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1 Introduction

Global optimization is a multidisciplinary research �eld and a branch of
applied mathematics and numerical analysis that deals with the task of
�nding the absolutely best set to satisfy certain criteria, formulated in
mathematical terms. In other words, it refers to the characterization and
computation of the global extrema of a given nonconvex function in a
certain feasible region which may have several local minimizers. Global
optimization problems are typically quite di�cult to solve exactly since
many of them belong to the class of NP-complete problems. On the
other hand, many real-word application can be formulated as a global
optimization problem. Hence, �nding the optimum solution of such a
problem is an important challenge.

In this thesis, two important �elds of continuous global optimization
have been considered: the stochastic and the interval arithmetic based
global optimization. Our aim was to implement and investigate e�cient
algorithms in order to solve the general bound constrained global opti-
mization problem.

During our investigations, we deals with bound constrained global op-
timization problems that can be formulated in the following way:

min
x∈X

f(x), (1)

where f : Rn → R is a real valued function, X = {ai ≤ xi ≤ bi, i =
1, 2, . . . , n} is the set of feasibility. In general, we assume that the objective
function is twice continuously di�erentiable, although it is not necessary
since the considered methods can solve also nondi�erentiable problems,
too.

2 Stochastic global optimization

As no algorithm can solve a general, smooth global optimization problem
with certainty in �nite time, stochastic methods are of eminent importance
in global optimization. These methods incorporate probabilistic elements,
which means that the result of the method is a random variable. Although
stochastic methods do not o�er an absolute guarantee of success, under
mild conditions on f , the probability that the global optimum will be
found by them approaches 1 as the sample size grows.
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2.1 The GLOBAL optimization method

GLOBAL (see Csendes [3]) is a stochastic method based on Boender's
algorithm (see Boender et al. [1]). In several recent comparative studies
(e.g. Mongeau et al. [15]; Moles et al. [14]), this method performed quite
well in terms of both e�ciency and robustness, obtaining the best results
in many cases.

Its goal is to �nd all local minimizer points that are potentially global.
These local minimizers will be found by means of a local search proce-
dure, starting from appropriately chosen points from the sample drawn
uniformly within the set of feasibility. In an e�ort to identify the region
of attraction of a local minimum, the procedure invokes a clustering pro-
cedure. The method steps are described in Algorithm 1.

Algorithm 1. The GLOBAL method

function GLOBAL(f,X)

k := 0;X∗ := ∅;X(1) := ∅
repeat

k := k + 1
Generate N points x(k−1)N+1, . . . , xkN according to the uniform
distribution on X
Determine the reduced sample consisting of the γkN best points
from the sample x1, . . . , xkN

Clustering to X∗ and X(1)

while Not all points from the reduced sample have been assigned

to a cluster do

x(1) � unclustered point with the smallest objective value

x∗ := Loc(x(1))
if x∗ /∈ X∗ then

X∗ := X∗ ∪ {x∗}
choose xs := x∗ as the next seed point

else

X(1) := X(1) ∪ {x(1)}
choose xs := x(1) as the next seed point

end

Add all unclustered reduced sample points which are
within distance rk of a point already in the cluster
initiated by the seed point xs

end

until Some global stopping rule is satis�ed

return The smallest local minimum value found
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Although GLOBAL is based on Boender's method, it contains several
modi�cations and improvements. The most important changes are:

− The Single Linkage Clustering was selected after a respective testing.

− The clustering distance is not based on the Hessian (thus the latter
should not be computed).

− The gradient criterion for forming clusters has been found to be less
e�ective and it is left out.

− No steepest descent step is used to transform the original sample.

− The less informative con�dence intervals are not calculated for the
global minimum value.

− A scaling of the original problem is applied to ensure better numer-
ical stability.

Apart from the above changes, the original GLOBAL algorithm in-
cludes two di�erent local search procedures: a quasi-Newton procedure
with the Davidon-Fletcher-Powell (DFP) update formula and a random
walk type direct search method UNIRANDI (see Järvi [11]), which can be
used when the problem structure does not allow us to utilize the locally
quadratic behavior as it is the case for the quasi-Newton technique.

The GLOBAL method has been introduced in the 1980s for bound
constrained global optimization problems with black-box type objective
function. Since then the technological environment has been changed
much. Therefore, our aim was to make some revisions and updates on the
involved algorithms to utilize the novel technologies, and to improve its
reliability. The main part of the work consists of experiments done with
the GLOBAL algorithm. As a result of these tests we obtained a more
e�cient and robust method.

