussion of the notions
of C/C++ and macro slicing, and the definitions of forward and backward slices
are shared results. Results of this contribution point are published in research
paper [VBF07].

2. Combining C/C++ language and preprocessor slicing

The use of macro slices is limited to macro constructs, but the real advantage
of our approach could be exploited if macro slices could be linked to traditional
slices. Our novel result is the combination of traditional C/C++ slices with
macro slices, giving a more complete dependency set for slicing. The connection
points are the places in the source code where (initial) macro calls occur. These
points are part of the Macro Dependence Graph, and the resulting tokens from
the expanded macro call are part of the dependence graph of C/C++ slicing. We
have composed a combined dependence graph, on which forward and backward
combined slices are defined. Global forward and backward slicing algorithms are
presented, as well. These contributions are significant improvements of tradi-
tional C/C++ slicing, and honored with best paper award. In the forward case
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the improvement is more apparent, because C/C++ slicing would miss even the
slicing criterion itself.

The construction of the combined dependence graph and the presented slicing
algorithms are work of the author. The definitions of combined forward and
backward slices are shared results. The results of this contribution point are
published in research papers [VJBG08, VBG09]. Our paper, incidentally, won
the Best Paper Award of the 16th IEEE International Conference on Program
Comprehension in 2008.

3. Experimental evaluation of slicing methods

Besides the theoretical results related to macro slicing and combining, we have
performed experiments to evaluate the outcome of our proposed methods. The
macro slicer tool was implemented on the top of the schema instances, since
schema instances contain all information necessary for slicing, they play the role
of Macro Dependence Graphs. Experiments were performed on the source code
of Mozilla Firefox, which would be a hard task for a C/C++ slicer. We also
outlined a tool architecture needed to implement a preprocessor-aware C/C++
slicer. Our implementation was based on existing tools, a well-known C/C++
slicer (CodeSurfer) and our macro slicer, and was extended with a slice combiner.
Traditional C/C++ and macro slices were evaluated based on slicing time and
memory consumption, the average and extreme slice sizes and the ratio of sizes.
We found that macro slices were significantly smaller than static C++ slices
on the same source code (the difference is larger in the case of forward slices).
Despite being smaller, macro slices can provide a real improvement since they
give precise information owing to their dynamic nature. We are not aware of any
other similar report published in this area.

The results regarding to the evaluation of macro slicing are the work of the
author (macro slicing using schema instances, implementation of the macro slicer,
experimental evaluation of macro slices). The results regarding to the evaluation
of combined slicing are work of the author (tool architecture for combining slicing,
implementation of the combined slicer, evaluation of C/C++ and macro slices),
except the shared work on implementing the CodeSurfer plugin. Main results of
this contribution point are published in research paper [VBG09].
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2
Software maintenance in the presence of

directives

2.1 Preprocessor issues in software maintenance

Four types of maintenance activities may be distinguished based on the aim of the
changes. Traditional (corrective) maintenance focuses on fixing bugs in the code. The
activities of other types of maintenance are also called software evolution. Adaptive
maintenance means adapting the software to new environments. Updating the software
to new user requirements is called perfective maintenance, while the aim of preventive
maintenance is to help make the software more maintainable.

For any kind of modification of a software, the first necessary step is to get factual
information about the system. While this is more trivial during the development, when
all requirements and specifications are gathered, after years of operation a constantly
changing software is more like a black box. Over the years usually new modules are
added and the system is integrated with others. In many cases, key persons of the
developer team are not available in the late maintenance phase. Hence tool support is
of great importance for program comprehension.
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2.1.1 Fact extraction and representation

The aim of the reverse engineering process is to extract information about the software
to support further program understanding and analysis tasks [77]. In a wider sense,
the subject of reverse engineering may be not only the source code, but specification
documents. However, we shall follow the classical approach of source code-based
reverse engineering. The process looks for so-called facts (or artifacts) in the source
code, which may be any kind of usable information. The two key dimensions of the
process are fact extraction and fact representation. The output of the process is a
well-defined set of detailed information about the software, which is in an appropriate
form for further processing for various purposes. Fact representation plays a key role
since it determines the usefulness of the whole solution. The existence of several
reverse engineering tools and the need for tool interoperability invigorated the design
and publication of fact representation descriptions, the so-called schemas. Schemas
are designed from various viewpoints, for various aims and degrees of granularity.
Several efforts have been made towards a standard schema for the C++ language
[36]. Enhanced reverse engineering tools have provided their exact schemas, like the
Datrix schema [52, 8], the Bauhaus graph [22], the DMM system [66], the CPPX
project [23] and the Columbus Schema for C++ [33, 35].

Data exchange [31] between various formats is frequently expected for complex
problems. The GXL (Graph Exchange Language) is designed to be a standard ex-
change format for graphs [53, 51]. In particular, GXL was developed to enable interop-
erability between software reengineering tools and components, such as code extractors
(parsers), analyzers and visualizers.

2.1.2 Preprocessor issues

C/C++ source code files are, in fact, not written in pure C/C++ language in the
highest sense of the word. Feeding them directly to the compiler would result in
compiler error messages. The source code for a compilation unit, understandable
by the compiler is produced by the preprocessor [105]. Preprocessing is based on
textual replacement rules controlled by so-called directives, which are not related to the
C/C++ language. In other words, preprocessor operations are not aware of either the
syntactical or the semantic elements of the C/C++ language. Hence, the expectation
that preprocessor constructs form a well-formed C/C++ syntactical unit is unfounded.
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The presence of the two forms of the source code (original and preprocessed form)
is always mentioned as an obstacle in program comprehension. C/C++ source code
analyzer tools often suffer from this familiar problem. As already mentioned, prepro-
cessor issues are often completely neglected by C/C++ analyzer tools, or at least,
handled rather poorly. Many automated tools designed to carry out program analysis
and maintenance tasks work on preprocessed code, which results in mistakes at pro-
gram points where directives are used. The need for accurate analysis and automated
tool support for the above-mentioned activities is recognized by both the academic
sphere and allot of industrial sector. A lot of effort has already been put into in-
corporating the preprocessor-related information into the processes which analyze the
C/C++ language constructs, but so far with only moderate success. The problematic
issues in preprocessing are typically the conditional compilation (#if), and the defini-
tion and usage of macros (#define). While there are usable tools for refactoring Java
programs available, such tools for C/C++ have many problems caused by preprocessor
constructs [114, 82]. Even a transformation as simple as a “rename variable” requires
the analysis of preprocessor configurations [40].

The initial motivation behind our work was to extend the Columbus framework
and its schema for C++ with preprocessor- related information. Instead of mixing
the existing schema and C++ analyzer code with preprocessor-related analysis, we
designed a separate schema for the preprocessor. The advantages of the separated
analysis are clear: preprocessor information is ready to be used at any level in the
Columbus system, but independent applications on the top of the preprocessor schema
may be built for various maintenance tasks. Furthermore, the schema instances of a
program are available as GXL exports and may be used by other tools as well.

The notions of static and dynamic analysis are present for preprocessor analysis
as well. Usually static code analysis an means analysis without running the actual
program, and dynamic analysis relies on data collected at runtime, depending on the
actual input of the program. In our case, runtime means one particular run of the pre-
processor. The run of the preprocessor depends on the environment and the command
line options. The input of preprocessing is the collection of predefined and command
line defined macros, and header search paths. Hence dynamic preprocessor analysis
depends on these data, which determine the actual source code configuration. Static
preprocessor analysis takes not only the actual configuration, but all other conditional
blocks as well. In other words, in the case of a preprocessor, dynamic analysis means
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a configuration-dependent analysis, while static analysis means a configuration inde-
pendent one. Because even dynamic preprocessor analysis ends in the compile time of
the embedding (C/C++) program, the result of both types may be incorporated even
in a static (and naturally in a dynamic) analysis of the embedding language.

Similar problems arise when investigating the concept of backward and forward
direction of slicing, and notions must be adapted and applied to the preprocessor. In
the dependency-based slicing of C/C++ programs, the direction of the dependency
relation is the same as the call relation, say. In the case of macros, the direction of
a macro call is the opposite of the dependency relation. While the called function is
dependent on the caller, in the case of macros the situation is just the opposite: the
macro (caller) is dependent on the (called) macro definition.

In our work we show how these issues can be overcome with the help of the
preprocessor schema, related notions and tools.

2.2 Preprocessor features

There are several C/C++ compilers that are commonly used, which have their own pre-
processor implementation. Although together with the C/C++ language, preprocessor
directives and features have also been standardized, several mainstream compilers have
different and in minor details incompatible operations. In this section the main fea-
tures will be introduced together with some usual and unusual examples of how the
directives are used in real-life programs.

2.2.1 Standard preprocessor directives

Preprocessing is the first, separate phase of compilation. It employs its own token
definitions, and the result of a preprocessing phase is a complete compilation unit, all
preprocessor manipulations being performed on the source code before the compiler
gets the code.

The latest ISO C++ standard [56] from 1998 contains a separate chapter on pre-
processing. A year later, a new version of the ISO C standard was published [57], with
similar content, but extended with the notion of variadic macros, which was already
supported by main compilers at that time. Here, a small collection of preprocessor
features is presented in an informal way. For exact definitions and complete references,
please read the related standards.
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Header files

File inclusion is a well-known feature. The included files are usually called header files,
but there is no real limitation of the content of these files, and they may contain any
kind of tokens. The file name may be given in three forms as shown in Listing 2.1

#include "stdio.h"

#include <stdio.h>

#include MACRO_CALL

Listing 2.1: Include types

The first form denotes a file belonging to the actual project, while the second
denotes a standard library header. The difference is in the search order: in the case of
the <...> form the file is searched on the standard library paths first. The third form
contains a macro, which is fully expanded, and the final form must conform to one
of the first two cases. Include directives may be nested, the limit of the nesting level
depends on the implementation (and on the runtime memory). Recursion in include
directives may cause problems, so the headers are usually protected by conditional
directives (headers are called once only headers, while the conditional code is usually
called wrapper ifndef).

Macros

Textual macro replacements provide the real essence of the preprocessor. Macros are
used for several purposes and are usually combined with other constructs (includes,
conditionals). There are two kinds of macros: object-like and function-like ones, the
latter accepting arguments. A macro definition contains a macro name, optionally
parameter list, and a replacement list. The replacement list may contain references to
parameters, special operators, further macro calls and normal tokens. The two forms
of macro definitions are shown in Listing 2.2:

#define OBJ_MACRO replacement_list

#define FUNC_MACRO(parameter_list) replacement_list

Listing 2.2: Two forms of macro definitions
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Macro names are usually written in capital letters for the shake of readability in
the place of macro calls. The actual macro definition of a particular macro name may
be removed using the undef directive:

#undef MACRO_NAME

Listing 2.3: The #undef directive

Macros may be re-defined with a new define directive. According to the standard,
if a re-definition occurs without an undef directive, then the new definition must be the
same as the old one, but the most frequent implementations enable the re-definition,
and just a warning is issued.

The scope of a macro definition is linear. It starts at the point of a definition,
continuously persists through more source files according to the include hierarchy, and
finally ends at the next re-definition, undef or at the end of the compilation unit. The
macro expansion is a recursive process which results in a fully expanded macro. The
expansion has specific rules. For more details, please check the IEEE standards. First
the arguments are substituted (if there are any), together with the stringize (#) and
concatenating (##) operators. During the expansion the replacement list is re-scanned
many times while there are more macros to expand. The expansion depends on the
place of the call, and not on the place of the definitions. This fact is important, because
any identifier in the replacement list of a macro definition may become a macro call at
a later point (by defining a macro for that contained name). We call this phenomenon
the potential macro problem, as illustrated in Figure 6.5 of Section 6.3.

Variadic macros are a special kind of function-like macros, which accept a varying
number of arguments (see example in Listing 2.4, note that a line break is inserted to
the long line). Currently this feature is supported by the C standard only, but some
kind of support exists in mainstream implementations.

#define VAR_FUNC_MACRO(param_list , ...) \

repl_list_1 __VA_ARGS__ repl_list_2

Listing 2.4: Example variadic macro definition

The . . . parameter accepts any number of arguments, which are inserted in the place
of the __VA_ARGS__ token. The named form of variadic macros is a GCC extension,
which will be outlined later on.
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Conditional inclusion

The set of conditional directives are similar to procedural languages, but the condi-
tional expressions are different since they have to be evaluated in preprocessing time.
This means that no variables and other C/C++ language constructs can be used:
only constant expressions, macros and the defined operator can be used instead. The
associated conditional block goes to the compiler only if the expression is not zero.
A special feature of constant expression evaluation is that after the macro expansion
and the replacement of defined operators, all remaining identifier tokens (except for
true and false) are assigned a value of 0. This rule requires caution when writing
conditional directives as an identifier which is thought to be a macro may cause the
whole expression to be 0. As for conditionals #if, #elif and #else, only one con-
ditional block is enabled, the others being skipped to the associated #endif directive.
Conditional directives may also be nested.

Other directives

Line directives are important for tracking source code lines. This information is used,
for instance, when the compiler issues a warning or error message. Line directives are
produced by the preprocessor at specific places (for example, the return point of an
include), but the programmer may also use it in the following form:

#line number filename

Listing 2.5: Example #line directive

where the file name is optional. The line directive causes the preprocessor to behave as
if the following line was a particular line of the given file. Macro calls are also enabled
in line directives, then the expansion must take the above form.

Pragmas contain special commands for the preprocessor or even for the compiler,
because unrecognized commands are ignored by the preprocessor. Pragmas are used
for stacking macros, controlling warnings and so on. The error directive causes the
program to be ill-formed, with the error report given as arguments. The null directive
also exists, but has no effect on the output.
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2.2.2 Extensions, usual and strange constructs

Two well-known preprocessor implementations are the GNU GCC preprocessor [104][44]
and the Microsoft (MSVC) cl preprocessor [76]. Neither fully support the ISO C99
standard, but both have some extra features beyond the standard. In this section we
shall list some extra features and give examples of usual and unusual directive uses.

GNU extensions

The so-called once only headers are protected by guard macros, but this construction
requires the header file to be opened every time it is included. The #pragma once
directive causes that the file if opened only once. However, some experiments show
that there is no measurable difference, most likely due to file caching.

GCC uses wrapper headers for exploiting old header functionality in new headers
with the same name. The #include_next directive includes a header with an already
used header file name, but the search for the header file starts from the previous
position in the search path.

A named variadic macro is an extension, which allows the variable macro parameter
to be named other than __VA_ARGS__. In addition, the concatenating operator has a
special meaning in this case, so that the case of zero argument is also handled.

MSVC extensions

The #pragma once directive is implemented in this tool as well. The /FI filename
command line options causes the given file to be included before the first line of the
compilation unit. (Note that the same functionality is given by the -include GCC
option.)

The MSVC implementation also uses macros to control compilation, such as the
-GR option which defines the _CPPRTTI macro to enable the Run-Time Type Informa-
tion feature.

There are several macros which are defined in case of specific circumstances. E.g.
the WCHAR_T_DEFINED macro, which is defined when the /Zc:wchar_t option is used,
or when typedef unsigned short wchar_t; is executed in the program code.

The #import directive is used to incorporate information from a type library. The
content of the type library is converted into C++ classes, mostly describing the COM
interfaces. This means that the directive is used by the compiler, and not just the
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standard preprocessor. The #import directive creates two header files that reconstruct
the type library contents in C++ source code. The primary header file is similar to that
produced by the Microsoft Interface Definition Language (MIDL) compiler, but with
additional compiler-generated code and data. The #using directive imports metadata
into a program that will use the Managed Extensions for C++. Besides the stringizing
operator (#), this implementation processes the #@ charizing operator, which creates
a character from its argument.

Configurations, computed includes

The possibility of creating source code configurations is one attractive feature of the
preprocessor. The handling of complex configurations require all three main features
at the same time: includes, conditionals and macros. Configurations belong to specific
platforms, architectures, products, etc. A configuration is determined by the state of
defined macros at the beginning of the preprocessing phase. Macros can be defined in
many ways, and the actual configuration may be changed even without modifying the
source code. Standard and environment macros are implicitly defined by the actual
operating system and preprocessor implementation. Command line macros also control
the actual configuration without changing the code. In addition, include paths can be
modified, or the standard headers can be omitted using command line options, and in
many cases includes are also computed based on macros.

Unusual preprocessor constructs

The variety of useful features may lead - in extreme cases - to unusual constructs which
cause problems in program understanding.

The result of a macro expansion does not necessary form a complete C/C++
syntactical unit. This is the case when the macro body contains an opening parenthesis,
but the closing one must be provided by the caller. This construction may be seem
attractive because of its flexibility as can be seen in Listing 2.6.

#define strange(file) fprintf (file , "%s␣%d",

...

strange(stderr) p, 35)

// =⇒ fprintf (stderr , "%s %d", p, 35)

Listing 2.6: Unusual macro definition
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However it is recommended that one avoids these constructs [104].
The following code fragment is an excerpt from the Webkit JavaScript engine (see

Listing 2.7). A block becomes a conditional block with an if condition depending on
a macro call. Note that ENABLE(CTI) must be evaluated to true in compile time to
enable the condition checking code, otherwise the block is always compiled.

// initialize local variable slots

#if ENABLE(CTI)

if (! newCodeBlock ->ctiCode)

#endif

{

}

Listing 2.7: Preprocessor conditional example

It is possible to create comments with macros. The idea is to paste two slashes
with the concatenating operator. After calling the macro, the remaining part of the
source code line will become a comment. This strange construction is used even in the
standard headers of Microsoft Visual Studio. However, it should be avoided, on the one
hand because it is suspicious, and on the other because it is not standard compliant.
The comment processing phase is before the macros processing, so according to the
standard, comments produced by macro calls are not treated as real comments and
would cause a compile error.

2.3 The preprocessor in various languages

The scope of this work is not restricted to C or C++ language analysis. Although the
preprocessor is closely linked to the C/C++ language, due to its flexible features it is
used for many purposes in various languages. The possibility of making configurations,
writing platform-dependent code fragments are considered attractive for programmers.

In this section we shall provide some examples of the diversity of purposes and
environments in which the preprocessor is used. Some examples are several years old,
but still show the extensive usability of the preprocessor. Our results were achieved
in the natural environment of the C and C++ languages, but most of them (except
the combination of C/C++ and macro slices) are applicable in the context of other
languages as well. However, in subsequent sections in the remaining part of our work
the preprocessor will be considered in its primary context.
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Java

Java is designed without the preprocessor, and most of the programmers agree with
this decision. The logic behind this is that java does not need platform specific con-
figurations because the java code “runs everywhere”. However in practice this is not
the case. The mobile environment breaks this conception, as does the strong desktop
integration, which needs to perform native operations [59]. A good example is the
well-known Netbeans IDE, which recently used a preprocessor to deal with this issue.
An interesting discussion on this topic can be found in the above-cited Javalobby forum
from 2005 with the provocative title Does Java Need a Preprocessor? It turns out from
the comments that many java developers actually use a preprocessor.

The preprocessor was specially designed for C, so there is a need for a Java version
with more language specific support. The JPP project also recognizes the need for
platform specific code inclusion [61], citing Eclipse as an example, which has to pass C
pointers in the JVM, which may be int or long depending on the system it runs. It also
names the missing #line directive as a reason for the preprocessor. The presented
solution integrated the preprocessor into the build process of java programs. A more
recent trend is to develop a java specific preprocessor. The javapp program [58]
supports the C preprocessor-like syntax, but it is also extended with Ant integration
and other features.

SQL

The Sqlpp project is a conventional cpp-like preprocessor taught to understand SQL (
PgSQL, in particular) syntax specific features. In addition to the standard #define,
#ifdef, #else, #endif cohort, it also has #perldef for calling arbitrary perl code
[103]. (Note that this is not the usual sqlpp (sqp preprocessor), which processes the
embedded sql statements in C programs.)

Perl

Besides the above-mentioned Sqlpp, another example for preprocessor use in perl en-
vironment is the ExtUtils::PerlPP (Perl Preprocessor) project [26]. It is written in perl
and supports macro replacement and conditional inclusion with a C-like syntax.

The PICA (Perl Installation and Configuration Agent) tool also uses the preproces-
sor for configuration purposes [83]. In addition to the include and conditional directives,
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it supports the #perl/#lrep pair of directives for executing perl code.
On various perl developer forums it can also be seen that the preprocessor is used

for building perl programs.

Haskell

Similar to C and C++, large Haskell programs are not written in pure Haskell. Con-
ditional compilation is extensively used with the help of the traditional C/C++ pre-
processor. The DEBUG and ASSERT macros are also frequently called. A preprocessor
suitable for Haskell was introduced in [118], demonstrating the need for Haskell related
extensions.

PHP

CCPP (C Compatible Preprocessor for PHP) is an ongoing PHP project [17] that
supports cross-platform PHP applications. It has some unimplemented features, but
the aim is to be C standard-compliant. However, as with another languages, it has
some specific directives like #includephp and #literal.

Python

Python developers also have an preprocessor-like solution for including files using the
##include markup [84], and there is an ongoing project on Google Code [85] which
implements preprocessor features with a different syntax.

22



Part I

Modelling and refactoring
preprocessor directives
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3
Metamodel for the C/C++ preprocessor

language

3.1 Introduction

The initial motivation of our work was the fact that the C++ analyzer Columbus
framework required preprocessed input files. Many software engineering tools choose
this way because of time or effort constraints. A usual excuse for ignoring the pre-
processor is that directives take up a really small part of program code. A thorough
empirical study shows however that 8.4% of the studied source code lines consists of
preprocessor directives on average [25]. A notable obstacle with the above-mentioned
approach is that there is no exact information on token positions in the original source
code. Developers of high quality reverse engineering tools at some point choose to
invest in including preprocessor information in their solutions. This was the motivation
of our work in the case of the Columbus framework; and similar decisions were made
in the FAMIX system [69], for example.

