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Chapter 1

Introduction

Optimization problems arise in numerous �elds, e.g. in operational research, en-
gineering and science. In many problems, convexity of the objective function or the
feasible domain cannot be easily veri�ed, and it is reasonable to assume that several lo-
cal optima exist. The classical theory of optimization as well as the standard techniques
of modern mathematical programming, are aimed at �nding only local optima. These
techniques cannot generate or even use the global information needed to �nd the global
minimum for a function with multiple local minima. In general, the classical optimiza-
tion methods have di�culties in dealing with global optimization problems. One of the
main reasons of their failure is that they can easily be entrapped in local minima.

Global optimization is a multidisciplinary research �eld and a branch of applied
mathematics and numerical analysis that deals with the task of �nding the absolutely
best set to satisfy certain criteria, formulated in mathematical terms. In other words,
it refers to the characterization and computation of the global extrema of a given non-
convex function in a certain feasible region which may have several local minimizers.
Global optimization problems are typically quite di�cult to solve exactly since many of
them belong to the class of NP-complete problems. On the other hand, many real-world
applications can be formulated as a global optimization problem. Hence, �nding the
optimum solution of such a problem is an important challenge.

Global optimization includes nonlinear, stochastic and combinatorial programming,
multiobjective programming, control, games, geometry, approximation, algorithms for
parallel architectures and so on. Global optimization has a wide range of applications.
Some of these are applications like engineering design, production management, com-
putational chemistry, product mixture design, environmental pollution management,
parameter estimation, VLSI design, neural network learning, etc. Due to the rapid
development of practical global optimization techniques in the last thirty years, it has
gained the attention of researchers and practitioners from a lot of scienti�c domains like
applied mathematics, operations research, industrial engineering, management science,
computer science, and so on.

In this thesis, two important �elds of continuous global optimization have been
considered: the stochastic and the interval arithmetic based global optimization.
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1. Introduction 2

1.1 Outline of the dissertation

In this section, we summarize the organization of the thesis and we give brief de-
scriptions of the main contributions done in this study.

Chapter 1 presents the basic de�nitions used throughout this thesis. A classi�cation
of global optimization problems with a literature survey is also given.

Chapter 2 deals with stochastic global optimization methods. The chapter begins
with a review of the most important stochastic methods like the random search methods
and two-phase methods. Section 2.3 is about the GLOBAL optimization method which
is the basis of our studies in the subsequent sections. First, we present the original
algorithm which is based on Bonder's stochastic clustering method. After that, we
propose an improved version of the GLOBAL method which includes important changes.
Our aim was to make some revisions and updates on the original algorithm in order
to reach more e�ciency and to improve its reliability. The experimental results on
well-known test functions are shown in Section 2.4 to demonstrate the e�ciency and
reliability of the new GLOBAL method. We have completed three numerical tests. The
�rst aimed to show the e�ciency and reliability changes compared to the old version,
while the second one was to compare the new method to C-GRASP, a greedy adaptive
search technique. We also evaluated the performance of the GLOBAL algorithm on the
BBOB-2009 noiseless testbed that contains problems which re�ect the typical di�culties
arising in real-world applications.

We conclude this chapter with an application from the domain of pension system. We
analyzed the problem of designing a �exible pension scheme. Although the mathematical
model of the problem contains constraints, we managed to solve it by GLOBAL using
the penalty function method. Numerical results on the problem are also reported.

Chapter 3 deals with interval global optimization problems. The chapter begins with
the basic concepts of interval analysis. We review the most important de�nitions of in-
terval arithmetic and its properties. Next, we take a look at the inclusion functions and
their properties. These serve as the main tool in the interval based optimization prob-
lems. In Section 3.3, di�erent interval based branch and bound algorithms are presented.
Our aim was to provide an easy to use reliable global optimization method using MAT-
LAB. The section begins with the description of the most important interval techniques
used by the interval branch and bound methods. In Subsection 3.3.2, we describe a
basic algorithm for the bound constrained global optimization problem implemented in
MATLAB using the INTLAB package. Our aim was to implement an algorithm variant
that does not assume the di�erentiability of the objective function. The performance
of the algorithm is reported after extensive numerical experiments on some well known
functions by comparing it to the similar C-XSC based method. In Subsection 3.3.3, we
present a more advanced algorithm which applies the common accelerating devices: the
cuto� test, the concavity test, the monotonicity test, and the interval Newton step. The
performance of the algorithm is reported based on extensive numerical experiments on
some well known functions comparing it with the similar C-XSC based method. Subsec-
tion 3.3.4 describes an algorithm using a new condition for applying the Newton step.
We have completed a computational test in order to compare the new condition with
the old one. In Subsection 3.3.5, we investigate the theoretical aspects of the Newton
step. More precisely, we analyze those cases when the Newton step is not successful.
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We �nalize this chapter with an application from the domain of sensor networks,
namely the localization problem of sensor networks. We present some solution ap-
proaches including the interval based technique, too.

Chapter 4 gives a brief summary and conclusion of the main contributions in the
thesis. The bound constrained test problems used throughout the study are given in
Appendix A.

1.2 Basic de�nitions

Many recent problems in science, engineering and economics can be expressed as
computing globally optimal solutions.

In general, the optimization problem is formulated in terms of �nding the point x
in a set X (called the feasible region) where a certain function f : X → R (called
the objective function), attains a minimum or a maximum. Without loss of generality,
assume that the objective function is to be minimized. Global maximization problems
can also be covered, since

max
x∈X

f(x) = min
x∈X

(−f(x)).

In this thesis, we will discuss methods for solving general global optimization prob-
lems (GOP) that can be formulated in the following way:

min f(x), (1.1)

subject to x ∈ X,

where f : X → R is the objective function, and X ⊆ Rn is the set of feasible points.

De�nition 1.1. A point x∗ satisfying f(x∗) ≤ f(x) for all x ∈ X is called a global
minimizer of f over X, and the corresponding value of f is called a global minimum.

The global minimum value of f onX is denoted by f ∗, and the set of global minimizer
points of f on X by X∗. That is,

f ∗ = min
x∈X

f(x) and X∗ = {x∗ | f(x∗) = f∗}.

Let ∥ · ∥ denote the Euclidean norm in Rn and let ϵ > 0 be a real number. Then an
ϵ− neighborhood of a point y ∈ X is de�ned as

Nϵ(y) = {x ∈ X : ∥x− y∥ < ϵ}.

De�nition 1.2. A point x ∈ X is called a local minimizer of f over X, if there is an
ϵ > 0 such that

f(x) ≤ f(x), ∀x ∈ Nϵ(x) ∩X.

Frequently, X∗ consists only of a single point x∗, but this is not necessarily the
case in general. For the sake of algorithmic tractability, we suppose throughout this
study that X∗ is countable. If the feasible set is given by its lower and upper bound,



1. Introduction 4

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
cos(x)*sin(x2 − x)

Figure 1.1: The one-dimensional, box-constrained model.

the problem (1.1) is called bound constrained optimization problem. This model is also
called as box-constrained optimization problem.

Although in this thesis we restrict ourself mainly to studying algorithms for solving
the problem (1.1), we also investigate applications which belong to a more general class
of optimization problems formulated as

min f(x), (1.2)

subject to gi(x) ≤ 0, i = 1, 2, . . . ,m,

x ∈ X,

where gi(x) : Rn → R are nonlinear constraint functions.

The problems (1.1) and (1.2) aim to �nd the minimizer points and the minimum
values. This means we �nd the absolute minimal function value on the set of feasibility.
This task is hard and it is hit by 'curse of dimensionality' which refers to the exponential
increase of the volume of the search space as the dimension increases. We have illustrated
this in Figures 1.1 and 1.2.

De�nition 1.3. The level set of f is de�ned by

L(y) = {x ∈ X | f(x) ≤ y},

and Lx(y) denote the connected component of L(y) containing x.

It is well known that the GOP is inherently unsolvable in a �nite number of steps
(see Dixon [37]) and in numerous cases, it is very di�cult to solve exactly. Consequently,
the more practical aim of GOP is to �nd suitable approximation of the global optima.
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Usually we will therefore consider the global optimization problem solved if we have
found a point in

Nϵ(X
∗) = {x ∈ X : ∥x− x∗∥ < ϵ for some x∗ ∈ X∗}

or in the level set
Xϵ ≡ {x ∈ X : f(x) ≤ f ∗ + ϵ}

for some ϵ > 0.

The previously introduced model (1.1) is very general: it includes linear program-
ming, convex nonlinear programming models under corresponding additional assump-
tions. That is, there exists a considerable variety of speci�cations of the general GOP
(1.1) which may di�er in their additional analytical assumptions, related to the struc-
ture of X and f . In the subsequent sections we will specify the additional assumptions
in the GOP de�nitions.

1.3 Classi�cation of global optimization problems

The �eld of GOP can be subdivided into many categories according to possible
formulations of the problem. We may classify for example with respect to the type of
optimization decisions, to the type of objective function and constraints. During the last
years the classi�cation of optimization problems were considered by several authors and
books. According to the Handbook of Global Optimization, edited by Horst and Pardalos
(see Horst and Pardalos [57]), the global optimization techniques can be classi�ed into
two main categories: exact and heuristic methods.

Deterministic methods belonging to the �rst group, at least in theory, have a rigor-
ous guarantee for �nding at least one, or all global solutions. However, frequently the
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computational e�ort required by these methods increases exponentially with the dimen-
sion of the problem. That is, it is more preferable to use some stochastic techniques
especially in higher dimensional problems. These procedures guarantee with probability
one that the global optimum will be found. We should mention here that for many
global optimization methods, the distinction between deterministic and stochastic is
ambiguous. There are very e�ective methods, which involve deterministic as well as
stochastic elements.

Heuristic methods do not possess convergence guarantees similar to those of exact
methods. In the same time, they may provide good quality approximated solutions
for many di�cult GO problems, assuming that the method in question suits well the
speci�c problem type.

A brief annotated classi�cation of the most frequently applied GO strategies is pro-
vided below.

1.3.1 Exact methods

− Branch and bound algorithms. They consist of a systematic enumeration of
all candidate solutions, where large subsets of candidates are discarded, by us-
ing upper and lower bounds of the objective function. The general branch and
bound methodology is applicable to broad classes of global optimization prob-
lems, for example, in combinatorial optimization, concave minimization, reverse
convex programs, DC programming, and Lipschitz optimization. Interval arith-
metic based methods also belong to this category (see Ratschek and Rokne [95],
Neumaier [76], Horst and Tuy [58], Kearfott [62], and Pintér [90]).

− Enumerative strategies. These methods are based on a complete enumeration
of all possible solutions. Examples are vertex enumeration in concave minimiza-
tion models, and generic dynamic programming in the context of combinatorial
optimization (see Horst and Pardalos [57], and Horst and Tuy [58]).

− Homotopy and trajectory methods. These strategies have the objective of
visiting all stationary points of the objective function. The method is applicable
to smooth GO problems, but the computational requirement can be very high (see
Horst and Pardalos [57]).

− Naive approaches. This category contains the grid search and pure random
search methods. Although these methods are convergent under mild conditions,
they have di�culties in solving higher dimensional problems (see Pintér [90]).

− Stochastic search methods. These procedures are based on random sampling,
and their basic scheme can be improved by adding di�erent enhancements like
adaptive search strategy adjustments, sample clustering, and statistical stopping
rules. Such methods are adaptive random searches, multistart methods, and
Bayesian search strategies. These algorithms are applicable to both discrete and
continuous GOPs under very general conditions (see Guss et al. [45], Horst and
Pardalos [57], Mockus et al. [70], Pintér [90], and Zabinsky [116]).
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1.3.2 Heuristic methods

− Convex underestimation. This strategy attempts to estimate the convexity
characteristics of the objective function based on directed sampling. Convex un-
derestimation strategies are applicable to smooth GOPs (see Dill et al. [36]).

− Genetic algorithms, evolution strategies. These methods emulate speci�c
genetic operations (selection, crossover, and mutation) as these are observed in
nature. These strategies are applicable to both discrete and continuous GO prob-
lems under mild structural requirements (see Michalewicz [69], Osman and Kelly
[80], Glover and Laguna [43], and Voss et al. [114]).

− Simulated annealing. These techniques are based on the physical analogy of
cooling crystal structures that spontaneously arrive at a stable con�guration, char-
acterized by � globally or locally � minimal potential energy. Simulated annealing
is applicable to both discrete and continuous GOPs under mild structural require-
ments (see Osman and Kelly [80], and Glover and Laguna [43]).

− Tabu search. This search forbids or penalizes search moves which take the so-
lution, in the next few iterations, to points in the solution space that have been
previously visited. Tabu search methodology has been primarily used to solve
combinatorial optimization problems, but it can also be extended to handle con-
tinuous GOPs (see Osman and Kelly [80], Glover and Laguna [43], and Voss et al.
[114]).

− Tunneling strategies. Attempts to sequentially �nd an improving sequence of
local optima, by gradually modifying the objective function. These strategies are
applicable to smooth GO problems (see Levy and Gomez [65]).



Chapter 2

Stochastic global optimization

2.1 Introduction

Consider the following speci�cation of the general GOP (1.1):

min
x∈X

f(x), (2.1)

where f : Rn → R is a continuous real valued function, X ⊂ Rn is a compact set. Some
of the methods we will describe require additional assumptions on the objective function
f or the feasible region X. We will note them wherever necessary.

As no algorithm can solve a general, smooth global optimization problem with cer-
tainty in �nite time, stochastic methods are of eminent importance in global optimiza-
tion. These methods incorporate probabilistic (stochastic) elements, which means that
the result of the method is a random variable. In this thesis, we consider algorithms
which use random numbers to generate new trial points. Therefore, we will have to
sacri�ce the absolute guarantee of success. However, under mild conditions on the sam-
pling distribution and f , the probability that an element of Nϵ(X

∗) or Xϵ is sampled
approaches 1 as the sample size increases (see Solis and Wets [108]). If the sample
points are drawn from a uniform distribution over X and if f is continuous, then an
even stronger result holds: the sample point with lowest function value converges to a
global minimizer point value with probability 1.

The chapter is based on the following papers: Csendes et al. [33], Pál et al. [86], and
Pál and Csendes [82].

The �rst part of the chapter deals with stochastic global optimization methods.
First, we review the most important methods. After that, we describe in detail the
GLOBAL optimization method.

An improved version of GLOBAL is also presented. The computational results ob-
tained by the new GLOBAL method are reported and compared to the old version and
also to the C-GRASP method. The contribution of the present author was the modi�-
cation and implementation of a new MATLAB version of the GLOBAL method. The
new version contains the BFGS local search method, and the improved UNIRANDI
algorithm with the capability of uniform distribution direction selection. The test envi-
ronment setup and the computational experiments were the contribution of the present

8
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author, too. The discussion part of the numerical results were done by the �rst coauthor
with the help of the present author.

We also evaluated the performance of the GLOBAL algorithm on the BBOB-2009
noiseless testbed, containing problems which re�ect the typical di�culties arising in
real-world applications. The contribution of the present author was the modi�cation of
GLOBAL method in order to �t to the BBOB-2009 test environment, the completed
computational experiments and the discussion on the results. The GLOBAL was also
compared on the BBOB-2009 noiseless testbed with other well known global optimiza-
tion algorithms. The comparison results are not included in the present thesis. For
more details see Po²ík et al. [91].

At the end of the chapter, we present a real-world application with numerical results.
The contribution of the present author was the completion of the numerical test, while
the model simpli�cation and discussion on the numerical results were a common work
with the coauthor.

2.2 A brief literature review

The two most important classes of problems included in stochastic methods are the
random search methods and two-phase methods.

2.2.1 Random Search Methods

The class of random search methods consists of algorithms which generate a sequence
of points in the feasible region following some prespeci�ed probability distribution. The
most basic algorithms from this class proceed by generating points from a single prob-
ability distribution. Alternatively, the distribution, from which a point in the sequence
is determined, can be updated adaptively.

2.2.1.1 Pure Random Search

Pure Random Search (PRS) (see Brooks [20]), also referred to as Monte Carlo search
is the simplest stochastic method for solving global optimization problems. The main
idea is to sample a sequence of independent, identically distributed random points from
the feasible region, while keeping the track of the best objective function value achieved.
The pure random search is described by Algorithm 1.

The proof of convergence to the global optimum for the method was shown by many
authors (see Devroye [35], Baba [2], Solis and Wets [108], and Pintér [89]). However, pure
random search methods are not e�cient, especially for problems with higher dimensions,
since in this case the number of iterations required to solve a problem increases fast.

2.2.1.2 Pure Adaptive Search and Adaptive Search Methods

The Pure Adaptive Search (PAS) algorithm di�ers from the PRS algorithm in that
it forces improvement in each iteration. In other words, an iteration point is generated
from the uniform distribution on the subset of points that are improving with respect
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Algorithm 1. The Pure Random Search

1. function PS(f,X)
2. k := 1; y0 := ∞
3. repeat

4. Generate x ∈ X by uniform distribution
5. if f(x) < yk−1 then

6. yk := f(x);xk := x
7. else

8. yk := yk−1; xk := xk−1

9. end

10. k := k + 1

11. until The stopping rule is satis�ed
12. return xk, yk

to the previous iteration point. More formally, an iteration point xk+1 is generated
uniformly distributed in Sk+1 := {x ∈ X | f(x) < f(xn)}.

The PAS algorithm has been introduced and analyzed in Patel et al. [81] for convex
programming problems, and in Zabinsky and Smith [117] for more general global op-
timization problems. The theoretical results provide an upper bound on the expected
number of iterations to achieve a solution arbitrarily close to the global optimum. In
other words, the expected number of PAS iterations grows at most linearly in the di-
mension of the problem.

Unfortunately, in practice, we encounter the following di�culties: constructing the
improving region, generating a point uniformly distributed in Sn. These problems can
be avoided by, instead of generating uniform points in X, generating points from a
nonuniform distribution that assigns greater probability to the improving region Sn.

The Adaptive Search (AS) is a generalization of the Pure Adaptive Search method,
where the iteration points are generated from a sequence of Boltzmann distributions.

Pincus (see Pincus [88]) and Rubinstein (see Rubinstein [100]) suggested that for
approximating the global optimum, points should be generated from the Boltzmann
distribution πT with density function:

gT (x) ∝ e−f(x)/T ,

where T is a positive number. This is appropriate because for small T the distribution
πT will concentrate near the global minimum.

The pseudocode of the AS method is presented by Algorithm 2, where τ is an R+-
valued nonincreasing function.

An important advantage of this algorithm is that sampling is done from the feasible
region X, instead of from a nested set of smaller level sets of f . This avoids the two
di�culties of PAS. If we choose Tk = ∞ for all k, then the AS algorithm reduces to
the PAS algorithm. However, the number of trial points necessary in line 5 can be
in�uenced by an appropriate choice of the parameter T (line 9). The parameter T is
called temperature parameter. A particular choice of temperature parameters {Tk}∞k=0

is then called a cooling schedule.
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Algorithm 2. The Adaptive Search Method

1. function AS(f,X)
2. k := 0; y0 := ∞;T0 := ∞
3. repeat

4. repeat

5. Generate x from the distribution πTk
over X

6. until f(x) < yk
7. xk+1 := x
8. yk+1 := f(xk+1)
9. Tk+1 := τ(yk+1)

10. k := k + 1

11. until The stopping rule is satis�ed
12. return xk, yk

The Adaptive Search preserves the linearity result of the Pure Adaptive Search al-
gorithm, moreover the number of iterations is stochastically less than the number of
iterations of PAS. As in the case of PAS, in practice, it is extremely di�cult to generate
points directly from the distribution πT . That is, a lot of attention has been focused on
�nding algorithms to e�ciently generate arbitrary distributions, using the Markov chain
approach. Examples of such methods are Hit-and-Run algorithms (see Berbee et al. [8],
Bélisle et al. [12]), and Shake-and-Bake algorithms (see Boender et al. [14]).

2.2.2 Two-phase methods

Many stochastic strategies in global optimization consist of two phases: the global
phase and the local phase. During the global phase, random points are drawn from
the domain of searches X according to a certain, often uniform, distribution. Then,
the objective function is evaluated in these points. During the local phase, the sample
points are manipulated by means of local search to yield a candidate global minimum.
We assume that a proper local optimization method Loc exists. It can be started from
an arbitrary point x0 ∈ X and then it generates the sequence of points in X which
always converges to some x∗ := Loc(x0) ∈ X, that is the local minimizer attainable
from the starting point x0.