The most important changes made on GLOBAL are:

− It is now coded in MATLAB, utilizing the vectorization technique
for better e�ciency.

− We use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) (see Broy-
den [2]) local search algorithm instead of the earlier DFP method.

− Better uniform and normal distribution random number generators
are applied.
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− Some improvements were made in the uniform distribution direction
selection procedure of the UNIRANDI local search method. The
new code provide better statistical characteristic while it needs less
computation. The present implementation of UNIRANDI works
now without dimension related problems.

We have utilized the advantages of MATLAB to obtain an e�cient
code. The vectorization of MATLAB, a special syntax, makes it easy
to obtain such a machine code that can feed the pipeline of the CPU in
such a way that long vector calculations can achieve a closely full use
of the processor pipeline. This is otherwise hard to reach by high level
algorithmic languages. The last mentioned improvement in the list above
had enhanced the e�ciency of GLOBAL substantially in terms of CPU
time used. Now we have the capability to solve larger problems than
before with similar reliability.

The BFGS local search method works similarly like the DFP algo-
rithm. The main di�erence is that the �rst one uses a di�erent update
formula. The comparison results (see Powell [22]) show that the quasi-
Newton method with the BFGS update formula performs better than the
one with the DFP update formula.

In the UNIRANDI local search method, the random directions are
uniformly generated in the interval [−0.5, 0.5]n, but they are accepted
only if the norm is less or equal than 0.5. This condition means that
points outside the hypersphere of radius 0.5 are discarded in order to
obtain a uniform distribution of random directions (i.e. to avoid having
more directions pointing toward the corners of the hypercube). As the
number of variables increases, it becomes more di�cult to produce points
satisfying this condition and for more than 15 variables it is never satis�ed.

In order to �x this problem, we changed the UNIRANDI so that,
the random directions will be generated by normal distribution N (0, 1),
instead of uniform distribution and the respective vectors are normed.

3 Numerical results

We have completed two sets of numerical tests: the �rst aimed to show the
e�ciency and reliability changes compared to the old version, based on
the published results in Csendes [3], and one to compare the new method
to C-GRASP, a greedy adaptive search technique (see Feo and Resende
[9]) modi�ed to solve continuous global optimization problems published
in Hirsch et al. [10].
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GLOBAL has six parameters to set: the number of sample points
set within an iteration step, the number of best points selected for the
transformed sample, the stopping criterion parameter for the local search,
the maximum number of function evaluations allowed for local search, the
maximum number of local minima to be applied, and the type of used
local method. All these parameters have a default value and usually it is
enough to change only the �rst three of them.

In the �rst test, we used the standard time unit (1,000 evaluations of
the Shekel-5 function at xT = (4.0, 4.0, 4.0, 4.0)T ) to measure the compu-
tation time comparably. We also used the standard test functions applied
for the old version. For each problem we made 100 independent runs
(earlier it was just 10), and we recorded the average number of function
evaluations and the average CPU time necessary, measured in the stan-
dard time unit. The parameters of the procedures were set so that the
algorithm was able to �nd the global optimum each time.

The conclusion of the �rst set of tests completed is that on stan-
dard test problems the new implementation is closely as good in terms
of e�ciency as was the old one, while the reliability of the solution has
been increased substantially. Due to the better quasi-Newton local search
method, the new version is much better for smooth problems even in terms
of the necessary number of objective function evaluations.

As the C-GRASP method does not utilize the possible smoothness of
the objective function, in the second test, we compared it to GLOBAL
with UNIRANDI. We applied our new implementation of GLOBAL to
the same set of 14 global optimization test problems on which C-GRASP
was run. The global minimum value f∗ was known for all problems in
the test set. Both methods were run until the objective function value f
was signi�cantly close to global optimum (i.e. till |f∗ − f | ≤ 10−4|f∗| +
10−6 became true). GLOBAL could also be stopped when no new local
minimizer point was found in the last iteration cycle.

For each problem, 100 independent runs of GLOBAL were completed.
We recorded the percentage of runs that found a signi�cantly close so-
lution, the time necessary for such solutions and the number of function
evaluations. The algorithm parameters of GLOBAL were set again such
a way that it was able to �nd a global minimizer point in each run.

Summarizing the results, we can conclude that the new version of
GLOBAL utilizes the advantages o�ered by MATLAB, and the algorith-
mic improvements increased the size of the problems that can be solved
reliably with it. The reliability of the algorithm is now better while the
e�ciency is improved, too. The careful comparison both with the old
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version and with C-GRASP is favorable for the new version of GLOBAL.
The comparison results are published in Csendes et al. [6].

