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Introduction

The present dissertation, in its first part, considers theoretical results from the field of theory revision.

Theory revision, as part of learning theory, is interested in reconstructing some unknown function

ftrg (called the target concept), acquiring information about it via some protocol, specified by the

given learning model. However, as opposed to the general learning problem, it is assumed that the

learner is not new to the given task, but it initially has a hypotheses that is assumed to be some

rough approximation of the unknown function. As an analogous real-world example, one can consider

an initial version of an expert system provided by an expert, which needs to be refined using further

examples or other information available. Having some initial hypotheses available should make the

learning problem easier to solve—making the relevance of the model apparent, and motivating its

analysis from the theoretical point of view.

The theory revision results in the present dissertation all consider some Boolean formula class;

read-once, threshold and projective DNF formulas are analyzed from the point of view of efficient

revisability.

In the second part characterizational results are presented; all showing equivalence between some

syntactical and some semantical properties of some classes of Boolean functions. The syntactic prop-

erties involve Boolean formula classes, like DNFs satisfying some syntactic irredundancy notion, Horn

formulas (one of the most studied formula class in artificial intelligence), disjoint DNFs (DNFs with

pairwise conflicting terms) and decision trees (another very important object in computer science—

which can also be thought of as a subclass of DNFs). The semantic properties include restrictions

given for partitioning the n-dimensional cube with subcubes, special local restrictions given for a

Boolean function on its domain, extensions of the truth set of some function fulfilling some special

criteria, and finally some extremal properties.

The numbering of the theorems and lemmas, etc in this booklet is the same as that of the

Dissertation. However, for the sake of keeping the presentation as simple as possible the formulation

occasionally differs.

Theory Revision Results

Descriptions of theory revision systems are given, for example, in [17; 27; 28; 34; 35]. One of the

first papers studying revision from a theoretical aspect is due to Mooney [25]. He assumed that the

target can be obtained from the initial hypotheses by using revision operators, which are simple,

predefined syntactic modifications, such as the deletion or the addition of a literal, and gave bounds

for the the number of random examples needed in the PAC model for revision in terms of the number

of these modifications necessary. Greiner [11] considered the computational complexity of hypothesis

finding in a related framework.

The models for theory revision used in the present dissertation are extensions of Mooney’s approach

to two popular learning models: the query model and the mistake bounded model. In these settings

the revision distance of the initial hypotheses ϕ and the target concept ftrg, denoted dist(ϕ, ftrg),

is defined to be the minimal number of revision operators needed to apply on ϕ to obtain a formula

equivalent with ftrg.

In the query learning model (introduced by Angluin [3]) an oracle is assumed to answer (in constant
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time) questions of the learner via some query protocol. These questions are typically of the form of a

membership query, querying the value of the target concept on some assignment, or an equivalence

query, asking whether some formula, constructed by the learner is equivalent to the target concept.

Definition 3.1 (Theory revision in the query learning model) Given some formula class R, an

algorithm is a revision algorithm for R with query complexity p, if, given any function ftrg—called

target concept—representable by some formula in R, on input ϕ ∈ R—called initial formula—the

algorithm outputs some representation for ftrg using at most p(ê, log n) queries about ftrg, where

ê = dist(ϕ, ftrg). The algorithm is said to be an efficient revision algorithm for R, if p is a

polynomial and the running time can also be bounded by a polynomial of the size of ϕ, the number

of variables and ê. It is said that the query complexity of R is at least q, if any revision algorithm for

R is of query complexity Ω(q).

It is often also interesting whether both types of queries are necessary for efficient revision of a

given formula class. The thesis considers this problem for both formula classes for which efficient

revision is provided in the query learning model. Finally an equivalence query is called proper, if the

formula in the query is an element of R.

The mistake bounded model (see e.g. [22]) is defined in an on-line setting. In this model the

learning proceeds in a sequence of rounds. In each round the learner receives first an instance of the

domain (i.e., on which ftrg is defined), then produces a prediction of its classification, and finally

receives a label (which, in a noise-free model is the correct classification—i.e., what ftrg evaluates on

it). If the predicted classification and the received label disagree then the learner made a mistake.

The mistake bound of the learning algorithm is the maximal number of mistakes, taken over all

possible runs, (that is, sequences of instances), depending on the size of ftrg.