These methods are also calledMultistart techniques because they apply local searches
to each point in a random sample drawn from the feasible region (see Boender et al. [18],
and Rinnooy Kan and Timmer [98, 99]). However, the Multistart method is ine�cient
in that it performs local searches starting from all sample points. That is some local
minimizer points will be found several times. Since local searches are the most time
consuming part of the method, it should ideally invoked no more than once in every
region of attraction.

Various improvements were proposed by authors in order to reduce the number of
local searches (see Rinnooy Kan and Timmer [98], and Törn [113]). The two most
important methods which are aimed at reducing the performed local search number are:
clustering methods and Multi Level Single Linkage (MLSL) algorithms.
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Algorithm 3. The basic framework of the clustering methods

Step 1: Draw N points with uniform distribution in X, and add them to the cur-
rent cumulative sample C. Construct the transformed sample T by taking the
γ percent of the points in C with the lowest function value.

Step 2: Apply the clustering procedure to T .

Step 3: Apply the local search procedure to the points in T not yet clustered. Re-
peat Step 3 until every point has been assigned to a cluster.

Step 4: A stopping rule decides wether to return to Step 1 or to stop. If the me-
thod is stopped, then the local minimum found with the smallest function
value is the candidate solution.

2.2.2.1 Clustering methods

The basic idea behind clustering methods is to form groups (clusters) of points
around the local minimizers from a uniform sampled domain and start local searches
no more than once in each of those groups. In other words, the procedure tries to
identify the regions of attraction of the given function. The region of attraction of a
local minimum x∗ is the set of points in X starting from which a given local search
procedure converges to x∗.

Two ways have been proposed how these groups can be created from the initial
sample: reduction and concentration.

By reduction these groups usually are formed from the initial sample by taking a
given percent of the points with the lowest function value (see Becker and Lago [7]).
The set of remaining points, called a reduced sample, naturally approximate a level set
of the objective function.

Concentration (see Törn [112]) consists of starting one or at most a few steepest
descent steps from every point.

Clustering methods use mostly the reduction phase because the concentration may
lead to failure. The sample, the resulting groups of points, may contain several regions
of attraction, so that the global minimum can be missed. Or, one region of attraction
may be divided over several clusters, in which case the corresponding minimum will be
located many times.

The basic framework of the clustering methods is described in Algorithm 3. Clusters
are formed stepwise, starting from a seed point, which may be an unclustered point with
the lowest function value or the local minimum found by applying local search to this
point. A point is added to the cluster using a clustering rule. That is why it is important
to provide an appropriate rule to handle cluster growing and termination around a seed
point. These rules usually use local information on the objective function and rely on
properties of the sampling distribution.

The two most important clustering procedures are: Density Clustering (DC) (see
Törn [112]), and Single Linkage Clustering (SL) (see Boender et al. [18], and Rin-
nooy Kan and Timmer [98]). The common scheme for the two clustering methods is
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Algorithm 4. The common scheme for the two clustering procedures

1. function BasicClustering(f,X)
2. k := 0;X∗ := ∅;X(1) := ∅
3. repeat

4. k := k + 1
5. Draw N points according to the uniform distribution on X
6. Construct the transformed (reduced) sample
7. Clustering to X∗ and X(1)

8. while Not all points from the reduced sample have been assigned to a
cluster do

9. x(1) � unclustered point from the reduced sample with the smallest
objective value

10. x∗ := Loc(x(1))
11. if x∗ /∈ X∗ then

12. add x∗ to X∗

13. choose x∗ as the next seed point
14. else

15. add x(1) to X(1)

16. choose x(1) as the next seed point
17. end

18. end

19. until Some global stopping rule is satis�ed
20. return The smallest local minimum value found

described in Algorithm 4.

In line 2, the X∗ and X(1) sets are initialized, where X∗ is a set containing the local
minimizer points that were found so far, while X(1) is a set containing sample points
to which the local search procedure has been applied unsuccessfully in the sense that
already know local minimizer was found again. The algorithm contains a main iteration
loop and the steps from line 3 to line 19 will be repeated until some global stopping rule
is satis�ed. In line 5, N points are drown uniformly on X. In line 6, a reduced sample
is constructed by taking those γkN points of the current sample that have the lowest
function values. A clustering procedure is applied then to the transformed sample. The
elements of X∗ are �rst chosen as seed points, followed by the elements of X(1).

Between lines 8 and 18 we iterate over the unclustered points from the reduced
sample and apply a local search procedure to them to �nd a local minimizer point x∗.
If x∗ is a new local minimizer point, then we add it to X∗ (line 12) and choose it as
the next seed point (line 13), otherwise we add x(1) to X(1) (line 15) and use it as the
next seed point for local search (line 16). In line 20, the smallest local minimum value
is returned.

The two clustering methods di�er how they form the clusters and how they calculate
the critical distance in order to assign a point to a cluster (line 7).

For the algorithmic tractability we suppose that the objective function is twice con-
tinuously di�erentiable.
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Density Clustering

Based on the Density Clustering, a cluster will correspond to the points in a subset
T of X of stepwise increasing volume. The cluster will be terminated if in a step no
points are added to the cluster.

We assume that the seed point of the cluster is a local minimizer point x∗. As
we mentioned earlier, the set T should ideally have the same shape as the region of
attraction around x∗. It is di�cult to characterize these regions in general and we use
instead the level sets that contain x∗. This suggests to let T correspond to Lx∗(y) for
stepwise increasing values of y. The level set is also hard to construct, but since f is
twice continuously di�erentiable, we can approximate these sets by the level sets L̃(y)
around x∗ that are de�ned by the second order approximation f̃ of f around x∗:

f̃(x) = f(x∗) +
1

2
(x− x∗)⊤H(x∗)(x− x∗),

where H(x∗) is the Hessian of f in x∗. Hence, in step i let Ti be the set

{x ∈ X | (x− x∗)⊤H(x∗)(x− x∗) ≤ r2i },

for some ri. In this approach Ti are ellipsoids. The value of ri is calculated so that the
probability of too early termination of the cluster in step i, decreases with increasing
k. The too early termination means that a cluster terminates in step i, while there are
still unclustered reduced sample points in the level set.

The critical distance ri chosen in Boender et al. [18] is

ri(x) =
1√
π

(
i · Γ(1 + n

2
) · |H(x∗)|1/2 ·m(S) · (1− α1/(N−1))

)1/n
,

where Γ is the gamma function, n is the number of variables of the problem, |H(x∗)|
denotes the determinant of H(x∗), m(S) is the Lebeque measure of the set S, N is
the total number of sampled points, and α ∈ (0, 1) is a parameter of the clustering
procedure.

The critical distance ri chosen in Rinnooy Kan and Timmer [98] is

ri(x) =
1√
π

(
i · Γ(1 + n

2
) · |H(x∗)|1/2 ·m(S) · ζ ln(kN)

kN

)1/n

,

where ζ is some positive constant. This value of ri guarantees that the probability that
the cluster is terminated incorrectly in step i, decreases polynomially with increasing k.

DC has the property of asymptotic correctness, i.e. it �nds the global minimum with
the probability equal to 1 when k increases to in�nity, but it does not have the property of
the asymptotic probabilistic guarantee of �nding all local minimizers, because a cluster
can cover more than one minimizer and some local minimizers may remain undiscovered.

The basic disadvantage of this version of DC is that the objective function is approx-
imated by the square function and the attraction sets are approximated by ellipsoids.
If the level set di�ers signi�cantly from an ellipsoid, then the criterion concerning when
to stop the cluster recognition process is incorrect.
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Amethod which does not �x the shape of the clusters in advance is the Single Linkage
Clustering method.

Single Linkage Clustering

In this method the clusters are formed sequentially and each of them is initiated by
a seed point. The distance between two points x and x′ in the neighborhood of the local
minimum x∗ is de�ned as

d(x, x′) = ((x− x′)⊤H(x∗)(x− x′))1/2.

After a cluster C is initiated, we �nd an unclustered point x such that

d(x,C) = min
y∈C

∥x− y∥

is minimal. This point is then added to C, after which the procedure is repeated until
d exceeds some critical value rk. This critical distance will be chosen to depend on
kN only so as to minimize the probabilities of two possible failures of the method: the
probability that a local search is started, although the resulting minimum is known
already, and the probability that no local search is started in a level set which contains
reduced sample points. The experiments showed that the SL method approximates the
level sets more accurately than the DC.

The theoretical aspects of the Single Linkage method were investigated in Rin-
nooy Kan and Timmer [98]. The main results are summarized in the following theorem:

Theorem 2.1. (Rinnooy Kan and Timmer [98]) If the critical distance rk is given by
the formula

rk(x) =
1√
π

(
Γ
(
1 +

n

2

)
·m(S) · ζ ln(kN)

kN

)1/n

,

then:

− for ζ > 2 the probability that the local method will be started by SL in step k tends
to zero with increasing k,

− for ζ > 4 even if the sampling of points had been carried out endlessly, the total
number of local searches started by the SL method would be �nite with the proba-
bility equal to 1.

These attractive properties theoretically prove the e�ciency of the method in terms
of number of local searches performed. However, SL does not have the property of a
probabilistic guarantee of success in the sense of �nding all local minimizers, because
the level set may contain more than one region of attraction, so that some local minima
may be missed.

SL like DC has the property of asymptotic correctness, i.e. it �nds the global mini-
mum with the probability equal to 1 when k increases to in�nity.
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Algorithm 5. The Multi Level Single Linkage algorithm

1. function MLSL(f,X)
2. k := 0;X∗ := ∅;
3. repeat

4. k := k + 1
5. Draw N points x(k−1)N+1, . . . , xkN according to the uniform distribution

on X
6. i := 1
7. while i ≤ kN do

8. if NOT (there is such j that f(xj) < f(xi) and ∥xj − xi∥ < rk)
then

9. x∗ := Loc(xi)
10. X∗ := X∗ ∪ {x∗}
11. end

12. i := i+ 1

13. end

14. until The global stopping rule is satis�ed
15. return The smallest local minimum value found

2.2.2.2 Multi Level Single Linkage algorithms

Multi Level Single Linkage (MLSL) has been derived from clustering methods (see
Rinnooy Kan and Timmer [99]). Unlike DC or SL it does not contain the reduction
phase and the super�uous clustering is omitted altogether.

In this method the local search procedure is applied to every sample point, except if
there is another sample point within some critical distance which has a lower function
value. The goal of MLSL is to �nd all local minimizers. The algorithm steps are given
in Algorithm 5.

It has been proved that the algorithm has good asymptotic properties: the asymp-
totic probabilistic correctness and probabilistic guarantee of �nding all local minimizers.
The asymptotic properties of MLSL are summarized in the Theorem 2.2:

Theorem 2.2. (Rinnooy Kan and Timmer [99]) If the critical distance rk is given by
the formula

rk(x) =
1√
π

(
Γ(1 +

n

2
) ·m(S) · ζ ln(kN)

kN

)1/n

,

then:

− if ζ > 0, then for any sample point x ∈ X the probability that the local method will
start from this point in step k decreases to zero while k increases,

− if ζ > 2, then the probability that the local method will start in step k decreases to
zero while k increases,

− for ζ > 4 even if sampling is performed in�nitely, the total number of local searches
ever started by MLSL is �nite with the probability 1.
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Similar to SL and DC, MLSL also has the property of asymptotic correctness, i.e it
�nds the global minimum with probability 1 with k increasing to in�nity and unlike DC
and SL, it has the property of probabilistic guarantee of success (in the sense of �nding
all local minimizers).

MLSL can be ine�ective when the objective function has a large number of local
minimizers which are close to each other and have small basins of attraction.

2.2.2.3 Stopping rules

As in the case of deterministic methods, one of the questions in applying a stochastic
method is when to stop. Preferably, a method of this nature should terminate with some
probabilistic information on the quality of the proposed solution. Several approaches
based on di�erent assumptions about the properties of possible objective functions f and
using di�erent stochastic techniques have been proposed to design a proper stopping rule.
A Bayesian stopping rule for the Multistart algorithm has been introduced in Zieli«ski
[119] and further developed in Boender and Zieli«ski [19], Boender and Rinnooy Kan
[15, 16, 17], Betrò and Schoen [10, 11], and others. A summary of the most used stopping
rules can be found in Schaefer [104].

Most Bayesian stopping rules for Multistart are based on the knowledge about the
size of the sample and the number of local minimizers detected. The probabilistic model
is estimated from information gathered during the run of the optimization procedure.
This model can be used to construct the so-called non-sequential stopping rules. Infor-
mation about the costs of further searches is not used in this approach. However, such
information is used in the so-called sequential rules which will also be described in this
chapter. Such stopping rules can be applied to every method, which if it starts from the
same set of points as Multistart gives the same set of local minimizers.

Let k be the number of local minima of the objective function f , and let us denote
the relative volume of the i-th region of attraction by θi, i = 1, . . . , k. If these values
would be known, then we can have several good stopping rules. In practice, k, θ1, . . . , θk
are mostly unknown.

In the Bayesian approach the unknowns k, θ1, . . . , θk are assumed to be themselves
random variables K,Θ1, . . . ,ΘK with realizations k, θ1, . . . , θk, for which a prior distri-
bution can be speci�ed. Given the outcome {n1, . . . , nw} of number of local searches,
we then use Bayes' Theorem to compute the posterior distribution of K,Θ1, . . . ,ΘK ,
which incorporates both our prior beliefs and the sample information. We assume that
for the value of w every positive integer is equally probable, moreover, Θ1, . . . ,ΘK have
the uniform distribution on the (w − 1)-dimensional unit simplex.

If w di�erent local maxima have been found in n independent searches, then two
main results are that, the Bayesian estimate of the expected number of unobserved
local maxima (K − w), and the total size (1 − Ω) of unobserved regions of attraction
are equal to

E(K − w) =
w(w − 1)

n− w − 2
,

E(1− Ω) =
w(w + 1)

n(n− 1)
.
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The (a posteriori) probability that all local minimizers have been found is equal to:

Pr(K = w) =
w∏
i=1

(
n− 1− i

n− 1 + i

)
.

Non-sequential rules

The presented formulas can be applied to determine the following non-sequential
stopping rules to terminate the search:

− Stop if the round-o� of the estimated number of unobserved local minima is equal
to 0, i.e. [

w(w + 1)

n− w − 2

]
= 0. (2.2)

− Stop if the estimated coverage of the sample of unobserved local minima is lower
than an arbitrary constant τ1, i.e.

w(w + 1)

n(n− 1)
< τ1. (2.3)

− Stop if the probability of �nding all local minimizers is greater than an arbitrary
constant τ2, i.e.

w∏
i=1

(
n− 1− i

n− 1 + i

)
> τ2. (2.4)

Sequential rules

Sequential stopping rules take into consideration the cost of sampling. Let us consider
the two following loss functions (see Guss et al. [45]):

L1 = cT1 · (K − w) + cE1 · n,

and

L2 = cT2 · (1− Ω) + cE2 · n.

Coe�cients cT1 , c
T
2 > 0 are related to the cost of stopping the algorithm before all

local minimizers are found. This cost is called a termination loss. Coe�cients cE1 , c
E
2 > 0

are related to the cost of continuation of the search. It is called an execution loss.

Under the assumption that n points give w di�erent minimizers, the expected a
posteriori value of L1 and L2 (the so-called expected posterior loss or just the posterior
loss) are equal to:

E(L1 | (n,w)) = cT1 · w(w + 1)

n− w − 2
+ cE1 · n, (2.5)
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E(L2 | (n,w)) = cT2 · w(w + 1)

n(n− 1)
+ cE2 · n. (2.6)

The purpose now is to �nd the optimal stopping rules which determine to stop
the search when the current posterior loss is less than the expected posterior loss of
carrying out another local search, given that the optimal strategy is adopted thereafter
(see DeGroot [34]). For such an approach to be feasible we have to �nd a value n∗

such that for all outcomes with n > n∗ the expected posterior loss of another search is
always greater than the current posterior loss. To obtain such a result, we observe that
given w di�erent local maxima have been found in n searches, only two outcomes can
occur as the result of another trial: either a yet unobserved local maximum is found, or
not. Hence the conditional expected value of the posterior loss of one more step of the
algorithm can be estimated on the basis of (2.5) and (2.6) according to the recurrent
formula (i = 1, 2):

E(E(Li | (n+ 1,W )) | (n,w)) = (1− w(w + 1)

n(n− 1)
) · E(Li | (n+ 1, w))

+
w(w + 1)

n(n− 1)
· E(Li | (n+ 1,W + 1)).

(2.7)

From (2.7) we can determine that for L1 the expected posterior loss of one additional
local search minus the current posterior loss is always equal to

δ = cE1 − cT1 · w(w + 1)

n(n− 1)
.

In this case there exists no n∗ such that this value is positive for all n ≥ n∗. However,
a suboptimal Bayesian one-step-look-ahead stopping rule can be determined:

− Stop if

cE1 − cT1 · w(w + 1)

n(n− 1)
> 0.

For the second loss structure n∗ can be shown to be equal to n∗ =
cT2

3c2E
. Given this

result the following optimal stopping rule can be determined:

− Stop the search for all outcomes with n ≥ n∗, and determine the optimal strategy
for all outcomes with n < n∗ by working backwards from n = n∗ through the
recurrence relation (2.7).
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Stopping rules that use values of the objective function

The previously presented model was extended by Piccioni and Ramponi (see Piccioni
and Ramponi [87]), who have succeeded in taking into consideration the function values
of the local minima. The stopping rules consider undiscovered minimizers in which the
objective value is less than the smallest value found earlier. The following stopping rules
are analogous to rules (2.2), (2.3), and (2.4).

− Stop if the expected number of undiscovered better local minimizers is equal to
zero, i.e.: [

w

n− w − 2

]
= 0.

− Stop if the expected value of the sum of relative volumes of the basins of attraction
of better local minimizers is less than a constant τ1

w

n(n− 1)
< τ1.

− Stop if the probability that a better local minimizer does not exist is greater than
a constant τ2

n− w − 1

n− 1
> τ2.

A suboptimal stopping rule can also be estimated for L1 in a similar way (see Guss
et al. [45]):

− Stop if
cE1 − cT1 · w

n(n− w − 2)
> 0.

The value of n∗ for the optimal stopping rule related to the loss function L2 can be
estimated from the formula:

n∗ =

√
cT2
cE2
.

2.3 The GLOBAL optimization method

Consider the following speci�cation of the general GOP (1.1):

min
x∈X

f(x), (2.8)

where f : Rn → R is a real valued function, X = {ai ≤ xi ≤ bi, i = 1, 2, . . . , n} is
the set of feasibility, an n-dimensional interval with lower and upper bounds of a and
b, respectively. In general, we assume that the objective function is twice continuously
di�erentiable, although it is not necessary for the global optimization framework proce-
dure, and with a proper local search algorithm also nondi�erentiable problems can be
solved.
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2.3.1 Boender's method

A popular stochastic global optimization algorithm was described in Boender et al.
[18]. The algorithm structure is based on Algorithm 4, and used both clustering rules:
Density Clustering (see Törn [112]) and Single Linkage Clustering (see Boender et al.
[18], and Rinnooy Kan and Timmer [98]).

They also used the gradient criterion: in both clustering procedures, before a point
x is added to a cluster, the negative gradient at x is veri�ed to point in the direction of
x∗. In other words, if the derivative of f in x in the direction of x∗ is positive, then the
x will be rejected. This step was necessary because often the level set contained various
local minimizer points within one connected subset.

The method also constructs a range of con�dence intervals on the true value of the
global minimum using the two smallest function values found in the complete sample.

The algorithm was tested on standard test functions and compared with other meth-
ods. The results showed that it was a reliable and computationally attractive method
for global optimization.

2.3.2 The original GLOBAL algorithm

GLOBAL (see Csendes [27]) is a stochastic method based on Boender's algorithm
(see Boender et al. [18]). In several recent comparative studies (e.g. Mongeau et al.
[73], Moles et al. [72]), this method performed quite well in terms of both e�ciency and
robustness, obtaining the best results in many cases.