Several researchers have been working in this area. A valuable contribution was
made by Badros and Notkin [6], their framework allowing the user to write Perl callback
functions to follow the work of the preprocessor (even in conditionally excluded code).
The Ghinsu tool introduces coordinate mappings to describe macro calls [68]. The

25



CHAPTER 3. METAMODEL FOR THE C/C++ PREPROCESSOR LANGUAGE

GUPRO program understanding environment implements a fold graph that contains
information for visualizing directive usage [63]). Similar to the latter two, most of
these tools work only on one preprocessor configuration.

Schemas play a key role in the reverse engineering process, as already mentioned
in previous chapters. We designed a preprocessor schema to thoroughly deal with
the preprocessor. To our knowledge it is the first publicly available general-purpose
preprocessor schema. We hope that this work (like the Columbus Schema for C++)
will be utilized as a reference schema for other works. The schema also describes
conditionally excluded parts and may be used to aid overall program comprehension
and understanding code in real-world cases as well. Possible applications include macro
call-graph extraction, macro-expansion visualization, include hierarchy extraction and
so on. We have implemented a preprocessor which, besides preprocessing, is able to
generate instances of the schema. Largely thanks to this, the mapping of the language
elements to the original source code locations (e.g. where macro expansions are used)
in Columbus has been improved .

To facilitate tool interoperability, the generated schema instances are also written
in GXL format [53] so they can be used in software analysis, comprehension and
maintenance tasks by other tools as well. Yet another application of the schema is
in code quality assurance. Code containing preprocessor constructs may be checked
against constraints and rules (in general, code with relatively simple macro complexity
is better).

In the next section the preprocessor black-box problem will be introduced via an
example, and we will also present our preprocessor schema. In Section 3.3 we give some
example schema instances and ways they might be employed. Section 3.4 contains
further details on our implementation, while Section 3.5 describes some applications of
our results. Then, in Section 3.6, we draw some conclusions and mention some ideas
for possible future research.

3.2 The Columbus Schema for C/C++ Prepro-
cessing

Preprocessing means applying a set of low-level textual conversions on the source; the
C and C++ language specifications ([56], [105]) have it in a separate part, and it is
quite unrelated to the C++ language syntax. These text-based transformations are
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hard to follow, and for reverse engineers the preprocessor is similar to a black box. The
connection between its input and output is well-defined, but in concrete, real-life cases
it may be hard to see precisely what is going on.

The schema is an object-oriented model of preprocessor-related language elements
and their relationships. Object instances of the schema represent models of concrete
source files, the resulting compilation units and the transformations being made by the
preprocessor. This will then establish a connection between the original code and the
preprocessed code. During the preprocessing of a C/C++ source our preprocessor tool
builds the schema instance of the compilation unit, which represents both the source
code and the preprocessing transformations applied on it.

The preprocessed output of a given source code varies due to the interactions
of conditional directives, predefined macros and command-line defined macros. A
configuration is the code belonging to one particular run of the preprocessor with a
particular set of input macros. It is a far from trivial question of deciding how to
handle these configurations in an analyzer tool, lots of other solutions deal only with
the actual configuration.

To permit a wider range of information extraction we shall define two kinds of
schema instances, with two possible ways of usage. The first is the static instance
which does not depend on a given configuration (it will contain both true and false
parts of an #if directive, etc.). The second is the dynamic instance, which is associated
with one particular configuration, where conditional blocks ignored by the preprocessor
are also omitted from the instance.

3.2.1 Motivating example

The advantage of having schema instances, which reveal the inside of the prepro-
cessor black box, can be demonstrated with the examination of the following code
fragment of math.h taken from the Unix standard library in Listing 3.1. One could
start the investigation of this code as follows. The definition of the __MATH_PRECNAME
macro depends on the __STDC__ macro. Then bits/mathcalls.h is included and
__MATH_PRECNAME is immediately undefined after this but, surprisingly, if we open the
file bits/mathcalls.h in the source we can not find the text __MATH_PRECNAME.
There are some questions raised by using this code. Is the macro __MATH_PRECNAME
used between the #define and #undef directives, or is this definition unnecessary
here?
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#if defined __USE_MISC || defined __USE_ISOC99

...

#ifdef __STDC__

# define __MATH_PRECNAME(name ,r) name##f##r

#else

# define __MATH_PRECNAME(name ,r) name/**/f/**/r

#endif

#include <bits/mathcalls.h>

#undef __MATH_PRECNAME

Listing 3.1: Example code fragment from math.h

Does the compiler really get this piece of code for compilation? If it does, which
of the two definitions is active? After a text-based search in the standard inclusion
directory we find that __MATH_PRECNAME is present only in two headers. One of them
is math.h, where it is part of a definition of another macro: the code fragment shown
below in Listing 3.2 is in math.h, but it comes before the previously mentioned piece
of code.

#define __MATHDECL_1(type , function ,suffix , args) \

extern type __MATH_PRECNAME(function ,suffix) args __THROW

Listing 3.2: The searched macro definition from math.h

At this point we have to check whether or not this newly defined macro is present
in bits/mathcalls.h, and we find that it is. But the following question still remains.
There are two #if directives which come before the definitions of __MATH_PRECNAME.
Is it possible that the compiler never gets this code? To answer this, we have to examine
other macros to determine whether they are defined here, and what their values are.
In general we can say that, to understand the code, the job of a preprocessor must
be simulated by the programmer. Using our schema makes the whole procedure easier
and a schema instance allows us to directly answer this and similar questions.

The outline of the dynamic schema instance of the example is shown in Figure 3.1
(only the relevant attributes are shown). As can be seen, math.h contains the definition
of __MATHDECL_1 (see node 10 in the figure). This definition is used at least once in
mathcalls.h (28), which can be checked by navigating through the FuncDefineRef
object (40). Also, __MATHDECL_1 contains an invocation of the __MATH_PRECNAME
macro (15), this invocation is connected (41) with its definition in math.h (22). It
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1 :File
name = math.h

contains (1)

hasReplacement(...)

15 :DirectiveId
name = __MATH_PRECNAME

10 :FuncDefine
name = __MATHDECL_1

hasParameter(...)

... ...

...

contains (2)

18 :If
enabled = true

dependsOn

19 :DirectiveText
name = ...

hasConstExpression

20 :Ifdef
enabled = true

22 :FuncDefine
name = __MATH_PRECNAME

23 :Else
enabled = false 24 :Endif 25 :Include

26 :Text
name = <bits/mathcalls.h>

hasFileName

dependsOn

40 :FuncDefineRef
refersToId

hasReplacement(…)

... 27 :File
name = bits/mathcalls.h

includes

21 :DirectiveId
name = __STDC__

hasConstExpression

...

contains (1)

...

contains (3)

28 :Id
name = __MATHDECL_1

hasReplacement(...)

contains (2)

41 :FuncDefineRef

refersToId

refersToDefinition

contains (5)
contains (6) contains (7) contains (9) contains (10)contains (3)

refersToDefinition

contains (8)

refersToNext

...

contains (4)

dependsOn
dependsOn

belongsTo
belongsTo

29 :Undef
name = __MATH_PRECNAME

undefines

dependsOn

...

hasParameter(...)

...
...

hasArgument(…)

hasArgument(…)

Figure 3.1: math.h: an example of a dynamic schema instance

can also be seen in the figure that the first #if condition (18) is enabled (evaluated
to true), and also the #ifdef of __STDC__ (20) was true, so the first definition of
__MATH_PRECNAME was active (22).

Next, the questions listed at the beginning of this section can be answered in the
following way. The __MATH_PRECNAME macro was used before it became undefined
(so the definition is, of course, necessary), and the compiler gets this code fragment
with the first definition. This is because the macro call (15) can be reached starting
from Include at node 25, which comes before Undef at node 29.

As one might imagine from the example above, there are a number of typical
questions about the preprocessing task. E.g.: Where is the active definition of a
macro? Has this file really been included? Does the compiler get these lines after
preprocessing? There are configuration independent problems as well, such as where
all the different definitions of a macro can be found. With the help of our metamodel
one can find a way of answering these questions and similar ones.

3.2.2 The preprocessor schema

The schema is presented using the UML Class Diagram notation [78]. Both static and
dynamic instances are described by the same schema.

The UML Class Diagram of the preprocessor schema is given in Figure 3.2. The
class Base is the abstract base class of all classes in the schema. Each element
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that appears in the source file has a position, so (except for File, DefineRef and
FuncDefineRef ) all classes are descendants of Positioned.

The root of an instance is a File object. A File object can contain any number
of ordered Element objects. Element is the abstract base class of elements contained
in File. From the preprocessor’s point of view a file consists of elements which can
be either preprocessor directives or other text elements, so there are two specialized
classes from Element: Directive and Text, the first also being an abstract one. Except
for the text contained by directives, all textual elements in the file are represented by
the class Text. The only parts of the source text of interest to the preprocessor are
the identifiers (subclass Id), which are separate objects in an instance, because they
may be macro calls. Otherwise the length and contents of text elements in one Text
object is not determined by the schema, but by the strategy of instance building (it
can be a preprocessing token or a longer sequence of characters).

Directives

Specialized classes of Directive correspond to the directive types. Most directives have
various textual elements (like macro replacement) that are ordered lists of DirectiveText
objects. The directives and their relations will now be described.

The Include directive inserts a whole source file in the position of the directive. An
Include object includes a new File object, which is the root object of all elements of
the included source file (this part is also completely expanded, and it may also contain
further included files). The hasFileName relation between Include and DirectiveText
associates the filename with the include directive. There are two different types of ag-
gregation between Include and File in the static and dynamic cases (see the constraint
in Figure 3.2). In the dynamic case when a file is included several times in a compi-
lation unit, they require separate File objects with the whole subgraph because there
may be macro definitions between the different include directives (or in the included
file) which can influence the included file bodies even in one configuration. In this
case the relation is a composition. In the static case the file which is included several
times has the same content because the static instance is configuration-independent,
so the one File object is shared among different Includes. To describe the command
line forced includes (this means that the file given in command line is included before
the first line of source file), the class Include has an attribute called isExternal. For an
example on the include directive, see Figure 3.3 in Section 3.3.
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The null directive represents a hashmark followed by a newline, it does nothing and
its class has no relations.

Conditional directives represent code blocks controlled by the conditional code in-
clusion (commonly known as conditional compilation [56]). Conditional is the abstract
base class of conditional directives which determine conditional blocks. Conditionals
If, Ifdef, Ifndef are derived from the IfGroup abstract class. The conditional inclusion
is controlled by special expressions called integral constant expressions [56]. These ex-
pressions must be evaluated in the preprocessing phase of the compilation. The result
of the evaluation is an integer which is treated as a boolean. They typically contain
constants, macros and a special operator called Defined. The operator Defined has
one operand and evaluates to 1 if the operand is defined as a macro name, and to
0 otherwise. Only IfGroup and Elif can have constant expressions. The conditional
block is a list of sequential elements starting with an If, Ifdef, Ifndef or Elif and fin-
ishing before the matching Elif or Else or Endif pair of previous directives (note that
conditional directives can be nested). Each Conditional object has a conditional block,
which is linked to the directive using the relation dependsOn, because these elements
depend on it. (There may be additional conditionals or included files in a block.) As
regards an If-Elif-Else-Endif sequence, the code of a conditional block is included in
the preprocessed output file only if this block is the first in the sequence, which has a
conditional expression with a value of true. In this case the enabled attribute of the
Conditional object is true, otherwise false (this attribute is relevant only in dynamic
instances). To identify members of these conditional sequences the belongsTo relation
is defined, so that Elif, Else and Endif objects can reference the appropriate If (or
Ifdef, Ifndef ) object.

Different configurations arise from different conditional blocks, but a normal run of
a preprocessor produces only a single configuration (this is modelled with a dynamic
schema instance). For a software maintainer it is important to see more (or all) config-
urations. Static schema instances treat all conditional blocks enabled, and therefore at
the same time information can be gathered from more configurations. For examples,
see figures 3.4 and 3.5 in sections 3.3.1 and 3.3.2, respectively.

An Error directive generates an error message and its use is usually combined with
conditional directives. It has DirectiveText elements following the directive name,
which are written out as an error message of the preprocessor.

The Line directive has two tasks: it generates line information for the compiler and
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it redefines the __LINE__ and the __FILE__ standard C/C++ macros. Line has a
line number and, optionally, a file name.

A Pragma directive is an implementation-defined control sequence for the prepro-
cessor or the compiler (for example, to disable warnings or prevent multiple header
inclusions). It has directive-texts which may contain macro invocations.

The Define directive is used to define preprocessor macros. Classes Define and
FuncDefine will be described in the next subsection.

The Undef directive makes a previously defined macro undefined. It references only
the corresponding Define object. One definition can be undefined zero or more times
(only the first is accepted; the Undef directives which try to undefine not defined
macronames are simply ignored). The relation present in the schema permits one
Undef directive to reference multiple definitions, although in one configuration only
zero or one definition can be referenced. Multiple relations are allowed only in the
static case where all possible definitions (in different configurations) can be accessed
(see the constraint in Figure 3.2). Undef also has an attribute called isExternal for
the command line undefinitions of built-in predefined macros.

Macros

Macro definitions are represented by classes Define for simple, and FuncDefine for
function-like macros. Define has a name attribute, and replacement text which is for
replacing the macroname at the place of a macro call (this text is called a replacement
list, and consists of DirectiveText objects). Definitions of function-like macros have
zero or more ordered parameters. The formal parameter list is represented by objects of
the class Parameter (the opening and closing parentheses and the commas separating
the formal parameters are not present in the schema).

All textual elements inside directives are represented by the class DirectiveText
(the text is stored in the name attribute). Identifiers have to be objects of the class
DirectiveId. A macro replacement list may contain further macronames (DirectiveId)
and it may also contain Concat operators (##). The Concat operator concatenates
the preceding and the subsequent tokens and makes a new token.

The replacement list of function-like macros has some other special features. In
the list a DirectiveId object may refer to one Parameter object: this DirectiveId will
be replaced by the corresponding argument during a macro call. In this kind of re-
placement list, if the Concat operator concatenates a parameter then the parameter is
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substituted before concatenation, and further macro expansions can be performed only
after concatenation. The list may also contain Stringize operators (#). A Stringize
operator must be followed by a DirectiveId (which is a parameter name), and dur-
ing the replacement the operator creates a string literal from the actual argument.
The two replacement list operators are specialized from DirectiveText because during
preprocessing both produce new text from the arguments.

Macro invocations are represented by DefineRef objects. A DefineRef object refers
to an Id (in simple text) or DirectiveId (in the text of directives) and links it to its defi-
nition by referring to the appropriate Define object (objects of DefineRef, being helper
objects, do not represent any concrete source code element). One macro definition
can be used (referred to) zero or more times. The invocation of a function-like macro
(FuncDefineRef ) has arguments which are objects of class Argument. Arguments are
texts that are separated by commas. According to the place of the call an argument
consists of one or more Text or DirectiveText objects, or their Ids because the argu-
ment may contain further calls. Parameter substitution occurs after every macro in
the argument list has been expanded, but before other macros in the replacement list
have been expanded.

The usage of DefineRef objects is different in the static and in the dynamic cases.
In the static case a macro call (Id or DirectiveId) can refer to several definitions at
the same time (with relation refersToId), and this way all possible definitions can be
tracked, which can be important for a maintainer. In the dynamic case a macro name
(Id) can be linked only with its active definition (its multiplicity is 0..1 in the dynamic
case; see the constraint in Figure 3.2). At a given point in a source file the active
definition of a macro is backward the first Define directive, which has no matching
Undef directive (the included source files are also taken into account). The macro
names in the replacement list of a macro may contain further macros (DirectiveId).
This identifier may be associated with additional definitions even in the dynamic case.
In the following example, shown in Listing 3.3, there are two expansions of macro
A (lines 3 and 6). In the two cases different definitions of B will be active: in the
first case it is the definition in line 1, and in the second case it is the definition in
line 5. This difficulty with nested macro invocations necessitated the introduction of
the DefineRef class and its refersToNext relation. When the replacement list or any
argument contains further macro calls, the full expansion of a macro requires additional
DefineRef objects, which are linked to each other with the refersToNext relation.
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1 #define B 3

2 #define A k*B

3 A // =⇒ k*3

4 #undef B

5 #define B 5

6 A // =⇒ k*5

Listing 3.3: Scope of macro definitions

As we saw in the previous example, macro calls in a replacement list cannot be
evaluated at the point of definition (macro call B in the replacement list of macro A).
Once the macro expansion is started with an identifier, a list of DefineRef objects
describes the first and the subsequent, generated macro calls. Each DefineRef object
may refer to the next DefineRef, and each may be referred by zero or one object (the
first has zero references). When a function-like macro is called, DefineRef objects
for macro calls in arguments are included in the list before the further macro calls in
the replacement list. The macro representation is explained in more detail below, and
examples are also provided.

3.3 Usability of models

In this section some examples are presented on how some commonly used preprocessor
features can be modelled using our schema. The details on static and dynamic instances
are given below.

Dynamic instances represent exactly one configuration, while static instances let
us see the overall code without any specific detail about a concrete configuration. We
will illustrate this difference with an example of file inclusion. In static instances an
included file name always generates the same File object, and each include directive
refers to it. In dynamic instances every include has a different macro context and has
its own File object, as outlined above in the description of the Include directive.

The dynamic and the static instances of the sample piece of code in Listing 3.4
can be seen in Figure 3.3.
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contains (1)

1 :File
name = main1.c

12 :DirectiveText
name = “config.h”

...

13 :File
name = config.h

14 :Define
name = MACRO11 :Include ......... 15 :Include

16 :DirectiveText
name = “support.h”

19 :File
name = support.h

20 :Include

21 :DirectiveText
name = “config.h”

contains (5)contains (4)contains (3)contains (2)
contains (6)

hasFileName

contains

hasFileName

hasFileName

contains(1)

...

contains(2)

includes

...

22: File::
name = config.h

contains

includes

includes

contains (1)

1 :File
name = main1.c

12 :DirectiveText
name = “config.h”

...

13 :File
name = config.h

14 :Define
name = MACRO11 :Include ......... 15 :Include

16 :DirectiveText
name = “support.h”

19 :File
name = support.h

20 :Include

21 :DirectiveText
name = “config.h”

contains (5)contains (4)contains (3)contains (2)
contains (6)

hasFileName

contains

hasFileName

hasFileName

contains(1)

...

contains(2)

includes includes

(a) (b)

includes

Figure 3.3: Dynamic (a) and static (b) schema instances of the include example

// file: main1.c

-------------------------

#include "config.h"

...

#define MACRO

...

#include "support.h"

...

//file: support.h

-------------------------

#include "config.h"

...

Listing 3.4: Example include directive

The same file (config.h) is included twice, but in the second case it is via another
included file. In the dynamic case the File object is contained (via composition) in an
Include object (11-13, 15-19, 20-22). In this example there are two File objects for
config.h (13 and 22), this being caused by the different dynamic context of the two
cases (e. g. macro definition 14 or the usual header protection construct Ifndef –Define–
<contents>–Endif ). On the other hand, static instances contain all conditional blocks
regardless of the conditional expressions and contain all possible macro definitions and
macro calls, so the two Include directives of the header config.h (11, 20) share the
same object (13).
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3.3.1 Static schema instances

To learn more about static instances, let us examine the following example (see List-
ing 3.5 and Figure 3.4 as well). The macro LEVEL is defined to be 1 by default (10),
and there are two configurations: one for Unix and one for Windows. Both include
supporting headers and redefine the macro LEVEL (21 and 28). After the directives the
macro is called in a C if-statement. The macro call is linked via DefineRef nodes (40,
41, 42) with all the three possible definitions (10, 21, 28; using a pessimistic approach
of the configurations).

// file: main2.c

-------------------------

#define LEVEL 1

#ifdef unix

#include "support_unix.h"

#elif defined WIN32

#include "support_win32"

#endif

if(LEVEL >2)...

// file: support_unix.h

-------------------------

#undef LEVEL

#define LEVEL 3

...

file: support_win32.h

-------------------------

#undef LEVEL

#define LEVEL 4

...

Listing 3.5: Include example for static instance

Definitions are also gathered from included files. In general, for a macro definition
all possible macro calls can be seen, and vice-versa as well as all possible definitions of a
macro invocation (in each configuration). Similar to macro calls, the Undef directives
can refer to several definitions and one definition may be referred to by several Undef
objects.

The details of static instances are not so well defined as those of dynamic ones. The
strategy for building instances determines the final level of usability. In the previous
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contains (1)

1 :File
name = main2.c

15 :DirectiveText
name = “support_unix.h”

19 :File
name = support_unix.h

10 :Define
name = LEVEL 14 :Include

contains (3)contains (2) contains (4)

hasFileName

contains(2)

includes

12 :Ifdef

11 :DirectiveText
name = 1

hasReplacement

21 :Define
name = LEVEL

22 :DirectiveText
name = 3

hasReplacement

25 :DirectiveText
name = “support_win32.h”

26 :File
name = support_win32.h

17 :Include

hasFileName

contains(2)

includes

28 :Define
name = LEVEL

29 :DirectiveText
name = 4

hasReplacement

16 :Elif

contains (5) contains (6)

18 :Endif 30 :Id
name = if

32 :Id
name = LEVEL

33 :Text
name = >2) . . .

42 :DefineRef

40 :DefineRef

41 :DefineRef

refersToId
refersToId

refersToId

dependsOn dependsOn

27 :Undef
name = LEVEL

contains(1)

20 :Undef
name = LEVEL

contains(1)

refersToDefinition

undefines

undefines(1)

refersToDefinition

contains (9)
contains (10)

hasConstExpression

31 :Text
name =  (

contains (8)contains (7)

13 :DirectiveId
name = unix

hasConstExpression

undefines(2)
refersToDefinition

belongsTo belongsTo

23 :Defined 24 :DirectiveText
name = WIN32

hasConstExpression

checks

Figure 3.4: Static schema instance

example the Undef object 27 references two definitions (10 and 21). This is an example
of a simple but safe building strategy. Actually, making a reference to definition (21)
is not possible. It will never be present in any configuration because Undef (27) and
Define (21) are always in different configurations. An optimized building strategy
should filter these types of relations out. In the future it would be good to examine
how we could implement more intelligent strategies for building static instances.