We also evaluated the performance of the GLOBAL algorithm on the
BBOB (Black-Box Optimization Benchmarking) 2009 noiseless testbed,
containing problems which re�ect the typical di�culties arising in real-
word applications. Results show that the GLOBAL algorithm performs
well especially on functions with moderate number of local minima using a
small budget of function evaluations. GLOBAL was ranked one of the best
method for a function evaluation budget of up to 500n function values,
but was no longer competitive when the budget was signi�cantly larger.
The results can be found in (Pál et al. [20]; Po²ík et al. [21]).

3.1 Application: The �exible retirement problem

We analyzed the problem of designing a stable pension scheme described
in Es® and Simonovits [7, 8]. There is a population of individuals who have
private information regarding their life expectancies. The government's
goal is to design an optimal pension system by maximizing an additive
concave social welfare function.

The problem can be formulated in the following way:

max
(bt,Rt)t

T∑
t=S

ψ(vt)ft, (2)

subject to

vt = [ū− w(bt)]Rt + w(bt)t, t = S, . . . T, (3)

T∑
t=S

[(τ + bt)Rt − tbt]ft = 0, (4)

vt+1 = vt + w(bt), t = S, . . . , T − 1. (5)

The life expectancies are denoted by t, ft is the relative frequency of
individuals with a life expectancy of t, τ is a yearly social security contri-
bution rate, bt is a yearly retirement bene�t received after Rt active years.
Denote further the lifetime utility of a worker with life expectancy t by vt.
The optimal bene�t retirement schedule will have to satisfy all incentive
compatibility constraints (equations (5)). The incentive compatibility of
(bt, Rt)

T
t=S means that type t prefers to choose (bt, Rt) from the schedule.

It is also required that the population balance to be 0 (equation (4)).
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The goal is to design an optimal pension system, described by (b(R), τ),
maximizing an additive concave social welfare function (equation (2)).

Although the mathematical model of the problem contains constraints,
we managed to solve it by GLOBAL using the penalty function method.
The conclusion of the numerical test is that on the investigated problem
the improved GLOBAL algorithm was able to �nd good approximations
of the global minimizer points while the amount of computational e�orts
needed remained limited and in the acceptable region. These results are
published in Pál and Csendes [16].

4 Interval global optimization methods

Global optimization methods that use interval techniques provide rigorous
guarantees that a global minimizer is found. Interval techniques are used
to compute global information about functions over large regions. Most
global optimization methods using interval techniques employ a branch
and bound strategy. These algorithms decompose the search domain into
a collection of boxes for which the lower bound on the objective function
is calculated by an interval technique.

Our aim was to implement an easy to use reliable global optimization
method implemented in MATLAB by using the INTLAB package, in order
to solve the general bound constrained global optimization problem.

4.1 Solution algorithms

We have implemented two algorithm variants which are based on the basic
interval branch and bound framework described by Algorithm 2.

Both of the algorithms use only a subroutine calculating the objec-
tive function as information on the global optimization problem, i.e. the
expression is not required.

The �rst method is a simple algorithm which does not apply the gra-
dient and the Hessian of the objective function, although these can be
computed by the automatic di�erentiation facility of INTLAB. In other
words, we study now that algorithm variant that does not assume the dif-
ferentiability of the objective function. Now just natural interval exten-
sion was applied to calculate the inclusion functions. We use only simple
bisection along the widest interval component, and no multisection and
advanced subdivision direction selection. The subdivision direction is de-
termined according to the well-tested and simple A subdivision direction
selection rule.
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Algorithm 2. The basic interval branch and bound framework

function IntervalBranchAndBound(f,X)
Lres := ∅; Lwork := {X}
while Lwork ̸= ∅ do

Remove the �rst element (X) from the working list
Calculate F (X)
if X cannot be discarded then

Subdivide X into Xi, i = 1, . . . , p subintervals

if Xi ful�ls some stopping criteria then

Enter Xi in the result list
else

Enter Xi in the working list
end

end

end

return Lres

The second algorithm is a more advanced one, which applies the most
common accelerating devices: the cuto� test, the concavity test, the
monotonicity test, and the interval Newton step. Beyond natural interval
extension, a simple centered form inclusion function is also applied. Once
the inclusion of the gradient is available, the intersection of these inclu-
sion functions proved to be a good quality estimation of the range of the
objective function.