Its goal is to �nd all local minimizer points that are potentially global. These local
minimizers will be found by means of a local search procedure, starting from appropri-
ately chosen points from the sample drawn uniformly within the set of feasibility. In
an e�ort to identify the region of attraction of a local minimum, the procedure invokes
a clustering procedure. The main algorithm steps are based on Algorithm 4 and is
described in Algorithm 6.

Although GLOBAL is based on Boender's method, it contains several modi�cations
and improvements. The most important changes are:

− The Single Linkage Clustering was selected after a respective testing.

− The clustering distance is not based on the Hessian (thus the latter should not be
computed).

− The gradient criterion for forming clusters has been found to be less e�ective and
it is left out.

− No steepest descent step is used to transform the original sample.

− The less informative con�dence intervals are not calculated for the global minimum
value.

− A scaling of the original problem is applied to ensure better numerical stability.
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Algorithm 6. The GLOBAL algorithm

1. function GLOBAL(f,X)
2. k := 0;X∗ := ∅;X(1) := ∅
3. repeat

4. k := k + 1
5. Generate N points x(k−1)N+1, . . . , xkN according to the uniform

distribution on X
6. Determine the reduced sample consisting of the γkN best points from the

sample x1, . . . , xkN
7. Clustering to X∗ and X(1)

8. while Not all points from the reduced sample have been assigned to a
cluster do

9. x(1) � unclustered point from the reduced sample with the smallest
objective value

10. x∗ := Loc(x(1))
11. if x∗ /∈ X∗ then

12. X∗ := X∗ ∪ {x∗}
13. choose xs := x∗ as the next seed point
14. else

15. X(1) := X(1) ∪ {x(1)}
16. choose xs := x(1) as the next seed point
17. end

18. Add all unclustered reduced sample points which are within
distance rk of a point already in the cluster initiated by the seed
point xs

19. end

20. until Some global stopping rule is satis�ed
21. return The smallest local minimum value found

Apart from the above changes, the original GLOBAL algorithm includes two di�erent
local search procedures: a quasi-Newton procedure with the Davidon-Fletcher-Powell
(DFP) update formula (see Gill et al. [42]) and a random walk type direct search method
UNIRANDI (see Järvi [60]).

The quasi-Newton method applies numerical derivatives calculated inside of it, so
the user must not include subroutines for the calculation of derivatives, only that for
the objective function itself. In this sense GLOBAL is a direct search method. Ac-
cording to our experience, it is a quite important feature, that allows a wide range of
applications. With advanced quasi-Newton type local search methods a similar good
convergence speed can be achieved as with local search methods applying �rst and sec-
ond order derivatives. Since the algorithm uses only objective function evaluations on
places determined by the algorithm, the black-box type objective function can also be
de�ned by only a procedure, without having an explicit expression for it. On the other
hand � if necessary � sophisticated automatic di�erentiation tools enable us to calculate
the necessary derivatives without much human interaction.

The GLOBAL method has its own stopping criteria that stops if in an iteration no
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Algorithm 7. The UNIRANDI local search method

1. function UNIRANDI(f, x)
2. i := 0
3. while The convergence criterion is not satis�ed do

4. Generate a unit length random direction d
5. Find a trial point xtrial := x+ h · d
6. if f(xtrial) < f(x) then
7. x := LineSearch(f, xtrial, x, d, h)
8. h := 0.5 · h
9. continue

10. end

11. d := −d
12. xtrial := x+ h · d
13. if f(xtrial) < f(x) then
14. x := LineSearch(f, xtrial, x, d, h)
15. h := 0.5 · h
16. continue

17. end

18. i := i+ 1
19. if i < 2 then continue

20. h := 0.5 · h
21. i := 0

22. end

23. return x

new local minimizer point was found.

The UNIRANDI procedure is a random walk type robust local search method, which
can be used when the problem structure does not allow us to utilize the locally quadratic
behavior as it is the case for the quasi-Newton technique. The method consists of two
main steps: generation of random directions and line searches along these directions.
The local search algorithm is described in Algorithm 7.

Between line 3 and line 22, the algorithm iteratively generates random directions and
makes line searches along them. At each iteration, in line 4, a unit random direction d
is generated in the interval [−0.5, 0.5]n, but they are accepted only if the norm is less
or equal to 0.5. This condition means that points outside the hypersphere of radius 0.5
are discarded in order to obtain a uniform distribution of random directions.

After �nding a proper direction in line 5, a trial point is computed. The parameter
h that controls the step length, is initialized to 0.001. If the trial point has a smaller
objective value than the current best solution, then, in line 7, we start a line search along
the d direction starting from it. The line search algorithm is described in Algorithm 8.
If we didn't �nd a better point along the current direction, we try the opposite direction
in line 11. In line 20, we halve the step length if the algorithm couldn't improved the
current best solution. After two unsuccessful step reduction, in line 19, we choose a new
direction. The algorithm stops if the relative convergence of the objective function or
the step length is less than 10−6. The best solution found, over all iterations, is returned.
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Algorithm 8. The LineSearch algorithm

1. function LineSearch(f, xtrial, x, d, h)
2. while f(xtrial < f(x)) do
3. x := xtrial
4. h := 2 · h
5. xtrial := x+ h · d
6. end

7. return x

The GLOBAL method was originally coded in Fortran and C languages and it was
capable to solve global optimization problems of up to 15 variables. The e�ciency
and reliability of the procedure was tested on standard test functions. It had been
applied also for theoretical chemical problems in Balogh et al. [4], and for optimization
in abstract spaces, on Stiefel manifolds in Balogh et al. [3]. It was also used in real-life or
industrial applications. We just mention some from the �elds of bioprocess analysis (see
Banga et al. [5]), climate control (see Moles et al. [71]), and integrated process design
for wastewater treatment plants in Moles et al. [72].

Although the bound constrained problem de�nition (1.1) does not allow explicit non-
linear constraints, the use of penalty functions enables us to cope also with constrained
problems. According to our experiences, this approach can be successful in most of the
cases encountered (see Csendes et al. [31]). There is also an extension of the algorithm
to constrained problems in Sendín et al. [105].

2.3.3 The improved GLOBAL optimization method

The GLOBAL method has been introduced in the 1980s for bound constrained global
optimization problems with black-box type objective function. Since then the techno-
logical environment has been changed much. Therefore, our aim was to make some
revisions and updates on the involved algorithms to utilize the novel technologies, and
to improve its reliability.

The main part of the work consists of experiments done with the GLOBAL algorithm.
As a result of these tests, we obtained a more e�cient and robust method. During these
experiments we tried to solve the problems with parameter tuning. On the other hand,
we observed that GLOBAL is sensible for the input parameters, hence we also tried to
optimize them during the running of the algorithm. However, we �nd that this induces
a substantial increase in the running time, which is not acceptable in our case.

The most important changes made on GLOBAL are:

− It is now coded in MATLAB, utilizing the vectorization technique for better e�-
ciency.

− We use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) (see Broyden [21]) local
search algorithm instead of the earlier DFP method.

− Better uniform and normal distribution random number generators are applied.
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Table 2.1: The number of points in percent outside the hypersphere of radius 0.5.

Dimension 2 3 5 7 10 12 15
Outside points (%) 21 45 83 96 99 99 100

− Some improvements were made in the uniform distribution direction selection pro-
cedure of the UNIRANDI local search method. The new code provide better sta-
tistical characteristic while it needs less computation. The present implementation
of UNIRANDI works now without dimension related problems.

We have utilized the advantages of MATLAB to obtain an e�cient code. The vec-
torization of MATLAB, a special syntax, makes it easy to obtain such a machine code
that can feed the pipeline of the CPU in such a way that long vector calculations can
achieve a closely full use of the processor pipeline. This is otherwise hard to reach by
high level algorithmic languages. The last mentioned improvement in the list above had
enhanced the e�ciency of GLOBAL substantially in terms of CPU time used. Now we
have the capability to solve larger problems than before with similar reliability.

The BFGS local search method works similarly like the DFP algorithm. The main
di�erence is that the �rst one uses a di�erent update formula. The comparison results
(see Powell [92]) show that the quasi-Newton method with the BFGS update formula
performs better than the one with the DFP update formula.

In the UNIRANDI local search method, the random directions are uniformly gener-
ated in the interval [−0.5, 0.5]n, but they are accepted only if the norm is less or equal
than 0.5. This condition means that points outside the hypersphere of radius 0.5 are
discarded in order to obtain a uniform distribution of random directions (i.e. to avoid
having more directions pointing toward the corners of the hypercube). As the number of
variables increases, it becomes more di�cult to produce points satisfying this condition
and for more than 15 variables it is never satis�ed. This can be observed in the Table
2.1, which contains the average number of points in percent outside the hypersphere of
radius 0.5 in di�erent dimensions. The results represent the average of 10 independent
runs. In a single run, we sampled 100 points.

In order to �x this problem, we changed the UNIRANDI so that, the random direc-
tions will be generated by normal distribution N (0, 1), instead of uniform distribution
and the respective vectors are normed.

We have illustrated two iterations (see Figure 2.2) of the GLOBAL algorithm using
the UNIRANDI local search in the case of Branin function (see Figure 2.1 and Appendix
A).

2.4 Numerical results

We have completed two sets of numerical tests: the �rst aimed to show the e�ciency
and reliability changes compared to the old version, based on the published results in
Csendes [27], and one to compare the new method to C-GRASP, a greedy adaptive search
technique (see Feo and Resende [40]) modi�ed to solve continuous global optimization
problems published in Hirsch et al. [55].
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Figure 2.1: The Branin function with three global optima.

(a) First iteration: 50 points are drown uni-
formly (red points), 10 best points are clustered
(black points).

(b) Second iteration: another 50 points are
drown uniformly (red points), 20 best points
are clustered.

Figure 2.2: Two iterations of the GLOBAL algorithm with the UNIRANDI local
search.
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Table 2.2: The number of function evaluations for the old and new versions of GLOBAL
with the quasi-Newton local search routines on the standard test problems.

Problem old new
dim. av. av. min. max. median st. dev.

Shekel-5 4 990 1,090 540 2,235 1,067.5 352.52
Shekel-7 4 1,767 1,718 895 3,160 1,655.0 449.16
Shekel-10 4 2,396 2,378 1,145 4,630 2,317.5 697.19
Hartman-3 3 216 196 86 385 171.5 61.55
Hartman-6 6 1,446 703 132 1,647 702.5 263.32
Goldstein-Price 2 277 286 130 569 270.5 88.59
Branin 2 330 77 61 115 73.0 11.84
SHCB 2 233 107 58 224 103.5 35.67
Rosenbrock 2 410 125 52 334 109.0 62.27

Our numerical experiments were completed on a PC with a 3.0 GHz Pentium-4 pro-
cessor and 1 Gbyte memory. We used the standard time unit (1,000 evaluations of the
Shekel-5 function at xT = (4.0, 4.0, 4.0, 4.0)T ) to measure the computation time compa-
rably. GLOBAL has three parameters to set: the number of sample points (abbreviated
in the tables as sample size, values between 20 and 100,000), the number of best points
selected (denoted as selected, between 1 and 20), and the stopping criterion parameter
named (precision, values between 4 and 8 digits).

2.4.1 Comparison with the old GLOBAL version

We used the standard test functions applied for the old version. For each problem we
made 100 independent runs (earlier it was just 10), and we recorded the average number
of function evaluations and the average CPU time necessary, measured in the standard
time unit. The parameters of the procedures were set so that the algorithm was able
to �nd the global optimum each time. In this sense the present algorithm was set to
achieve about one order of magnitude better reliability. Here we understand reliability
as the ability of an algorithm to �nd a global minimizer point a given number of times
out of a preset number of independent runs. While in the case of the old GLOBAL
only 10 successful runs were required out of 10 independent runs, now we tuned our
algorithm to meet this criterion for 100 successful runs out of 100, which means the new
one is certainly much more reliable. The good algorithm parameter values found (given
in the tables) are telling also on how the procedure can achieve reliability. The criterion
to accept an approximative solution as a successful estimate of the global minimizer was
the same as in Csendes [27]: if the relative distance between them was less than 10−2.

Table 2.2 provides the average number of function evaluations for the old and the new
versions using the quasi-Newton type local search routines on the standard test problems.
In case of the new implementation also the minimal, the maximal number of function
evaluations are given together with the median and the standard deviation. According
to the results, for most of the test functions the new algorithm was substantially better
than the old one. It is so mostly just due to the more sophisticated local search technique
used (BFGS instead of an old implementation of DFP). The reason for it can be seen
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Table 2.3: The number of function evaluations for the old and new versions of GLOBAL
with UNIRANDI as local search method on the standard test problems.

Problem old new
dim. av. av. min. max. median st. dev.

Shekel-5 4 1,083 1,450 751 2,718 1,374.0 413.88
Shekel-7 4 1,974 2,527 1,254 4,834 2,530.0 695.24
Shekel-10 4 2,689 3,429 1,636 5,795 3,277.5 881.97
Hartman-3 3 697 1,449 363 3,933 1,330.0 671.15
Hartman-6 6 2,610 2,614 274 9,004 2,132.5 1,676.16
Goldstein-Price 2 386 446 126 1,118 413.0 211.94
Branin 2 464 172 92 353 149.0 64.46
SHCB 2 267 176 95 328 175.0 66.85
Rosenbrock 2 1,524 1,081 277 2,687 902.0 516.38

Table 2.4: The average CPU times measured in standard time units for the old and new
versions of GLOBAL with the quasi-Newton and UNIRANDI local search methods on
the standard test problems. The algorithm parameters are the sample size, the number
of selected points, and the precision required from the local search, respectively.

Problem quasi-Newton UNIRANDI
old new old new
av. av. parameters av. av. parameters

Shekel-5 3.0 5.14 100 10 6 3.5 3.87 100 12 6
Shekel-7 4.9 7.89 200 15 6 6.0 6.64 300 15 6
Shekel-10 7.0 10.46 250 15 6 8.8 9.14 400 15 6
Hartman-3 1.2 1.19 15 2 7 1.9 3.86 15 3 7
Hartman-6 4.2 3.39 10 3 6 14.2 7.68 20 3 6
Goldstein-Price 1.3 1.32 50 4 6 1.5 0.81 30 4 7
Branin 1.4 0.40 20 1 6 1.6 0.31 20 1 6
SHCB 1.2 0.61 20 2 6 1.3 0.33 20 2 6
Rosenbrock 1.0 0.83 2 1 7 1.5 1.93 2 1 7

on Table 2.3 with basically the same local search procedure, the improvement in the
average number of function evaluations appeared for only one third of the test functions.
Yet even the �gures for the new method with UNIRANDI are nice since the reliability
improved much.

The algorithm parameters (shown in Table 2.4) cannot be compared in detail, since
they were not collected and reported for the old method, still they are close to each
other (as far as it can be judged). The �tting parameter setting is straightforward
for the sample size and the number of selected points: the larger the sample size the
more reliable the algorithm. The smaller the selected/sample size ratio, the smaller local
minima we can �nd (i.e. the larger local minima will not be identi�ed � the more e�cient
the search). It was one of the important �ndings of the papers Boender et al. [18], and
Rinnooy Kan and Timmer [98, 99] that good reliability can be achieved e�ciently while
not locating all the local minimizer points. The �nding of a local minimizer point with
much worse function value than the global optimum does not contribute much for the
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identi�cation of a global minimizer. This is what makes it possible to save computational
e�orts while keeping reliability in the determination of global minimizer points.

The set precision of the local search method has a di�erent role: in general it should
be close to the required relative precision of the estimated global minimum value. How-
ever, according to our experience, for both local search methods it is worth to set the
precision value higher to avoid cases when a local minimum is not recognized since the
results of local searches could not be identi�ed as the same � although the same region of
attraction was found. This phenomenon is re�ected in Table 2.4 in the larger precision
values for those test problems for which the objective function values do not change
much close to a global minimizer point.

The average CPU times (measured in standard time units) necessary for the solution
of the test problems are comprised in Table 2.4. The �gures follow more or less the
di�erences seen for the number of function evaluations in the previous tables. The
di�erences to the anticipated ratios are due to overhead of startup and output in part
independent of the problems, the di�erent programming environments, hardware and
even because of the way the standard time units were measured (now actually the time
for the 106 evaluation of the Shekel-5 function was divided by 1,000).

The conclusion of the �rst set of tests completed is that on standard test problems
the new implementation is closely as good in terms of e�ciency as was the old one,
while the reliability of the solution has been increased substantially. Due to the better
quasi-Newton local search method, the new version is much better for smooth problems
even in terms of the necessary number of objective function evaluations.

2.4.2 Comparison with the C-GRASP method

As it was already mentioned, the C-GRASP method extends the greedy randomized
adaptive search procedure presented in Feo and Resende [40] from the domain of discrete
optimization to that of continuous global optimization (see Hirsch et al. [55]). It does
not make use of derivative information, thus it is a direct search method. Regarding its
control structure, it is a multistart local search technique too, such as GLOBAL. Since
its local search part does not utilize the possible smoothness of the objective function,
it is fair only to compare it to GLOBAL with UNIRANDI.

The two computers used for the testing were of similar performance, but our one was
slightly slower and had much less memory (however the latter has not a�ected much
the comparison results). In this way the direct CPU times can only be used to compare
with some care.

We applied our new implementation of GLOBAL to the same set of 14 global opti-
mization test problems on which C-GRASP was run. The global minimum value f ∗ was
known for all problems in the test set. Both methods were run until the objective func-
tion value f was signi�cantly close to global optimum (i.e. till |f∗−f | ≤ 10−4|f ∗|+10−6

became true). GLOBAL could also be stopped when no new local minimizer point was
found in the last iteration cycle. The use of the known optimum value within an op-
timization algorithm is not typical, still it is realistic in several cases, as explained in
Hirsch et al. [55], but also according to the experiments e.g. with circle packing problems
(see Markót and Csendes [67], and Szabó et al. [110]).
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Table 2.5: The number of function evaluations for C-GRASP and GLOBAL with the
UNIRANDI local search routine. The algorithm parameters were: number of sample
points: 400, selected points 15, and the required number of precise digits for the local
search 8.

Problem C-GRASP GLOBAL with UNIRANDI

average average min. max. median st. dev.

Shekel-5 5,545,982 1,489 897 2,259 1,470.0 298.56

Shekel-7 4,052,800 1,684 860 2,914 1,625.0 338.05

Shekel-10 4,701,358 1,815 1,034 3,623 1,713.5 532.08

Hartman-3 20,743 3,608 1,767 5,844 3,585.0 828.73

Hartman-6 79,685 16,933 6,240 29,665 16,739.5 5,040.56

Goldstein-Price 29 923 559 1,558 874.0 229.22

Branin 59,857 1,023 621 1,678 1,032.5 211.07

Rosenbrock-2 1,158,350 6,274 2,894 10,378 6,091.0 1,402.33

Rosenbrock-5 6,205,503 374,685 168,601 628,507 360,241.0 89,941.28

Rosenbrock-10 20,282,529 1,908,469 806,288 2,418,556 2,043,155.0 477,478.51

Easom 89,630 1,604 532 2,664 1,610.5 416.63

Shubert 82,363 1,399 936 1,859 1,407.5 171.34

Zakharov-5 959 8,227 4,629 11,420 8,367.5 1,702.57

Zakharov-10 3,607,653 47,288 34,549 53,995 47,850.0 3,767.57

For each problem, 100 independent runs of GLOBAL were completed. We recorded
the percentage of runs that found a signi�cantly close solution, the time necessary for
such solutions and the number of function evaluations. The algorithm parameters of
GLOBAL were set again such a way that it was able to �nd a global minimizer point
in each run. We listed the results in the Tables 2.5 and 2.6.

Table 2.5 contains the numbers of objective function evaluations necessary to solve
the test problems in the above described sense. According to it GLOBAL was with the
exception of the Goldstein-Price and Zaharov-5 problems always much more e�cient
than C-GRASP, sometimes even by orders of magnitude. The reason for that may be
due to the di�erent model in the background: while C-GRASP is prepared for any ugly
behavior, GLOBAL assumes inherently that at least one global minimizer points has
a non-negligible sized region of attraction. Still, both algorithms are capable to solve
black box problems, i.e. without additional information on the problems beyond the
objective function value (when GLOBAL is used with UNIRANDI).