Definition 3.2 (Theory revision in the mistake bounded model) Given some formula class R,

an algorithm is a revision algorithm for R with mistake bound p, if, given any function ftrg—called

target concept—representable by some formula in R, on input ϕ ∈ R—called initial formula—the

algorithm makes at most p(ê, log n) mistakes on instances classified by ftrg, where ê = dist(ϕ, ftrg).

The algorithm is said to be an efficient revision algorithm for R, if p is a polynomial and the

running time in each round can also be bounded by a polynomial of the size of ϕ, the number of

variables and ê.

Additional results on theory revision (not discussed in the present dissertation) are given in the

papers [8–10].

Read-once formulas

In Chapter 4 read-once functions are considered. A formula is read-once formula, if every variable

occurs in it at most once and a function is read-once function if it is representable with a read-once

formula. Results presented in this chapter appeared in the paper [9]. The importance of this formula

class is rather theoretical, being a nontrivial subclass of Boolean formulas that is tractable from several

different aspects, and having a nice semantic characterization [12; 16; 26]. This class is shown to be

efficiently learnable in the query model using membership and equivalence queries [5], which motivated
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the research aimed to construct an efficient revision algorithm for it. The main result of this chapter

is a revision algorithm for this class in the deletions-only case (Algorithm ReviseReadOnce), which is

shown to be an efficient revision algorithm. (The deletions-only case means that the target concept

can be represented by some formula obtained from the initial formula by removing some subformulas

from it.)

Theorem 4.7 Let ϕ be a read-once formula over n variables, and assume that the target concept

ftrg can be represented by some formula obtained from ϕ by removing some subformulas from it.

Then ReviseReadOnce(ϕ), using at most O(ê log n) queries (where ê = dist(ϕ, ftrg)), outputs some

representation for ftrg.

Additionally it was proved that the query complexity of the algorithm is close to the optimal.

Theorem 4.11 The query complexity of revising read-once formulas in the deletions-only model is

Ω(ê log(n/ê)), where n is the number of variables in the initial formula and ê is the revision distance

between the initial formula and the target formula.

Finally it is shown that both type of query used by Algorithm ReviseReadOnce is necessary for

the efficiency.

Theorem 4.13 The query complexity of revising read-once formulas in the deletions-only model with

proper equivalence queries alone is at least �n/2�− 1 (where n is the number of relevant variables in

the initial formula), even when the revision distance is only one.

Theorem 4.14 Denote the revision distance between the initial formula and the target formula by ê,

and assume that the learner is allowed to ask arbitrarily many membership queries, but only at most

ê − 1 equivalence queries. Under this restriction the query complexity of revising read-once formulas

in the deletions-only model is at least n− ê, where n is the number of relevant variables in the initial

formula.

Threshold Formulas

In Chapter 5 the revisability of Boolean threshold functions is considered. Results in this section

appeared in the paper [31]. (A Boolean function is said to be a threshold function if it can be

represented by a set of variables R and a threshold θ, such that it evaluates 1 on exactly those

assignments which assign 1 to at least θ of the variables in R.) Threshold functions (although

in a more general form) are famous for being the basic ingredient of neural networks and support

vector machines—and have several other applications as well. Boolean threshold functions are also

known to be efficiently learnable in the query learning model [14] (however the learning algorithm

presented in [14] uses only membership functions). The main result is again an algorithm (Algorithm

ReviseThreshold) which is an efficient revision algorithm for the class of Boolean threshold functions

in the query model.

Theorem 5.5 Let ϕ be the initial formula and ftrg be the target concept, where both are n-variable

threshold funtions. Then ReviseThreshold(ϕ), using O(ê log n) queries, outputs some representa-

tion for ftrg, where ê = dist(ϕ, ftrg).
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Again, this query complexity turns out to be close to the optimal.

Proposition 5.8 The query complexity of revising threshold formulas with membership and equiv-

alence queries is Ω(ê log(n/ê)), where n is the number of variables and ê is the revision distance

between the initial formula and the target formula.

In view of that the learning algorithm of Hegedűs for this class uses only membership queries,

the question whether both type of queries are necessary for the efficient revision seems even more

appropriate. The answer turns out to be affirmative again.