3.3.2 Dynamic schema instances

A dynamic instance is an accurate description of a configuration. It is more precise
than the static one: the Undef directive, say, points to exactly one position, and the
actual macro calls can be traced.

The most interesting part of a dynamic instance is the macro expansion, which
makes use of a list of DefineRef objects. To see this, consider the following example
code listed in Listing 3.6 and its dynamic instance shown in Figure 3.5. The macro
BASE is defined as 200 (11). The function macro ERR (14) has two parameters (type
and place; 15, 16), and its replacement text contains a function call using the two
macro parameters. DirectiveIds (19, 23) in the figure below refer to the corresponding
Parameter objects.
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hasReplacement(6)

contains (1)

1 :File
name = main3.c

11 :Define
name = BASE

12 :DirectiveText
name = 200

hasReplacement

contains (2)

14 :FuncDefine
name = ERR

hasParameter(2)
hasParameter(1)

40 :FuncDefineRef

44 :DefineRef

45 :DefineRef

43 :DefineRef

refersToDirectiveId

refersToDefinition

refersToId

refersToId

refersToId

refersToDefinition

refersToNext

refersToNext

refersToDefinition

25 :Ifndef
enabled = false

26 :DirectiveId
name = BASE

hasConstExpression

27 :Else
enabled = true

28 :Define
name = K

29 :DirectiveText
name = 2

hasReplacement

30 :Endif 31 :Id
name = ERR

32 :Text
name = (

35 :Id
name = i

33 :Id
name = K

hasReplacement(1)
hasReplacement(2)

hasReplacement(3)
hasReplacement(4)

hasReplacement(5) hasReplacement(7)

15 :Parameter
name = type

16 :Parameter
name = place

17 :DirectiveText
name = ErrorMsg(

24 :DirectiveText
name = )

20 :DirectiveText
name = ,

22 :DirectiveText
name = +

19 :DirectiveId
name = type

21 :DirectiveId
name = BASE

23 :DirectiveId
name = place

refersTo

refersTo

refersToDirectiveId

42 :Argument

hasArgument(1)

hasArgument(2)

consistsOf
consistsOf

34 :Text
name = ,

36 :Text
name = );

41 :Argument

belongsTo dependsOn

belongsTo

contains   (3-12)

Figure 3.5: Dynamic schema instance

main3.c:

-------------------------

#define BASE 200

#define ERR(type ,place) ErrorMsg(type ,BASE+place)

#ifndef BASE

#define K 1

#else

#define K 2

#endif

ERR(K,i); // =⇒ ErrorMsg (2 ,200+i);

Listing 3.6: Dynamic macro expansion example

In the listed source code it can be seen that using conditional compilation, the
macro K is defined as 1 or 2, depending on whether the macro BASE is defined. The
dynamic instance contains only the enabled conditional block (27), so the definition
of K to 1 is not present in the instance. Apart from the enabled block, the disabled
directives are also stored in the instance together with their constant expressions, but
without their blocks. Storing these constant expressions is useful. For instance, in the
example the Else part is enabled, but to see why, we have to look at the constant
expression (with a macro; 26, 45, 11) belonging to the Ifndef directive, which is not
enabled. The relation belongsTo helps us find the matching conditional directives.
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At the end of the example the macro ERR is called (31, 40) with K (33, 41) and i
(35, 42) as arguments. The full macro expansion contains the objects 40, 43 and 44 in
the list. DefineRef 43 links the first argument (macro call K) with its definition in the
conditional block, so the actual argument will have the value 2 after substitution. The
third DefineRef object (44) shows that, at the point of macro call ERR, the identifier
BASE in the replacement list is a defined macro name. It is possible that later in the
code the BASE macro may be redefined and the macro ERR is called. Then this call
requires a new DefineRef object pointing to the new definition. Using the DefineRef
and Argument objects, the final result of the macro invocation can be easily obtained
from a dynamic instance.

3.3.3 How to get information out of the schema instances

In general, information extraction requires graph walks in the generated schema in-
stances. In the following we will present some typical applications.

The extraction of the preprocessed file from a dynamic instance requires the fol-
lowing actions during the walk. Text elements not depending on directives are simply
written out to the output. The directives are not written out, but instead all their
effects are applied. This means that only the enabled conditional blocks are written
out and the include directives are replaced with subgraphs. In addition, the macro sub-
stitutions are done by walking through each corresponding DefineRef object (at the
same time argument substitution is performed and the required operators are applied).

Analyzing intermediate states of preprocessing helps us to better understand how
the preprocessor works in a given situation. For instance, the levels of macro expan-
sions and whether the included subgraphs are inserted instead of the include directives
produce different intermediate states. To investigate nested macro calls and the levels
of the substitution we can go through the list of DefineRef objects in a step-by-step
fashion (relation refersToNext), exchange the Ids with the appropriate replacement
texts and substitute the parameters if needed. This technique is very similar to the
folding approach described in [63].

The include hierarchy of the compilation unit may be obtained from the static
instance by simply traversing all the edges between the File and Include objects, starting
from the File object of the input file.

As a last example we will show how the conditions under which a specific code line
can pass through the conditional compilation and can be retrieved. Starting from the
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point of interest in the static instance, one should walk through the dependsOn and
belongsTo relations up to the root File object. The result is an appropriate combination
of constant expressions of the traversed Conditional objects.

3.4 Building schema instances

Our model building preprocessor (CANPP) was implemented within the Columbus
framework, along similar lines to that of the C++ Analyzer (CAN). CANPP is, on the
one hand, an ordinary preprocessor and generates preprocessed program code, the usual
.i files, which can be compiled by compilers. On the other hand, in the background
a complete schema instance is built up in the memory and saved as a binary file. The
tool works on exactly one preprocessor configuration, which means that only dynamic
instances are produced.

An overview of our reverse engineering tools is given in Figure 3.6. The preprocessor
is the interface through which the compilation unit in influenced by the environment. In
the case of a compiler tool-chain, the environment contains several predefined macros.
In order to produce preprocessed files, a complete standard library implementation
must be available. The library search paths are also part of the environment of the
compilation. We collected the necessary information to a .ini file, which contains
standard library paths and predefined macros necessary for preprocessing. These sets
of data are input for the CANPP tool, as shown in the figure. The preprocessor has
command line options as well; among other things it is possible to define and undefine
macros, or to add include paths to the process. The detailed list of command line
options can be read in Appendix C.2.

When the necessary information is provided, the tool generates preprocessed (.i)
files and preprocessor schema instance (.psi) files. To support whole program analysis,
.psi files are merged to a linked .psi file. Hence whole software systems with several
modules can be analyzed (for example Openoffice may be readily analyzed, with the
help of the Columbus wrapping technique). The final step is to export the GXL or
the PPML (Preprocessor Markup Language - our internal XML format, example code
can be found in Appendix C.1) version of the graphs. In addition, using the API,
schema instance files can be used for program understanding purposes; for example to
implement the folding mechanism (shown in Section 3.5).

During the implementation our aim was to mimic two mainstream preprocessor
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Ini file
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Figure 3.6: Preprocessor reverse engineering process

implementations, the Microsoft cl [76] on the Windows platform, and the GNU cpp
[104] on Linux and Windows platforms. The test criterion was to obtain logically
identical (except white-spaces, empty lines and #line directives) preprocessed output,
which was successfully done on both platforms. Naturally, our tool is significantly
slower than industrial preprocessor implementations that produce only .i files. A
configuration utility has been developed both for the GNU and for the Visual Studio
environments. The goal of the configuration process is to extract predefined macros
and library paths (usually with versions) from the environment to create the .ini files.
Currently the Visual Studio on Windows, and gcc on Windows and Linux platforms are
supported environments.

3.5 Utilization of results

First of all, all contributions reported in this thesis make use of the metamodel and the
extracted program models. The model level refactoring solution and the macro slices
rely on these fundamental results. Many other solutions depend on the results of this
contribution, which are not strictly part of the thesis but are in some way related to the
work of the author. To demonstrate the importance of our results, we shall mention
some important projects and tools.

42



3.5. UTILIZATION OF RESULTS

3.5.1 Applications in the Columbus framework

The CANPP toolset is part of the Columbus framework. Preprocessor-related infor-
mation is used in several domains.

SourceAudit The SourceAudit tool extracts various kinds of source code based
quality attributes and checks coding rules [32]. Using this tool memory handling or
code layout problems, and coding bad smells can be found automatically. The coding
rules are extended with preprocessor-related ones; for example, macro names should
be written in capitals. In addition, writing rules that check the original form of the
code has become possible. For instance a limit checking of source code line length
on preprocessed code is not exact because macro replacement usually increases line
length, resulting in false positive warnings.

Macro expansion positions In some cases there is no need for the full mapping
of unprocessed-preprocessed code; it is enough to know whether a particular C/C++
language element is a result of a macro expansion. For this purpose an algorithm
calculates the output positions of the graph globally, and prints out a table for each
source file with the intervals in the preprocessed file that are the result of macro
expansion. These tables are then processed and handled, for example, when we want to
highlight particular code fragments. This is one of the most frequently used applications
of the schema.

Include dependency The textual output contains a header file dependency list of
the current base input file. The list requires further processing, one application being
to help in incremental parsing in the Columbus tool.

Macro folding Folding is a mechanism for displaying macro replacement information
for programmers [63]. Debugging may be really hard to do when the compiler error
belongs to a line where a macro is called. In this case the programmer sees only the
name of the macro, but the expanded program code may be several lines long, which is
hidden from the programmer. The folding mechanism allows the programmer to switch
between the two views of the code (macro name and replacement) in a step-by-step
manner.
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The folding mechanism was implemented as a programming task of a BSc thesis
[90]. A Visual Studio plugin (similar to the SourceAudit tool) analyzes the currently
open source file and inserts control characters at the places of macro calls. Fold/un-
fold buttons control the display of the actual macro at the cursor position. The orig-
inal macro name (folded state) is signed with right and left triangles: ◃MACRO▹,
while the replacement (unfolded state) is shown between down and up triangles:
▽Replacement△, as shown in the following example:

#define A 2

#define B A + 3

B ⇐⇒ ◃B▹ ⇐⇒ ▽◃A▹ + 3△ ⇐⇒ ▽▽2△ + 3△

Listing 3.7: Macro folding example

A screenshot of the plugin in Visual Studio together with the macro structure
visualization is shown in Figure 3.7.

 

Figure 3.7: Folding in Visual Studio
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3.5.2 Industrial and academic research projects

The results of preprocessor-related analysis have been used in several research projects.
For instance a more than 5 million lLoc large software was successfully analyzed using
our tool in a joint project with Nokia Research Center for compile time optimization.
Another example here is a project co-funded by the EU. The aim of the OpenOffice++
R&D project was to analyze and improve the architecture of OpenOffice.org and the
quality of its source code.

3.6 Summary

In this chapter we introduced the Columbus Schema for C/C++ Preprocessing. We
showed through various examples that different kinds of program analysis, comprehen-
sion and maintenance problems can be overcome by using instances of our schema.
The schema describes both dynamic and static instances for investigating the source
code in a configuration dependent or independent way. Our implementation supports
dynamic instances only, which still has a wide range of possible applications. The
use of a standard notation and technology (UML, GXL) allows other reverse engineer-
ing tools to use the extracted information (for instance source browsers, visualizers
and code-understanding tools), so it relieves researchers of the burden of having to
write preprocessors for different purposes and allows them to concentrate on their own
concrete research topic. The results of this work have been used in various ways from
coding rule checking to visualization with the folding mechanism. In the future we plan
to support static instance building and related applications in the area of configuration
independent analysis.

The results of this chapter belong to contribution point I/1 (Metamodel for the
C/C++ preprocessor language) and were published in papers [VB03, VBF04].
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4
Refactoring at the model level

4.1 Introduction

In the past fifteen years refactoring has become an increasingly important technique
for improving the design of existing code [79, 80, 110]. It is a program transformation
which preserves program behaviour, while the quality of the program becomes better
from some point of view (reusability, maintainability, readability, flexibility). Nowadays
refactoring is a well-known technique mainly due to the model-driven development
trend in software engineering, including the emphasis on iterative development. The
strong need for tool support has resulted in an increasing number of refactoring tools,
primarily for object-oriented languages like Smalltalk [91], Java [60], for C++ [95, 88],
and for various kinds of languages, many of them listed in the refactoring catalog [89].
Refactoring is by definition a small transformation, but successively applied refactorings
may lead to a larger modification. Therefore refactorings are usually applied together
as composite refactorings. For example in an Add parameter refactoring, when a new
parameter is added to a function, one has to consider modifying the call sites of the
function.

In this chapter we will carry out the refactoring of C/C++ preprocessor constructs
at the model level. We shall investigate the refactoring of reverse engineered program
models derived from real-life C/C++ software, with an emphasis on the safety of the
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transformations. Although refactoring in the C/C++ language is essential and affects
many software developer companies, the tool support still needs to be improved. One
of the main reasons for this is that two languages actually have to be refactored:
the C or C++ language itself, and the preprocessor language. The presence of the
preprocessor introduces many obstacles [114]; even a transformation as simple as a
“rename variable” requires the analysis of preprocessor configurations [40].

In contrast to most studies, this current work uses the preprocessor as a separate
language, so the preprocessor constructs are treated as the main subject of refactoring
transformations. Naturally, preprocessor refactorings may be used later when compos-
ing C/C++ language refactorings as well. There are many points which need to be
considered before a refactoring can be applied (e.g. the so-called preconditions have
to be fulfilled). The model-driven trend in software engineering allows one to carry
out refactorings at the model level, including verifying the preconditions. In addition,
the modified model may be further validated so that the concrete refactoring may be
refined.

Our aim is to safely perform a sequence of refactorings on a reverse-engineered
program model. The importance of model level refactorings is emphasized by the
fact that a high level refactoring cannot be performed, more special derivatives must
be elaborated on instead. Here we propose a method for extracting program models
from existing systems, planning concrete refactorings based on a high level description,
performing them at the model level and verifying models and transformations. The
transformations on the preprocessor metamodel will be described by graph transfor-
mations, which make them easy to understand and handle [45]. The Columbus and
the USE systems were employed to implement our approach, which allows us to han-
dle reverse-engineered program models and validate the transformations using OCL
expressions.

This chapter is organized as follows. The next section contains our main con-
tribution, including a short description of the important parts of the preprocessor
metamodel, the graph transformation approach for refactoring, the reverse engineering
process and the add parameter refactoring. Section 4.3 describes the implementation
and the experiments. After, in Section 4.4 we draw some pertinent conclusions and
make some suggestions for future study.
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4.2 Refactoring on the C/C++ preprocessor meta-
model

Refactoring is a way of improving the internal quality of the code [73]. Even when
it is time to improve the maintainability or to correct the bad design of a former
phase of development, the estimated cost of a change may discourage refactoring
activities. On the other hand, when refactoring is done on program code, testing
after each refactoring step requires a great deal of effort, and in the worst case major
modifications may remain untested. Our intention here is to carry out controlled and
validated refactoring steps (safe refactoring), which saves time and requires less effort.

In our study refactorings were performed on program models produced by the
Columbus framework [34] using the preprocessor schema. The CANPP tool builds
the graph representation of C/C++ programs, which includes information about the
use of preprocessor directives, like macro definitions and calls, which conform with the
preprocessor metamodel. The model-level transformations were realized via the USE
system [47].

In this section graph transformation as a method for refactoring will be outlined,
followed by a necessary description of the preprocessor metamodel. In the remaining
part, the add parameter refactoring is investigated in detail.

4.2.1 Refactoring using graph transformation

The graph transformation approach is a natural way to express formal refactoring (e.g.
refactoring at the model level). A graph transformation rule is usually given by two
states of the graph (before and after the transformation), which corresponds to the
usual view of a refactoring. In fact, there is a good correspondence between the notions
and terms of refactoring and graph transformations [73, 71]. Mens et al. [74] give
details on using graph transformations for refactoring and provide helpful illustrative
examples. In addition to general approaches, efforts have been made towards applying
this approach in domain specific environments as well [21, 67, 108]

We shall use a single pushout approach for graph transformation rules possessing
a left and a right hand side. Instead of using the rather complicated NAC (Negative
Application Condition), we will provide preconditions as OCL expressions. Despite the
NAC concept being an integral part of graph transformation theory, we shall omit it
because OCL is the natural way to express preconditions and it is also flexible enough
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to handle complex cases.
The definitions of directed, attributed graphs are used in the usual way. A pro-

gram graph is directed, labelled, attributed graph where nodes, attributes and edges
correspond to the metamodel that we shall employ:

• nodes are labelled with class names shown in the UML class diagram

• nodes have attributes which are called as class attributes, the possible values of
the attributes coming from the corresponding UML types

• edges are labelled with relation names shown in the UML class diagram

Program graphs are introduced using an object diagram-like notation (see Fig-
ure 4.1).

:FuncDefine
name = B

:DirectiveId
name = x

 :Parameter
name = x

hasParameter

Figure 4.1: Object diagram-like notation of the graph

Not all graphs that correspond to the definition above represent valid C/C++
preprocessor constructions, but in the reverse engineering context we shall assume
that the starting graph is a well-formed graph and that this property is preserved
owing to the conditions of the transformations.

4.2.2 The preprocessor metamodel

We utilized the Columbus Schema for C/C++ Preprocessing as a preprocessor meta-
model, which is represented in Figure 3.2 (in Chapter 3) as a UML Class Diagram. As
the detailed structure of the metamodel is described in Chapter 3, only the necessary
parts of it will be mentioned here.

There are classes which describe both object-like and function-like (parameterized)
macro definitions. Macro expansions can be tracked with the help of reference (De-
fineRef ) objects. A DefineRef object links the position of the call (such as an Id) to
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the position of the macro definition. Moreover, function-like macro expansions con-
tain an ordered list of arguments (Argument objects), which are matched to macro
parameters (in this case the reference object is called FuncDefineRef ). The structure
of the macro body (replacement list) is described using the DirectiveText class and its
descendant classes, with the help of associations between them. A macro definition
may contain further macro calls, so that a sequence of expansions takes place during
the full expansion of a macro. Since each expansion step requires a DefineRef object,
a full expansion is represented by a sequence of reference objects, which is described
by the refersToNext relation.

4.2.3 Add parameter refactoring

The add parameter refactoring allows a method to process more information than it
could previously. It may be a part of a complex refactoring, and it may implement
a new feature as well (in this sense it is not a classical refactoring as it is not be-
haviour preserving). The object-oriented version of this refactoring (add parameter to
a method) is described in [37]. In the object-oriented case there are several alternatives
to consider such as whether to introduce a parameter object, or whether to get the
required information through an object which has already been passed to the method.
The proposed mechanics of changes in the code include the following steps: declare a
new method with the additional parameter, copy the method body from the old one
to the new one, compile the code, call the new method from the body of the old one,
then compile and test. Next, modify each call site of the old method to call the new
one, compile and test it for each case, remove the old method, and finally compile and
test.

We recommend that the following steps should be taken into account:

• Check for alternatives, and avoid an excessively long parameter list

• Check for preconditions

• Determine the concrete type of the transformation rule and process

• Modify the call sites: add a new argument

• Check each call site by hand
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Unlike code refactoring, the operations listed above may be automated at the model
level, except for the first and the last one. In the following we propose viewpoints and
aspects of planning concrete macro-related refactorings, and also highlight important
parts of the preprocessor metamodel.

Alternatives In a rare case an alternative may be to get the required information
from an existing parameter either by string concatenation using an appropriate string
or other parameter, or by applying the stringize operator. One possibility is to get an
enumerator name from an existing string parameter, or to get the string form of a case
label. Some preprocessor implementations support variadic macros (variable parameter
lists), which in some cases make it unnecessary to add a new parameter. However a
good reason for not making use of this type of refactoring is the long parameter list
bad smell, which may be avoided by restructuring macros.

Preconditions The suitability of the refactoring depends on the way the macros are
defined. There are four types of macros based on the place of their definition:

• Standard macros - defined by the preprocessor standard, e.g. __FILE__ and
__LINE__ macros

• Environment macros - defined by the compiler environment, e.g. __GCC_VER__
for GCC and MSC_VER for Microsoft Visual Studio.

• Command line macros - defined as command line parameters, applied just to the
actual compilation unit.

• Ordinal macros in the source code

In the metamodel the type of a macro is represented by the isExternal attribute.
The value is true in the case of standard macros, environment macros, and command
line defined macros. Naturally, refactorings may only be applied to the non-external
definitions.

The new parameter name has to fulfill some conditions. One is that there should
not exist a parameter with the same given name. The replacement text of the macro
must be checked for the new parameter name to see whether a preprocessing token
already exists with the same text. These conditions can be checked locally. (Note
that there is no need to check whether the new name conflicts with an already defined
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macro name, because argument substitution takes place before the further extraction
of macros in the replacement text, hence the formal parameter name is replaced before
any macro expansion.)

refersToDefinition
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:FuncDefine
name = MACRO
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Figure 4.2: Add parameter transformation - left hand side of the rule
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Figure 4.3: Add parameter transformation - right hand side of the rule (result)

Concrete type of transformation A general refactoring in most cases can be
formalized in many ways depending on the specific needs. Similarly, a graph trans-
formation can be presented as a transformation rule schema and a set of concrete
transformations. The add parameter refactoring includes three types of transforma-
tions. These are:

A Function-like macros
This is the usual case: a parameterized macro is extended with a new parameter.

B Object-like macros
Because of the new parameter, the type of the macro definition has to be changed
from an object-like to function-like macro. The two macro types are represented
by different classes in the metamodel (Define and FuncDefine).
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C Variadic macros
The variable parameter is always the last one, so the new parameter must be
inserted before the variadic one.

The first is the basic case (type A), hence we provide a schematic graph transfor-
mation rule for the add parameter to a function-like macro in the two figures above.
Figure 4.2 contains the left hand side of the transformation and Figure 4.3 contains
the right hand side after the refactoring. The macro definition part is shown on the
left hand side of both figures, while on the right hand side of each figure there is an
example call of the macro. In Figure 4.3 the new nodes are shown in grey and the new
edges are depicted in bold. The schematic program code corresponding to both sides
of the transformation is the following for the left hand side:

#define MACRO(P1, ... Pn) R1 ... R_P1 ... R_Pn ... Rm

...