Note that for GLOBAL the algorithm parameters should be such that all problems
could be solved all times it was run. In contrast to that, it can be surprising that some
problems (e.g. Shekel-10) could be solved by the new GLOBAL with less function evalu-
ations than what is stated in Table 2.2. This phenomenon is caused by the new stopping
rule that can stop iteration earlier. It can also be seen that the higher dimensional ver-
sions of some test function could be solved by both techniques with correspondingly
larger computational e�orts.

The less comparable CPU time values are summarized in Table 2.6. These re�ect on
one hand the anticipated di�erences in the problem di�culty according to the number
of function evaluations. On the other hand the CPU times for the Rosenbrock test
functions are hard to explain: although they are proportional to the number of function
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Table 2.6: CPU time required by C-GRASP and GLOBAL with the UNIRANDI local
search routine in seconds.

Problem C-GRASP GLOBAL
dim.

Shekel-5 4 2.3316 0.1313
Shekel-7 4 2.3768 0.1461
Shekel-10 4 3.5172 0.1614
Hartman-3 3 0.0026 0.3208
Hartman-6 6 0.0140 1.7880
Goldstein-Price 2 0.0000 0.0516
Branin 2 0.0016 0.0580
Rosenbrock-2 2 0.0132 0.4117
Rosenbrock-5 5 1.7520 24.7559
Rosenbrock-10 10 11.4388 130.6813
Easom 2 0.0042 0.0916
Shubert 2 0.0078 0.0930
Zakharov-5 5 0.0000 0.5369
Zakharov-10 10 1.0346 3.1428

evaluations for GLOBAL, the e�ciency relation between the two methods found earlier
cannot be recognized here.

Summarizing the results we can conclude that the new version of GLOBAL utilizes
the advantages o�ered by MATLAB, and the algorithmic improvements increased the
size of the problems that can be solved reliably with it. The reliability of the algorithm
is now better while the e�ciency is improved, too. The careful comparison both with
the old version and with C-GRASP is favorable for the new version of GLOBAL.

2.4.3 Benchmarking the GLOBAL on the BBOB-2009

Noiseless Testbed

The Black-Box Optimization Benchmarking (BBOB) 2009 was a benchmarking event
that took place at a workshop in GECCO 2009, Montreal, Canada1. The aim of BBOB-
2009 was to quantify and compare performance of optimization algorithms by providing
a COCO software platform2 as well as a full experimental set-up for participants. Using
the platform we have the possibility to chose and implement a single-objective bench-
mark function testbed, to design of an experimental set-up, to generate data output for
post-processing and presentation of the results in graphs and tables. The framework
also provides two testbeds: noise-free and noisy functions.

2.4.3.1 The test environment description

The numerical experiments are conducted on a testbed comprising twenty-four noise-
less test functions (see Finck et al. [41], Hansen et al. [53]). These functions have been

1http://www.sigevo.org/gecco-2009/workshops.html#bbob
2http://coco.gforge.inria.fr
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constructed so that they re�ect the real-world application di�culties and are split into
several groups like separable functions, functions with low or moderate conditioning,
functions with bad conditioning and unimodal, multimodal ones with adequate global
structure, multimodal problems with weak global structure. All functions are scalable
with the dimension, hence we can use 2, 3, 5, 10, 20, and 40 dimensional search space,
respectively. Additionally, all functions have their optimum in the [−5; 5]n range, which
can be a reasonable setting for the search domain. Each function is tested over �ve
di�erent instances. The experiments were repeated three times for each instance. The
algorithm performance was evaluated over all 15 trials.

The success criterion of a run is to reach the ftarget = fopt +∆f target value, where
fopt is the optimal function value, and ∆f is the precision to reach.

In order to quantify the search cost of an algorithm, a performance measure should
be provided. The main performance measure adopted is the runtime ERT, Expected
Running Time (see Hansen et al. [50]; Price [94]). The ERT number depends on a given
target function value, ft = fopt + ∆f , and is computed over all relevant trials as the
number of function evaluations used during the trials while the best function value did
not reach ft, summed over all trials and divided by the number of trials that actually
reached ft. In other words, The ERT value estimates the expected number of function
evaluations for the target function value to be reached if the algorithm is restarted until
a single success can be reached.

The results are also presented using the empirical cumulative distribution function
of the distribution of ERT divided by n to reach a given target function value. It shows
the empirical cumulated probability of success on the problems considered depending
on the allocated budget.

For a more detailed environment and experimental description see in Hansen et al.
[50, 51].

2.4.3.2 Parameter tuning and setup

In this study, GLOBAL has six parameters to set: the number of sample points set
within an iteration step, the number of best points selected for the transformed sample,
the stopping criterion parameter for the local search, the maximum number of function
evaluations allowed for local search, the maximum number of local minima to be found,
and the type of used local method. All these parameters have a default value and usually
it is enough to change only the �rst three of them.

In all dimensions and for all functions we used 300 sample points, and the 2 best
points were kept for the transformed sample. In 2, 3, and 5 dimensions we used the
Nelder-Mead simplex method (see Nelder and Mead [75]) implemented in Kelley [63] as
a local search with 10−8 as tolerance value and with 5,000 as the maximum number of
function evaluations. In 10 and 20 dimensions for the f3, f4, f7, f16, f23 functions we
used the previous settings with a local search tolerance of 10−9. Finally, in the case of
the remained functions we used the previous parameters with the MATLAB fminunc

function as a local search method using the BFGS update formula and with 10,000 as
the maximum number of function evaluations.

As it can be observed, during the parameter tuning we used two di�erent settings. In
lover dimensions we used the Nelder-Mead method while in higher dimensions the BFGS



2. Stochastic global optimization 33

local search was applied except �ve functions. Although this kind of a priori parameter
setting is not suggested, the two important parameters of GLOBAL (the number of
sample points, the number of best points selected) were the same on the entire testbed.
The di�erent settings may be characterized with the entropy measure crafting e�ort (see
Price [94], Hoos and Stützle [56]) for each dimensionality in the following way:

CrE = −
K∑
k=1

nk

n
ln
(nk

n

)
,

where K is the number of di�erent parameter settings used over the whole testbed,
n =

∑K
k=1 nk is the number of functions in the testbed and nk is the number of functions,

where the parameter setting with index k was used for k = 1, . . . , K.

The crafting e�ort calculated in case of our settings was (in dimensions 10 and 20):
CrE10 = CrE20 = −( 5

24
ln 5

24
+ 19

24
ln 19

24
) = 0.5117.

2.4.3.3 CPU timing experiment

For the timing experiment the GLOBAL algorithm was run on the test function f8,
and restarted until at least 30 seconds had passed (according to Figure 2 in Hansen
et al. [50]). These experiments have been conducted with an Intel Core 2 Duo 2.00 GHz
processor computer under Windows XP using the MATLAB 7.6.0.324 version. We have
completed two experiments using the BFGS and the simplex local search methods. The
other algorithm parameters were the same as before. In the �rst case (BFGS) the results
were (2.8, 2.9, 3.0, 3.0, 3.2, 3.2) · 10−4 seconds, while in the second case (Nelder-Mead
simplex) they were (2.6, 2.9, 3.4, 4.6, 7.5, 21.0) · 10−4 seconds per function evaluation in
dimensions 2, 3, 5, 10, 20, and 40, respectively. The CPU time of a function evaluation of
the BFGS search grows sub-linearly with the dimension. For the Nelder-Mead simplex
method, the CPU time increases with the dimension linearly up to 20 dimensional
problems, while for 40 dimensional functions a rapid increase can be observed.

2.4.3.4 Results and discussion

The GLOBAL method have been tested in a black-box scenario on 24 noiseless
benchmark functions. Results from experiments according to Hansen et al. [50] on the
benchmark functions given in Finck et al. [41], and Hansen et al. [53] are presented in
the Figure 2.3 and Tables 2.7 and 2.8.

For low search space dimensions the algorithm shows good results on many functions.
The number of solved functions amounts to 18, 16, 11, 8, 5 out of 24 functions for
dimensions 2, 3, 5, 10, 20. We can notice that GLOBAL obtains the highest number
of successful trials in separable, moderate, illconditioned and weak structure noiseless
functions, speci�cally for f1, f2, f5, f6, f8, f9, f10, f11, f12, f21 and f22 in dimensions 2, 3,
and 5. For f1, f2, f5, f8 and f9, the method obtained successful trials for all dimensions
(see Figure 2.3 and Tables 2.7 and 2.8).

The scaling of the expected number of function evaluations with the problem dimen-
sion is closely linear for f8, f9, is ca. quadratic for f2. For f1 and f5 we can observe a
decreasing tendency (see Figure 2.3). These results are due to the stochastic nature of



2. Stochastic global optimization 34

the method, usually the ERT grows sub-linearly on these functions. The running times
to reach the �nal target function value in case of the solved problems in 20 dimension
range between 25n and 2, 500n.

Considering the di�erent function subgroups, the best behavior of the GLOBAL
algorithm can be observed on the separable (except f3 and f4), moderate (except f7)
and ill-conditioned functions. The good performance on these subgroups are due to
the unimodal property of the objective functions. On the other hand, most of these
functions have a quite large region of attraction of the global optimum (i.e. f8 and f9),
hence there is a high chance to sample in this ones. In case of the f6 (Attractive sector)
and f11 (Discus) functions in dimension 20 up to the target precision 10−1, all the 15
trials were successful, but the method fails to reach ∆f = 10−3. The results on the
attractive sector function can be improved by increasing the function evaluation limit
of the BFGS method, while for the Discuss function f11 one cannot �nd better target
precision value than 10−1 in 20-D due to a problem of the BFGS local search. In this
case the local search method stops too early because it cannot decrease the objective
function along the current search direction. Finding the �nal target function values
for f8 and f9 are mainly due to the BFGS local search and partly to the property of
these functions presented previously. GLOBAL performs also well on the Gallagher's
multimodal functions f21 and f22 with weak global structure. Compared to the best
algorithm from BBOB-2009, the GLOBAL method can improve the ERT in dimensions
5 and 20 on the latter functions.

The hardest problems for which the method didn't reach the solution in higher
dimensions are the multimodal Rastrigin functions f3, f4, f15, and f24. In case of the
last one even in 2-D we cannot �nd a better target precision value than 10−2, while in
the case of f3, f4, f15 functions the ∆fbest value is not better than 10 in 5-D and 102

in 20-D, respectively. The common feature of these functions is that they have more
than 10n local optima. Therefore the algorithm cannot discover the overall function
structure. Moreover, the size of the region attraction of the global optimum is small for
this problems, and hence the algorithm fails to satisfactorily sample in these regions.
GLOBAL also fails to reach a target value below 1 on the f17 and f19 multimodal
functions with adequate global structure in 5-D and 10 in 20-D. The reason is the same
as presented above.

Considering the individual maximum number of function evaluations, GLOBAL per-
forms well on ill-conditioned functions and on the multimodal weakly structured func-
tions for a budget smaller than a thousand times n.

Summarizing our results obtained, the GLOBAL algorithm performs well especially
on functions with moderate number of local minima using a small budget of function
evaluations. Similar conclusion has been reached in Hansen et al. [52], where 31 algo-
rithms were compared on a testbed of functions in dimensions up to 40. GLOBAL was
ranked together with NEWUOA (see Powell [93]) and MCS (see Huyer and Neumaier
[59]) best for a function evaluation budget of up to 500n function values, but was no
longer competitive when the budget was signi�cantly larger.
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Figure 2.3: Expected running time (ERT) divided by dimension versus dimen-
sion in log-log presentation. Shown are di�erent target values fopt + ∆f , where
∆f = 10{+1,0,−1,−2,−3,−5,−8} and the exponent is given in the legend of f1 and f24. Plus
symbols (+) show the median number of f -evaluations for the best reached target value.
Crosses (×) indicate the total number of f -evaluations (#FEs(−∞)) divided by the
number of trials. Numbers above ERT-symbols indicate the number of successful trials.
Y-axis annotations are decimal logarithms.
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∆f 1e+1 1e+0 1e-1 1e-3 1e-5 1e-7 #succ
f1 11 12 12 12 12 12 15/15

6.8(9.4) 26(0.61) 28(0.74) 32(1.2) 35(1.0) 39(1.4) 13/15
f2 83 87 88 90 92 94 15/15

6.3(1.9) 6.9(1.9) 7.3(1.8) 7.8(1.5) 8.2(1.4) 8.5(1.4) 15/15
f3 716 1,622 1,637 1,646 1,650 1,654 15/15

3.3(3.7) ∞ ∞ ∞ ∞ ∞2,600 0/15
f4 809 1,633 1,688 1,817 1,886 1,903 15/15

8.3(9.2) ∞ ∞ ∞ ∞ ∞3,200 0/15
f5 10 10 10 10 10 10 15/15

32(1.3) 33(2.6) 34(2.4) 34(2.4) 34(2.4) 34(2.4) 15/15
f6 114 214 281 580 1,038 1,332 15/15

2.9(0.21) 2.1(0.60) 2.0(0.50) 2.2(1.6) 3.6(3.9) 35(37) 1/15
f7 24 324 1,171 1,572 1,572 1,597 15/15

12(6.7) 5.7(5.8) 10(11) ∞ ∞ ∞1,900 0/15
f8 73 273 336 391 410 422 15/15

5.0(0.34) 2.1(1.3) 2.1(1.1) 2.1(0.86) 2.1(0.86) 2.2(0.81) 15/15
f9 35 127 214 300 335 369 15/15

11(2.2) 4.6(1.3) 3.2(0.80) 2.8(0.74) 2.7(0.60) 2.7(1.2) 13/15
f10 349 500 574 626 829 880 15/15

1.9(0.70) 1.6(0.49) 1.8(0.71) 2.0(1.5) 1.7(1.1) 1.7(1.1) 15/15
f11 143 202 763 1,177 1,467 1,673 15/15

4.0(1.5) 5.5(2.6) 3.5(3.2) 5.0(6.2) 5.0(6.5) 8.5(8.3) 8/15
f12 108 268 371 461 1,303 1,494 15/15

4.6(1.2) 2.7(0.61) 2.4(0.82) 5.0(6.0) 3.1(4.0) 3.4(3.9) 6/15
f13 132 195 250 1,310 1,752 2,255 15/15

4.2(2.5) 6.1(4.9) 11(11) ∞ ∞ ∞1,300 0/15
f14 10 41 58 139 251 476 15/15

2.2(1.9) 7.7(0.22) 5.9(0.28) 3.3(0.40) 3.6(2.1) ∞1,300 0/15
f15 511 9,310 19,369 20,073 20,769 21,359 14/15

6.0(6.9) ∞ ∞ ∞ ∞ ∞2,700 0/15
f16 120 612 2,663 10,449 11,644 12,095 15/15

1.4(1.3) 1(0.53) 1(1.2) 3.5(4.2) 6.8(8.0) 6.6(7.7) 0/15
f17 5.2 215 899 3,669 6,351 7,934 15/15

3.5(3.1) 5.0(4.0) ∞ ∞ ∞ ∞3,100 0/15
f18 103 378 3,968 9,280 10,905 12,469 15/15

3.9(1.7) 15(15) 14(14) ∞ ∞ ∞2,600 0/15
f19 1 1 242 1.20e5 1.21e5 1.22e5 15/15

46(44) 7,329(8,077) ∞ ∞ ∞ ∞4,300 0/15
f20 16 851 38,111 54,470 54,861 55,313 14/15

17(4.9) 18(19) ∞ ∞ ∞ ∞2,300 0/15
f21 41 1,157 1,674 1,705 1,729 1,757 14/15

2.3(2.2) 1.1(0.87) 1(0.85) 1(0.83) 1(0.82) 1(0.81) 14/15
f22 71 386 938 1,008 1,040 1,068 14/15

3.6(1.7) 1.3(0.90) 1(1.1) 1(1.1) 1(1.1) 1(1.0) 14/15
f23 3.0 518 14,249 31,654 33,030 34,256 15/15

1.6(2.0) 1.0(0.48) 4.8(5.6) ∞ ∞ ∞4,900 0/15
f24 1,622 2.16e5 6.36e6 9.62e6 1.28e7 1.28e7 3/15

4.2(4.7) ∞ ∞ ∞ ∞ ∞6,400 0/15

Table 2.7: Expected running time (ERT) and half-interquantile range (90% � 10%) in
number of function evaluations divided by the best ERT measured during BBOB 2009
and 2010 (given in the respective �rst row) for di�erent ∆f values for functions f1�f24
in 5-D.
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∆f 1e+1 1e+0 1e-1 1e-3 1e-5 1e-7 #succ
f1 43 43 43 43 43 43 15/15

8.0 8.0 8.0 8.0 8.0 8.0 15/15
f2 385 386 387 390 391 393 15/15

18(3.7) 23(3.0) 26(13) 33(14) 51(40) 63(65) 13/15
f3 5,066 7,626 7,635 7,643 7,646 7,651 15/15

∞ ∞ ∞ ∞ ∞ ∞5.0e4 0/15
f4 4,722 7,628 7,666 7,700 7,758 1.41e5 9/15

∞ ∞ ∞ ∞ ∞ ∞7.8e4 0/15
f5 41 41 41 41 41 41 15/15

10(0.52) 11(0.78) 11(0.78) 11(0.78) 11(0.78) 11(0.78) 15/15
f6 1,296 2,343 3,413 5,220 6,728 8,409 15/15

3.6(1.00) 3.6(0.74) 6.1(3.0) ∞ ∞ ∞4.1e4 0/15
f7 1,351 4,274 9,503 16,524 16,524 16,969 15/15

∞ ∞ ∞ ∞ ∞ ∞1.4e4 0/15
f8 2,039 3,871 4,040 4,219 4,371 4,484 15/15

1.6(0.32) 1.2(0.16) 1.2(0.16) 1.2(0.15) 1.2(0.14) 1.2(0.14) 15/15
f9 1,716 3,102 3,277 3,455 3,594 3,727 15/15

1.7(0.28) 1.7(0.89) 1.6(0.84) 1.6(0.79) 1.6(0.77) 1.5(0.74) 15/15
f10 7,413 8,661 10,735 14,920 17,073 17,476 15/15

1(0.22) 1.1(0.15) 1.1(0.53) 2.0(1.7) 5.9(6.8) ∞4.1e4 0/15
f11 1,002 2,228 6,278 9,762 12,285 14,831 15/15

1.2(0.42) 1.0(0.60) 1(0.84) ∞ ∞ ∞2.7e4 0/15
f12 1,042 1,938 2,740 4,140 12,407 13,827 15/15

1(0.85) 1(0.88) 1(0.70) 1(0.49) 1.1(1.1) 3.4(3.4) 0/15
f13 652 2,021 2,751 18,749 24,455 30,201 15/15

2.0(0.34) 1.1(0.08) 1.1(0.04) 4.5(5.4) ∞ ∞1.9e4 0/15
f14 75 239 304 932 1,648 15,661 15/15

5.0(0.28) 2.2(0.22) 2.1(0.21) 1.1(0.08) 1(0.04) ∞8,500 0/15
f15 30,378 1.47e5 3.12e5 3.20e5 4.49e5 4.59e5 15/15

∞ ∞ ∞ ∞ ∞ ∞2.4e4 0/15
f16 1,384 27,265 77,015 1.88e5 1.98e5 2.20e5 15/15

1(0.72) ∞ ∞ ∞ ∞ ∞1.2e4 0/15
f17 63 1,030 4,005 30,677 56,288 80,472 15/15

6.2(1.2) ∞ ∞ ∞ ∞ ∞6.9e4 0/15
f18 621 3,972 19,561 67,569 1.31e5 1.47e5 15/15

∞ ∞ ∞ ∞ ∞ ∞7.5e4 0/15
f19 1 1 3.43e5 6.22e6 6.69e6 6.74e6 15/15

5,601(3,531) ∞ ∞ ∞ ∞ ∞5.3e4 0/15
f20 82 46,150 3.10e6 5.54e6 5.59e6 5.64e6 14/15

5.2(0.38) 1.6(1.7) ∞ ∞ ∞ ∞7.8e4 0/15
f21 561 6,541 14,103 14,643 15,567 17,589 15/15

1(0.26) 1(1.3) 1(1.2) 1(1.1) 1(1.1) 2.1(2.3) 0/15
f22 467 5,580 23,491 24,948 26,847 1.35e5 12/15

1.1(0.54) 1(1.5) 1(1.1) 1(1.1) 1(0.95) 1.3(1.5) 0/15
f23 3.2 1,614 67,457 4.89e5 8.11e5 8.38e5 15/15

2.8(2.7) 1(0.93) ∞ ∞ ∞ ∞9,300 0/15
f24 1.34e6 7.48e6 5.19e7 5.20e7 5.20e7 5.20e7 3/15

∞ ∞ ∞ ∞ ∞ ∞2.8e4 0/15

Table 2.8: Expected running time (ERT) and half-interquantile range (90% � 10%) in
number of function evaluations divided by the best ERT measured during BBOB 2009
and 2010 (given in the respective �rst row) for di�erent ∆f values for functions f1�f24
in 20-D.
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2.5 Application: The �exible retirement problem

2.5.1 The model

We analyze the problem of designing a stable pension scheme (see Es® and Simonovits
[38, 39]). There is a (stationary) population of individuals who have private information
regarding their life expectancies (denoted by an integer t, calculated from the start of
their careers). Every individual enters the labor market at the professional age 0, and
produces 1 unit of goods per year while she or he is active, 0 when the employee is
inactive (e.g. when retired or dead).