Theorem 5.6 Assume that both the initial formula and the target formula have threshold value t,

and that the learner is allowed to ask equivalence queries only for threshold functions also having

threshold value t. (On the other hand, no restrictions are set on the membership queries.) Under

this restriction, the query complexity of revising threshold formulas is at least n − 1 (where n is the

number of variables in the universe in scope), even when the revision distance is only one.

Theorem 5.7 The query complexity of revising threshold formulas with equivalence queries alone is

at least n − 1 (where n is the number of variables in the universe in scope), even when the revision

distance is only one.

Finally it is shown that the natural extension of Algorithm Winnow [22] does not give an efficient

revision algorithm for the class of threshold formulas.

Proposition 5.9 Winnow is not an efficient revision algorithm for threshold functions. More pre-

cisely, for any weight vector representing the initial threshold function Th1
v1,...,vn

, Winnow can make

n mistakes when the target function is Th2
v1,...,vn

.

This is interesting in view of that this algorithm is famous for learning some formula classes highly

efficiently using some (general) threshold function representation.

Projective DNF Formulas

As a closure of the first part dealing with theory revision, in Chapter 6 the revisability of projective

DNFs is considered, discussing the corresponding results appeared in [30].

Definition 6.1 A DNF formula ϕ is a k-projective DNF, or k-PDNF if it is of the form ϕ =

ρ1t1 ∨ · · · ∨ ρ�t�, where, for i = 1, . . . , � it holds that ρi is a k-conjunction, ti is an arbitrary

conjunction and that ρiϕ ≡ ρiti. The class of n-variable functions representable by some k-projective

formula is denoted k-PDNFn.

Projective DNF formulas form a subclass of the disjunctive normal form formulas, introduced

recently by Valiant [33]. (The motivation for considering subclasses of the DNFs has substantially

grown after the recent result of Alekhnovich et al. proving that, unless RP = NP, the class of DNFs

is not efficient learnable [2].) This class was found by Valiant to be suitable for a special form of

learning, called projective learning, the general idea behind it being that learning, similarly to other

biological processes, should be carried out on multiple levels in a distributed manner. The main result

of this chapter is that Algorithm RevWinn (a natural extension of Valiant’s algorithm) is an efficent

revision algorithm for the class of k-projective DNFs in the mistake bounded model.
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Theorem 6.3 Suppose that the initial formula is the k-PDNFn formula ϕ and that the target concept

is also k-PDNFn, and that ê = dist(ϕ, ftrg). Then algorithm Rev-k-PDNF is efficient, and makes

O(êk log n) mistakes.

The algorithm (just like the one used by Valiant [33]) consists of two levels. On the lower level

simple learning algorithms are run, each concentrating on just a small part (or restriction) of the

function to be learned. On the upper level another simple algorithm is run, which, on one hand,

learns how to (re)combine the output of the algorithms on the lower level, and, on the other hand,

it filters the information forwarded to these algorithms such that each one receives only that part of

the information which is supposed to be relevant for it.

In the second part of the chapter first it is shown that the definition of k-PDNFs is basically purely

semantical. For this the following notions need to be introduced. Given a Boolean function f , its

truth set, denoted T (f), consists of exactly those assignments on which f evaluates 1. A cube is

the truth set of some term.

Lemma 6.5

(a) A function f is k-projective if and only if for every x ∈ T (f) there is a k-conjunction ρ such

that x ∈ T (ρ) and T (f) ∩ T (ρ) is a cube.

(b) If for every x ∈ T (f) there is a k-conjunction ρ such that T (f) ∩ T (ρ) = {x}, then f is

k-projective.

Then a learnability related parameter, the so called exclusion dimension of the class is examined.

(The analysis extensively used the above observation formulated by Lemma 6.5.) This parameter is

known to be related to the query complexity of the best learning algorithms for a given class (see

[4; 15]) which, combined with the result derived for the exclusion dimension implies lower and upper

bounds for the query complexity of this class.

Proposition 6.9 The class k-PDNFn can be learned with O
(
n 2k

(n
k

)2
)

membership and proper

equivalence queries. On the other hand the query complexity of this class is at least
(
�n/4�

k

)
− 1.