We use also multisection and advanced subdivision direction selection
(see Kearfott [12]), albeit without those based on the pf∗ heuristic algo-
rithm parameter (see Csendes [4]). Multisection means this time that each
interval will be subdivided into three subintervals according to the most
promising two coordinate directions. The subdivision directions are de-
termined according to the well-tested and e�ective C subdivision direction
selection rule (also used in Csendes [4] and Kearfott [12]).

During the implementation of both algorithms we have followed closely
the original C-XSC code which was developed for bound constrained
global optimization by Mihály Csaba Markót based on the algorithm docu-
mented in Markót et al. [13]. The control structures of the two algorithms
are basically the same, while the vectorial array statements of MATLAB
were applied wherever possible.

Summarizing our numerical results, we can state that the computa-
tional experiences con�rm that the new implementation is in several indi-
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cators (e.g. number of function, gradient and Hessian evaluations, number
of iterations, and memory complexity) in essence equivalent to that of the
old one. The CPU time needed is as a rule by at least two order of
magnitude higher for the INTLAB version as it can be anticipated re-
garding the interpreter nature of MATLAB. In spite of the lower speed,
the new interval global optimization methods can well be suggested as an
early modeling and experimentation tool for the veri�ed solution of bound
constrained global optimization problems. These results can be found in
(Csendes and Pál [5]; Pál and Csendes [17]).

4.2 Improvements on the Newton step

The Newton step is one of the most important accelerating tool which
is used in our algorithm. We apply one step of the extended interval
Newton Gauss-Seidel method to the gradient of the objective function in
order to shrink the argument interval. The application of the Newton
step on each single interval would be costly. Hence, it would be suitable
to use a criterion in order to decide when to apply the Newton step. In
our study Pál and Csendes [17], we used the criterion described in Markót
et al. [13]. In this case we applied the Newton step if two of the trisected
boxes were eliminated by other acceleration tools.

Our aim was to introduce a new condition for applying the Newton
step in order to improve our algorithm. In this case, we apply an interval
Newton step to each box which has a smaller width than a prescribed
value. It is well known that the Newton step is more e�cient when it is
applied to a small box rather than to a large one. In the new condition
we used 0.1 as the threshold value.

We have implemented an algorithm in MATLAB/INTLAB with the
new condition in order to compare it with the old one. The algorithm
is similar to one described in Pál and Csendes [17]. The most important
di�erences are the following: the old interval selection rule is changed
to the new one: we select the subinterval which has the maximal pf∗

parameter value and the algorithm stops at the �rst box which satis�es
the stopping criterion. The latter approach is acceptable in many practical
situations when it is not necessary to �nd all global minimizer points.

We have also completed a computational test in order to compare
the new condition with the old one. Based on these results (see Pál and
Csendes [18]) it can be stated that we managed to reduce signi�cantly the
necessary computational time and the total number of Hessian evaluations
with the help of the new condition.
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4.3 Theoretical examination of the Newton step

As we have seen in the previous section, the interval based global op-
timization algorithm can be improved by using a well chosen threshold
value in the new condition for applying the Newton step. However, there
are cases when the Newton step with the new condition is not successful
in the sense that the width of the interval does not decrease or the current
interval will be divided into many subintervals. The latter case appears in
the practice mostly and is not bene�cial because we may achieve a similar
result by using some subdivision, but with a much smaller expense.

We analyzed the theoretical aspects of the described problem on a pre-
de�ned class of inclusion functions of the second derivative. During the in-
vestigation we have distinguished between symmetric and non-symmetric
inclusion functions and between single-variable and multivariate objective
functions. According to the results in Pál and Csendes [18], we managed
to characterize the cases when the Newton step is not successful.

4.4 Application in sensor network localization

We applied interval techniques for two real-world applications (see Pál and
Csendes [18, 19]). In the thesis, we focused mainly on the sensor network
localization which refers to the process of estimating the locations of sen-
sors, if the positions of some nodes and the noisy distance measurements
between the nodes are known. The presented model can be formulated as
a global optimization problem with the aim to minimize the sum of errors
in sensor positions for �tting the distance measurements.

Finding the global optimum of such a problem with the INTLAB based
global optimizer is a time consuming task especially using hundreds of
sensors. Hence, our aim was to �nd an approximate solution using the
multilateration technique, which tries to determine the position of an
unknown node using at least three references located at known positions.

We obtained an initial solution of sensor locations (see Pál and Csendes
[18]) by iterative multilateration with randomly selected four reference
nodes. We also found that the localization error can be decreased by
increasing the anchor nodes number or the radio range.

The published papers and the MATLAB implementation of the GLOBAL
and the INTLAB based methods are available on the web page

http://www.emte.siculorum.ro/~pallaszlo/Disszertacio
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