The pension systems we consider will be realistic in the following aspects. The �rst
ingredient of a pension scheme is a yearly social security contribution rate, τ < 1, which
is levied on active workers. When an employee retires after R active years, she or he stops
producing goods and paying the contribution, and receives a yearly retirement bene�t
of b > 0, until the end of her or his life. The government designs the contribution rate τ ,
and the bene�t schedule as a function of the year of retirement, b(R). We require that
the pension system be �nancially sound, that is the bene�t payments cannot exceed the
amount of social security contributions paid.

An individual's lifetime utility, v, is the sum of his or her total income during the
active and retired periods. If a worker of type t retires at age R, then she or he receives
utility or felicity u(1− τ) for R years and w(b) for (t−R) years, and the lifetime utility
is then

v = Ru(1− τ) + (t−R)w(b).

The individual's preference for leisure is re�ected in that u(·) and w(·) are di�erent
functions. For simplicity, we may assume that u(x) = w(x) − ϵ, and ϵ > 0, where ϵ is
the constant disutility of labor.

We consider a discrete-type model. Types of workers (the life expectancies) range
from S to T (both integers). To avoid triviality, we assume that there are at least two
di�erent types, i.e. S < T . Let ft be the relative frequency of individuals with a life
expectancy of t: fS, fT > 0 and

∑T
t=S ft = 1.

An individual's balance is the di�erence between the expected lifetime contributions
and expected lifetime bene�ts:

z = τR− b · (t−R) = (τ + b)R− tb.

The government's goal is to design an optimal pension system, described by (b(R), τ),
maximizing an additive concave social welfare function. We can split the government's
problem into two subproblems, �rst considering the optimal choice of b(R) for a �xed
τ , then we can optimize over τ given the solution to the optimal b(R) schedule for all
τ -s. In the analysis below we will focus on the �rst issue, on the determination of b(R)
for a given τ .

Since τ is given for now, we denote u(1− τ) by ū. Denote further the lifetime utility
of a worker with life expectancy t by vt, where

vt = [ū− w(bt)]Rt + w(bt)t.
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We assume that individuals have private information (better just an estimation)
regarding their life expectancies, and only the distribution of these data is commonly
known. Therefore the optimal bene�t retirement schedule will have to satisfy all in-
centive compatibility constraints. The incentive compatibility of (bt, Rt)

T
t=S means that

type t prefers to choose (bt, Rt) from the schedule. The constraints are the following:

vt + w(bt) ≤ vt+1 ≤ vt + w(bt+1), for t = S, . . . T − 1.

For a given τ , the social planner maximizes the frequency-weighted sum of an in-
creasing and concave function ψ of the individual utilities under constraints. The opti-
mization problem form of it is:

max
(bt,Rt)t

T∑
t=S

ψ(vt)ft, (2.9)

subject to
vt = [ū− w(bt)]Rt + w(bt)t, t = S, . . . T, (2.10)

T∑
t=S

[(τ + bt)Rt − tbt]ft = 0, (2.11)

vt+1 = vt + w(bt), t = S, . . . , T − 1. (2.12)

It is easy to observe that the model is a nonlinear constrained optimization problem
with 2(T − S + 1) variables to be optimized. On the basis of the problem structure,
we can simplify it to have a smaller dimensional problem with less constraints to meet.
Let us thus consider (bt, vt)t as variables instead of (bt, Rt)t. In this case for known
bt, t = S, . . . , T and vS the vt, t = S + 1, . . . , T can be determined from the (2.12)
equations, thus we can reduce the problem to a system of T −S+2 unknown variables.

In order to solve the problem we used the GLOBAL algorithm for the negative of
the objective function (2.9). The bounds for the variables bt, t = S, . . . , T , and vS were
chosen in such a way that they correspond to the conditions of the problem. To be able
to obtain reasonable results, we have added two new constraints. The �rst required that
the resulting sequence of bt and vt values are increasing, the second forced that the last
b value cannot be larger than 0.8. We composed the penalty functions corresponding to
the (2.10) and (2.11) constraints and they were added to the objective function.

2.5.2 Computational test

For testing purposes we consider the next functions and constants, and in this way
we �x the value and the de�nition of them:

− Let the pensioner's felicity function be w(x) = θ + xσ/σ, σ < 1.

− The social welfare function is set to ψ(v) = vρ/ρ, for a ρ ≤ 1, θ = 4.1.

− The uniformly distributed life expectancies are ft ≡ 1/(T − S + 1).
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Table 2.9: GLOBAL test result, the optimal retirement model calculated back for the
original decision variables.

t bt Rt zt vt
49 0.7315747141 42.4540 3.7019300 31.3126
50 0.7378840212 42.5119 2.9770440 33.0743
51 0.7420314598 42.5541 2.2436582 34.8461
52 0.7454805416 42.5926 1.5054927 36.6243
53 0.7457289677 42.5957 0.7603081 38.4079
54 0.7537686858 42.7018 0.0241403 40.1919
55 0.7558273086 42.7308 -0.7272744 41.9883
56 0.7569907426 42.7483 -1.4817221 43.7878
57 0.7860244936 43.1915 -2.2155473 45.5891
58 0.7886071091 43.2311 -3.0006520 47.4332
59 0.8000000000 43.4126 -3.7873769 49.2811

− The individuals' life expectancies are between S = 49 and T = 59 (after the career
start).

− The contribution rate is τ = 0.2, and we set ū = 0.466, σ = 0.2, ρ = −1.

These are to a certain extent realistic settings, and still they allow to have a relatively
simple constrained nonlinear optimization problem. Since we have not utilized the
special problem structure, for a larger dimensional problem with measured frequency
values etc., we could expect to have similar computational complexity and rate of success
for GLOBAL.

The algorithm parameters of GLOBAL were set such that re�ect the di�culties of
the problem. The sample size was given as 20,000. This value is relatively high, and
together with the number of best points kept after transforming the initial sample, 15
it ensures a high level of reliability � at the cost of larger number of objective function
evaluations. The precision of the local search procedure was required to be at least 8
decimal digits. This value is well over what we really need in the minimizer points and
much beyond the precision of the data used in the problem description. Still it is needed
to have a good reliability, since the recognition of the regions of attractions around local
minimizer points is critical. The local search method selected was UNIRANDI, since the
penalty function approach caused our objective function to became not di�erentiable on
several places.

The best objective function value found by GLOBAL was -0.0253684. It is close
to and a bit better than the earlier know value. The corresponding (bt, Rt) and zt, vt
values are listed in Table 2.9. The necessary CPU time was closely half a minute to one
minute per runs. When repeating the same numerical test we obtained similar results,
which is an indication of the reliability of the GLOBAL algorithm.

With the same algorithm parameters we have run the program ten times indepen-
dently. The obtained e�ciency and precision results are comprised in Table 2.10. The
�rst column contains the serial number of the numerical test run, the second has the
number of function evaluations that was necessary to reach that result, in the third the
necessary CPU time is given in seconds. The fourth column contains the summarized
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Table 2.10: The results of ten independent runs of GLOBAL on the investigated
pension system design problem: the serial number of the run, the number of function
evaluations and CPU time needed (in seconds), then the absolute di�erence to meet the
constraints and the obtained approximative global maximum value.

# NFE CPU time constraint di�erence approx. optimum
1. 105,188 42 0.000000011 -0.0253720
2. 112,574 45 0.000000065 -0.0253740
3. 70,647 31 0.000000064 -0.0253684
4. 77,484 30 0.000000041 -0.0253713
5. 100,912 40 0.000000003 -0.0253838
6. 125,188 50 0.000000293 -0.0253835
7. 95,150 37 0.000000007 -0.0253686
8. 97,521 38 0.000000076 -0.0253689
9. 110,521 43 0.000000022 -0.0253700
10. 200,752 79 0.000000034 -0.0253704

absolute residuals of the constraints on the approximate optimum point, while the last
column gives the best objective function reached during that run.

The conclusion of the numerical test is that on the investigated real-life global opti-
mization problem, the improved GLOBAL algorithm was able to �nd good approxima-
tions of the global minimizer points while the amount of computational e�orts needed
remained limited and in the acceptable region. The precision of the estimated global
maximum value and the absolute di�erence between the two sides of the constraint equa-
tions can be improved further at the cost of higher CPU time and number of function
evaluations. However the present �gures are already acceptable.



Chapter 3

Interval global optimization methods

3.1 Introduction

There are several types of errors that are generated in numerical computations using
�oating point arithmetic. These errors may be rounding errors due to �nite represen-
tation of numbers, or errors due to uncertain values of parameters in mathematical
models. Let us consider the famous example (see Rump [101]) which demonstrates the
e�ect of rounding error. The Rump's expression is:

f(x, y) = (333.75− x2)y6 + x2(11x2y2 − 121y4 − 2) + 5.5y8 +
x

2y
. (3.1)

The evaluation of (3.1) in x0 = 77617 and y0 = 33096, using the round-to-nearest
IEEE-754 arithmetic produces:

32− bit : f(x0, y0) = 1.172604

64− bit : f(x0, y0) = 1.1726039400532

128− bit : f(x0, y0) = 1.1726039400531786318588349045201838

All three results agree in the �rst seven decimal digits. Nevertheless, they are all
completely incorrect. Even their sign is incorrect. The correct result is:

f(x0, y0) = −0.827396059946821368141165095479816...

Interval computation provides a tool for estimating and controlling these errors by
providing upper and lower bounds on them, and thus developing numerical methods that
yield reliable results. A major focus on interval analysis is to develop practical interval
algorithms that produce bounds as narrow as possible on the solution of numerical
computing problems. The concept of interval analysis is to compute with intervals of
real numbers in place of real numbers.

The idea of bounding rounding errors using intervals was introduced by several re-
searchers in the 1950's. Interval analysis was �rst introduced in Moore [74]. Since then,
many of articles have appeared on the subject.

Interval algorithms may be used in most areas of numerical analysis, and are used in
many applications such as engineering problems, robotics, �nance and decision making,
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and computer aided design. Another important application is in computer-assisted
proofs. Several conjectures have recently been proven using interval analysis, perhaps
the most famous of them is Kepler's conjecture1, which remained unsolved for nearly
400 years.

This chapter deals with interval based global optimization algorithms and it is based
on three papers: Csendes and Pál [32], Pál and Csendes [83], and Pál and Csendes [85].

In the �rst part of the chapter, we review the basic concepts of interval computation.
After that, we describe the most important interval techniques used by interval branch
and bound methods.

The following subsections deals with the presentation of a basic and an advanced
algorithm for the bound constrained global optimization problem implemented in MAT-
LAB using the INTLAB package. The performance of the algorithms is studied through
extensive numerical experiments on some well known functions by comparing with the
similar C-XSC based method. The contribution of the present author was the imple-
mentation of interval global optimization algorithms in MATLAB and the computation
of the numerical tests. The discussion part of the numerical results was a common work
with the coauthor.

We also describe and test an algorithm using a new condition for applying the Newton
step. The theoretical aspects of it are also investigated. The application of a new
condition was suggested by the coauthor, while the numerical tests were done by the
present author. The discussion part of the numerical results was a common work with
the coauthor. The theoretical part was also done by the present author.

The last section deals with an application from the domain of sensor networks,
namely the localization problem of sensor networks. The numerical tests and their dis-
cussion was completed by the present author. It is worth mentioning that we also worked
on an another application of interval arithmetic, namely on the e�cient estimation of
loads in service networks (see Pál and Csendes [85]). In the application we use intervals
to represent uncertainty data and interval arithmetic operations for calculations. The
obtained results are not included in the present thesis.

3.2 Interval computation

3.2.1 Interval arithmetic

A real interval X is the bounded, closed subset of the real numbers de�ned by

X = [X,X] = {x ∈ R | X ≤ x ≤ X},

where X,X ∈ R and X ≤ X. X is called the lower bound, while X is the upper bound.

An n-dimensional interval vector or box X = (X1, X2, . . . , Xn) is de�ned to be a
vector with interval components Xi, i = 1, . . . , n.

The set of all intervals over R is denoted by I := {[a, b] | a ≤ b, a, b ∈ R} and the set
of n-dimensional interval vectors by In. I(X) stands for all intervals in X.

1http://en.wikipedia.org/wiki/Kepler_conjecture
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The width of the one-dimensional X interval is de�ned by

w(X) = X −X,

while the width of an n-dimensional interval vector is

w(X) = max
i=1,...,n

(X i −X i).

The midpoint of the interval X is de�ned by m(X) = (X + X)/2, if X ∈ I, and
m(X) = (m(X1),m(X2), . . . ,m(Xn)), if X ∈ In.

In interval computation we use intervals instead of real numbers. Introduced in its
modern form by R.E. Moore (see Moore [74]), real interval arithmetic is based on an
arithmetic within the set of closed intervals of real numbers.

De�nition 3.1. Let "◦" denote one of the four elementary arithmetic operators {+, -
, *, /}. For A,B ∈ I we de�ne

A ◦B = {a ◦ b | a ∈ A and b ∈ B}, (3.2)

where A/B is de�ned only if 0 /∈ B.

The four arithmetic operations are continuous mappings of R2 onto R and A,B are
bounded and closed. Therefore, also A ◦ B is an interval. The de�nition ensures that
the resulting interval contains all possible outcomes from applying "◦" with operands
from A and B. The operations on intervals may also be calculated explicitly as

[a, b] + [c, d] = [a+ c, b+ d],

[a, b]− [c, d] = [a− d, b− c],

[a, b] ∗ [c, d] = [min{ac, ad, bc, bd},max{ac, ad, bc, bd}],
[a, b] / [c, d] = [a, b] ∗ [1/d, 1/c], if 0 /∈ [c, d].

The most important properties of the interval arithmetic operations are the following:

− The addition and multiplication operations are commutative and associative.

− The distributive law doesn't hold, instead there is a sub-distributive law:

A · (B + C) ⊂ A ·B +B · C, where A,B,C ∈ I.

− The sub-distributive law is related to the dependency problem. This means that
algebraic expressions that are equivalent in real arithmetic give di�erent results
when evaluated for intervals. For example, X2 − X over X = [0, 1] gives [−1, 1]
and X(X − 1) gives [−1, 0] as a result.

− Subtraction and division in I are not the inverse operations of addition and mul-
tiplication respectively as in R.

− Although there is an additive identity [0, 0] and a multiplicative identity [1, 1],
additive and multiplicative inverses do not exist. The example indicating this fact
is:

[1, 2]− [1, 2] = [−1, 3].
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For the elementary interval operations, division by an interval containing zero is
not de�ned. It is often useful to remove this restriction to give what is called extended
interval arithmetic. Extended interval arithmetic must satisfy (3.2), which leads to the
following rules:

[a, b]/[c, d] =



[b/c,∞) , if b ≤ 0 and d = 0,
(−∞, b/d] ∪ [b/c,∞), if b ≤ 0, c < 0, and d > 0,
(−∞, b/d] , if b ≤ 0 and c = 0,
(−∞, a/c] , if a ≥ 0 and d = 0,
(−∞, a/c] ∪ [a/d,∞), if a ≥ 0, c < 0, and d > 0,
[a/d,∞) , if a ≥ 0 and c = 0,
(−∞,∞) , if a < 0 and b > 0.

These formulas are not applicable to every problem, but they are appropriate for
solving linear equations in connection with the interval Newton method.

The �oating-point interval extensions of the standard functions {exp, tan, sin, cos,...}
can be de�ned similarly. If f is a function from R to R, then f(X) = {f(x) | x ∈ X}.
Furthermore, if we use the monotonic property of a standard function, the evaluation
will be more easier. For instance,

arctan(X) = [arctan(X), arctan(X)].

For non-monotonic functions the situation is more complicated. Without additional
analysis, sharp bounds are rarely computed for this functions.

3.2.2 Machine interval arithmetic

Let us consider the interval X = [X,X], which could be an input of a problem or
the result of some calculations. It may not be representable on a machine if X and
X are not machine numbers. This problem could be solved using the machine interval
arithmetic.

If X, X are not machine numbers, then they must be rounded in the following way:
the lower bound of the interval is rounded down to the largest machine number less than
the exact result and the upper bound is rounded up to the smallest machine number
greater than the actual result. This process is called outward rounding.

Thus, the basic principle of interval arithmetic is retained in machine interval arith-
metic, that is, the exact unknown result is contained in the corresponding calculated
interval, and the rounding errors are under control.

The standard IEEE-754 (see Stevenson [109]) for binary �oating point arithmetic
prescribes four rounding modes: nearest, round down, round up and rounding to zero.
The current version is IEEE 754-20082, which was published in August 2008, it includes
nearly all of the original IEEE 754-1985. Thus, rounding modes suitable for interval
arithmetic are available on a wide variety of machines. For the common programming
languages, there are extensions in which rigorous outward rounded interval arithmetic

2http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
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f(X)F(X)

X

f(x)

Figure 3.1: Inclusion function.

is easily available: INTLAB3 (see Rump [102]) a toolbox for MATLAB, the Pascal
extension PASCAL-XSC4, the C extension C-XSC5, and PROFIL/BIAS6.

3.2.3 Inclusion functions

One of the basic problems of numerical computations is the calculation of the range
of a function on an interval X with a computer. In general, it is impossible to compute
the exact range or good safe bounds of it with �oating point arithmetic. This problem
can be solved with interval arithmetic. In the treatment of optimization problems using
interval arithmetic, the main tool is the concept and application of inclusion functions.

De�nition 3.2. A function F : In → I is called an inclusion function of f in X ⊆ Rn,
when x ∈ X implies f(x) ∈ F (X). In other words,

f(X) = {f(x) | x ∈ X} ⊆ F (X), (3.3)

where f(X) denotes the range of the function f on X (see Figure 3.1).

Inclusion functions for vector-valued or matrix-valued functions are de�ned analo-
gously. The inclusion condition (3.3) must be satis�ed in this case componentwise.

It turns out that interval analysis provides a natural framework for constructing
inclusion functions recursively for a large class of functions.

De�nition 3.3. Consider a function f : Rn → R, (x1, x2, . . . , xn) 7→ f(x1, x2, . . . , xn)
expressed as a �nite composition of the +, -, *, / operators and elementary functions.
The natural interval extension of f is obtained by replacing each real variable xi by an

3http://www.ti3.tu-harburg.de/ rump/intlab/
4http://www.rz.uni-karlsruhe.de/ iam/html/language/pxsc.html
5http://www.xsc.de/
6http://www.ti3.tu-harburg.de/Software/PROFIL.html
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interval variable and each operator or function by its interval counterpart. If each of the
variables xi, i = 1, . . . , n occurs at most once in the expression of f , then the natural
inclusion is minimal. In other words, the resulting interval enclosure will be the exact
range f(X).

Natural inclusion functions are not minimal in general, because of the dependency
e�ect. The accuracy strongly depends on the expression of f , as illustrated by the
following example.