Characterization Results

Characterization results appear (and are applied) in several forms in mathematics and in computer

science; like giving a semantic description for some object defined in a syntactic way (e.g. that a

number, written in decimal form, is divisable by 5 if and only if its last digit is either 0 or 5), or to give

an alternative syntactic description for some object defined in a syntactic way, and so on. Actually,

it is one of the fundamental tools in the analysis of some mathematical object (like, say, a function,

set, formula class, etc) to give an alternative description or representation for it, and work with that.

It can, on one hand provide more insight on the given object—which, in turn, can help solving the

given problem—and, on the other hand (as is usual), it can provide more intriguing questions. A

prominent example for this is the Fourier transform of functions—giving an alternative representation

for functions as a linear combination of some orthonormal system—, which is of invaluable importance,

both in case of the real world applications and also on the theoretical level.
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In this part of the thesis various characterization results are shown. First, motivated by one of the

revision algorithms, a structural description of a class of projective DNF is given. Then k-term DNFs

are considered, giving a complete description of those formulas which have the largest number of prime

implicants. This completes a series of well-known results on this class. A related characterization

result is given for a class of DNF tautologies with a distance condition. Finally, motivated by a

problem in belief revision (an area related to, but distinct from, theory revision), a criterion is given

for the existence of a complement of a Horn formula.

1-projective DNF Formulas

In Chapter 7 a further characterization result is presented for projective DNF formulas, discussing a

result which appeared in the paper [30]. Projective DNFs are defined in a rather semantic way (which

is more apparent from part (a) of Lemma 6.5), however the main result of this chapter is a simple

syntactic description for a subclass of this class, the 1-projective DNFs (Theorem 7.3). To make

the formulation (and the proof) easier, a special irredundancy notion was introduced (consisting of

simple, natural syntactic irredundancy restrictions). Lit(t) denotes the set of literals occuring in t,

Var(t) the set of variables occuring in t.

Definition 7.1 A 1-PDNF formula ϕ = ρ1t1∨· · ·∨ρ�t� is p-irredundant if the following conditions

all hold:

(a) Lit(ρiti) �⊆ Lit(ρjtj) for each distinct i, j ∈ {1, . . . , �},

(b) ρi, ρi �∈ Var(ti) for every 1 ≤ i ≤ �,

(c) if � ≥ 3 then ρi �= ρj for each distinct i, j ∈ {1, . . . , �}.

Otherwise, ϕ is called p-redundant.

It was also discussed that any 1-PDNF can be easily transformed into p-irredundant form.

Theorem 7.3 A formula ϕ is a p-irredundant 1-PDNF formula if and only if it is either of the form

ϕ =
s∨

i=1

(ρi,1ti ∨ · · · ∨ ρi,�i
ti),

where ρi,r �∈ Var(ti) and ρi,r ∈ Lit(tj) for every distinct i, j ∈ {1, . . . , s} and 1 ≤ r ≤ �i, and

furthermore the projections are all based on different variables, or it is of the form

ϕ = vt ∨ vt′ ,

where v �∈ Var(t) and v �∈ Var(t′).
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k-term-DNF Formulas with Largest Number of Prime Implicants

A term t is an implicant of some Boolean function f , if any assignment satisfying t also satisfies f ,

while t is said to be a prime implicant of f if, in addition, this does not hold for any term obtained

from t by removing some literals from it. In Chapter 8 the relation between the number of terms in

a DNF and the number of prime implicants of it is considered, discussing results which appeared in

[29].

First, in Section 8.3 previously known results on the topic are discussed. If some DNF consists of

K terms, then it has at most 2K −1 prime implicants [6; 21; 24]. It is also mentioned that this bound

is known to be sharp [19; 21; 24]. The main result of the chapter is a complete characterization of

the DNFs that have as many prime implicants as this bound allows; thereby completing the above

results. (DNFs fulfilling this extremal property are called maximal DNFs.)

To formulate this result, some notions must be introduced. A DNF tautology is called BT-DNF

if it possess a tree-like structure: there is some variable v occuring in each term in it; there is some

variable u occuring in each term containing v unnegated and there is some variable w containing v

negated; and so on. A DNF tautologz is called ND if it is a BT-DNF in which every term conflicts

with every other term in exactly on variable. (Two terms conflict in some variable, if that variable

occurs unnegated in one of the terms, and occurs negated in the other.) A DNF is a NUD if it

satisfies that removing each variable from it that occurs either only negated or only unnegated in it,

the resulting DNF is an ND. Now we state the main result of the chapter.