MACRO (A1, ... An)

Listing 4.1: Schematic left hand side of the transformation

and for the right hand side it is:

#define MACRO(P1, ... Pn , Pn+1) R1 ... R_P1 ... R_Pn ... Rm

...

MACRO (A1, ... An , An+1)

Listing 4.2: Schematic right hand side of the transformation

The new parameter is included in the definition as the last parameter in the ordered
association. Note that the new parameter is not automatically used in the macro body.
Similar to object-oriented refactorings, the use of the new parameter has to be coded
by hand. At the model level, just one new node (Parameter) and one new edge are
added (hasParameter).

Call sites In addition to the new parameter, each call site of the macro definition
must be changed. In accordance with the metamodel, each DefineRef object estab-
lishes a link between macro definitions and macro calls. The refersToId relation indi-
cates the position of the call, while the refersToDefinition relation indicates the called
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Figure 4.4: Add parameter to object like macro - left hand side and right hand side of
the rule

definition. With a type A transformation the macro definition usually has DefineRef
objects, which are traversed. For each of them the pointed macro call is identified and
at the end of the argument list a new placeholder argument is inserted. Finding an
appropriate argument is easier than that for a typed language: in the preprocessor lan-
guage everything is text, so any token is a valid argument. However it is recommended
that an argument be inserted with a name which refers to the actual refactoring. The
new argument is linked to the FuncDefineRef object via a new Argument object. For
each call site three nodes and three edges are added to the model.

Object-like and variadic macros The second concrete type (B) of the refactoring
is the extension of an object-like macro with a parameter. In this case there are more
structural changes in the program. In Figure 4.4 both sides of the rule can be seen.
On the left hand side there is a simple macro with its replacement list, while on the
right hand side there is the function-like macro with a new parameter. The new nodes
are shown in grey, added edges are in bold, while objects with a changed type are
shown in grey and have been outlined with dashed lines. The new parameter changes
the type of the macro, based on the metamodel from Define to FuncDefine, as well as
the type of the reference from DefineRef to FuncDefineRef. A placeholder argument
inside parentheses is added to each call site.

The last parameter of variadic macros (C) is called “. . . ” (some implementations
support the name. . . form). In this case, any number of arguments can be passed to
the macro. The special token called __VA_ARGS__ will be replaced by the list of
variadic arguments in the macro body. This type is similar to the first one as no type
change is needed. However in this case the new parameter node and the placeholder
argument are inserted before the variadic parameter and arguments, respectively.
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4.3 Architecture

Refactorings are implemented using a reverse engineering framework and a model trans-
formation tool. Besides carrying out experiments on small examples, we investigated
the applicability of the method on several real-life open source programs. Experiments
were performed using the object-like macro version of the add parameter refactoring.

Reverse engineering and transformations The reverse engineering of C/C++
directives is done using the preprocessor part of the Columbus system, while the plan-
ning phase of the concrete refactoring and the actual transformation are done using
the USE system (UML-based Specification Environment [113]). An interesting fea-
ture of the USE system here is that it handles UML metamodels together with OCL
constraints and queries in order to handle concrete models. Although USE was not
originally intended for graph transformations, it can be used to realize graph transfor-
mations and it incorporates the advantages of OCL validation [16, 46]. We propose
the following tool architecture depicted in Figure 4.5.

Visual
Planning
In USE

USE
Program

model

Preprocessor
Metamodel

Transformation
rule description

Applicable
transf. rule

+pre/ postcond.

Program 
positions to 
apply rule

Program 
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System
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Program
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Rule2OCL

Program
Source 
code

Program
Source 
code
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engineering
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Program model

Exporter
for USE

A

B

C D

Figure 4.5: Refactoring architecture

The preprocessor metamodel is used in each part of the process (A). The trans-
formation rule is designed by adjusting left and right hand side models in the USE
system (B). Based on the models, a rule description file is created by hand (which is
a straightforward step). The Rule2OCL tool uses the metamodel and the rule descrip-
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tion to generate applicable rules. OCL pre and postconditions are also automatically
generated. The Columbus tool produces the first program model (C). We implemented
a new exporter that generates the program model in an appropriate form for the USE
system. In this step elements of standard libraries are filtered out. The USE system
checks to see whether the reverse-engineered model conforms with the metamodel
(D). The rules are then applied at specified program points (in our case these points
are automatically generated). The preconditions and postconditions on the refactored
model are checked in each case and any inconsistencies are reported. A refactored
object-like macro in the USE system can be seen in Figure 4.6. (Note that this is an
implementation of the refactoring depicted in Figure 4.4.)

Figure 4.6: An object-like macro after refactoring in the USE environment

Experiments and limitations The object-like macro refactoring is implemented
in two steps. The macro definition is changed and a parameter is first added, then
each call site is extended with an argument. The macro definition on which the rule is
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applied is the parameter of the rule. In our experiments we generated parameters to
refactor all non-external object-like macro definitions.

The main properties of the refactored programs are listed in Table 4.1. Program
sizes are given both in terms of lines of code and nodes in the program model. Both
the number of object-like macros and the number of modified call sites are shown.

Program Size Size Obj. Call Time
name (lines) (nodes) macr. sites

time 1119 549 1 9 5s
wdiff 1364 644 4 18 6s
barcode 2807 999 23 48 25s
bc 9472 4296 47 264 48m
gzip 5997 4732 82 248 69m
diffutils 10124 6798 31 91 55m

Total 30883 18018 188 678

Table 4.1: Refactored programs

The USE system automatically generates postconditions which are checked after
the refactoring, the checking being the most time-consuming part of the transforma-
tion. It can be seen that the running time dramatically increases as the size of the
model increases. We had to filter out standard libraries and we had to skip a small
part of the postconditions.

Despite the above-mentioned limitations, the toolchain can be used for refactoring
and checking small but real-life programs. However further work is needed to reach
the applicability on huge industrial programs.

4.4 Conclusions and future work

With each modification of an existing program one may inadvertently create new er-
rors. The same goes for refactoring, the popular technique for improving the quality of
existing program code. In this chapter a method was introduced to carry out program
refactoring at the model level to reduce the risk of creating new errors. The targets of
the modifications were the preprocessor directives, which are usually omitted from a
C/C++ program analysis. We presented viewpoints and steps for elaborating concrete
macro-related refactorings based on the preprocessor metamodel. As a demonstration
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of the approach, the add parameter refactoring for preprocessor macros was investi-
gated at the general and concrete levels. Real-life programs were reverse engineered to
obtain the models. Tool interoperability is assured by a new exporter which generates
program models understandable for USE, based on the Columbus schema instances.
The proposed refactoring architecture supports the visual planning of concrete refac-
torings based on high level descriptions; facilitates execution in a semi-automated way;
and it supports constraint checking on models. The usability of the approach was
demonstrated via successful experiments, where transformations were performed on
reverse engineered program models derived from several small, but real-life C/C++
programs. In the future it would be helpful to investigate possibilities of completing the
re-engineering phase by propagating transformations back to the program code itself.

The results of this chapter belong to contribution point I/2 (Model level refactoring
of macros) and were published in paper [Vid09] and partly in paper [VGF06].
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Slicing methods for change
impact analysis
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5
Background and motivation

Various program analysis methods and tools have been proposed to assist activities
related to software maintenance. The handling of changes is a key issue in software
maintenance, and an open question both in industry and the academic sphere [87].
Change impact analysis is the study of the ripple effect that is caused by a change in
a large system. The goal of this process is to determine which parts of the system
are affected by a particular change before the change actually takes place. This way
impact analysis helps to determine whether the proposed change is safe or not.

A well-known method for aiding impact analysis is called program slicing. It is
an analysis method for extracting parts of a program which represent a specific sub-
computation of interest. There are a number of challenges which make the creation
of practically usable program slicing tools difficult. Some of these are very general and
have kept the research community busy for decades, while others are platform specific
issues that are special for a particular programming language or family of languages
or platforms. Our research deals with one particular issue, that of the preprocessor, in
the context of computing program slices for C/C++ programs.

In the following chapters we will present the theoretic foundations and a possible
way to implement a preprocessor-aware C/C++ slicer. The approach is based on the
so-called macro slicing method. Essentially, a macro slice is a set of dependencies
between macro definitions and their uses, which is fairly similar to other notions of
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dependency-based slices. These macro slices are then combined with traditional lan-
guage slices, thus providing a more complete dependency set for a specific slicing task.
Macro slices are discussed in Chapter 6, while the details on combining macro slices
with C/C++ slices are given in Chapter 7.

The rest of this chapter is organized as follows. First, an introduction to program
slicing and its relation to our work are given in Section 5.1. In Section 5.2 we will justify
the need for preprocessor-aware C/C++ slicers by providing motivating examples and
application scenarios. Some utilization possibilities are outlined in Section 5.3.

5.1 Program slicing

Program slicing is seen by many as a very powerful technique that is applicable in
various fields related to program comprehension and software maintenance. It is an
analysis method for extracting parts of a program which represent a specific sub–
computation of interest. Slicing was originally introduced by Weiser [119] to assist
debugging, where a set of program points is sought for, which affect the variables of
interest at a chosen program point, called the slicing criterion. The reduced program
is called a slice. This definition is sometimes more precisely referred to as a backward
slice, since – having procedural programs in mind – it associates a slicing criterion with
a set of program locations whose earlier execution affected the value computed at the
slicing criterion.

On the other hand, a forward slice is a set of program locations whose later ex-
ecution depends on the values computed at the slicing criterion. Slicing can also be
categorized as static or dynamic. In static slicing, the input of the program is unknown
and the slice must therefore preserve meaning for all possible inputs. By contrast, in
dynamic slicing, the input of the program is known, and so the slice need only preserve
the meaning for the input under consideration.

Over the years, a number of algorithms to compute program slices have been de-
veloped; for an overview see [109, 121]. One of the most cited approaches is to apply
a pre-computation step in which a representation of the program under investigation
is first constructed, which captures the dependencies among program elements (for
instance, data dependencies). This representation is called the Program (or System)
Dependence Graph, whose basic form for static slicing and procedural languages was
given by Horwitz et al. [55]. The nodes of this graph represent the program elements
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(instructions), while the edges connecting them correspond to the program depen-
dencies. The counterpart of this graph for dynamic slicing, the Dynamic Dependence
Graph [4] includes a distinct vertex for each occurrence of a statement in the execu-
tion of the program on the input under consideration (called the execution history).
Overall, the computation of a slice with these approaches means finding all reachable
program elements in these graphs starting from the slicing criterion. In dynamic slicing,
more recent results show that it may not be necessary to compute the whole program
representation as the pre-computation step to make use of program dependencies [10].
Rather, slices may be computed globally by forward processing the execution history,
in which case all possible slices are obtained. Alternatively, using a demand-driven
approach only relevant dependencies are investigated in order to determine a particular
program slice.

In many different program analysis fields researchers cite the preprocessor as an ob-
stacle to implementing correct analyzes, e. g., [40, 115]. Unfortunately, the situation is
no better with program slicing. Alas, preprocessor issues are often completely neglected
by slicing algorithms, or at least, handled rather poorly. Features like file inclusion or
conditional compilation are sometimes handled in an acceptable way, but with macro
expansion, for instance, it is a different story. The best that existing slicers can do is
to mark those program points originating from macros and display this information on
the screen.

CodeSurfer [49], for instance – which is probably the best-known static C/C++
slicer available today – displays information on macros appearing in slices, but is unable
to include them in the slicing process itself.

A remarkable exception is the Ghinsu C slicing tool [68], which implements fea-
tures for comprehending programs with preprocessor constructs, but unfortunately this
project seems not being maintained anymore.

However, ignoring the existence of dependencies between preprocessor constructs
and language elements may lead to serious errors in certain tasks where program
slicing is applied. For example, in an incremental software development scenario, a
change to a macro definition should be propagated throughout the system which will,
in many cases, involve other macros and regular language elements as well. Impact
analysis using slices that do not include preprocessor elements will be inaccurate and
so potentially unsuccessful in situations like these.
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5.2 Motivation

5.2.1 Motivating example

Developers usually have to make small changes during the system maintenance tasks,
but in a large software system the effect even of a small change is hard to predict. Let
us assume that the small program part to be altered is a macro definition. Our first
motivating problem is to find the points of a C/C++ program which are affected by a
modified macro definition. The modified definition may be used in (called from) other
macro definitions, which may be called again from many points of the program (this
is quite possible with macro slices). Next, the calls that use the definition are replaced
and become part of the C/C++ language constructs. But these constructs may affect
other parts of the program, which may be captured by traditional C/C++ language
slices. In other words, the affected part of a program consists of both preprocessor-
related elements and C/C++ program elements. The union of the forward macro
slice starting from the given definition and the forward C/C++ language slice starting
from replaced parts gives all the affected points. A small example source code which
illustrates this is given in Listing 5.1.

1 #define ASSIGN(v) = v

2 #define SGN unsigned

3 #define DECLI(name , val) SGN int name ASSIGN(val);

4 DECLI(i,2) // =⇒ unsigned int i = 2;

5 printf("%u\n",i);

Listing 5.1: Motivating example for combined slices

The slicing criterion for macro slicing is the macro definition in line 1. The corre-
sponding macro slice contains lines 1, 3 and 4, while the macro call in line 4 is the link
between the two kinds of slices. During preprocessing, the macro call DECLI(i,2)
is expanded to unsigned int i = 2;, which is a C/C++ program element. The
replaced macro is the slicing criterion for C/C++ language slicing, and the language
slice contains lines 4 and 5. The combined slice contains all lines of the example code
except line 2, which means that changing the macro definition on line 1 affects four
lines. A failure to identify these additional dependencies may cause a problem in a
change impact analysis, for instance.
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The procedure of combining slices works in the other direction as well. Listing 5.2
lists the previously shown example code after the preprocessing phase.

1

2

3

4 unsigned int i = 2;

5 printf("%u\n",i);

Listing 5.2: Motivating example source code after preprocessing

The macro definitions are hidden from the compiler. Let the slicing criterion contain
the variable i in line 5. The C/C++ backward slice algorithm does not know about
macros as the slice contains lines 4 and 5 only. Using the fact that line 4 comes
from macro replacement, a backward macro slice can be computed on line 4, which
contains lines 4, 3, 2, 1. The combined backward slice contains every line of the original
example, instead of two lines of the C/C++ slice. An example where this can cause
a problem is when this additional data is not available in a debugger and the user is
unable to track down to all the possible causes of an error which is being debugged.

5.2.2 Real world example

How useful combined slices can be is illustrated by the following example taken from the
flex subject program of our experiments section. Let us assume that a new functionality
is added to our software system and that we have to modify (among other things) the
part of the program related to memory handling. It turns out that some part of the
code to be modified contains a macro call in the original source. Using the macro
backward slicing method, the macro definitions used can be accurately located in the
code.

Let us assume that the macro definition reallocate_integer_array() found at
flexdef.h line 686 is to be modified:

#define reallocate_integer_array(array ,size) \

(int *) reallocate_array ((void *)array , size , sizeof(int))

Listing 5.3: Example macro definition from flexdef.h
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Note that the “called” reallocate_array() is not a macro, but a C function.
The following task is to build the whole program and then test it. Two problems may
arise. The modified module compiles, but why do we have building problems for a
totally “unrelated” module? And having modified the macro definition, which parts of
the program now have to be tested?

In the case of modifying a C function, slicing can be used to determine dependent
program parts, to give hints about affected files/modules, so one may select the appro-
priate test cases instead of performing full program test. In this case a combined for-
ward slice on the altered definition should help. The macro slice shows that 31 toplevel
macros are involved. The macro definition change is done based on one part of the
program, but there are 30 other places where we have to do a test. An example path
in the slice is when the definition is called from the DO_REALLOCATION(dfa.c:261)
and PUT_ON_STACK(dfa.c:269) macros. The file dfa.c at line 308 contains a simple
macro call, namely PUT_ON_STACK(ns), but when the source is preprocessed, it is re-
placed by a do-while loop that is 358 characters long. One macro change goes through
31 points in the source, and for each a C slice must be computed, which finally shows
that 8271 source lines may be affected. The 31 toplevel macros show where to check
the correct macro usage, assisting us in build problems (sometimes in different mod-
ules). Then the full combined slice provides some hints on which part of the program
is affected, which allows us to use selective retesting to reduce maintenance costs.

5.3 Utilization

The main idea behind the approach proposed here is the handling of macros. Generally
speaking, the method is useful for the same purposes as C/C++ slicing: change impact
analysis [14], program decomposition [39], software re-use [19, 122], debugging [3] and
regression testing [13, 92]. Dependencies added by the macro slices provide a more
accurate analysis and hence should produce better results. In the case of backward
slices, the C/C++ slice is extended with macros, bringing source files into the slice
that had not previously been taken into account. The special case of backward slicing
was presented in the above example, where the backward slice was taken for a macro
call to identify the macro definitions used. Forward combined slices start at a macro
definition, which cannot be located using pure C/C++ slicing.

From a utilization point of view the preprocessor-related program constructs deserve
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more attention. The backward direction can be used when the programmer encounters
a macro call in the code, and neither the replaced value nor the used macro definitions
are visible, which would help in the debugging process (the place of the compiler error
is a macro call). This is true for program comprehension as well: the simple macro call
is expanded to several C/C++ constructs like that shown in the previous example. As
we have already seen, selecting the right test cases can be aided with our method as
well.

The current implementation of the macro slicer works on just one configuration,
which is analyzed by the C/C++ slicer. This helps keep the result synchronized,
but also means that in general the toolset is not suitable for solving configuration-
related issues. However, conditional directives usually contain macro checks (using
the defined operator), which are included in a macro analysis. Thus the forward slice
requested on a macro definition which determines the configuration (e.g. #define
USE_SMART_PTR) will provide a hint about which part of the current configuration is
configuration dependent. Unfortunately the macro call in a conditional directive is
not matched to any C/C++ language element (see Section 7.3). A new dependency
between conditionals and C/C++ elements would help. The current implementation
of the macro analyzer contains a dependency relation like this, but it has not yet been
used in macro slicing.

The data structure employed for macro slicing (introduced in [VBF04]) may be
configuration dependent (as used in this work) or configuration independent. The
latter has not yet been implemented, but in the future it may open the door for config-
uration independent macro slicing. The C/C++ part seems to be the harder problem
though as the C/C++ slicer produces slices for just one configuration, but the con-
figuration independent combined slicer should run the C/C++ slicer for every possible
configuration and link/merge the results. Checking every possible configuration can
be usually reduced to checking some key configurations, but at present a configuration
independent slicer is just the subject of future research.
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6
Impact analysis of macros

6.1 Introduction

In this chapter, we will focus on understanding macro usage. Usually, a macro related
analysis is used to trace back the macro call to its definition. Although research tools
implementing this feature (e.g. the folding mechanism of GUPRO [24]) already exist,
the widely used debuggers still do not provide this information. A debugging tool
support ends when the developer gets an error message from the compiler based on
the preprocessed code. In many cases, it would be very useful to see the result of a
macro call in the source editor. To answer questions like this, it is enough to analyze
one compilation unit, but many software maintenance and program comprehension
tasks also require inter-unit dependencies (covering the whole source tree).

During software maintenance tasks, developers usually have to carry out small but
critical changes with no tool support for analyzing the impact of the change on the
code, which may cause unforeseen problems. In the process of change impact analysis
and change propagation, one tries to determine those parts of the source code which
are affected by a change [86]. In particular, when analyzing the impact of changes in
macros, we need to know all possible uses of a macro definition. In other words, it is
needed to track the macro definition to all of its uses (macro calls) – as opposed to
the other direction mentioned previously.
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Our motivating question is hence the following: Which parts of the source code are
affected by a change in a macro body? By affected points in the program we mean
the places where the modified macro is called.

The intuitive method is to search the whole source tree using the grep tool so as to
find all occurrences of the name of the modified macro definition. The resulting points
need to be carefully examined because its name may occur in different contexts: as a
simple macro call, in a macro body of another macro definition, or even in a comment.
When the name is also contained in another definition, the search continues with the
new name recursively. Thus, the whole process consists of many searches on many
macro names, requiring careful consideration at each step. Apart from the large amount
of effort and time needed to locate the affected program points without appropriate tool
support, there are three main obstacles which makes the grep-like tools unsatisfactory
here:

• Includes and configurations. Usually there are several configurations in the source
code, and there may be a long distance between the macro definition and in-
vocation because of many included files. It is usually not feasible to manually
determine whether a search result is in the same configuration as the definition
or not.

• Macro redefinitions. In spite of the fact that the standard forbids the redefinition
of a macro name with a different macro body, it frequently occurs. The search
result may belong to another macro definition, which will result in a false positive.

• Hidden macro invocations using ## operators. Using the concatenating operator
with a macro parameter can result in a new macro invocation which cannot be
revealed by a simple text search. The grep tool will produce a false negative
error.

In this chapter, we will introduce a novel technique that addresses our motivating
question. The next section contains the necessary terms and definitions for the analysis
of macros. In Section 6.3, the macro slicing method is introduced. After a short
discussion on macro and C/C++ slices in Section 6.4, we will outline our macro slicer
implementation and report the results of experiments in Sections 6.5 and Section 6.6.
In the last section we will give our conclusions and some closing remarks.

72



6.2. DEFINITIONS

6.2 Definitions

In our approach, slices can be computed based on the structure of preprocessor macro
calls and macro definitions. This is made possible by a special dependency relation
defined on the call-definition structure. When a macro call is expanded, the initial (or
toplevel) macro name is replaced with the replacement text of the macro definition.
The definition may contain further macro calls which are expanded as well, so the full
expansion of a toplevel macro may involve several definitions. Going the other way,
the text of a macro definition may be used (through other definitions) in many macro
calls. Separating the relevant replacements in a specific macro use is the task of macro
slicing (presented in the next section).