Example 3.4. Consider the following four expressions of the same function and evaluate
their natural inclusion functions for X = [−1, 1] :

f1(X) = X(X + 1) = [−2, 2],

f2(X) = X ∗X +X = [−2, 2],

f3(X) = X2 +X = [−1, 2],

f4(X) = (X +
1

2
)2 − 1

4
= [−1

3
, 2].

An important property for inclusion functions is inclusion isotonicity, which is useful
in convergence proofs.

De�nition 3.5. An inclusion function F is called inclusion isotone over X ⊆ Rn, if
∀ Y, Z ∈ In(X), and Y ⊆ Z implies F (Y ) ⊆ F (Z).

The natural inclusion function is isotone, since the four interval arithmetic operators
and the standard elementary functions have this property.

A measure of the quality of an inclusion function F of f is the excess-width, w(F (Y ))−
w(f(Y )), Y ∈ In(X). A measure for the asymptotic decrease of the excess-width as w(Y )
decreases is the convergence order.

De�nition 3.6. The convergence order of an inclusion function F of f over X is α > 0,
if the inequality

w(F (Y ))− w(f(Y )) ≤ Cwα(Y ),

holds for every Y ∈ In(X) for a real positive constant C.

De�nition 3.7. We say that the inclusion function F has the zero convergence property,
if w(F (Zi)) → 0 holds for all the {Zi} interval sequences for which Zi ⊆ X, for all
i = 1, 2, . . . , n and w(Zi) → 0.

The natural inclusion function is α-convergent with α = 1 (see Ratschek and Rokne
[95]), and hence it has also the zero convergence property. In general, an inclusion
function with larger convergence order is better, although it may also happen that an
inclusion function with larger α has bigger overestimation for some intervals due to the
constant C.

There are more sophisticated inclusion functions like the centered forms and slopes.
Centered forms are inclusion functions with special features using also the gradient
of the function. In this case we should compute the enclosure of the gradient. This
is usually easy to obtain by automatic di�erentiation (see Griewank and Corlis [44]).
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Many programming languages are now available that support interval datatypes and
automatic di�erentiation (see the previous section).

The most important centered forms are the meanvalue form (see Moore [74]) and
the Taylor form (see Berz and Ho�stätter [9], Neumaier [77]). The convergence order of
the centered form is at least quadratic (see Krawczyk and Nickel [64]).

A primary use of interval derivative information is in bounding ranges or variations
in functions over regions. However, it is not always necessary to use interval extensions
of the derivative. One can obtain meanvalue forms with smaller widths if slopes (see
Ratz [97]) instead of the inclusion of the �rst derivative are used.

3.3 Global optimization using interval arithmetic

Global optimization methods that use interval techniques provide rigorous guaran-
tees that a global minimizer is found. Interval techniques are used to compute global
information about functions over large regions. Most global optimization methods using
interval techniques employ a branch and bound strategy. These algorithms decompose
the search domain into a collection of boxes for which the lower bound on the objective
function is calculated by an interval technique.

Just to name some of the numerous applications of global optimization using interval
arithmetic, we point on some recent publications: these techniques were used to solve
hard mathematical problems arising in the �eld of qualitative analysis of dynamical
systems (see Csendes et al. [31, 30], and Bánhelyi et al. [6]) and discrete geometry, for
optimal packing of circles in the square (see Markót and Csendes [67], and Szabó et al.
[110]). Global optimization methods have also been applied for theoretical chemical
problems in Balogh et al. [4], and for the evaluation of bounding methods in Tóth et al.
[111].

Our aim was to provide an easy to use reliable global optimization method imple-
mented in MATLAB. In this part a substantial work have been done on testing di�erent
algorithm variants. As a result, we found algorithms which reliability and e�ciency are
similar or better than the older ones.

3.3.1 Interval branch and bound methods

Consider the following speci�cation of the general GOP:

min
x∈X

f(x), (3.4)

where f is a twice continuously di�erentiable function de�ned over the n-dimensional
interval X ⊂ Rn. Our aim is to �nd the global minimizer points X∗ of f and the
corresponding minimum value f ∗.

The basic idea of such interval branch-and-bound algorithms is to apply interval
techniques to reject large regions in which the optimum can be guaranteed not to lie. For
this reason, the original interval vector X gets subdivided (branches), and subregions
which cannot contain a global minimizer of f are discarded (bounding). The other
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Algorithm 9. The basic interval branch and bound framework

1. function IntervalBranchAndBound(f,X)
2. Lres := ∅; Lwork := {X}
3. while Lwork ̸= ∅ do
4. Remove the �rst element (X) from the working list
5. Calculate F (X)
6. if X cannot be discarded then

7. Subdivide X into X i, i = 1, . . . , p subintervals
8. if X i ful�ls some stopping criteria then

9. Enter X i in the result list
10. else

11. Enter X i in the working list
12. end

13. end

14. end

15. return Lres

subregions get subdivided again until the desired accuracy (width) of the interval vectors
is achieved.

The key concept of a bounding technique is the inclusion function and as we have
seen in the previous section, interval arithmetic is able to provide these bounds in a
number of ways such as natural extension, centered forms, and slopes.

The basic interval branch and bound framework steps are listed in Algorithm 9. The
algorithm takes as input the objective function f and the initial box X.

In line 2, the result list (Lres) and the working list (Lwork) are initialized. The
algorithm contains a main iteration cycle and the steps from line 3 to line 14 will be
repeated until the working list becomes empty. In line 4, we remove the �rst element
of the working list while in line 5 the inclusion function will be computed over X. This
last step is also called a bounding step. Interval arithmetic enables us to provide these
bounds in a number of ways such as natural extension, centered forms, and slopes. In
line 6, we try to discard the interval X using some elimination rules. If X cannot be
rejected, we use branching rules (line 7) in order to get smaller intervals by subdividing
X. In line 8, we check X i whether it ful�ls a proper stopping criterion. If so, then we
put X i in the result list (line 9), otherwise in the working list (line 11). We usually keep
the lists ordered using di�erent strategies. In line 15, the result list is returned.

In the subsequent sections we describe in more details the main steps of the algo-
rithm.

3.3.1.1 Elimination rules

The main role of the elimination rules are discarding or shrinking certain elements
from the working list that surely cannot contain a global minimizer point. These rules
are also called accelerating devices.

The simplest and basic elimination rules are the range check and the cut-o� test. We
use the notation fX as abbreviation for the lower interval bound of the interval function



3. Interval global optimization methods 50

Figure 3.2: The cut-o� test.

evaluation F (X) := [fX , fX ]. Additionally, the algorithm uses a value f̃ representing

a guaranteed upper bound of the global minimum value, i.e. f̃ ≥ f∗. The value f̃ is
calculated in the midpoint of the interval and it is updated during running the algorithm.

The value f̃ is �rst used when newly subdivided intervals X i are tested in a range
check. If we know that fXi

> f̃ , then X i cannot contain a global minimizer. The range
check can be improved by incorporating centered forms.

In the cut-o� test, by comparing the guaranteed upper bound f̃ for the global min-
imum value f ∗ with the lower bound fX , we can discard all subintervals X in Lwork for
which

f ∗ ≤ f̃ < fX .

Figure 3.2 illustrates the cut-o� test, which deletes the intervals X1, X3, X4, X6

and X8 in this special case.

In addition to the range check and cut-o� test, the monotonicity test, the concavity
test and the interval Newton method can be applied. The latter uses �rst and second
order derivatives.

For a continuously di�erentiable function f , themonotonicity test determines whether
the function is strictly monotone in an entire subinterval X. If f is strictly monotone in
X, then X cannot contain a global minimizer in its interior. Therefore, if the interval
enclosure G := ∇F (X) of ∇f evaluated over X satis�es

0 /∈ Gi for some i = 1, . . . , n,

then the subinterval X can be deleted.

Figure 3.3 demonstrates the monotonicity test in the one-dimensional case for three
subintervals of X. In this special case, X1 can be reduced to the boundary point X1,
X2 remains unchanged, and X3 can be deleted.

The concavity test discards intervals over which the objective function is strictly
concave in a variable, since these intervals cannot contain a minimizer point inside.
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Figure 3.3: The monotonicity test.

We use an interval Newton method as part of the algorithm to solve the global
optimization problem. In the method, we do not iterate the interval Newton algorithm
to convergence. The reason for it is that it can be expensive, and it might be converging
to a point that another procedure can show is not the global solution.

Therefore, we perform one pass of an interval Newton algorithm and then apply
other procedures before doing another pass. In other words we apply one step of the
extended interval Newton Gauss-Seidel method to the nonlinear system ∇f(x) = 0 with
x ∈ X, in order to improve the enclosure of X.

3.3.1.2 Branching rules

One of the most widely used branching rule is the simple bisection method (see
Ratschek and Rokne [95]). In this case the actual interval is bisected through the longest
edge into two equal size subintervals. We may also use multisection methods which split
the current box through the longest edge into more than two equal size subintervals.
According to some earlier studies (see Csallner et al. [26], Casado et al. [23]), multisection
may improve the e�ciency of interval branch and bound techniques. The direction
selection of the splitting may also increase the convergence speed signi�cantly.

We can apply di�erent rules trying to �nd an optimal component (coordinate di-
rection) to bisect the box X. Each of the rules selects a direction k by using a merit
function:

k := min{j | j ∈ I and D(j) =
n

max
i=1

D(i)},

where I = {1, . . . , n} and D(i) is determined by the following rules:

Rule A

This rule is the interval-width oriented rule (see Moore [74], and Ratschek and Rokne
[95]), where the box is bisected through the longest edge. The rule chooses the coordinate
direction with
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D(i) := w(Xi), (3.5)

where Xi is the i-th component of the interval X.

It is justi�ed by the idea that if the original interval is subdivided in a uniform way
as in this case, then the width of the actual subintervals goes to zero the most rapidly.

Rule B

The following function was proposed by G.W. Walster and presented in Hansen [49]:

D(i) := w(∇Fi(X))w(Xi), (3.6)

where ∇Fi(X) is the i-th component of the inclusion of gradient of f . The rule approx-
imates the change in f resulting from the i-th variable changing over Xi.

Rule C

This rule was de�ned by Ratz in Ratz [96], and the main idea was to minimize the
width of the inclusion using the function:

D(i) := w(∇Fi(X)T (Xi −m(Xi))). (3.7)

The Rules B and C have the same merit function value if and only if eithermin∇Fi(X) =
0 or max∇Fi(X) = 0.

Rule D

This rule is derivative-free like Rule A and re�ects the machine representation of the
inclusion function F (X) (see Hammer et al. [46]). It is de�ned by

D(i) :=

{
w(Xi) if 0 ∈ Xi,
w(Xi)/min{|xi| | xi ∈ Xi} otherwise.

(3.8)

This rule may decrease the excess width w(F (X))−w(f(X)) of the inclusion function
that is caused in part by the �oating point computer representation of real numbers.

3.3.1.3 Interval selection rules

As can be observed, in line 4 of the Algorithm 9 the �rst element of the list is removed
for processing. The computational e�ciency of the algorithm depends strongly on which
boxes we select from the list for subdivision. In the past, many selection strategies were
developed which main aim was to maintain some order to work such that all of the boxes
would be considered. Hence, no box was lost in the processing. The two most important
selection rules were presented in Moore [74], Skelboe [107], and Hansen [47, 48].
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The rule presented by R.E. Moore and S. Skelboe selects that box from the list which
has minimum fX . It is based on the heuristic re�ection that the smaller fX is the larger
the chances are for X to contain global minimizers.

Hansen's rule selects that box which is the oldest in Lwork. Another rule selects the
box which has maximum width (see Hansen [48]).

The above presented selection rules can be combined in the following way (see Ratz
[96]): select the box which inclusion lower bound has the smallest value. If there are
more than one box with this value, we select the oldest one. Experience has shown that
the latter rule is preferable.

Traditionally, for subdivision, the algorithms selected a box with the smallest value
of fX . There is an advanced subinterval selection criterion which is based on the Re-
jectIndex indicator

pf ∗(X) =
f∗ − F (X)

F (X)− F (X)
,

where f ∗ is the known global minimum value.

This indicator was considered by many authors (see Casado and García [22], Casado
et al. [23, 24]) and the studies have proven that this can provide reliable information
on how close a subinterval in the search region is to a global minimizer point. The
algorithm selects the next subinterval to be subdivided with the largest value of the
indicator.

If the global minimum value is not available, we can use a wider class of indicators
(see Csendes [28, 29]):

p(f̂ , X) =
f̂ − F (X)

F (X)− F (X)
,

where f̂ is an approximation of the global minimum.

3.3.1.4 Termination criteria

The choice of an appropriate termination criterion is essential in interval global
optimization. Splitting and reducing boxes eventually causes any remaining box to be
small. We usually require that one or more conditions be satis�ed before a box is deemed
to be small enough to be included in the set of solution boxes.

The termination criteria widely used can basically be arranged in three classes:

− A given accuracy for the inclusion of the optimum value.

− A su�ciently close inclusion for the set of global optimizers.

− A combination of the above two criteria.

If our primary goal is to calculate the optimum value of the objective function with
a given accuracy, then the termination criterion has to re�ect this aim. The simplest
such stopping criterion is
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w(f(X)) < ϵ, (3.9)

for a box X and for a given ϵ > 0. Condition (3.9) guarantees that the global minimum
value f ∗ of the objective function is bounded within the tolerance ϵ.

The second class of termination criteria consists of those concerning the accuracy
of the inclusion of the global optimizers. The following two termination criteria were
described in Hansen [47]. If X∗ is at most denumerable and is to be included in a set
with prescribed accuracy, then

ln∑
i=1

w(Xni) < ϵ, (3.10)

or

w(Xni) < ϵ for i = 1, . . . , ln (3.11)

will do, where ln is the length and Xni are the boxes of the current working list at the
n-th iteration of the algorithm.

After having terminated, a list of boxes Xn1, . . . , Xnln is left, and all we know is that

X∗ ⊆ Xn1 ∪ · · · ∪Xnln .

We used the (3.9) criterion in our algorithms, in that sense that an X interval is
added to the result list if the w(f(X)) < ϵ criterion is satis�ed.

3.3.2 A basic algorithm

3.3.2.1 Description and implementation

The �rst method we present, is a simple algorithm for the bound constrained global
optimization problem implemented in MATLAB using the INTLAB package. We choose
MATLAB as a programming language, because it is a high-level technical computing
language providing an interactive numerical environment for algorithm development,
data visualization, and numerical computation. Furthermore, we should mention the
popularity of MATLAB among the researchers and the integrability with external ap-
plications and languages, such as C, C++, Fortran, and Java.

INTLAB (INTerval LABoratory) is a toolbox for MATLAB supporting real and com-
plex intervals. It uses the BLAS7 routines which assure fast computing, comparable to
pure �oating point arithmetic. Beside the basic arithmetical operations, rigorous input
and output, rigorous standard functions, gradients, slopes, automatic di�erentiation and
multiple precision arithmetic is included.

The algorithm investigated now uses only a subroutine calculating the objective
function as information on the global optimization problem, i.e. the expression is not
required. The procedure does not apply the gradient and the Hessian of the objective

7http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
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function, although these can be computed by the automatic di�erentiation facility of
INTLAB. In other words, we study now that algorithm variant that does not assume
the di�erentiability of the objective function.

This method originates in the Numerical Toolbox for Veri�ed Computing (see Ham-
mer et al. [46]), and it applies only a single accelerating device: the cuto� test � in
contrast to the more sophisticated techniques studied in Pál and Csendes [83]. Now just
natural interval extension (based on naive interval arithmetic) was applied to calculate
the inclusion functions.

We use only simple bisection along the widest interval component, and no multisec-
tion and advanced subdivision direction selection (see Kearfott [62]). The subdivision
direction is determined according to the well-tested and simple A subdivision direction
selection rule (also used in Csendes [28]). The algorithm solves also one-dimensional
problems.

For the MATLAB/INTLAB implementation we have followed closely the original
C-XSC code which was developed for bound constrained global optimization by Mihály
Csaba Markót based on the algorithm documented in Markót et al. [68]. The con-
trol structures of the two algorithms are basically the same, while the vectorial array
statements of MATLAB were applied wherever possible.

The basic algorithm we have implemented is described by Algorithm 10. The algo-
rithm takes as input the objective function f , the initial box X and a threshold value ϵ
for the stopping criteria.

In line 2, the result list (Lres) and the working list (Lwork) are initialized, while in
line 3 an upper bound of the global minimum value f̃ is computed. The main iteration
starts (line 4) with an optimal direction selection procedure and with a simple bisection
of the actual box, getting two new boxes. Between lines 7 and 19 we iterate over the
bisected boxes U i, i = 1, 2 and apply a range check (line 9) and a cut-o� test (line 12). If
the inclusion width of the actual interval U i is less than ϵ, then it is stored in the result
list (line 15), otherwise in the working list (line 17). The boxes are stored in the lists
sorted in nondecreasing order with respect to the lower bounds of the inclusion function
and in decreasing order with respect to the ages of the boxes (as a secondary sorting
criterion).

The steps described previously are repeated until the working list becomes empty
(line 21). When the main iteration stops, we compute a �nal enclosure (line 22) for the
global minimum value and return the results (line 23).

3.3.2.2 Numerical tests and results

The numerical comparison aimed to clear whether the new implementation is capable
to deliver similar quality results as the old one, and to measure the e�ciency in terms
of the usual indicators. Hence, we have completed a computational test, and compared
the e�ciency and the results of the INTLAB implementation to that of a C-XSC, BIAS,
and Pro�l based procedure (see Markót et al. [68]).

For the test we used INTLAB version 5.4, MATLAB R2007a, and a PC with 1
Gbyte RAM and a 3 GHz Pentium-4 processor. The test problems included all the
standard global optimization functions to be minimized, and basically all of those usually
applied in comparing interval global optimization methods. Our tables contain results
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Algorithm 10. The basic unconstrained interval global optimization algorithm

1. function BasicGOP(f,X, ϵ)
2. Lres := ∅;Lwork := ∅
3. Y := X; f̃ := F (m(X))
4. repeat

5. OptimalComponent(Y, k1)
6. Bisection(Y, k1, U1, U2)
7. for i = 1 to 2 do
8. fU := F (U i)

9. if f̃ < fU then continue

10. if F (m(U i)) < f̃ then

11. f̃ := F (m(U i))

12. Lwork := CutOffTest(Lwork, f̃)

13. end

14. if w(fU) < ϵ then
15. Lres := Lres ∪ (U, fU)

16. else

17. Lwork := Lwork ∪ (U, fU)

18. end

19. end

20. if Lwork ̸= ∅ then Y := Head(Lwork)

21. until L = ∅
22. Y := Head(Lres); f

∗ := [fY , f̃ ]

23. return Lres, f
∗

restricted for cases when the INTLAB based algorithm was able to stop within 10
minutes. Otherwise the test problem set is the same as those in other extensive numerical
studies, such as Csendes [28, 29].

According to the paper (Csendes and Pál [32]), the results are summarized in Tables
3.1 and 3.2. The problem names are abbreviated as usual, e.g. S5 stands for Shekel-5,
Sch3.2 for Schwefel 3.2, and R4 for Ratz-4 (cf. Csendes [28]). The �rst two columns
give the problem names and their dimension. The listed e�ciency indicators are the
number of iterations necessary (abbreviated as NIT), the number of objective function
evaluations (NFE), the maximal length of the working list (MLL), and the required
CPU time in seconds (CPU).

As compared to the numerical study published in Pál and Csendes [83] and presented
later in Section 3.3.3, where the stopping criterion parameter ϵ was set to 10−8, now
we stopped the subdivision when the width of the inclusion function at the actual
subinterval was less than 0.01. Our present results are then obviously much weaker
than the earlier published ones, but it is no wonder regarding that in the other case �rst
and second derivative information was utilized as well.

Most of the e�ciency indicators have the same or very similar values for the two
implementations. We discuss here just the larger and systematic di�erences. The most
signi�cant change is de�nitely in the CPU time needed: the INTLAB based implementa-
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Table 3.1: The numerical comparison of the C-XSC and the INTLAB code. Dim
stands for the dimension of the problem, NIT for the number of iterations, and NFE for
the number of objective function evaluations.