Theorem 8.1 A DNF is maximal DNF if and only if it is a NUD.

The theorem was proved by reducing the problem to the following one, stating that from the

definition of ND the condition “is a BT-DNF” can be omitted.

Lemma 8.11 (ND Lemma [18]) If in a DNF tautologz every term conflicts with every other term

in exactly on variable, then it is an ND.

Disjoint DNF Tautologies with Conflict Bound Two

Chapter 9 considers a generalization of the ND-lemma, discussing the results appeared in [32]. More

precisely it is shown that if in some DNF tautology each pair of terms conflict in at least one but at

most two variables, then it also posesses a tree-like structure (i.e., it is a BT-DNF).

Theorem 9.1 If in a DNF tautology each term conflicts with every other term in one or two variables,

then the DNF is a BT-DNF.

In the chapter it is also discussed how this result relates to various generalizations motivated by

semantic resp. syntactic considerations. Demonstrated by an example it is also shown that further

relaxing the bound given for the conflict of the terms to three, the above mentioned tree-like structure

does not hold always. This problem is also a special case of a problem considered in [23]: given a

DNF tautology, the task is to construct a decision tree such that for each term of the DNF generated

by it there is a term of the tautology that is a subterm of it. They have shown that even for some

very simple DNFs this problem requires a decision tree with extremely big complexity; however the

result presented in this chapter implies that for each DNF in the above mentioned restricted class

there exists always some simple decision tree.
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Decomposable Horn Formulas

Finally, in Chapter 10 decomposable Horn formulas are considered (conjunctive normal form formulas

in which every clause contains at most one unnegated variable), discussing the results from [20]. For

this first the notion of Horn complement is introdcued. (Notation f ≤ g means that f implies g;

f ≤ g means that f ≤ g, but f �= g.)

Definition 10.5 (f-complement) For Horn functions f and g such that f ≤ g, a Horn function h

is an f-complement of g iff f � h and f = (g ∧ h).

Definition 10.6 (decomposable Horn function) A Horn function f is decomposable if every

Horn consequence g �= 1 of f has an f -complement.

Horn formulas, being an expressive class which also allows for polynomial time inference, and indeed

is generally computationally tractable, play a central role in artificial intelligence and in computer

science. The notion of decomposability comes from belief revision 1, a field interested in revising

knowledge base in such a manner that satisfies some “reasonability” properties, that are typically

formulated in the form of postulates. Decomposability was introduced for general logics in [7], where

it was also shown to be equivalent to the existence of some revision operator satisfying the AGM

postulates [1]—one of the most popular postulates used in belief revision. The main result of the

chapter is Theorem 10.10, showing characterizations for the existence of a complement of a Horn

function consequence of another Horn function.

Theorem 10.10 Let ϕ �≡ 1 be a Horn formula, and ψ be a Horn consequence of ϕ. Then the

following are equivalent:

(a) ψ has a ϕ-complement,

(b) ϕ̂ �≤ ψ,

(c) for some clause D of ψ it holds that Bϕ(D) �≤ D.

We also use the notion of almost anti-monotone function. (A function is anti-monotone if it is

monotonically decreasing in the usual sense.)

Definition 10.3 (almost anti-monotone function) a function is almost anti-monotone if it is

either anti-monotone, or there is an anti-monotone function g such that T (f) = T (g) ∪ {1},

Theorem 10.10, in turn is used to give a complete description of decomposable Horn formulas.

Theorem 10.13 A Boolean function is a decomposable Horn function if and only if it is almost

anti-monotone.

1Belief revision is related to theory revision (at least in its topic); thus—as a closure—the two main topics of the
dissertation meet again.
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The characterizations lead to efficient algorithms for the construction of a complement whenever

it exists (which is in contrast with a related, but somewhat more stringent complement notion of [13],

the existence of which is NP-complete to decide). The result, is purely combinatiorial, but was meant

in [20] as a first step towards what is referred to as “Horn-to-Horn belief revision”: revision of Horn

knowledge bases where the revised knowledge base is also required to be Horn; integrating hopefully

efficient revision (the central notion in theory revision) and common sense reasoning (as a main goal

in belief revision).
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