When investigating preprocessor directives, the meaning of a static and a dynamic
analysis is different from the usual meaning. The preprocessing phase takes place before
the compilation and configurations of the program are controlled by an initial set of
macros. A dynamic analysis uses runtime information based on one particular input. In
the preprocessing case, the running time means the preprocessing phase which would
be the compile time with the C and C++ languages. The input of the preprocessor
is the set of macros which determines the actual configuration. We may say that the
number of configurations is usually small or only a few of them are really important.
Therefore, we perform a dynamic analysis of directives on one (or more) important
configuration(s). This way we may miss some dependencies in other configurations,
but this approach has two advantages: it is accurate because it is dynamic and it
represents the whole software (or, at least, a key configuration).

The rest of the section contains the terms and formal definitions used in the analysis
of macro calls. Many of the concepts described below are not restricted to the domain
of dynamic analysis.

The following terms are used to formalize the macro replacements (see the example
in Figure 6.1, the macro call results in 1 2):

• macro definition – the place of the #define directive. The definition consists of
three parts, namely macro name, optionally parameters, and macro body (also
called the replacement list).

• macro invocation – the place in the program where a macro name is used (where
the name is to be replaced with the macro body from the definition).
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#define X(a)  a Y(Q)

#define Y(b)  b 

#define P   1

#define Q   2

X(P) Macro invocation

Macro

definition

Macro parameter

Macro body

Macro argument

Figure 6.1: Example macro call

• macro expansion – the process of a single macro replacement, where macro
arguments are also expanded and replaced.

• full macro expansion – all macro expansions which are necessary to get the final
result of an initial macro expansion (including the macros in the re-expansion
process of macro bodies).

• toplevel macro invocation - the starting point of a full macro expansion (a full
macro expansion necessarily starts outside the #define directives).

Definition 1 Let I be the set of all macro invocations in the given program.

Definition 2 Let D be the set of all used macro definitions in the given program.

The fact of a macro call is represented by the call relation between the two sets.

Definition 3 Let call : I → D, call(x) = y if and only if the macro invocation x

uses the macro definition y.

The call relation is surjective (D contains only called macro definitions) but not
injective (one definition may be called from several places).

In the case of function like macros, a macro invocation may contain arguments .
These arguments may also contain macro invocations, so we shall make the following
definition.

Definition 4 Let arg : I → I, arg(x) = y if and only if the macro invocation x calls
a function-like macro and the macro invocation y is an argument of x.
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Figure 6.2: Macro sets and relations

A macro definition may contain further macro invocations in its body. This rela-
tionship is described in the following definition.

Definition 5 Let body : D → I, body(x) = y if and only if the macro definition x

contains macro invocation y in its macro body. (Note that when a macro body of
x contains a function-like macro invocation with an argument which is also a macro
invocation, then this latter invocation also constitutes a body relation with x.)

In order to increase readability and expressiveness, the sets can be contracted using
the arg and body relations (similar to a graph edge contraction). Let us construct a
new set called MC that contains disjunct node sets that have elements from I and
D. There are two types of new nodes. The first type is based on toplevel macro
invocations (shown in black in Figure 6.2): each set contains a toplevel invocation and
invocations which are in its arguments (a contraction using the arg relation). The
second type is based on macro definitions: each set contains a macro definition and
macro invocations within its macro body (a contraction using the body relation). In
Figure 6.3 there is a filled area for each element of MC . Formally, let

TI ⊆ I = {x ∈ I|¬∃y ∈ I : arg(y) = x ∧
¬∃z ∈ D : body(z) = x}

be the set of toplevel macro invocations.
The elements of the new sets are defined using two sets according the two types:

MCI =
∪
x∈TI

( x ∪ {y ∈ I|y ∈ arg(x)})
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MCD =
∪
x∈D

( x ∪ {y ∈ I|y ∈ body(x)})

MC = MCI ∪MCD

P

call
X

X

call

Y

Y

call

Q
Q

call

arg

arg
body

bodyP

I D

Figure 6.3: Elements of the MC set

The MC set is a subset of the powerset of the existing sets: MC ⊆ P(I ∪D) and
all elements of I and D are included in one of the elements of MC . The call relation
can be defined on MC as follows:

Definition 6 Let callm ⊆ MC ×MC be a relation,
callm(A) = {B|∃x ∈ A, y ∈ B : call(x) = y}, where A,B ∈ MC.

Macro dependencies can be defined based on the callm relation. Note that the
dependency edge points in the opposite direction of that for the callm edge.

Definition 7 Let depm ⊆ MC × MC be a relation, b ∈ depm(a) if and only if
a ∈ mcall(b), where a, b ∈ MC.

Figure 6.4 depicts the simplified set. Node sets (filled areas in Figure 6.3) are
represented by their base nodes, as in Figure 6.4.

6.3 Macro slicing

Using the approach which restricts the slice criteria to used and defined variables we
will define forward and backward macro slices. A slicing criterion is a pair < p, x >,
where p is a program point and x is a macro definition or invocation.
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Figure 6.4: The callm and the depm relations on the simplified MC set

Definition 8 The forward macro slice of a program based on the criterion < p, x >,
where x is a macro definition, is the set of macro definitions and invocations that
might be affected by the macro body of x.

Definition 9 Similarly, the backward macro slice of a program based on the criterion
< p, x > where x is an invocation consists of all macro definitions of the program that
might affect the value of x at point p.

Note that the forward slice of the criterion < p, x > provides the answer to the
motivating question stated in the introduction.

Slices can be produced based on the callm and depm relations using the definitions
given in Section 6.2. The basic idea is to construct a graph where the nodes are
elements of the MC set and the edges are constructed according to the callm and
depm relations. Producing macro slices means solving a reachability problem starting
from a given definition. Before constructing the appropriate graph on which slices can
be calculated, the relations first have to be refined.

However, there is a problem caused by the fact that in a macro body every identifier
is a potential macro name. The value of a macro depends on the place of the call,
and not on the place of the definition. In the example in Figure 6.5, at the point of
the definition of macro X identifier Y is a simple identifier, but it becomes a defined
macro later on. At the point of the second invocation of macro X the identifier Y
is a macro, so the full expansion of macro X starting from that point contains the
expansion of macro Y.

Now we need to know which points are affected when the definition of Y is modified.
A search based on the depm relation starting from the macro definition Y finds both
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Figure 6.5: Potential macro problem: (a) program code (b) basic graph (c) MDG
with edge coloring

X macro calls as dependent points, but only the point of the second invocation is
really affected. In order to solve the problem of potential macro names which are
later defined (macro re-definition causes the same situation) we have to distinguish
the path on which a definition can be reached starting from the top level invocations.
Full macro expansions have to be used to trace back macro replacements separately.

After the preliminaries let us now construct the Macro Dependence Graph (MDG).
The nodes of the graph are the elements of the MC set and the directed edges are
created from the depm relation. The edges are multiple edges because there may be
more full macro expansions which have a common subset of dependency edges, but
we have to distinguish them. Edge coloring is used to mark the edges that belong to
a particular full macro expansion.

Definition 10 Let MDG = (MC , E, I, C) stand for the Macro Dependence Graph,
where MC is the set of nodes (vertices) and E is the set of edges, I ⊆ MC × E is
the incidence relation, for ∀e ∈ E the {v ∈ MC : vIe} set has two ordered elements,
namely a, b ∈ MC : vIa ∧ vIb ⇔ a ∈ depm(b), and C ⊆ E × N is the coloring
relation which assigns the same color to those edges which belong to the same full
macro expansion. The E set contains multiple edges where each edge has a certain
color, if several full expansions use the same edge. We use depmi ∈ depm to denote
the subrelation colored with i: ∀i ∈ N, b ∈ depmi(a) ⇔ b ∈ depm(a) ∧ ∃e ∈ E :

aIe ∧ bIe ∧ (e, i) ∈ C.
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Slicing can be performed on the MDG . For a slicing criterion < p, x > there is
a node k ∈ MC in the dependence graph which represents the macro definition x at
the program point p. The forward macro slice contains exactly those program points
which are reachable from k along colored edges in the graph.

Definition 11 Let < p, x > be a slicing criterion where x is a definition at program
point p and k ∈ MC is the node corresponding to x. Let Col be the set of colors
which are used on dependency edges starting from k:
Col = {c ∈ N|∃e ∈ E, c ∈ C(e) ∧ (k, e) ∈ I }.
The forward macro slice of the criterion is the set S = {y ∈ MC|y ∈ depm

t
i(k), i ∈

Col}, where depm
t
i is the transitive closure of depmi .

Because of edge coloring the search process of the slice elements needs to be
modified: starting from the criterion, only those elements belong to the slice which
are reachable via edges colored by those colors which start from the criterion node. A
small example graph is given in Figure 6.5 part (c). The dependency edge colors are
shown as numbers. The slice based on the definition of Y as a criterion contains the
definition of X and the second macro invocation X2.

It is important to note that the MDG is an acyclic graph when built from one com-
pilation unit.1 However, most software systems consist of several compilation units,
and so the influence of a changed macro definition spreads to the whole system. Con-
sequently, the macro call relations of individual compilation units need to be merged.
Merging dependencies – in extreme cases – may bring cycles into the graph. To over-
come this problem, each merged source file must have a disjunct color set. Such a
merged graph is acyclic in the sense that there is no cycle with edges of the same color.

The backward macro slice can be computed on the same MDG if the edges cor-
responding to the callm relation are added with the appropriate coloring. Let Idepm ,
Edepm and Icallm , Ecallm be the set of edges and incidence relations based on the depm

and callm relations respectively. Let MDG = (V,E, I, C) where E = Edepm ∪ Ecallm

and I = Idepm ∪ Icallm . Forward slices are computed on depm edges while backward
slices are computed on callm edges.

1According to the preprocessor standard, if a macro is under expansion and in the re-expansion
the same macro is called again, this further call will not be expanded (the macro name remains in
the replacement list instead).
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6.4 Discussion on macro and procedural slices

In this chapter we applied the basic slicing principles to compute macro slices by
constructing the Macro Dependence Graph (MDG). But some slicing concepts need
to be reinterpreted within the scope of macro slicing, as we shall see in the following.
In their first approach, Agrawal and Horgan introduced dynamic slicing by refining
the static Program Dependence Graph using information taken from the execution
history [4]. The need for the Dynamic Dependence Graph for constructing accurate
dynamic slices was then demonstrated by the authors. Namely, a distinct node for each
occurrence of an instruction was implied by the loops in the execution history. In the
case of macro slicing the set of callm edges serves as execution history. The history
of macro invocations can be reconstructed based on them (if a macro body contains
more than one macro invocations, their order in history is the order of appearance in
the macro body). Fortunately, there are no cycles in macro calls, so it is not necessary
to create new macro definition nodes for each call.

Similar to other forms of slicing, we use the notions of forward and backward for
macro slices as well. We should mention, however, that our choice for this terminology
was rather arbitrary. In the case of procedural programs the slice direction is defined
with respect to the order of computations in the program. But in the case of macros,
the notion of “order” is less obvious as there are no “executable instructions” (consider,
for example, the fact that the macro dependency edge points in the opposite direction
to that of the macro call edge, while with procedural programs the control flow aligns
with the control dependency). Furthermore, it is also meaningless to talk about data
dependencies for macro slicing, since these may exist only between the actual arguments
and the formal parameters, but the macro definition itself is not a part of the program,
and hence the data dependency starts from the point of the initial call and necessarily
ends at the same place.

6.5 Implementation

In this section we will examine the usability of macro slices defined above. To prove
the practical usefulness of the concept we created a tool which identifies the affected
points in the software based on the name of the macro definition. The tool works on
the MDG of the whole source tree. Based on the name of the macro definition which
is to be changed, the tool finds all points in the program which use that macro body
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during the expansions. As an alternative solution, the software developer who faces
the problem of changing a macro definition can use the power of simplicity: the grep
tool. We will try to discover the effort involved finding the affected points in the source
code by text-based grep searches made by hand. We will also investigate the limits of
the grep approach and compare the process to the use of our search tool which works
on the slice sets.

The basis of the macro slicer tool is the preprocessing schema introduced in Chap-
ter 3. The CANPP tool is used together with the wrapper technique of the Columbus
Reverse Engineering Framework [34]. The tool creates preprocessor schema instances
from source files, and the schema instances are then linked at the system level. The re-
sult is the schema instance graph of the whole software, which contains information on
macro calls as well. (Note that the schema instance contains information about macro
parameters and arguments, so it is appropriate for discovering argument dependencies
mentioned in Section 6.3)

Macro calls are modelled by DefineRef nodes in the schema. A DefineRef node
connects a macro invocation with its definition (a DefineRef node is equivalent to a
macro call edge). Full macro expansions are represented by so-called call chains. A
call chain is a fixed order list of macro calls that belong to one particular full macro
expansion. A call chain starts from the toplevel macro invocation; afterwards it contains
the invocations in the arguments. In addition, the chain contains all invocations from
the macro body recursively.

The MDG can be constructed based on these chains. Elements of I and D are
contained by the schema instance graph, DefineRef nodes represent the callm edges,
and one chain means one color in the MDG . The tool works on the schema instance
graph without constructing the MDG . It requires the name of the macro definition
which is to be changed (the slice criterion) as a command line argument, and looks up
the definition in the graph. The definition contains references to chains that go through
it. The tool walks through the chains back to the starting point (toplevel invocation),
and in the meantime it writes out the affected nodes. Each visited definition during
the walk is affected by the modification of the base definition, and eventually there is
the toplevel macro invocation where the macro call started (demand-driven approach).
Usually the developer is interested only in this last point of the chain, but the tool
provides all of them. Note that backward traversal of the chain reaches nodes which
are not part of the slice; these are filtered out or marked as members of the chain but
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not included in the slice.
The slice data is written into a text file in the following form: the file consists of

sequences, there being a sequence for each chain which goes through the modified
definition. Each sequence consists of macro definition and macro invocation pairs
until the start of the chain reached. The invocation and definition is printed out in an
appropriate form to help in locating them in the source code. Details about the full
path, source code line and column are also given so that commonly used programming
IDEs like Microsoft Visual Studio or Eclipse can be used to quickly jump to the program
points.

6.6 Experiments on large software

We performed some experiments to validate our tool on the Mozilla Firefox internet
browser. The experiments were conducted on the source code of Firefox version 2.0
(Linux configuration).

No. of macro No. of macros No. of full
definitions called expansions

33214 15648 305117

Table 6.1: Summary of macro definitions and expansions

The number of macro definitions and full expansions found in the source code are
listed in Table 6.1. The number of macro calls is high, there being 90 macro definitions
which are called over 1000 times. Table 6.2 contains the number of total calls in the
configuration and also the size of slices computed for each macro definition.

Individual calls Slice sizes

Average 53 43
Median 2 4
Max 47,046 20,040
Min 1 1
Sum 834,866 674,440

Table 6.2: Summary of macro calls and slice sizes
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Slice size has been investigated on procedural programs both for static slicing [11]
and for dynamic slicing [9]. In our case the slice size is compared to the size of the
graph. We used the number of nodes as the size of the graph, which is the sum of the
calls and definitions.
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Figure 6.6: Histogram of slice sizes relative to the graph size

Figure 6.6 shows a histogram of the relative macro slice sizes. The shape of the
histogram is just as we expected. The majority of the slices are smaller than 0.01%
of the graph size. In the figure the area associated with this value has been removed.
Also, there are 144 slices which are larger than 0.15%, and which have been omitted
from the figure. (Their sizes are between 0.15% and 6.25%.) The sizes are relatively
small, which is one advantage of the approach, but they tell us that in many cases it
is hopeless to try to locate them by hand.

The use of ## operators to create macro calls is another issue which motivated
our research and the development of the tool. The number of definitions containing a
call with the concatenate operator is 24. There were 337 macro calls made via these,
which confirms that this strange construction does indeed occur in real-life software.

The macro slicer tool required 1GB of RAM, and computing all the slices on the
graph took 60 seconds. The preprocessor schema instance is not fine-tuned to macro
related analysis; it contains information about other preprocessor constructs too. For
macro impact analysis purposes, the graph can be stripped to contain only the necessary
details about macros.
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6.7 Summary

In response to the lack of a satisfactory solution to the macro change impact problem,
we introduced an approach based on macro slices. Using the relations between macro
invocations and definitions, we have constructed the Macro Dependence Graph on
which macro slices can be computed. We discussed the notions of C/C++ and macro
slicing, the defined forward and backward slices By using multiple edges and edge
coloring, this graph handles potential (and later defined) macro names and macro re-
definitions. Edge coloring, according to the full macro expansion paths, also ensures
that the graph is acyclic even when it covers not only one compilation unit but a
whole software system. This is important because software maintenance and program
comprehension tasks many times require inter-unit dependencies covering the whole
source tree.

A solution for macro slicing is outlined using preprocessor schema instances as
dependence graphs. To show that this concept is sound, an experimental tool based on
the Columbus C/C++ frontend [38] was developed. We then carried out experiments
which proved the validity of our approach, and we showed that the tool is able to
create slices for large software (e.g. Mozilla Firefox). In the same time, we have given
an insight to the distribution of slices in a concrete case.

Main results of this chapter belong to contribution point II/1 (Macro slicing) and
partly to point II/3 (Experimental evaluation of slicing methods), and were published
in paper [VBF07].
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7
Combining preprocessor and C/C++

language slicing

7.1 Introduction

In the previous chapter the notion of macro slicing was introduced. The method is
appropriate for revealing macro-related dependencies, but with this method the slices
are computed on preprocessor constructs only hence the slices are restricted to macro
constructs.

Having seen the weaknesses in this respect of existing C/C++ language slicers
today, it seemed promising to combine macro slices and regular C/C++ language
slices computed based on the dependencies between the syntactic elements of the
source code (referred to as language or C/C++ slices is the following). The combined
slice contains more accurate information about the C/C++ program as we will see
later on, which is very important from a program comprehension point of view. In the
combining process a special role is played by the toplevel macro calls (which are in the
program text, not in the macro definition text). A toplevel macro call is a part of macro
slices, but when it is fully replaced, the resulting text is part of the C/C++ program,
therefore it may be a part of the C/C++ slices as well. This way the endpoint of a
macro slice serves as a starting point for a language slice. We can also define a similar
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combination in the opposite direction, in which case a C/C++ slice may be a starting
point for preprocessor slices. At this point, the reader should again see the motivating
example given in Section 5.2.1.

In the next section we will discuss in detail the connection between the two kinds
of slices. Implemented tools and algorithms used are described in Section 7.3, while
Section 7.6 reports the empirical results of our implementation. In the last section we
round off with some conclusions and ideas for future study.

7.2 Combining C/C++ language and macro slices

The process of combining the two types of slices can be performed in both the forward
and backward directions. In the forward direction the slicing criterion is a macro
definition. The macro slice contains toplevel macro calls as connection points, the
replaced toplevel macro calls being (part of) C/C++ program elements whose program
elements serve as slicing criteria for regular language slicing. The final slice contains
both preprocessor and C/C++ program elements. The backward direction is similar,
but here the slicing criterion is a C/C++ program element, and the language slice may
contain program elements which are in turn parts of the result of a macro call. These
macro calls are used for macro slicing and the final slice contains the language slice
and all the macro slices as well.

Combining macro and language slices requires that a common set of nodes and
edges be defined with the dependency relation as well. C/C++ language slices are
usually computed on some kind of a Program Dependence Graph (PDG) [81], or more
generally on a System Dependence Graph (SDG) introduced by Horwitz et al [55]. The
PDG models interprocedural dependencies between procedures where each procedure
is modelled with a PDG . In the following we shall consider a generalized SDG , on
which a general C/C++ dependency relation is defined (called depcc). The terms and
definitions used in macro slicing are given in sections 6.2 and 6.3. To fully understand
this section the reader should read those parts on toplevel macro invocations, the
macro dependency relation, the Macro Dependence Graph (MDG) and macro slices.
In the preprocessor case, the MDG can be constructed in such a way that it contains
dependencies from every compilation unit in a program; there is no need to define two
kinds of graphs for the macros.

The MDG can be used in combination with the SDG in the following way. Both of
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them have a well-defined structure, the only problematic point being the connection.
The MDG is based on the original source code, while the SDG contains C/C++ lan-
guage elements. In practice it is based on the preprocessed code (.i file). The toplevel
macro invocation (call) serves as a connection point (see the motivating example in
Section 5.2.1). From the point where the macro call is replaced with the replacement
text, the source code is in C/C++ language form and consists of C/C++ program
elements.

Unfortunately, there is no guarantee that the replacement text will be a C/C++
syntactical unit. Moreover, the SDG is composed of program elements, but contains
various kinds of nodes like declaration, expression, return and so on. There is a many-
to-many relation between macro replacement texts and SDG nodes. For instance the
macro replacement may be a sequence of statements that is represented by several
nodes in the SDG , and the macro may even be a constant that is only a part of an
SDG node. An SDG node, which at least partly comes from a macro replacement,
depends on the macro itself. Thus a dependency relation can be defined based on
shared characters between the SDG node and the macro (replacement). Let repl(a)
be the replacement text after a full expansion of macro call a, where repl(a) consists of
characters with their position in the preprocessed file. (The SDG node b also contains
characters with their position in the preprocessed file.)

Definition 12 Let depcomb ⊆ MDG × SDG , a ∈ MDG , b ∈ SDG , b ∈ depcomb(a)

if and only if a is toplevel and ∃x character: x ∈ repl(a) and x is contained by b.

An SDG node depends on an MDG node if at least one of its characters comes
from the replacement of the MDG node.