Old, C-XSC code New, INTLAB code
Problem Dim NIT NFE NIT NFE
S5 4 84 307 83 305
S7 4 259 864 259 864
S10 4 310 1,016 313 1025
THCB 2 5,591 16,779 5,591 16,779
BR 2 149 480 149 480
RB2 2 75 250 74 247
RB5 5 2,339 7,063 2,339 7,063
L8 3 21 81 21 81
L9 4 28 109 28 109
L10 5 35 137 35 137
L11 8 141 477 141 477
L12 10 412 1,455 412 1,455
L13 2 22 81 22 81
L14 3 35 131 35 131
L15 4 52 194 52 194
L16 5 72 270 72 270
L18 7 614 2,100 614 2,100
Schw2.1 2 308 933 308 933
Schw3.1 3 32 119 31 117
Schw2.5 2 72 232 72 232
Schw2.14 4 924 3,011 924 3,011
Schw2.18 2 5,623 17,093 5,623 17,093
Schw3.2 3 110 355 106 342
Schw3.7_5 5 191 605 191 605
Griew7 7 216 729 216 729
R4 2 1,547 5,137 1,547 5,137
R5 3 355 1,235 355 1,235
R6 5 1,939 6,695 1,939 6,695
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Table 3.2: The numerical comparison of the C-XSC and the INTLAB code. Dim
stands for the dimension of the problem, MLL for the maximal list length required, and
CPU for the CPU time needed in seconds.

Old, C-XSC code New, INTLAB code
Problem dim MLL CPU MLL CPU
S5 4 14 0.02 13 14.20
S7 4 43 0.06 43 55.78
S10 4 58 0.17 55 93.73
THCB 2 1,128 0.36 1,128 178.58
BR 2 18 0.00 18 6.64
RB2 2 10 0.00 10 1.72
RB5 5 56 0.33 56 167.84
L8 3 8 0.00 8 1.94
L9 4 11 0.00 11 3.41
L10 5 14 0.00 14 5.22
L11 8 23 0.10 23 28.23
L12 10 44 0.71 44 111.63
L13 2 7 0.00 7 1.45
L14 3 10 0.00 10 3.09
L15 4 13 0.00 13 5.69
L16 5 16 0.01 16 9.55
L18 7 67 0.35 67 98.92
Schw2.1 2 44 0.00 44 11.63
Schw3.1 3 7 0.00 6 1.89
Schw2.5 2 7 0.00 7 1.44
Schw2.14 4 82 0.06 82 32.19
Schw2.18 2 678 0.48 678 104.73
Schw3.2 3 13 0.00 12 3.80
Schw3.7_5 5 32 0.01 32 6.59
Griew7 7 43 0.07 43 27.44
R4 2 348 0.11 348 51.39
R5 3 70 0.03 70 29.44
R6 5 226 0.48 226 264.31
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tion requires on the average ca. 543 times more time to reach basically the same result.
The ratios di�er from 157 to 981, and the median of them is 523. As a rule, these
�gures are somewhat smaller than those measured for a more sophisticated algorithm
variant based on the inclusion functions of the gradient and the Hessian as well (see
Pál and Csendes [83] and later in Section 3.3.3). The highest ratio values are related
to cases when the CPU time for the C-XSC version were hardly measurably low. It
is also worth mentioning that the lowest ratios belong to those test problems that re-
quired more computation. The reason for this drop in speed is that MATLAB works in
interpreter mode, and thus it is no wonder that a machine code program produced by a
compiler can reach better times. On the other hand we have to add that we had a well
readable, but less optimized coding, and there remained much to improve exploiting the
vectorization feature of MATLAB. The bottom line of this comparison is that although
the easy use of MATLAB has its price in speed, still for practical problems the INTLAB
based interval global optimization method can be a useful modeling tool for early phases
of optimization projects.

Since the number of iterations, objective function evaluations, and maximal working
list lengths are identical for the two algorithms for the majority of test problems, we
can certainly conclude that the algorithms are equivalent, and there cannot be signif-
icant algorithmic di�erences. In the remaining cases the slightly changing indicators
are caused by the di�erent realizations of the rounding and other hardware depending
statements and functions. A smaller part of the CPU time di�erences is also due to the
quicker but less precise interval operations and functions provided by Pro�l/BIAS.

3.3.3 An advanced procedure

3.3.3.1 The algorithm and its implementation

We describe a new implementation of an interval optimization algorithm which uses
more advanced techniques. The algorithm implemented in MATLAB that uses the
INTLAB package supporting interval calculations and automatic di�erentiation solves
the bound constrained global optimization problem. The method itself is a simpli�ed
version of those interval techniques much investigated in the past, which were �rst
developed from the global optimization algorithm of the Numerical Toolbox for Veri�ed
Computing (see Hammer et al. [46]).

The algorithm applies the most common accelerating devices: the cuto� test, the
concavity test, the monotonicity test, and the interval Newton step. Beyond natural
interval extension (based on naive interval arithmetic), a simple centered form inclusion
function is also applied. Once the inclusion of the gradient is available, the intersection
of these inclusion functions proved to be a good quality estimation of the range of the
objective function.

We use also multisection and advanced subdivision direction selection (see Kearfott
[62]), albeit without those based on the pf ∗ heuristic algorithm parameter (see Csendes
[28]). Multisection means this time that each interval will be subdivided into three
subintervals according to the most promising two coordinate directions. The subdivi-
sion directions are determined according to the well-tested and e�ective C subdivision
direction selection rule (also used in Csendes [28], and Kearfott [62]). The algorithm
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solves also one-dimensional problems. For the latter problems the described multisection
technique is substituted by greedy bisection made again on the basis of the C rule.

During the implementation we have followed closely the C-XSC code which was
developed for bound constrained global optimization by Mihály Csaba Markót based
on the algorithm documented in Markót et al. [68]. The control structures of the two
algorithms are identical, while the vectorial array statements of MATLAB were ap-
plied wherever possible. The MATLAB/INTLAB based interval global optimization
algorithm is available as a part of the GLOBAL package and it can be downloaded from

www.inf.u-szeged.hu/∼csendes/reg/regform.php.

The comprised package contains all necessary �les, a suitable directory structure and
also a testing environment.

The advanced interval branch and bound method steps are listed in Algorithm 11.
The algorithm takes as input the objective function f , the initial box X and a threshold
value ϵ for the stopping criteria.

In line 2, the result list (Lres), the working list (Lwork) and the temporary list (Lwork)
are initialized, while in line 3 an upper bound of global minimum value f̃ is computed.
The main iteration starts (line 4) with an optimal direction selection procedure and
with a trisection of Y , getting three new boxes. Between lines 7 and 17 we iterate over
the multisected boxes U i, i = 1...3 and apply a monotonicity test (line 8), a range check
(line 9) and a cut-o� test (line 14). If the actual box is not discarded, it is stored in the
Ltemp list (line 16).

If the temporary list contains just one box (line 18), then we apply a concavity test
(line 20), and a Newton step (line 22) on it, otherwise we put all new boxes in the result
list (line 43) or in the working list (line 45). Note that the boxes are stored in the lists
sorted in nondecreasing order with respect to the lower bounds of the inclusion function
and in decreasing order with respect to the ages of the boxes.

The interval Newton step results in p boxes, to which we apply a monotonicity test
(line 24) and a cut-o� test (line 28). If the inclusion width of the actual interval V is
less than ϵ, then the box is stored in the result list (line 32), otherwise in the working
list (line 34). The ϵ value used in our algorithm was 10−8.

The steps described previously are repeated until the working list becomes empty
(line 50). When the main iteration stops, we compute a �nal enclosure (line 51) for the
global minimum value and return Lres and f ∗ (line 52).

We mention that the algorithm locates all global minimizer points.

3.3.3.2 Computational test and comparison

The numerical comparison aimed to clear whether the new implementation is capable
to deliver similar quality results as the old one, and to measure the e�ciency in terms
of the usual indicators. Hence, we have completed a computational test, and compared
the e�ciency and the results of the INTLAB implementation to that of a C-XSC, BIAS,
and Pro�l based procedure (see Markót et al. [68]).

For the test we used INTLAB version 5.4, MATLAB R2007a, and a PC with 1 Gbyte
RAM and a 3 GHz Pentium-4 processor. The test problems included all the standard
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Algorithm 11. The advanced bound constrained interval global optimization al-
gorithm
1. function AdvancedGOP (f , X, ϵ)
2. Lres := ∅; Lwork := ∅;Ltemp := ∅
3. Y := X; f̃ := F (m(X))
4. repeat

5. OptimalComponents(Y, k1, k2)
6. Trisection(Y, k1, k2, U

1, U2, U3)
7. for i := 1 to 3 do

8. if MonotonicityTest(∇F (U i)) then continue

9. fU := F (U i)

10. if f̃ < fU then continue

11. fU := fU ∩ CenteredForm(U i,∇F (U i))

12. if F (m(U i)) < f̃ then

13. f̃ := F (m(U i))

14. Lwork := CutOffTest(Lwork, f̃)

15. end

16. if f̃ >= fU then Ltemp := Ltemp ∪ (U i, fU )

17. end

18. if length(Ltemp) = 1 then

19. U := Head(Ltemp)
20. if not ConcavityTest(∇2F (U)) then
21. U := Head(Ltemp)
22. NewtonStep(f, U,∇2F (U), V, p)
23. for i := 1 to p do

24. if MonotonicityTest(∇F (U i)) then continue

25. fV := f(V i) ∩ CenteredForm(V i,∇F (V i))

26. if F (m(V i)) < f̃ then

27. f̃ := F (m(V i))

28. Lwork := CutOffTest(Lwork, f̃)

29. end

30. if f̃ >= fV then

31. if w(fV ) < ϵ then
32. Lres := Lres ∪ (V i, fV )

33. else

34. Lwork := Lwork ∪ (V i, fV )

35. end

36. end

37. end

38. end

39. else

40. while Ltemp ̸= ∅ do

41. U := Head(Ltemp)
42. if w(fU ) < ϵ then
43. Lres := Lres ∪ (U, fU )

44. else

45. Lwork := Lwork ∪ (U, fU )

46. end

47. end

48. end

49. if Lwork ̸= ∅ then Y := Head(Lres)

50. until Lwork = ∅
51. Y := Head(Lres); f

∗ := [fY , f̃ ];

52. return Lres, f
∗
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Table 3.3: The numerical comparison of the C-XSC and the INTLAB code. Dim stands
for the dimension of the problem, NIT for the number of iterations, NFE for the number
of objective function evaluations, and NGE for the number of gradient evaluations.

Old, C-XSC code New, INTLAB code
Problem Dim NIT NFE NGE NIT NFE NGE
S5 4 16 126 86 16 126 86
S7 4 18 129 84 17 121 78
S10 4 18 126 81 17 123 78
H3 3 42 184 135 42 184 135
H6 6 217 1,014 735 220 1,038 756
GP 2 2,351 15,314 9,430 2,351 15,319 9,427
SHCB 2 130 694 455 130 694 455
THCB 2 56 327 229 56 327 229
BR 2 52 282 200 52 282 200
RB 2 43 263 172 43 263 172
RB5 5 612 4,907 3,685 607 4,878 3,664
L3 2 293 1,890 1,301 293 1,890 1,301
L5 2 88 578 397 88 578 397
L8 3 11 80 55 11 80 55
L9 4 16 112 74 16 115 77
L10 5 19 143 97 19 143 97
L11 8 29 225 152 29 225 152
L12 10 34 282 194 34 282 194
L13 2 12 72 46 12 72 46
L14 3 15 104 66 15 104 66
L15 4 20 135 86 20 135 86
L16 5 19 142 88 19 142 88
L18 7 27 206 130 27 206 130
Schw2.1 2 226 1,312 951 226 1,312 951
Schw3.1 3 14 91 61 14 91 61
Schw2.5 2 53 307 216 53 307 216
Schw2.14 4 369 2,600 1,820 408 2,780 1,913
Schw2.18 2 51 284 201 51 284 201
Schw3.2 3 33 201 135 25 164 110
Schw3.7_5 5 129 677 484 129 677 484
Schw3.7_10 10 7,566 35,385 25,771 7,566 35,385 25,771
Griew5 5 691 9,854 6,424 705 9,940 6,482
Griew7 7 40 272 163 40 272 163
R4 2 154 902 648 153 899 645
R5 3 173 1,555 1,174 173 1,555 1,174
R6 5 227 2,255 1,826 227 2,255 1,826
R7 7 380 4,437 3,711 380 4,437 3,711
R8 9 471 6,170 5,266 471 6,170 5,266
EX2 5 41,794 250,885 177,929 14,774 89,318 65,862
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global optimization functions to be minimized, and basically all of those usually applied
in comparing interval global optimization methods. The test function Schwefel 2.7 is
missing from the study, and hence also from the tables. The reason for it is that
this problem cannot be solved by the algorithms within reasonable time (less than
10 minutes). Otherwise the test problem set is the same as those in other extensive
numerical studies, such as Csendes [28, 29].

According to the paper (Pál and Csendes [83]), the results are summarized in Tables
3.3 and 3.4. The problem names are abbreviated again as usual, e.g. S5 stands for
Shekel-5, Sch3.2 for Schwefel 3.2, and R4 for Ratz-4 (cf. Csendes [28]). The �rst two
columns give the problem names and their dimension. The listed e�ciency indicators
are the number of iterations necessary (abbreviated as NIT), the number of objective
function evaluations (NFE), the number of gradient evaluations (NGE), the number
of Hessian evaluations (NHE), the maximal length of the working list (MLL), and the
required CPU time in seconds (CPU).

Most of the e�ciency indicators have the same or very similar values for the two
implementations. We discuss here again just the larger and systematic di�erences. The
most signi�cant change is de�nitely also this time in the CPU time needed: the INTLAB
based implementation requires on the average ca. 700 times more time to reach basically
the same result. The ratios di�er from 165 to 2,106, and the median of them is 619.
The highest ratio values are related to cases when the CPU time for the C-XSC version
were hardly measurably low. It is also worth mentioning that the lowest ratios belong to
those test problems that required more computation. The reason for this drop in speed
is that MATLAB works in interpreter mode, and thus it is no wonder that a machine
code program produced by a compiler can reach better times. On the other hand we
have to add that we had a well readable, but less optimized coding, and there remained
much to improve exploiting the vectorization feature of MATLAB.

Since the number of iterations, objective function evaluations, gradient calls, Hessian
evaluations and maximal working list lengths are identical for the two algorithms for the
majority of test problems, we can certainly conclude that the algorithms are equivalent,
and there cannot be signi�cant algorithmic di�erences. In the remaining cases the
slightly changing indicators are caused by the di�erent realizations of the rounding and
other hardware depending statements and functions. This �nding is also supported by
the fact that the somewhat larger di�erences (ca. 24%, 18%, 18%, 8%, 22%, and ca. 65%,
64%, 63%, 64%, 18%, respectively for the �rst �ve indicators in the Tables 3.3 and 3.4)
obtained for the test problems Schwefel-3.2 and EX2 can well be led back for the �atness
of these functions. The better e�ciency indicators obtained for the latter cases are in
accordance with the fact that the outside rounding necessary for the veri�ed reliable
bounds on the range of the functions is more precise in the INTLAB implementation.
A smaller part of the CPU time di�erences is also due to the quicker but less precise
interval operations and functions provided by Pro�l/BIAS.

Summarizing our numerical results, we can state that the computational experiences
con�rm that the new implementation is in several indicators (e.g. number of function,
gradient and Hessian evaluations, number of iterations, and memory complexity) in
essence equivalent to that of the old one. The CPU time needed is as a rule by at
least two order of magnitude higher for the INTLAB version � as it can be anticipated
regarding the interpreter nature of MATLAB. However, further vectorization coding
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Table 3.4: The numerical comparison of the C-XSC and the INTLAB code. Dim
stands for the dimension of the problem, NHE for the number of Hessian evaluations,
MLL for the maximal list length required, and CPU for the CPU time needed in seconds.

Old, C-XSC code New, INTLAB code
Problem dim NHE MLL CPU NHE MLL CPU
S5 4 7 10 0.01 7 10 10.14
S7 4 7 14 0.03 6 14 13.05
S10 4 6 16 0.03 6 17 18.56
H3 3 3 12 0.01 3 12 11.20
H6 6 25 69 0.33 27 69 113.47
GP 2 608 480 0.68 608 480 630.33
SHCB 2 25 51 0.01 25 51 21.06
THCB 2 22 19 0.00 22 19 8.11
BR 2 18 12 0.00 18 12 6.91
RB 2 15 11 0.00 15 11 3.17
RB5 5 411 77 0.45 410 73 220.30
L3 2 97 138 0.16 97 138 115.11
L5 2 28 31 0.04 28 31 41.06
L8 3 5 9 0.00 5 9 4.03
L9 4 6 14 0.01 6 14 7.52
L10 5 8 17 0.02 8 17 11.97
L11 8 10 30 0.10 10 30 29.13
L12 10 12 39 0.24 12 39 46.28
L13 2 3 9 0.00 3 9 2.39
L14 3 5 11 0.00 5 11 4.59
L15 4 6 17 0.01 6 17 7.44
L16 5 6 20 0.01 6 20 9.33
L18 7 8 26 0.05 8 26 18.22
Schw2.1 2 88 26 0.02 88 26 36.78
Schw3.1 3 5 6 0.00 5 6 2.67
Schw2.5 2 28 5 0.00 28 5 4.02
Schw2.14 4 179 78 0.09 190 65 76.53
Schw2.18 2 22 8 0.00 22 8 3.81
Schw3.2 3 12 9 0.00 11 7 3.34
Schw3.7_5 5 32 32 0.03 32 32 25.98
Schw3.7_10 10 1,024 1,024 11.35 1,024 1,024 2,585.11
Griew5 5 597 32 1.04 611 32 575.95
Griew7 7 7 52 0.05 7 52 20.63
R4 2 51 39 0.02 51 39 17.72
R5 3 109 43 0.10 109 43 75.22
R6 5 143 29 0.39 143 29 186.75
R7 7 257 47 1.59 257 47 526.50
R8 9 321 65 3.81 321 65 951.27
EX2 5 19,124 1,969 72.93 6,928 1,610 12,042.27
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changes in the algorithm and in the objective functions may improve on that. In spite
of the lower speed, the new interval global optimization methods can well be suggested as
an early modeling and experimentation tool for the veri�ed solution of bound constrained
global optimization problems.

3.3.4 Improvements on the Newton step

In the solution of an unconstrained optimization problem the gradient of the objec-
tive function is zero. Therefore, we can apply an interval Newton method to solve the
nonlinear system ∇f(x) = 0 over a box X in which we seek a minimum. We do not
want to spend too much e�ort to sharply bound a stationary point if it is not the global
minimum. Therefore, we do not want to iterate the Newton method to convergence.
Instead, we want to alternate a step of the method with other procedures that might
prove that a given stationary point is not a global minimum.

Therefore, we apply one step of the extended interval Newton Gauss-Seidel method
(see Alefeld and Herzberger [1]) to the gradient of the objective function over a box X.
As a result, we get a reduced box or boxes that contains the minimum.

The application of the Newton step on each single interval would be costly likewise.
Hence, it would be suitable to introduce a criterion in order to decide when to apply
the Newton step. In our study Pál and Csendes [83], we used the criterion described in
Markót et al. [68]. In this case we applied the Newton step if two of the trisected boxes
were eliminated by other acceleration tools (see Algorithm 11, line 18).

Now we examine a new condition for applying the Newton step. In this case we
apply an interval Newton step to each box which has a smaller width than a prescribed
value. It is well known that the Newton step is more e�cient when it is applied to a
small box rather than to a large one. This is because the e�ect of dependence is less for
small boxes. In the new condition we used 0.1 as the threshold value.

We have implemented an algorithm in MATLAB/INTLAB with the new condition
in order to compare it with the old one. The algorithm is similar to Algorithm 11,
presented in the previous section. The most important di�erences are the following: the
old interval selection rule is changed to the new one: we select the subinterval which has
the maximal pf ∗ parameter value and the algorithm stops at the �rst box which satis�es
the stopping criterion. The latter approach is acceptable in many practical situations
when it is not necessary to �nd all global minimizer points.

The algorithm with the new condition for the Newton step is given as Algorithm 12.
The algorithm takes as input the objective function f , the initial box X and a threshold
value ϵ for the stopping criteria.