Using the definitions given in this section, the combined slice can be defined. The
depcc C/C++ dependency relation, the depm macro dependency and the depcomb

combining dependency relations have already been presented. Next, let DG be the
combined dependence graph and dep the combined dependency relation:

Definition 13 Let
DG = SDG ∪MDG

and

dep(x) ⊆ DG × DG =

{
depm(x) ∪ depcomb(x), if x ∈ MDG

depcc
−1(x), if x ∈ SDG

87



CHAPTER 7. COMBINING PREPROCESSOR AND C/C++ LANGUAGE SLICING

D

D
D

D
D

D

D
T

T
P

T

T

PP
P

P
P

P

dep dep
dep

dep

dep

dep

dep

dep

dep

dep

dep

dep

dep

Macro definition
(slicing criterion)

Dependent 
definitions

Dependent 
toplevel macros

Program points
from macros C/C++ slice sets

D

Figure 7.1: The forward direction for combining the slices, with the dependency relation
between macros and C/C++ program points

Note that the dep relation uses the inverse of the depcc relation. In program
slicing the direction of the dependency relations usually points in a backward direction.
However, in the case of macro slicing the direction is the opposite of the macro call
relation. To be consistent, for combined slicing the inverse of the C/C++ dependency
should be used.

Definition 14 Let < p, x > be a slicing criterion, where x is a variable at program
point p. Let k ∈ DG be the corresponding graph element for x. The combined
forward slice of the criterion is the set of program points, which corresponds to the
{l ∈ DG |l ∈ dept(k)} set, where dept is the transitive closure of the dep relation.

Definition 15 Let < p, x > be a slicing criterion, where x is a variable at program
point p. Let k ∈ DG be the corresponding graph element for x. The combined
backward slice of the criterion is the set of program points, which corresponds to the
{l ∈ DG |k ∈ dept(l)} set, where dept is the transitive closure of the dep relation.

The forward direction case is depicted in Figure 7.1. The capital letters in the figure
elements refer to their type and not their name. The slice starts at the slicing criterion,
which is a macro definition (D). There is a set of dependent definitions (D), and there is
a set of dependent toplevel macro invocations (T). (Note that many dependency edges
among the elements of this set have been omitted here.) When toplevel invocations are
replaced, the result of each invocation becomes a part of C/C++ program elements
(P). A regular language slicing algorithm computes the slice for each program element,
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hence the final combined slice contains every element in the figure.

The backward direction case is depicted in Figure 7.2. Here once again the capital
letters in the figure elements refer to their type and not their name. The slicing criterion
is a C/C++ program element (P). The slice may contain SDG nodes which are (at
least partly) the results of one or more macro invocations. The toplevel invocations
which are present in the C/C++ slice can be found along the dependency edges. For
each of these toplevel invocations, macro slice sets can be obtained using backward
macro slicing. The final combined backward slice contains all the same elements as
those shown in the figure.

The combined graph and the combined slices of the sample source code from
Section 5.2.1 can be seen in Figure 7.3. Nodes corresponding to forward and backward
slices are denoted by a capital ’F’ and ’B’, respectively. The toplevel macro call
DECLI(i,2) is present in both of its possible forms: as a macro and as a program
point. The forward slice contains every node except the definition of SGN, while the
backward slice contains every node of the graph.

Note that the method does not make use of any special information concerning the
SDG of the C/C++ slicing algorithm. Just the dependency relation and the character
positions of the node texts are used. Hence, in theory the method can be used for
static or dynamic slicing. Moreover, it does not matter whether data, control or some
other dependency relation is used for slicing.
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#define ASSIGN

#define SGN

#define DECLI

printf("%u\n",i);

DECLI(i,2) unsigned int i = 2;D dep

D
dep

D dep T
P

Pdep
dep

F

F
FFFB

B

B B B
B

Figure 7.3: Nodes and slices of the motivating example

7.3 Tools

The formal definitions of combined slices were given in the previous section. A com-
bined slicer can be implemented in various ways. There are three tools that must be
used to implement the method: a macro slicer, a C/C++ slicer, and a combiner tool
which implements the connection between them. In this section we will describe our
implementation. In our experiments, the slices were computed for each appropriate
node in dependence graphs, so our tools and algorithms are global in this sense. The
algorithms given in the following section follow the way the tools work. To create an
on-demand version of the toolchain – which computes slices only for criteria given as
input – minor changes are required (overviewed below).

In our toolchain the macro slicer is built on top of the CANPP tool as mentioned
in Section 6.5. The macro slicer tool analyzes the project and afterwards creates
a graph instance of the Columbus preprocessing schema (Figure 3.2). The graph
contains dependency edges between preprocessor elements, therefore it can be used
as an MDG on which macro slicing can be performed. For the C/C++ part we
implemented a CodeSurfer plugin to get slicing information [49]. Similar to the pre-
vious case, CodeSurfer builds the SDG graph representation from a software project
and determines language level dependencies (and other pieces of information as well).
CodeSurfer provides access to the internal representation of the SDG and the depen-
dency information via plugins. We used the C API, which just offers core functionality,
but it is suitable for slicing (the Scheme API provides full access).

A logical outline of the toolchain is depicted in Figure 7.4. The toolchain consists of
the core analyzers (Columbus and CodeSurfer), the macro slicer tool, the CodeSurfer
slicer plugin and a small combiner tool which summarizes the results obtained (the
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combiner is implemented together with the macro slicer). The tools communicate
with each other via a set of toplevel macros (given by their line information), which is
the common point of the two slicers.
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Figure 7.4: Logical tool architecture - forward and backward slicing

The slicing process in both the forward and backward cases starts with the core
analyzers. In the backward direction the C/C++ slices are continued with backward
macro slices at points of macro calls. The CodeSurfer plugin produces the backward
slice based on the criterion (which is a C/C++ program point). The slice is then
scanned for vertices which are results of toplevel macro calls (matching). The slice
details are written into the output, and the set of toplevel macros present in the slice
is given to the macro slicer tool. The macro slicer computes backward slice sets for
each toplevel macro given as input, and by doing so extends the existing slice. Lastly,
the slices are summarized.

In the case of forward slicing the slicing criterion is a macro definition. The macro
slicer produces the macro slice of the criterion, whose final result contains the set
of toplevel macros, which is then given to the language slicer. In the next part the
CodeSurfer plugin identifies positions in the source code where macro replacement was
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performed and the toplevel macros are matched with C/C++ vertices. The matching
between toplevel macros and vertices is carried out based on line and column informa-
tion (from the various types of vertices, just those which have a position in the source
are used). Next, the language slicing algorithm is executed to produce slices for each
vertex, which is then matched with toplevel macros. The results are summarized for
each starting macro definition criterion (the C/C++ part of the final slice is the union
of the C/C++ slices belonging to the toplevel macros).

7.4 Algorithms

In this section we will provide details about the implemented algorithms. The logical
architecture, shown in the previous section, has been slightly altered: the combiner
is implemented inside the macro slicer. Hence two algorithms are used both in the
backward and forward case: one for the CodeSurfer plugin and one for the macro slicer
and combiner. The CodeSurfer plugin is first run in both cases followed by the macro
slicer and combiner. The following notation is used in the algorithm descriptions: the
Cs and M prefixes refer to CodeSurfer (C/C++) and Macro artifacts, respectively;
vertex means a node in the SDG , while toplev means a toplevel macro invocation.

7.4.1 Backward algorithm

Our combined backward slicing algorithm is given in Figure 7.5. As mentioned before,
the backward direction means that the C/C++ slices are continued with backward
macro slices at points of toplevel macro calls. The plugin gets the vertices from each
procedure and then computes the backward C/C++ slice on the project SDG (the
function GetProcedureVertices(SDG) returns vertices contained in procedures which
have source file positions). Each such slice is scanned one vertex at a time, and the set
of matching toplevel macros is found. The Match(y,AllToplevs) function returns the
matching toplevel macro set for a vertex (AllToplevs denotes the set of all toplevel
macros; for matching, see Section 7.5). The toplevel macros are combined for each
such C/C++ slice. The triplet with the original vertex, the associated C/C++ slice
and the set of toplevel macros are computed for each criterion and the result is passed
to the macro slicer and combiner.

In the second step the macro slicer and combiner produces the final slices for each
vertex passed as input. First, the C/C++ slice is part of the final slice. Second, the

92



7.4. ALGORITHMS

set of included toplevel macros is used to compute additional backward macro slices.
These macro slices are then placed in the final slice set. The result is the combined
backward slice.

In the backward direction the toolchain may work in an on-demand way; in this
case the plugin in line 2 of the algorithm iterates through the vertex set passed as an
argument.

7.4.2 Forward algorithm

In the forward direction the slicing criterion is a macro definition. The forward macro
slices are combined with C/C++ slices via toplevel macros matched with SDG vertices.
In this direction the toolchain acts as a global slicer. The CodeSurfer plugin prepares
toplevel macros and the associated C/C++ slices for the whole program. The prepared
data is passed to the macro slicer and combiner, which computes macro slices and
creates the final sets.

Figure 7.6 shows details of the combined forward slicing algorithm employed. The
CodeSurfer plugin iterates through all vertices inside procedures and tries to find match-
ing toplevel macros. In the case of a successful match, the forward C/C++ slice of the
current vertex is computed, and the set of matched toplevels is paired with the C/C++
slice. The output of the plugin is the set of toplevels paired with the forward slices
starting from the matched vertices. The macro slicer and combiner iterates through
all macro definitions in the MDG (with the help of the GetDefinitions() function).
For each definition the forward macro slice is computed, which will form part of the
final combined slice. The macro slice contains (usually several) toplevel macros (pro-
vided by the GetToplevs() function). For each included toplevel macro in the macro
slice (GetToplevs() function), the set of C/C++ slices is obtained from the input
(GetCsFwSlice() function) and then added to the combined slice. The final result is
a set of combined slices paired with the associated definition.

Creating an on-demand slicer requires that the macro slicer and the combiner be
separated and the tools be called in the following order: macro slicer (with input
criteria), plugin, combiner.
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CodeSurfer plugin - Backward slice
input:SDG : SDG of the analyzed project

output:outS : set of < v ,CsBwSlicev , Tv > triplets where:
v : vertex ∈ SDG

CsBwSlicev : backward C/C++ slice of v
Tv : set of toplevel macros in CsBwSlicev

begin
1 outS = ∅
2 foreach v ∈ GetProcedureVertices(SDG)

3 Tv = ∅
4 CsBwSlicev = compute backward C/C++ slice for v on SDG

5 foreach y ∈ CSBwSlicev

6 Tv = Tv ∪Match(y , AllToplevs)
7 outS = outS ∪ < v,CsBwSlicev , Tv >

end

MacroSlicer & Combiner - Backward slice
input:MDG : MDG of the analyzed project

inS : set of < v ,CsBackSlicev , Tv > triplets
output:S : set of < v , Sv >: pairs - combined slice set

for each request (vertex)
begin
1 S = ∅
2 foreach < v ,CsBackSlicev , Tv >∈ inS

3 Sv = CsBackSlicev

4 foreach x ∈ Tv

5 MBwSlicex = compute backward macro slice for x on MDG

6 Sv = Sv ∪MBwSlicex

7 S = S ∪ < v , Sv >

end

Figure 7.5: Computing combined backward slices
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CodeSurfer plugin - Forward slice
input:SDG : SDG of the analyzed project

output:outS : set of < T ,CsFwSliceT > pairs where:
T : set of toplevel macros
CsFwSliceT : forward C/C++ slice connected to T

begin
1 outS = ∅
2 foreach v ∈ GetProcedureVertices(SDG)

3 if Match(v,AllToplevs) ̸= ∅
4 CsFwSlicev = compute forward C/C++ slice for v on SDG

5 outS = outS ∪ < Match(v,AllToplevs) ,CsFwSlicev >

end

MacroSlicer & Combiner - Forward slice
input:MDG : MDG of the analyzed project

inS : set of < T ,CsFwSliceT > pairs
output:S : set of < d , Sd >: pairs - combined slice set

for each request (macro definition)
begin
1 S = ∅
2 foreach d ∈ GetDefinitions(MDG)

3 MFwSliced = compute forward macro slice for d on MDG

4 Sd = MFwSliced

5 foreach t ∈ GetToplevs(MFwSliced)

6 Sd = Sd ∪GetCsFwSlice(inS , t)

7 S = S ∪ < d , Sd >

end

Figure 7.6: The combined forward slicing algorithm

7.5 Details on matching and graph coloring

There are many factors which make the matching of macros and vertices based on file
position a challenging task. The behaviour of the tools had to be adjusted in many
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areas including the physical and logical lines (e.g. for the #line directive CodeSurfer
preserves the original line information), handling macros in conditional directives, and
handling macros defined in the command line. The plugin iterates through vertices
belonging to procedures, which means that some vertices are omitted such as forward
declarations or globals). Another important factor is the handling of standard libraries.
The SDG contains additional vertices from standard libraries, and some vertices used
in its internal representation. Accordingly, the macro slicing tool is adjusted to match
macros from standard libraries, but not to report errors for omitted ones.

The matching process is based on comparing source position intervals. The result
of the Match (vertex : y , set < toplev >: T ) function is the subset of T . The repl(a)
function supplies the replacement text after a full expansion of macro call a, where
repl(a) consists of characters with their position in the preprocessed file. If the vertex
y contains characters from repl(m) (i.e. the expansion of the toplevel macro m ∈ T ),
then the matching set contains m. In other words, the matching algorithm checks the
file position of the vertex and the replacement of macros, and if there are overlapping
intervals then the matching is successful.

A schematic view of the matching process is shown in Figure 7.7. The toplevel
macro (T ) is expanded using two definitions (D1, D2). The final replacement is
denoted by repl(T ) in the figure. The result is included in the C/C++ analysis, and
the SDG vertices are defined based on the preprocessed source including repl(T ).
Vertices are denoted by horizontal lines as they may cover the same source position.

repl(T)

21

1

2

Figure 7.7: Matching based on common characters in an expansion

The figure contains two successful matches; namely, (T ) is matched with both
(P1, P2). Note that the replacement text is included in matching in full. Lastly, the
combined forward slice requested on D2 consists of the set {(D2, D1), T, (P1, P2)}.
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The matching algorithm can be refined with a more accurate check on positions.
If we track the origin of the fragments contained in the replacement text, then the
slice set may be smaller. In this case P2 is matched with fragments from both D1 and
D2, but P1 only matches fragments from D1. Therefore using accurate tracking the
combined forward slice on D2 does not contain P1; it consists of {(D2, D1), T, (P2)}.
This kind of slicing produces smaller, more accurate slices. Despite this, the result
is not always better (here it is not obvious that P1 is not related to D2). Another
question arises about the interpretation: should D1 contained in the forward slice of
D2? The toolchain in our experiments applied the first type of matching process
without tracking macro fragments.

A1

A

B

D

C

D1

E

A2

#define A ...B…C…

#define B …

#define D …C...

A

#define C …E…

A

#define E …

D

A1

A

B

D

C

D1

E

A2

Figure 7.8: Edge coloring example

The graph coloring method was outlined in Section 7.2. An illustrative example
for it is given in Figure 7.8. The program code is given on the left hand side of the
figure, which is followed by the basic and the colored version of the graph (colors
are represented by solid, dotted and dashed lines). Coloring reflects the full macro
expansion of toplevel macros. For instance macro call A1 uses the definition of A (solid
lines). During the further expansion macro B is also expanded, but C is not defined
at that source position. Using the basic dependence graph for macro slicing would
result in inaccurate (larger) slices. Computing forward macro slice on the definition of
E, the basic graph would result in the set E,C,D,D1, A,A1, A2. Using the dashed
edges in the colored graph a much better slice can be computed, namely E,C,D,D1.
Coloring helps in a similar way in the case of backward macro slicing. The backward
macro slice computed on A1 using the basic graph includes unnecessary nodes (C,E).
Although the example given is rather artificial, the analyzed projects contain several
complex preprocessor constructs, which confirms the necessity of graph coloring.

97



CHAPTER 7. COMBINING PREPROCESSOR AND C/C++ LANGUAGE SLICING

7.6 Measurements

7.6.1 Subject programs

Experiments are performed on 28 open source projects, starting from small programs
to medium size ones with about 20k lines of code. Many of the programs are selected
based on comprehensive empirical studies on slicing [11] and preprocessor usage [25].
We found a total of 240k non-empty lines of code enough to prove the usability of the
method. Table 7.1 contains a list of projects used in our measurements and their basic
statistics. Sizes are given in non-empty lines of code as CodeSurfer calculates its LCode
metric (note that this metric is significantly smaller than the usual LOC metric, when
usually comments and empty lines are counted). The build time of dependence graphs
is given is seconds, as the time unix tool reports the user time of the process. The
building time includes the time needed to build the project, not only the graph building
phase. The number of nodes in the graphs can be used as a measure of the graph size.
Not surprisingly, the MDG is smaller than the SDG , which is almost 60 times larger
on average. The time required for slicing operation is given in the tables, backward and
forward slicing being done during the same run. The memory consumption was below
350M for the CodeSurfer plugin and below 2.5G for the macro slicer and combiner tool
(without any special effort made on decreasing memory consumption).

7.6.2 Slices in detail

In our experiments the measure for the slice size was the number of source code lines
which contain vertices from the slice, since this seems to be the best common denom-
inator for different slicing tools. Other researchers have also used this approach [11].

Because of the difficulties in matching, which were outlined in the previous section,
there were slices in both directions which the tools failed to match. The failure rate
was generally about 8% in the forward case, and under 1% in the backward case, which
we found acceptable for reporting measured data. The data given in this section just
contains the perfectly matched slices.

The number of combined forward slices and their average sizes can be seen in
Table 7.2. We computed all possible forward slices, meaning that we started from
each macro definition, and measured the sizes of the individual macro and language
slices along with the combined slices. The numbers listed are the average slice size
values. We treated the set of toplevel macros in a special way: we added toplevel
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Program Size MDG MDG SDG SDG Macro C/C++
name (LCode) build size build size slicing slicing

time (s) (nodes) time (s) (nodes) time (s) time (s)

replace 512 0.28 136 1.18 3205 0.26 7.85
copia 1085 0.45 7 6.13 94390 0.12 208.65
time 1119 1.88 162 4.15 5633 0.26 3.73
which 1246 1.87 146 5.41 7449 0.48 29.44
compress 1335 0.84 108 2.18 4408 0.16 8.29
wdiff 1364 2.12 217 4.57 7640 0.53 10.77
ed 2637 3.80 117 9.98 39412 0.73 716.82
barcode 2807 6.34 381 13.76 27970 3.1 427.62
tile 3549 1.93 1881 27.69 51095 19.72 146.43
acct 4008 9.37 899 12.50 24619 5.0 116.98
li 4793 10.71 1826 3006.31 943340 79.9 56238.38
EPWIC 5249 12.10 852 14.68 27099 12.23 443.48
lightning 5563 20.8 1750 69.42 56778 6954.21 572.75
gzip 5997 9.88 1725 17.88 37525 34.16 1315.92
userv 6016 5.47 1244 24.72 105902 23.30 3281.28
indent 7582 4.55 857 12.22 42102 17.98 1100.14
bc 9472 9.6 1554 24.90 59503 31.17 2080.13
diffutils 10124 18.91 1971 29.35 53928 31.54 1261.76
gnuchess 11045 13.87 2511 29.12 70782 143.8 4391.19
ctags 11670 12.96 1480 55.31 209357 106.61 12611.60
sed 13339 9.37 2527 26.28 89788 204.76 9374.67
nano 13698 14.96 3964 38.11 177879 591.88 23445.10
ijpeg 15253 25.82 4283 39.75 77531 212.62 6948.48
flex 17533 22.56 3188 112.12 126757 259.55 9912.45
bison 20673 35.74 4387 88.64 138972 98.92 16099.25
wget 21104 27.88 4146 95.28 269209 993.85 60294.88
espresso 21780 3.86 0 52.79 151802 0.18 9642.20
go 22118 5.40 5296 22.18 110236 499.19 22550.61

Total 242671 293.32 47615 3846,61 3014311 10326,21 243240,85

Table 7.1: Subject programs
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macros to both the macro slice and the associated vertices of the C/C++ slice as they
belong to both kinds of slices.

There are two items of especial interest in the list. The program espresso is in-
teresting because it does not contain any macro definitions. The program lightning
is exactly the opposite: it is the only one that has larger macro slices than C/C++
slices. Examining the code confirms that some C source files of this program are full
of macro definitions and calls.

Program Number of Macro slice C lang slice Combined slice Macro slice %
name slices size (avg) size (avg) size (avg) (M/C lang)

replace 23 7.1 328.7 335.9 2.16
copia 2 3.0 1132.5 1135.5 0.26
time 31 8.9 287.6 296.5 3.09
which 22 6.3 544.8 551.1 1.16
compress 26 4.7 277.9 282.6 1.69
wdiff 25 7.0 300.6 307.6 2.33
ed 27 3.3 1459.2 1462.5 0.23
barcode 44 6.7 1665.8 1672.5 0.40
tile 145 23.1 2468.0 2491.0 0.94
acct 76 14.2 761.9 776.1 1.86
li 111 29.7 3966.6 3996.3 0.75
EPWIC 122 7.1 1102.5 1109.6 0.64
lightning 341 983.8 167.5 1151.3 587.34
gzip 259 11.0 3274.0 3285.0 0.34
userv 202 12.2 2732.3 2744.5 0.45
indent 53 16.8 4518.0 4534.8 0.37
bc 153 9.3 3832.7 3842.1 0.24
diffutils 242 13.7 2997.5 3011.2 0.46
gnuchess 242 14.8 7086.4 7101.2 0.21
ctags 111 17.0 8337.1 8354.1 0.20
sed 256 102.6 8812.6 8915.2 1.16
nano 389 18.3 12590.1 12608.4 0.15
ijpeg 322 19.1 5861.3 5880.4 0.33
flex 334 16.3 9036.2 9052.5 0.18
bison 248 28.0 4458.6 4486.6 0.63
wget 340 27.2 16045.4 16072.6 0.17
espresso 0 nan nan nan nan
go 382 38.2 10817.2 10855.4 0.35

Total/avg 4528 ∼ 96.62 ∼ 6525.98 ∼ 6622.60 1.48

Table 7.2: Summary of forward slices

Backward slices may not necessarily contain macro calls. Although the average
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number of macro calls is not so high, most of the backward slices contain macro calls
(above 75%). The number of computed combined slices (which necessarily contain
macros) and their average sizes are given in Table 7.3, where we used the same approach
for measurements as we did with the forward slices. It can be seen that backward
macro slices are generally bigger than those for forward slices, which can be explained
by the fact that language slices usually contain many more code lines, and hence
more potential starting points for macro slices exist (we used both data and control
dependencies for slicing C code). Another reason might be that in the backward case
we produce slices for each vertex, so more of the large slices are counted, while in the
forward case we selected just a few vertices (according to the macro calls). This way,
the average may be higher in the backward case.

The last column in both tables show the ratio of macro slice size relative to the C
language slice size in percentage terms. The table tells us that the individual macro
slices are relatively small, but this may be due to the size difference of the SDG and
the MDG graphs. For a given slicing criterion the smaller the slice the better, naturally
without ignoring any dependency. Macro slices are more accurate in this sense, while
still having a relatively small additional percentage value.

There is a wide range of open source software which has been analyzed by Ernst et
al [25]. They report the preprocessor directive usage in open source software and find
that preprocessor directives make up about 8.4% of the program code on average. It is
worth mentioning that in both directions the extra code lines coming from macro slices
are relatively small compared to the language slices, so their true worth is debatable
here. However, we think that in many cases these additions may be crucial from a
program comprehension point of view. The real world example given in Section 5.2.2
provides an instance where the macro slice part is small but useful. This is not a
rare occurrence. This example was taken from the flex program where macro usage
is close to the average according to the empirical study mentioned above. In this
respect, traditional C/C++ language slices without macro slices can be treated as
unsafe, overlooking important information about macros.

7.7 Conclusions and future work

The work presented was motivated by the observation that virtually all available pro-
gram slicing tools for the C/C++ language lack the proper and complete handling
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of preprocessor constructs. From a program comprehension point of view, the exist-
ing methods often seem inadequate. For instance, the impact of changing a macro
definition cannot be accurately followed throughout the program’s preprocessor and
non-preprocessor related parts. Existing tools either compute the slices based on de-
pendencies in the language constructs or provide rich features to model macro usage,
but not both. This could have a detrimental impact on various fields related to program
comprehension and maintenance in general. For example, in change impact analysis, a
failure to identify a dependency of a change could have the effect of inaccurately pre-
dicting the cost of changes and of performing incomplete change propagation, which
in turn would result in an increased risk of regression [86].

With our work we sought to fill this gap and proposed a combined approach for
computing slices in C/C++ programs. We have given the necessary definitions for the
combined dependence graph (macro dependence graph is combined with static system
dependence graph). Moreover, definitions of forward and backward combined slices
are provided, together with algorithms for computing them. We justified our approach
by providing a realistic sample program comprehension problem and other possible
applications of the method. Existing and newly developed tools were employed in an
experimental tool setup with which a number of program slices were computed. We
counted the program points returned via the combined approach and compared it to
slices without the preprocessor components. The first results measured on open source
projects look promising, and clearly demonstrate the benefits of using our approach.
We recommend that similar combined strategies for slice calculation in existing tools
like CodeSurfer be integrated. In it, one may be able to use and extend the existing
internal representation for this purpose.

The results of this chapter belong to contribution point II/2 (Combining C/C++
language and preprocessor slicing) and partly to point II/3 (Experimental evaluation
of slicing methods), and were published in research papers [VJBG08, VBG09].
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Program Number of C lang slice Macro slice Combined slice Macro slice %
Name slices size (avg) size (avg) size (avg) (M/C lang)

replace 647 205.2 86.6 291.8 42.20
copia 3044 924.2 6.0 930.2 0.65
time 598 115.4 19.0 134.4 16.46
which 1288 396.1 53.6 449.8 13.53
compress 601 323.7 64.5 388.2 19.93
wdiff 989 170.2 45.4 215.6 26.67
ed 3849 1543.8 37.5 1581.3 2.43
barcode 4143 1569.3 153.1 1722.3 9.76
tile 2469 358.9 193.3 552.2 53.86
acct 3896 492.1 93.8 585.9 19.06
li 7695 4025.3 1392.2 5417.5 34.59
EPWIC 6434 897.0 239.7 1136.7 26.72
lightning 808 101.0 73.0 174.0 72.28
gzip 4701 2884.3 979.7 3864.1 33.97
userv 8002 2163.5 482.7 2646.2 22.31
indent 5781 3196.4 427.3 3623.7 13.37
bc 8548 3108.0 612.7 3720.6 19.71
diffutils 9614 1830.4 397.4 2227.8 21.71
gnuchess 10919 5137.0 1838.9 6975.8 35.80
ctags 12775 7496.0 976.1 8472.0 13.02
sed 12295 7367.3 1571.9 8939.2 21.34
nano 14754 12750.5 3354.6 16105.1 26.31
ijpeg 13479 5661.1 1859.5 7520.6 32.85
flex 12530 7250.8 1977.1 9227.9 27.27
bison 3873 5763.4 1792.0 7555.4 31.09
wget 21471 14345.1 2838.9 17184.0 19.79
espresso 0 nan nan nan nan
go 23840 10304.6 3628.1 13932.7 35.21

Total/avg 199043 ∼ 6647.69 ∼ 1706.99 ∼ 8354.68 25.68

Table 7.3: Summary of backward slices
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8
Related work

In the past two decades preprocessing has been a recurring theme in the literature
and this has led to the creation of several useful tools. This is still the case today,
but there is still a lack of general solutions in many branches of software engineering
where the preprocessor is present. First, we shall introduce related work, and then
discuss more specific topics, emphasizing some notable solutions. Usable tools and
high quality research articles usually go hand in hand. When a research paper is cited,
most likely there exists a corresponding tool implementation and vice versa.

8.1 Preprocessor-related problems and solutions
in general

In spite of their disadvantages, preprocessor directives are still widely employed. Ernst,
Badros and Notkin [25] analyzed the frequency and nature of preprocessor use. In
a study they analyzed 26 commonly used Unix software packages written in C with
about 970,000 source code lines altogether (for example gcc, bash, emacs, gs and cvs).
Among other things they found that preprocessor directives make up the relatively high
8.4% of lines on average (varying from 4.5% to 22%). Deep include hierarchies are
necessary properties even for medium-sized programs. Vo and Chen implemented a tool
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to analyze include hierarchies [117]. They found that real-life software often contains
unnecessary includes. The tool is able to present the include dependencies in both
textual form and graphical form, and provides help in rearranging the include hierarchy.
At the same time, Grass and Chen presented a C++ information abstractor tool [50],
and it also contains a program for the analysis and display of include relationships. A
recent paper by Spinellis proposes a solution for the automatic removal of unnecessary
includes [102], based on computed dependencies of program elements.

Studies have been done that handle the preprocessing problem in a more general
way. Favre studied the role of the preprocessor from a reverse engineering point of
view, and listed the main drawbacks of using the preprocessor. He also noticed that
the presence of preprocessor directives in programs impose serious limitation on the
applicability of worthwhile techniques, especially those which are based on program
source transformations [28]. The proposed solution, the APP (Abstract PreProcessor),
is an abstract language that handles preprocessor directives in a similar way that other
programming languages do [29].

Badros and Notkin [6] constructed a framework, called PCp3, which executes user
defined Perl callback functions when an action of interest occurs during the preprocess-
ing and parsing (after preprocessing they build an AST to handle some C language-level
constructs like call graphs). To do the preprocessing part, the authors modified and
embedded the GNU C preprocessor library. As an example they presented functions
to describe macro expansions and also generated Emacs Lisp source to visualize them.
With the help of hooks the conditionally excluded lines can be analyzed as well. The
solutions they presented are quite flexible, but the running time may be prohibitive in
the case of large software; moreover one has to write custom code for each kind of use
and this requires a good knowledge of the details of the tool’s implementation.

Kullbach and Riediger worked along similar lines as our team [63]. They divided
the code into foldable and non-foldable segments, which are visualized in the GUPRO
[24] source code browser. Applying this tool the important parts of the code can be
seen more clearly because the programmer can hide and show (fold/unfold) the seg-
ments. The fold/unfold structure is used to describe the preprocessor transformations
(folded/unfolded state means the code before/after a preprocessor action). The struc-
ture is good for visualization and the user can also define custom folds. Since each
transformation (macro calls, conditionals, etc.) is described using the same structure,
this may be inconvenient for some other preprocessor-related applications. Yet another
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difference to our work is that GUPRO deals only with just one configuration.

As part of the Ghinsu program slicing tool, Livadas and Small developed a special
preprocessor [68]. They identified five mappings between the original and the pre-
processed code. Their preprocessor inserts special lines into the preprocessed file to
support Ghinsu’s source code highlighting methods. Mappings for macro definitions
and invocations are elaborated on in their paper, but that of conditionally excluded
code (i. e. configuration independence) was not investigated. Unfortunately, it appears
that this project has been discontinued, and from the latest information gleaned we
found that the implementation had certain drawbacks (complex projects consisting of
multiple source files were not handled), which prohibits its use in real-life programs.

The area of software configurations has also been studied. Spencer and Collyer [99]
investigated the use of conditional directives for separating codes running on different
platforms in the early years. Their opinion is that the wide use of conditionals is
“harmful” and should be avoided where possible. Well-organized code should be used
instead. Krone and Snelting [62, 96] analyzed the complex configuration structures
created with directives and produced a graphical output of them. Concept lattices
were used to help in reengineering configurations [97].

Latendresse [64] proposed a solution for finding the conditions required for a par-
ticular source line to get through the conditional compilation. The approach uses
so-called conditional values to represent conditional directives. Further details in-
cluding rewrite systems were published in [65]. The advantage of this approach is
that the efficient symbolic evaluation algorithm has linear time complexity. CViMe
(Conditional-compilation Viewer and Miner) and its continuation the C-CLR tools are
Eclipse plugins, which collect configurations controller macros and then provide source
code views on user selected configurations [94, 93]. A similar functionality is provided
by the Sunifdef command line tool [106]. It takes defined macro symbols as arguments
and attempts to eliminate or simplify conditional directives.

Baxter and Mehlich introduced a method for removing unnecessary conditional di-
rectives based on rewrite rules of the DMS system [7, 54]. Aversano et al. offered a
solution for preprocessor-conditioned declarations, which occur when C variable dec-
larations depend on preprocessor conditions [5]. This construction may be harmful
especially in case of the presence of rare, un-maintained configurations, which may
lead to type confusions of variable declarations and usages.

Sutton and Maletic implemented analyzer tools on the top of the srcML infras-
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tructure to reveal portability issues based on include files and configuration macros
[107]. Observations from the analysis of three mainstream software libraries were used
to draw conclusions about portability best practices. Somé and Lethbridge proposed a
heuristic solution for selecting most important, relevant configurations, assuming that
analyzing all configurations is impossible, but performing the analysis for the most
important configurations gives significantly better results than one-configuration pars-
ing [98]. Rieger et al. reported a study on teaching the FAMIX system to handle
preprocessor directives [69]. The Famix metamodel is extended by notions represent-
ing properties of most common directives including conditional compilation and macro
usage.

In the work of Garrido the analysis of preprocessor constructs was integrated into
the C refactoring tool [40]. Garrido tackled the problem of refactoring directives [41]
and implemented a configuration independent solution [42, 43].

Vittek also tackled problems in refactoring related to the preprocessor [116]. His
Refactoring Browser [114, 115] carries out automated modifications on a C source
code. An interesting idea in this paper is that of handling macros as special include-
files (the macro body is “included”), but the handling of ## operators is not solved in
some cases. To handle the problem of configurations, this tool relies on user input.

Cox and Clarke proposed an XML annotating technique for maintaining the map-
ping between the original and the preprocessed forms of the source code [20]. Another
interesting idea was presented for mapping unprocessed and preprocessed code by Gon-
dow et al. [48]. The TBCppA tool instruments the original source code and marks
macro definitions and calls, so the mapping can be recovered after using a native
preprocessor.

8.2 Refactoring

A lot of effort has been made by researchers to provide a formalism for refactorings.
In Chapter 4 we mentioned some articles on refactoring, along with some of the avail-
able tools. The graph transformation approach to formal refactoring is a well-known
method. A remarkable summary of this topic can be found in the papers by Mens
et al. [72, 73]. The graph representation of a program plays an essential role in
the formalism. The two key issues here are preconditions and behaviour preservation.
Bottoni et al. [15] use a similar formalism, the focus being on the coordination of a
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change in different model views of the code using distributed graph transformations.
These contributions seek to be language independent, but for a refactoring to be ap-
plicable in case of real-life programs, language dependent details must be elaborated
on. Although researchers have made good progress in this area, those in the industry
sector use more or less the same solutions as before: language specific refactorings are
implemented separately. Fanta and Rajlich [27] provided a natural way of implement-
ing refactorings. The paper shows the key points, but this solution somehow lacks
the formal basis. They report that these transformations are surprisingly complex and
hard to implement. Two reasons they give for this are the nature of object-oriented
principles and the language specific issues. In our approach, instead of using traditional
graph transformation approaches we investigate language specific issues; we omitted
NACs and used OCL to check conditions instead.

In the rest of this section we will concentrate on the preprocessor aspect. Those
working on C or C++ analyzers are confronted by the problem of preprocessor di-
rectives. Therefore, a lot of effort has been made to avoid their usage. Mennie and
Clarke proposed a method to transform some macros and conditionals into C/C++
code [70]. The authors classified the different uses, removed some preprocessor con-
structs, and also discussed the pitfalls of the method. Spinellis tackled the problem
of global renaming of variables [100]. The identifier tokens are classified and only the
right occurrences are modified. Preprocessor-aware solutions have been implemented
in the CScout tool [101].

The preprocessor-problem occurs also in the context of aspect mining and aspect-
refactoring. Adams et al. worked on the problem of aspect refactoring, and also how
to refactor various conditional compilation usage patterns into aspects [2, 1].

The process of refactoring is strongly affected by the above problem, as implement-
ing a refactoring just on a C/C++ AST may lead to errors. The usual approach is to
work on preprocessed code, or to recognize (partially handle) directives [111]. Han-
dling directives is easier when preprocessor constructs form complete syntactical units.
Vittek [114] introduced a tool which implements some preprocessor-safe refactorings
on C++, but he acknowledged that there are unhandled cases caused by complex code
constructions of the two languages (see [120] as well).

A recent work of Garrido also incorporates directive usage into the C language.
The presented C refactoring tool includes configuration independent solutions [42,
43]. Several preprocessor-related refactorings can be found in [41], which are have no
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connection with the C language itself but with the preprocessing directives. The key
aspects of such refactorings were presented at a conceptual level only, using source
code examples. Refactorings made on directives are slightly less complicated than
language dependent refactorings combined with directives [40], but they can also have
an important role in the refactoring of real-life C/C++ programs.

8.3 Slicing

There are relatively few slicing tools available for C/C++ programs. Binkley and
Harman [11] conducted an empirical study of the static slice size of C programs
and they mention three general purpose slicing tools: Unravel [112], Sprite [75] and
CodeSurfer [49], using the latter in their experiments. Unravel was a research prototype
that was developed in a discontinued project. It has a number of deficiencies, including
the fact that it can only accept preprocessed ANSI C code, which makes it clear that
handling macros has not been implemented. Sprite implements some enhancements
to traditional slicing algorithms, most notably in the area of points-to data. Since the
tool is not publicly available and the related publications do not deal with this issue,
it is not clear how macro dependencies are handled via this approach.

The commercial slicing tool CodeSurfer, marketed by GrammaTech Inc., is probably
the most up-to-date slicing program for C/C++ today. It is able to compute various
static dependency data by employing the latest code analysis and program slicing
technologies. However, it also has modest support for handling preprocessor-related
artifacts. It is able to identify the location of macro definitions and uses and present
this data to the user. Still, it is not possible to compute slices using macro definitions
as criteria. Furthermore, the slices will only include statements that exist after macro
expansion. Nevertheless, we used this tool in our experiments because the information
supplied by CodeSurfer about macro usage was sufficient to implement our approach.

There are remarkable contributions which offer a solution for development issues:
when seeing a macro name in the source code, which macro definitions take part in the
expansion. This is the issue of backward macro slices (in our terminology), where the
answer requires the analysis of the compilation units in question only. In our approach,
however, we use information taken from the whole source code for forward slices as
well. (With our approach backward slices can also be computed.)

Livadas and Small identified mappings between the preprocessed and the unpro-
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cessed code. The Ghinsu software maintenance environment uses the most similar
approach to ours [68]. With this tool by clicking on a macro invocation the called
definitions are highlighted (backward macro slice). In addition, it supports both static
and dynamic slicing, ripple analysis and other types of program analysis on ANSI com-
pliant C source code. This tool also utilizes a dependency graph where the tokens of
preprocessed code are classified according to whether (and if so, how) they are involved
in macro expansion. As already mentioned above, it appears that this project has been
discontinued, and it had certain drawbacks; for example, certain language features and
complex projects consisting of multiple source files are not handled.

The Understand for C++ reverse engineering tool provides cross references between
the use and definition of software entities [111]. This includes the step-by-step tracing
of macro calls in both directions as well. The user can track back the uses of a given
macro definition but the information is imprecise in certain situations. The program
fails on the problem depicted in Figure 6.5, and e.g. it misses calls generated by ##
operators; or shows a macro call where a parameterized macro name is used without
arguments, so no macro expansion occurs.

The above-mentioned APP (Abstract PreProcessor) defines an abstract language.
Handling directives in a consistent way allows one to perform an analysis such as
slicing as a solution for some preprocessor-related problems [29, 30]. The example
presented on slicing is similar to our backward macro slicing, but it has the advantage
of indicating the conditional directives in the path. Alas, the implementation drawbacks
prevent this tool from being applied to real C programs (e.g. the function-like macros
are not supported).

Finally, an interesting topic for future research is the investigation of the so-called
dependence clusters [12] on preprocessor slices. A dependence cluster is a set of
program statements, all of which are mutually inter-dependent. Dependence clusters
are approximated by the set of statements which have similar slice sizes. In the case
of combined slicing the presence of similar slice sizes are also observed. Macro slices
are, however, usually short, hence the C/C++ slices are dominant in the combined
slices. In the preprocessor case, macros with really short macro slices do not necessarily
belong to the same cluster. This issue requires more careful investigation, however.
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9
Conclusions

Large C and C++ programs exist today that have been in the maintenance phase for
many years. The need for tool support is increasing year by year to aid the understand-
ing of large programs with millions of lines of code, and even to aid the implementa-
tion of bug-fixes and new features. Our work was dedicated to supporting program
maintenance activities impeded by the presence of preprocessor directives. While the
preprocessor has increased the productivity in software development, the presence of
preprocessor directives has a negative impact in several areas of program maintenance.
For instance, there exists one line in the source code of the GCC compiler, which de-
pends on 41 different macros. In addition, after taking into account all the possible
configurations this number increases to 187. The risk is high in modifying these kind
of preprocessor-dependent points of a program.

Reverse engineering is a process for obtaining facts (relevant information) from
legacy programs. Recognizing that after several years of development and operation,
the source code is the only relevant and complete documentation of a program, we
initially used a source code-based reverse engineering approach. Two crucial aspects
of reverse engineering are fact extraction and representation. Here we gave a complete
solution for reverse engineering preprocessor-related software artifacts.

Our first contribution was the preprocessor schema (metamodel), which describes
our program representation from a preprocessing point of view. The schema represents
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the structure of preprocessor directives and also the process of preprocessing with a
step-by-step macro expansion. A preprocessor tool was implemented within the Colum-
bus framework, which generates schema instance graphs obtained from the program
being analyzed. The tool is called CANPP, and is capable of analyzing industrial size
software projects with millions of lines of code.

The preprocessor schema and the API, which provides access to schema instances,
allows one to use the detailed information for further analysis purposes in program
comprehension, like macro folding or for investigating the include hierarchy. Inter-
operation with other tools is also facilitated by the XML exports of instance graphs.

Our further contributions were built upon the schema and on processing schema
instances. The refactoring of preprocessor directives is barely mentioned in the lit-
erature, although refactoring C/C++ programs is a frequent topic. We contributed
viewpoints for an elaboration of concrete macro refactorings based on higher level
refactoring concepts. We designed a tool architecture, which was implemented mainly
based on existing tools, capable of planning, performing and checking refactorings on
macros. The usability of the schema was also demonstrated by the developed schema
instance exporter, which supported the tool integration with a model transformation
system. The proposed method was demonstrated via an elaboration of concrete, appli-
cable refactorings and experiments on real-life programs where macro refactoring was
performed at every appropriate program point.

Change impact analysis seeks to provide answers to a central question in mainte-
nance: what parts of a program are affected by a particular change? A well-known
method for aiding impact analysis is called program slicing. Slicing was originally in-
troduced to assist debugging, where a set of program points is sought for, which affect
the variables of interest at a chosen program point, called the slicing criterion. The
area of slicing is fairly diverse, and today there exist a lot of slicing methods and
strategies. Their common attribute, however, is not to consider preprocessor macros
as program points, the basic unit of slicing. An extensively used approach is when a
so-called PDG or SDG (Program or System Dependence Graph) is built in order to
compute dependency-based slices. We introduced the novel approach of dependency-
based macro slicing in two steps. First, the notion of the Macro Dependence Graph
(MDG) was outlined using the macro call relation, and forward and backward macro
slices were defined on the MDG. Using macro slices we could tackle questions which
could not be answered with traditional C/C++ slicing methods. E.g. which parts of
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the source code are affected by a change in a macro body? Second, we integrated
dependence graphs and defined connection points to extend traditional C/C++ slices
with macro slices. The definitions of combined dependence graph and combined slices
were also given. Forward and backward slicing algorithms used to calculate slices were
listed as well. We proposed a tool architecture for the global computation of combined
slices, and novel slicing notions introduced in our work were validated by experiments.
The schema instances served as the MDG, and our macro slicer tool being implemented
within the Columbus framework. Combined slices were computed via the integration
and extension of existing slicer tools. Both macro slices and combined slices were
empirically evaluated based on experiments on real-world programs.

The detailed schema opens up possibilities in several research areas. Generating
static instances is a direction where a number of configuration-related issues are waiting
to be solved. In our macro refactoring solution, quantitative properties should be
improved. The propagation of model-level changes to the source code is still an open
issue.

Program comprehension and development could be aided by the intelligent visual-
ization of macro constructs. In this area we have already made progress by extending
the Visual Studio plugin with graphical features. We would like to see the notion of
macro slicing incorporated into popular slicer tools like CodeSurfer. Experiments in
combining dynamic C/C++ slicing with macro slicing would also be helpful.

In conclusion, we introduced novel methods in aiding the maintenance tasks of
preprocessed languages. Theoretical and practical results were achieved, and several
tools were implemented. Experiments were then performed to prove the practical utility
of theoretical results in the areas of modelling, refactoring and slicing preprocessed
languages.
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A
Summary in English

Introduction

Software maintenance requires activities other than the usual ones in the development
phase. Maintenance does not consist of just bug fixing in a running program; such
an activity may be any modification of a software product after delivery to improve
performance or other attributes, or to adapt the product to a changed environment.
The need for tool support is increasing year by year to help us better understand large
programs with millions of lines of code, and even more to aid the implementation of
bug-fixes and new features. Our work was dedicated to supporting program mainte-
nance activities hindered by the presence of preprocessor directives.

While the preprocessor has increased the productivity in software development,
the presence of preprocessor directives has a negative impact in several areas of pro-
gram maintenance. For instance, there exist a line in the source code of the GCC
compiler which depends on 41 different macros. The risk is high in modifying such
preprocessor-dependent points of a program. Reverse engineering, a fundamental ele-
ment in supporting maintenance, is a process for obtaining facts (relevant information)
from legacy programs. Recognizing that after several years of development and oper-
ation, the source code is the only relevant and complete documentation of a program,
we used a source code-based reverse engineering approach. We gave a complete solu-
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tion for reverse engineering preprocessor-related software artifacts, and which artifacts
are then used in program understanding and impact analysis.

Metamodel for the C/C++ preprocessor language

Our first contribution was the preprocessor schema (metamodel), which is a general
description of programs from a preprocessing point of view. The schema covers all
preprocessor-related elements in a C/C++ source file, and also contains information
on preprocessor operations like macro calls. To our knowledge this was the first pub-
licly available general-purpose preprocessor schema. The schema consists of entities
with attributes, and their relations, hence it was presented using the UML class di-
agram notation. A schema instance (model) is a graph that corresponds to a given
C/C++ program and contains all the preprocessor-related information in a concrete
form. From the schema instance the original source code, the preprocessed source code
and all immediate states of the preprocessing process can be obtained. In addition,
the schema describes both dynamic (configuration dependent) and static (configura-
tion independent) instances. A preprocessor was implemented within the Columbus
framework, which is able to generate schema instance graphs based on the analyzed
programs. The tool is called CANPP, and is capable of analyzing industrial size soft-
ware projects with millions of lines of code. The schema and the related API, which
provides access to schema instances, allows one to use the detailed information for
further analysis purposes in program comprehension, like implementing macro folding
or for investigating the include hierarchy. Therefore the solution is applicable for fully
analyzing preprocessor usage at a fine-grained level, and the results were utilized in
several research projects. Our further contributions were built upon the schema and
on processing schema instances.

Model level refactoring of macros

Refactoring preprocessor directives is barely mentioned in the literature, although refac-
toring C/C++ programs is a frequent topic. Model level refactoring has the advan-
tage that it formally checks specific conditions, which is necessary when a high level
refactoring has many concrete forms. We contributed viewpoints for an elaboration
of concrete macro refactorings based on higher level refactoring concepts. Based on
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the given criteria, we presented a discussion and elaboration of the refactoring called
add parameter for macros. We designed a tool architecture, which was implemented
mainly based on existing tools, and is capable of planning, performing and checking
refactorings on macros. The usability of the schema was also demonstrated by the
developed schema instance exporter, which supported the solid tool integration with a
model transformation system. The proposed method is demonstrated via the detailed
elaboration of concrete, applicable refactorings and experiments on real-life programs
where macro refactoring was performed at every appropriate program point.

Macro slicing

Change impact analysis seeks to find answers to a central question in maintenance:
What parts of a program are affected by a particular change? A well-known method for
aiding impact analysis is called program slicing. The area of slicing is fairly diverse, and
there exist lots of slicing methods and strategies. Their common attribute, however,
is not to consider preprocessor macros as program points, the basic unit of slicing.
An extensively used approach is when a so-called PDG or SDG (Program or System
Dependence Graph) is built in order to compute dependency-based slices. Borrowing
ideas from traditional dependency-based slicing, we introduced the novel notion of the
Macro Dependence Graph. To ensure appropriate properties for slicing, dependency
edges were colored in the graph. Therefore dependence graphs of complete software
projects (not just compilation units or individual programs) can be built and used for
slicing purposes. We defined both forward and backward type of macro slices, which
are computable on the dependence graph.

Combining C/C++ and preprocessor slicing

The use of macro slices is limited to macro constructs, but the real advantage of our
approach could be exploited if macro slices could be linked to traditional slices. We
combined traditional C/C++ slices with macro slices, giving a more complete depen-
dency set for slicing. The connection points are the places in the source code where
(initial) macro calls occur. These points are part of the Macro Dependence Graph, and
the resulting tokens from the expanded macro call are part of the dependence graph
of C/C++ slicing. We composed a combined dependence graph, on which forward
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and backward combined slices were defined. Global forward and backward slicing al-
gorithms were presented as well. These contributions were significant improvements
in traditional C/C++ slicing, and were honored with the best paper award in an IEEE
conference.

Experimental evaluation of slicing methods

The notions of macro slices and combined slices were evaluated in experiments per-
formed using the relevant tools. We implemented a macro slicer within the Columbus
framework which uses schema instances as MDGs. We conducted experiments to eval-
uate the feasibility of the approach on large-scale programs like the Mozilla, and for
getting a better picture of the properties of macro slices. We also proposed a tool ar-
chitecture for global computation of combined slices. Combined slices were computed
via the integration and extension of existing slicer tools. Our macro slicer was used
with the CodeSurfer for the C/C++ part, which were integrated using a slice combiner
tool. Both macro slices and combined slices were thoroughly evaluated based on exper-
iments on real-world programs. We found that macro slices were significantly smaller
than static C++ slices of the same source code (the difference is larger in the case
of forward slices). Despite being smaller, macro slices can provide a real improvement
since they provide precise information owing to their dynamic nature.

Conclusions

We introduced novel methods to aid the maintenance tasks of preprocessed languages.
Both theoretical and practical results were achieved, and several tools were imple-
mented. Experiments were performed to demonstrate the practical usefulness of the
theoretical results in the areas of modelling, refactoring and slicing preprocessed lan-
guages. There are several promising research areas for future work, the most interesting
being the generation of static schema instances for configuration-related analysis.
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B
Magyar nyelvű összefoglaló

Bevezető

A szoftver karbantartás másféle tevékenységeket követel meg, mint amelyeket a fejlesz-
tési fázisban már megszoktunk. A karbantartás nem pusztán az átadás után felfedezett
hibák javítását jelenti egy már futó programban, karbantartási tevékenység lehet bár-
mely változtatás egy leszállított szoftvertermékben, mely a teljesítményét növeli vagy
bármely más tulajdonságát fejleszti, illetve mely a rendszer a megváltozott követelmé-
nyekhez való adaptációját célozza meg. Évről-évre növekszik az igény olyan eszközök
kifejlesztésére, melyek segítenek az ipari méretű, több millió soros programok megérté-
sében. Sőt, méginkább igény mutatkozik olyan eszközökre melyek támogatják a konk-
rét hibajavításokat és az új funkciók kifejlesztését. Kutatómunkánkat a preprocesszált
nyelvi környezetben végzett szoftver karbantartási tevékenységek támogatásának szen-
teltük.

Amíg a preprocesszor növeli a szoftverfejlesztés hatékonyságát, a direktívák jelen-
léte negatív hatással van a szoftver karbantartás több területére is. Például a GCC for-
dító forráskódjában található egy olyan programsor, mely 41 preprocesszor makrótól is
függ. Bármilyen változtatás az ilyen mértékű preprocesszoros függésben lévő program-
sorokban igen magas kockázattal jár. A karbantartás támogatásának alapvető eleme a
visszatervezés (reverse engineering). A visszatervezési folyamat célja hogy releváns in-

123



APPENDIX B. MAGYAR NYELVŰ ÖSSZEFOGLALÓ

formációt (tényeket) nyerjen ki már működő programokból. Felismerve, hogy több éves
fejlesztés és üzemeltetés után bármely program egyetlen teljes és releváns dokumentá-
ciója maga a forrásakód, munkánk során forráskód-alapú visszatervezési megközelítést
alkalmaztunk. Teljeskörű megoldást kínálunk preprocesszorral kapcsolatos információk
kinyeréséhez (visszatervezéséhez), mely információkat a program megértés, az újrater-
vezés és a hatásanalízis támogatására használunk fel.

Metamodell a C/C++ preprocesszor nyelvhez

Első eredményünk a séma (metamodell) a preprocesszor nyelvhez, mely a programok
általános leírása a preprocesszálási folyamat szemszögéből. A séma tartalmaz minden
preprocesszorral kapcsolatos elemet ami egy C/C++ forrás állományban található,
emellett információt tartalmaz a preprocesszor műveleteiről is, mint például a makró
kifejtés. Tudomásunk szerint ez az első nyilvános, általános célú séma a preprocesszor-
hoz. A séma attribútumokkal ellátott entitásokból, és a köztük lévő kapcsolatokból
áll, így az UML osztálydiagram jelölést követve adjuk közre. Séma példányon (modell)
egy gráfot értünk, mely egy adott C/C++ programhoz tartozik és tartalmaz minden
preprocesszorral kapcsolatos konkrét információt. A séma példányokból mind az ere-
deti forráskód, mind a preprocesszált forráskód, valamint a preprocesszálási folyamat
összes köztes állapota kinyerhető. A séma leírja mind a dinamikus (konfigurációfüggő,
egy adott preprocesszor lefutást jellemző), mind a statikus (konfigurációtól független)
példányokat is.

A Columbus keretrendszer részeként implementáltunk egy preprocesszort, mely elő-
állítja az elemzett programokhoz tartozó séma példányokat (jelenleg csak dinamikus
példányok állíthatók elő az eszköz segítségével). Az eszköz (CANPP) képes több millió
nem-üres programsorból álló, ipari méretű szoftverek teljes elemzésére is. A séma és a
hozzá tartozó programozói API, mely hozzáférést biztosít a séma példányokhoz, együt-
tes segítségével bárki felhasználhatja a részletes adatokat további elemzések elvégzésére
a program megértés területén, mint például a makró folding (makrók szöveges elrejtése
és felfedése a fejlesztőkörnyezetben) vagy az include hierarchia további elemzése. A
bemutatott megoldás tehát alkalmas a preprocesszor használat részletes és teljes körű
elemzésére. Az eredményeket több kutatási projekt során is felhasználtuk, és a további
tézisek is nagy mértékben támaszkodnak a sémára és a séma példányok feldolgozására.
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Makrók modell szintű újraszervezése

Annak ellenére, hogy a C/C++ programok újraszervezése (refactoring) gyakori téma
a szakirodalomban, preprocesszor direktívák újraszervezéséről alig található publikáció.
A modell szintű újraszervezés előnye, hogy a modellek különböző feltételek formális
ellenőrzésen is átesnek, ami különösen fontos amikor egy magas szintű újraszervezési
művelet (refactoring) több konkrét formája is létezhet. Első hozzájárulásunk megfelelő
szempontok összegyűjtése makrókkal kapcsolatos magasabb szintű újraszervezési min-
ták konkrét kidolgozásához. A megadott szempontok alapján részletesen is kidolgoztuk
és tárgyaltuk a makrókhoz új paraméter hozzáadását célzó újraszervezési műveletet.
Eszköz architektúrát terveztünk, melynek implementációja – főleg meglévő eszközökre
támaszkodva – alkalmas makrók újraszervezésének tervezésére, végrehajtására és an-
nak ellenőrzésére. A preprocesszor séma használhatóságát bizonyítja az is, hogy a séma
példányok konvertálását végző eszköz elkészítésével könnyen megoldhatóvá vált az in-
tegráció a modell transzformációs rendszerrel. A bemutatott módszert demonstrálandó
konkrét, végrehajtható újraszervezéseket dolgoztunk ki, illetve valós programokon vé-
geztünk kísérleteket, ahol az újraszervezést végrehajtottuk a programok minden arra
alkalmas pontján.

Makró szeletelés

A változás-hatásanalízis a szoftver karbantartás egyik központi kérdésére keres választ:
a program mely részeire lehet kihatással egy adott változtatás? Egy jól ismert módszer
a hatásanalízis támogatására a programszeletelés. A szeletelés területe igen szerte-
ágazó, sok módszer és szeletelési stratégia létezik. Ezek közös tulajdonsága azonban,
hogy a preprocesszor makrókat általában nem tekintik program pontoknak, ami a sze-
letelés alapegysége. A függőség alapú szeletelési módszerek alkalmazásakor egy ún.
Program Függőségi Gráf vagy Rendszer Függőségi Gráf épül (továbbiakban PDG vagy
SDG – Program/System Dependence Graph) a szeletek kiszámításához. A tradicionális
függőség alapú szeletelés ötleteit kölcsönözve megalkottuk a Makró Függőségi Gráfot
(továbbiakban MDG – Macro Dependence Graph). A gráfban a függőségi élek színe-
zése biztosítja a szeleteléshez szükséges tulajdonságokat, így teljes szoftver projektek
függőségi gráfja is felépíthető szeletelési célokra, nem csak egyes fordítási egységeké.
A függőségi gráfon definiáltuk az előrehaladó és hátrahaladó szeleteket, ezzel teljessé
tettük a makró szeletelés fogalmát.
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C/C++ nyelvű és preprocesszor szeletek összekap-
csolása

A makró szeletelés hatásköre önmagában csak a makrókra terjed ki, de a módszer igazi
lehetőségeit akkor tudjuk kiaknázni, ha mind a makró szeleteket mind a hagyomá-
nyos C/C++ szeleteket felhasználjuk. Következő eredményünk hogy a hagyományos
C/C++ szeleteket összekapcsoltuk (kombináltuk) a makró szeletekkel, ezzel mégin-
kább teljessé téve a szeletelés alapját képező függőségi halmazt. A kapcsolópontok a
forráskódban azok a helyek ahol makró hívás történik. Ezek a pontok részét képezik
a Makró Függőségi Gráfnak, emellett a hívás eredményeként keletkező kódrészlet már
a C/C++ szeletelés függőségi gráfjának része. Megalkottuk az Összekapcsolt (Kom-
binált) Függőségi Gráfot, melyen szintén definiáltuk az összekapcsolt előrehaladó és
hátrahaladó szeletek fogalmát. Továbbá algoritmusokat is megadtunk előrehaladó és
hátrahaladó szeleteket globális számításához. Hozzájárulásunk jelentős előrelépést je-
lent a hagyományos C/C++ szeletelés területén is, kapcsolódó közleményünk elnyerte
a konferencia legjobb cikke díjat.

Szeletelési módszerek gyakorlati kiértékelése

A makró szeletek és összekapcsolt szeletek fogalmát és alkalmazhatóságát a megfelelő
eszközökkel végzett kísérletek során értékeltük ki. A Columbus keretrendszer részeként
implementáltunk egy makró szeletelő eszközt, mely a preprocesszor séma példányokat
használja MDG-ként. Sikeres kísérleteket végeztünk a módszer nagyméretű programo-
kon való alkalmazhatóságát célozva, ahol a Mozilla forráskódján szeleteket számolva
valós képet kaptunk a szeletek tulajdonságairól. Emellett eszköz architektúrát ter-
veztünk összekapcsolt szeletek globális számításához. A szeletek számítását meglévő
eszközök integrálása és kibővítése útján oldottuk meg. A már említett makró szeletelő
eszközünket, és a CodeSurfer C/C++ szeletelő eszközt felhasználva, ezeket egy szelet
összekapcsoló eszközzel integrálva valósítottuk meg a szeletelést. A makró szeletek
és az összekapcsolt szeletek is kiértékelésre kerültek valós programokon végrehajtott
kísérletek során. Azt tapasztaltuk, hogy a makró szeletek lényegesen kisebbek mint a
statikus C++ szeletek ugyanazon a programon mérve, különösen előremutató szeletek
esetében. Bár a makró szeletek kisebbek, mégis jelentős fejlődést jelentenek mivel
dinamikus természetüknél fogva pontos információval bővítik a C/C++ szeleteket.
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Konklúzió

A dolgozatban preprocesszált nyelvi környezetben fejlesztett szoftverek karbantartá-
sát támogató újszerű módszereket mutattunk be. Céljainkat mind alapvető, elméleti
eredményeket felmutatva, mind ezek alkalmazására készült eszközök implementálásá-
val értük el. Az elméleti eredmények használhatóságának alátámasztására kísérleteket
végeztünk preprocesszált nyelvek forráskódjának modellezése, újraszervezése és szele-
telése területén. A munka folytatásához több ígéretes kutatási irány is adott, ezek
közül talán a legérdekesebb a statikus séma példányok előállítása konfigurációkkal kap-
csolatos elemzések végzéséhez.
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C
Further details on the preprocessor schema

C.1 Sample PPML output

PPML (PreProcessor Markup Language) is the XML representation of the schema
instances. The structure of the schema is followed by the XML elements and attributes.
A sample piece of source code can be seen in Listing C.1. The corresponding PPML
code is shown in Listing C.2. Note that in the case of PPML, the line and column
information of nodes (which is important for each node) has been omitted from the
listing due to space constraints.

1 #if VERBOSE >= 2

2 print("trace␣message");

3 #endif

4 #define PRETTY_PRINT(msg) printf(msg);

5 if (n < 10)

6 PRETTY_PRINT("n␣is␣less␣than␣10");

7 else

8 PRETTY_PRINT("n␣is␣at␣least␣10");

Listing C.1: PPML sample: source code fragment
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<Project id=’id100’ ork=’1’>

<File id=’id101 ’ name=’example.cpp’>

<If id=’id318’ enabled=’false’>

<DirectiveText id=’id319 ’ name=’␣’/>

<DirectiveId id=’id320’ name=’VERBOSE ’>

</DirectiveId >

<DirectiveText id=’id321 ’ name=’␣’/>

<DirectiveText id=’id322 ’ name=’&gt;=’/>

<DirectiveText id=’id323 ’ name=’␣’/>

<DirectiveText id=’id324 ’ name=’2’/>

</If>

<Endif id=’id325 ’>

<dependsOn ref=’id318’/>

</Endif >

<FuncDefine id=’id326’ name=’PRETTY_PRINT ’ isExternal=’false’>

<defineRef ref=’id336’/>

<defineRef ref=’id343’/>

<Parameter id=’id328’ name=’msg’/>

<DirectiveId id=’id329’ name=’printf ’>

</DirectiveId >

<DirectiveText id=’id330 ’ name=’(’/>

<DirectiveId id=’id331’ name=’msg’>

<refersToParameter ref=’id328’/>

</DirectiveId >

<DirectiveText id=’id332 ’ name=’)’/>

<DirectiveText id=’id333 ’ name=’;’/>

</FuncDefine >

<Text id=’id334’ name=’if␣(n␣&lt;␣10)&#10;␣␣’>

</Text >

<Id id=’id335’ name=’PRETTY_PRINT ’>

<defineRef ref=’id336’/>

</Id>

<Text id=’id337’ name=’(’>

</Text >

<Text id=’id339’ name=’&quot;n␣is␣less␣than␣10& quot;’>

</Text >

<Text id=’id340’ name=’)’>

</Text >

<Text id=’id341’ name=’;&#10; else &#10;␣␣’>

</Text >

<Id id=’id342’ name=’PRETTY_PRINT ’>

<defineRef ref=’id343’/>

</Id>

<Text id=’id344’ name=’(’>

</Text >

<Text id=’id346’ name=’&quot;n␣is␣at␣least␣10& quot;’>

</Text >

<Text id=’id347’ name=’)’>

</Text >

<Text id=’id348’ name=’;&#10; ’>

</Text >

</File >

</Project >

<FuncDefineRef id=’id336 ’ ork=’1’>

<refersToId ref=’id335’/>

<refersToDefinition ref=’id326’/>

<Argument id=’id338’ line=’6’ col=’16’ endLine=’6’ endCol=’34’>

<consistsOf ref=’id339’/>

</Argument >

</FuncDefineRef >

<FuncDefineRef id=’id343 ’ ork=’1’>
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<refersToId ref=’id342’/>

<refersToDefinition ref=’id326’/>

<Argument id=’id345’ line=’8’ col=’16’ endLine=’8’ endCol=’33’>

<consistsOf ref=’id346’/>

</Argument >

</FuncDefineRef >

Listing C.2: PPML sample: the corresponding XML code

C.2 CANPP command line options

Table C.1 below summarizes the most important command line options of our prepro-
cessor implementation.

Option Description

-P Preprocess to file (default)
-E Preprocess to stdout
-EP Preprocess to stdout, no #line
-s File name for schema instance
-version Print version information
-dPPML Generate PPML (XML) output
-dGXL Generate GXL (XML) output
-I Add to include search path
-D Define macro, format: -D<name>[<params>][=|#<value>]
-U Remove predefined macro
-u Remove all predefined macros
-X Ignore standard places
-nostdinc Ignore standard places
-FI Forced include file (Microsoft)
-include Forced include file (GCC)
-C Do not strip comments
-nC No comments
-npsi Do not write .psi output
-w Disable all warnings
-dM Dump macros
-dep Create dependency list
-di Generate i file from schema
-mc Create macro calls structure
-GR MS - Enable Run-Time Type Information (defines macro _CPPRTTI)
-MTd MS - Use Run-Time Library (defines macro _MT, _DEBUG)
-MDd MS - Use Run-Time Library (defines macro _MT, _DLL, _DEBUG)
-ini Use the given ini file for C++ files

Table C.1: CANPP command line options
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