In line 2, the working list (Lwork) and the temporary list (Ltemp) are initialized, while
in line 3 an upper bound of global minimum value f̃ is computed. The main iteration
starts (line 4) with an optimal direction selection procedure and with a trisection of Y ,
getting three new boxes. Between lines 7 and 17 we iterate over the multisected boxes
U i, i = 1, 2, 3 and apply a monotonicity test (line 8), a range check (line 9) and a cut-o�
test (line 14). If the actual box is not discarded, it is stored in the Ltemp list (line 16).

Between lines 18 and 36, we iterate over the boxes from the temporary list. If the
current box width is less than 0.1 (line 20), we apply the concavity test and the Newton
step on it, otherwise we store it in the working list.
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The described steps are repeated until we �nd the �rst box with smaller width than
ϵ (line 39). In this case a �nal enclosure (line 40) for the global minimum value is
computed and we return Y and f ∗ (line 41).

We have completed a computational test in order to compare the new condition with
the old one. For the test we used INTLAB version 5.5, MATLAB R2008a, and a PC
with 2 Gbyte RAM and a 2 GHz Pentium-4, Core 2 Duo processor. The test problems
include all functions tested with Algorithm 11, too. We tested the algorithm with the
new condition for the Newton step and compared with the original one.

According to the paper (Pál and Csendes [84]), the results are summarized in Tables
3.7 and 3.8. The �rst two columns give the problem names and their dimension. The
listed e�ciency indicators are the number of iterations necessary (abbreviated as NIT),
the number of objective function evaluations (NFE), the number of gradient evaluations
(NGE), the number of Hessian evaluations (NHE), the maximal length of the working
list (MLL), and the required CPU time in seconds (CPU). In the end of the tables the
aggregated indicator values can be found and the average values, calculated on the full
set of test functions. It is hard to compare the two conditions, based on the received
indicator values, because they di�er signi�cantly one by one. Therefore, it is more
practical to compare the sum and average values over the whole testbed corresponding
to the two conditions.

Considering the sum of Hessian evaluations and the total running time, we can
conclude that are less by 25 and 14 percent in the case of the new condition. In the
case of the number of objective function and gradient evaluations we can observ a
slight decrease (1% and 3%). If we take into consideration the fact that the EX2 and
Schw3.7.10 functions are claimed together 80 percentages of the full runtime, it is worth
to examine the results without these two functions. In this case we �nd that the new
condition reduces the total running time by 6 minutes (i.e. by 30%) while the total
number of Hessian evaluations can be reduced by 48%. The sum of the number of
objective function and gradient evaluations are less by 6% and 14%, respectively (see
also in Tables 3.5 and 3.6).

Table 3.5: The sum and average values without the EX2 and Schw3.7.10 functions of
the original and the new condition for the Newton step. NIT stands for the number
of iterations, NFE for the number of objective function evaluations, and NGE for the
number of gradient evaluations.

Original condition New condition
NIT NFE NGE NIT NFE NGE

Sum 2665 25,061 18,984 4,119 (154%) 23,609 (94%) 16,420 (86%)
Average 72 677 513 111 (154%) 638 (94%) 444 (86%)

Based on these results it can be stated that we managed to reduce the necessary
computational time and the total number of Hessian evaluations signi�cantly with the
help of the new condition. This improvement cannot be observed on every single func-
tion, and in some cases (e.g. Schw3.7.10) we obtain higher values. This means that it
is hard to �nd a threshold value to the new condition so that it yields improvement for
every function. We will examine the adaptive setting of this value in the future.
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Algorithm 12. The algorithm with the new condition for the Newton step
1. function AdvancedNewCondGOP (f , X, ϵ)
2. Lwork := ∅;Ltemp := ∅
3. Y := X; f̃ := F (m(X))
4. repeat

5. OptimalComponents(Y, k1, k2)
6. Trisection(Y, k1, k2, U

1, U2, U3)

7. for i := 1 to 3 do

8. if MonotonicityTest(∇F (U i)) then continue

9. fU := F (U i)

10. if f̃ < fU then continue

11. fU := fU ∩ CenteredForm(U i,∇F (U i))

12. if F (m(U i)) < f̃ then

13. f̃ := F (m(U i))

14. Lwork := CutOffTest(Lwork, f̃)

15. end

16. if f̃ >= fU then Ltemp := Ltemp ∪ (U i, fU )

17. end

18. for i := 1 to length(Ltemp) do
19. U := Head(Ltemp)
20. if w(U) < 0.1 then

21. if not ConcavityTest(∇2F (U)) then
22. NewtonStep(f, U,∇2F (U), V, p)
23. for i := 1 to p do

24. if MonotonicityTest(∇F (V i)) then continue

25. fV := F (V i) ∩ CenteredForm(V i,∇F (V i))

26. if F (m(V i)) < f̃ then

27. f̃ := F (m(V i))

28. Lwork := CutOffTest(Lwork, f̃)

29. end

30. if f̃ >= fV then Lwork := Lwork ∪ (V i, fV )

31. end

32. end

33. else

34. Lwork := Lwork ∪ (U, fU )

35. end

36. end

37. if Lwork ̸= ∅ then

38. Y := Head(Lwork)
39. if w(fY ) < ϵ then

40. f∗ := [fY , f̃ ]

41. return Y, f∗

42. end

43. end

44. until Lwork = ∅



3. Interval global optimization methods 68

Table 3.6: The sum and average values without the EX2 and Schw3.7.10 functions of
the original and the new condition for the Newton step. NHE stands for the number of
Hessian evaluations, MLL for the maximal list length required, and CPU for the CPU
time needed in seconds.

Original condition New condition
NHE MLL CPU NHE MLL CPU

Sum 1,565 1,206 1,158 832 (53%) 1,508 (125%) 811 (70%)
Average 42 33 31 22 (52%) 41 (124%) 22 (71%)

3.3.5 Theoretical examination of the Newton step

As we have seen in the previous section, the interval based global optimization algo-
rithm can be improved by using a well chosen threshold value in the new condition for
applying the Newton step. However, there are cases when the Newton step with the new
condition is not successful in the sense that the width of the interval does not decrease
or the current interval will be divided into many subintervals. The latter case appears
in the practice mostly and is not bene�cial because we may achieve a similar result by
using some subdivision, but with a much smaller expense. The e�ciency of the Newton
step may further decrease in higher dimensions, because in this case the number of new
subintervals are growing exponentially.

We suppose that the inclusion function of the second derivative has the following
form where the Newton step is not successful:

F ′′
new(X) =

[
F ′′(X)−D′ · w(F ′′(X)), F

′′
(X) +D′′ · w(F ′′(X))

]
, (3.12)

where F ′′(X) is an inclusion of the second derivative over X, and D′, D′′ are positive real
numbers. Throughout this investigation we also assume that the interval X contains a
local minimizer point, since the Newton step role is to reduce the box which contains a
such a point. F ′′(X) may be the range of the second derivative over X. Similar inclusion
functions have been considered in Casado et al. [24, 25].

Depending on theD′ andD′′ values we can distinguish between symmetric (D′ = D′′)
and non-symmetric (D′ ̸= D′′) overestimation. In the following section, we investigate
separately the two types of overestimation.

3.3.5.1 The symmetric case

In the present subsection we suppose that the inclusion function de�ned by (3.12)
is symmetric, which means that D′ = D′′ = D (see also in Pál and Csendes [84]). The
following two theorems want to characterize the cases when the Newton step is not
e�cient.

Theorem 3.8. For a given single-variable function f and interval X, with w(X) < ϵ,
there exists an inclusion function of the second derivative with symmetric overestimation
for which the Newton step is not successful in the sense that the width of the interval X
does not decrease, or it divides the interval X into many subintervals.
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Table 3.7: The numerical comparison of the original and the new condition for the
Newton step. Dim stands for the dimension of the problem, NIT for the number of
iterations, NFE for the number of objective function evaluations, and NGE for the
number of gradient evaluations.

Original condition New condition
Problem Dim NIT NFE NGE NIT NGE NGE
S5 4 16 126 86 22 117 76
S7 4 17 121 78 22 120 76
S10 4 17 123 78 22 122 76
H3 3 23 147 99 14 82 51
H6 6 191 1,505 1,167 112 560 363
GP 2 76 458 229 53 717 415
SHCB 2 17 103 60 16 105 63
THCB 2 44 274 189 59 284 187
BR 2 44 250 177 71 360 256
RB 2 38 238 151 17 174 117
RB5 5 396 3,660 2,758 608 3,511 2,568
L3 2 47 293 170 32 191 103
L5 2 86 593 406 22 131 73
L8 3 11 80 55 20 98 67
L9 4 13 107 73 26 129 85
L10 5 15 125 86 33 161 106
L11 8 23 189 128 52 253 163
L12 10 30 254 175 65 315 202
L13 2 10 74 47 13 76 49
L14 3 15 120 77 22 121 76
L15 4 18 146 94 28 150 94
L16 5 19 142 88 29 162 97
L18 7 27 206 130 41 226 136
Schw2.1 2 113 804 580 168 758 557
Schw3.1 3 14 96 64 21 122 81
Schw2.5 2 50 293 205 34 161 114
Schw2.14 4 356 3,242 2,337 527 5,914 4,160
Schw2.18 2 3 21 13 19 95 63
Schw3.2 3 20 144 98 25 149 99
Schw3.7_5 5 45 309 208 108 517 364
Schw3.7_10 10 696 4,371 2,665 5,232 22,065 15,781
Griew5 5 25 190 117 53 263 163
Griew7 7 40 297 173 73 363 223
R4 2 35 210 125 21 134 80
R5 3 107 996 748 181 760 544
R6 5 140 1,516 1,221 339 1,409 1,018
R7 7 204 2,728 2,293 500 2,086 1,501
R8 9 320 4,881 4,201 651 2,713 1,954
EX2 5 9,279 59,605 44,126 5,774 42,338 32,161
Sum 12,640 89,037 65,775 15,125 88,012 64,362
Average 324 2,283 1,687 388 2,257 1,650
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Table 3.8: The numerical comparison of the original and the new condition for the
Newton step. Dim stands for the dimension of the problem, NHE for the number of
Hessian evaluations, MLL for the maximal list length required, and CPU for the CPU
time needed in seconds.

Original condition New condition
Problem Dim NHE MLL CPU NHE MLL CPU
S5 4 7 10 5.66 3 10 5.02
S7 4 6 14 7.27 3 14 7.00
S10 4 6 17 10.36 3 17 9.95
H3 3 11 16 5.09 3 13 2.69
H6 6 86 64 97.45 10 55 32.77
GP 2 0 153 9.25 56 175 16.63
SHCB 2 3 22 1.70 6 19 1.80
THCB 2 21 24 3.75 3 26 3.59
BR 2 18 10 3.44 18 12 4.91
RB 2 11 11 1.59 19 9 1.25
RB5 5 317 79 93.13 162 79 83.20
L3 2 8 57 10.06 2 53 6.22
L5 2 31 32 26.25 2 32 5.25
L8 3 5 9 2.34 2 9 2.72
L9 4 7 13 4.08 2 14 4.67
L10 5 8 15 5.95 2 17 7.13
L11 8 9 28 14.11 2 30 17.42
L12 10 11 36 23.89 2 39 27.03
L13 2 4 9 1.45 3 9 1.47
L14 3 7 12 3.16 3 12 3.08
L15 4 8 19 4.84 3 18 4.73
L16 5 6 20 5.56 3 20 6.03
L18 7 8 26 10.80 4 26 11.31
Schw2.1 2 53 25 12.50 17 31 11.36
Schw3.1 3 5 6 1.58 7 6 1.95
Schw2.5 2 27 4 2.13 5 7 1.13
Schw2.14 4 216 123 47.98 455 442 88.22
Schw2.18 2 1 4 0.16 2 11 0.64
Schw3.2 3 11 7 1.66 9 8 1.66
Schw3.7_5 5 24 32 7.13 13 32 10.52
Schw3.7_10 10 192 818 183.59 28 1,024 873.70
Griew5 5 7 28 5.94 1 28 7.95
Griew7 7 8 58 12.48 1 51 15.02
R4 2 6 36 2.23 6 24 1.44
R5 3 71 57 27.20 0 23 18.97
R6 5 100 30 71.72 0 25 59.06
R7 7 168 41 184.78 0 47 122.38
R8 9 270 59 429.48 0 65 204.88
EX2 5 3,802 388 4,390.09 4,284 145 3,182.41
Sum 6,777 2,600 5,732 5,111 2,677 4,867
Average 174 67 147 132 69 125
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Proof. In the case of a single-variable function f(x), the Newton iteration can be de-
scribed by the equations

N(X(k), x̃(k)) = x̃(k) − f ′(x̃(k))

F ′′(X(k))
, (3.13)

X(k+1) = X(k) ∩N(X(k), x̃(k)), k = 1, 2, . . . , (3.14)

where x̃(k) = mid(X(k)), f ′ is the �rst derivative, and F ′′ is the inclusion of the second
derivative.

Let X = [a, b] be an interval such that w(X) < ϵ and let F ′′(X) = [c, d]. The Newton
step is not successful if the inclusion of the second derivative (equation 3.13) contains
the zero and after the intersection (equation 3.14) we obtain two new subintervals. This
result is not useful for us because a similar result can also be archived by using a simple
bisection, but with a much less expense. The question is, how much the overestimation
should be in order to get two intervals after the intersection and the inclusion of the
second derivative should contain the zero.

We further suppose that 0 /∈ F ′′(X), otherwise it is obvious that the interval X will
be subdivided. Using the notation F ′′

new(X) = [c′, d′], the problem is now to �nd the
values of c′ and d′ such that 0 ∈ F ′′

new(X) holds. Applying the previous notations, the
Newton operator has the form

N(X, x̃) = x̃− f ′(x̃)

F ′′
new(X)

= x̃− f ′(x̃)

[c′, d′]
. (3.15)

Case 1: when f ′(x̃) > 0. Using the extended interval arithmetic we �nd that

N(X, x̃) =

(
−∞, x̃− f ′(x̃)

d′

]
∪
[
x̃− f ′(x̃)

c′
,∞
)
. (3.16)

As a result of the X ∩ N(X, x̃) operation, we get two intervals if the following
inequalities hold:

b > x̃− f ′(x̃)

c′
, (3.17)

a < x̃− f ′(x̃)

d′
. (3.18)

By (3.17) and (3.18) we obtain:

c′ < −2 · f
′(x̃)

w(X)
, (3.19)

d′ > 2 · f
′(x̃)

w(X)
. (3.20)

From (3.19), (3.20) and (3.12) it follows:
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c−D · w(F ′′(X)) < −2 · f
′(x̃)

w(X)
, (3.21)

d+D · w(F ′′(X)) > 2 · f
′(x̃)

w(X)
. (3.22)

By (3.21) and (3.22) we obtain the following inequalities:

D > D1 =
2 · f ′(x̃) + c · w(X)

w(X) · w(F ′′(X))
, (3.23)

D > D2 =
2 · f ′(x̃)− d · w(X)

w(X) · w(F ′′(X))
. (3.24)

Consequently, if D > max(D1, D2) we get two new intervals as a result of the
Newton step.

Case 2: when f ′(x̃) < 0. Using the extended interval arithmetic we obtain

N(X, x̃) =

(
−∞, x̃− f ′(x̃)

c′

]
∪
[
x̃− f ′(x̃)

d′
,∞
)
. (3.25)

Proceeding with a similar argument to the �rst case, we have

D > D1 =
−2 · f ′(x̃) + c · w(X)

w(X) · w(F ′′(X))
, (3.26)

D > D2 =
−2 · f ′(x̃)− d · w(X)

w(X) · w(F ′′(X))
. (3.27)

As a result, if D > max(D1, D2), then the Newton step is not successful.

Proposition 3.9. If 0 /∈ F ′′(X) holds, then the constructed numbers D1 and D2 in the
proof of the Theorem 3.8 have di�erent sign.

Proof. During the proof of the Theorem 3.8 we have constructed the D1 andD2 numbers
so that the interval N(X, x̃) was the smallest one which intersection with the interval X
resulted two di�erent intervals. As we supposed that F ′′(X) doesn't contain the zero,
it is obvious that D1 or D2 must be positive in order to obtain an overestimation of F ′′

which contains the zero. On the other hand, the result of the Newton step is always a
non empty interval because a local minimizer point is available in X.

In this proof we also distinguish between the cases when the gradient is positive or
negative. At �rst, we suppose that f ′(x̃) > 0 and X = [a, b]. It is also true that c > 0
in F ′′(X), because we considered a local minimizer point in X. The Newton operator
using F ′′ in (3.15) is
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N(X, x̃) = x̃− f ′(x̃)

F ′′(X)
=

[
x̃− f ′(x̃)

c
, x̃− f ′(x̃)

d

]
. (3.28)

Since X ∩ N(X, x̃) ̸= ∅, then it follows that x̃ − f ′(x̃)
d

> a must holds (see also in

Figure 3.4). Now if we increase the value of d (D2 > 0), then the value of x̃ − f ′(x̃)
d

is
also increasing and the left hand side interval in (3.16) will be also larger. If the value
of d decreases (D2 < 0), then the value of x̃− f ′(x̃)

d
also decreases. As we computed the

smallest interval in the proof of the Theorem 3.8, thus D2 must be negative.

x̃ −

f′(x̃)
c x̃ −

f′(x̃)
d

x̃

[ ] ][
a b

Figure 3.4: The result of the Newton step if f ′(x) > 0.

In the second case, if f ′(x̃) < 0, then the Newton operator has the following form

N(X, x̃) = x̃− f ′(x̃)

F ′′(X)
=

[
x̃− f ′(x̃)

d
, x̃− f ′(x̃)

c

]
. (3.29)

Since X ∩ N(X, x̃) ̸= ∅, then it follows that x̃ − f ′(x̃)
d

< b must holds (see also in

Figure 3.5). Now if we increase the value of d (D2 > 0), then the value of x̃ − f ′(x̃)
d

decreases and the right hand side interval in (3.25) will be larger. If the value of d
decreases (D2 < 0), then the value of x̃− f ′(x̃)

d
increases. As we computed the smallest

interval in the proof of the Theorem 3.8, thus D2 must be negative.

x̃ −

f′(x̃)
d

x̃ −

f′(x̃)
c

x̃

[ [ ]]
a b

Figure 3.5: The result of the Newton step if f ′(x) < 0.

Remark 3.10. There is no sense to have D2 < 0 from two reasons. Firstly, the F ′′
new(X)

cannot be an overestimation of the F ′′(X) using D2, which is inacceptable in our case
(where F ′′(X) is the range of the second derivative). Secondly, the resulted interval may
not contain the local minimizer point. The constructed value of D in the proof of the
Theorem 3.8 guarantees that the resulted interval contains the local minimizer point. We
supposed that 0 /∈ F ′′(X) holds, otherwise we may have D1 < 0 and D2 < 0 if F ′′(X) is
too large.

The presented remarks are demonstrated by the following example:

Example 3.11. In the case of the function f(x) = 1
20
(x+4)(x+2)(x+1)(x−1)(x−3)+2,

over the interval X = [−1.7,−1.4] we �nd that D > D1 = 0.63 and D > D2 =
−1.336. Now if we use D′ = 0.64 and D′′ = −1.33 in (3.12), we obtain (according to
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(3.14)) [−1.70,−1.69] ∪ [−1.40,−1.39] which doesn't contain the local minimizer point
-1.52. Now if we use D′ = D′′ = D = 0.64, then the union of the resulted intervals
[−1.70,−1.69] ∪ [−1.53,−1.39] contains the local minimizer point.

Now we examine the case when the Newton step is successful in the sense that we
obtain a narrower interval than the input one. According to the �rst case from Theorem
3.8, this may happen if one of the two inequalities (3.23) and (3.24) or both of them
doesn't hold. At �rst, we assume that D ≤ D1 and D > D2 hold, where D1 > 0 and
D2 < 0. Because D must be positive then we have D ∈ (0, D1] (the second inequality
can be omitted). Expanding the inequality D ≤ D1 we obtain

D ≤ D1 =
2 · f ′(x̃) + c · w(X)

w(X) · w(F ′′(X))
. (3.30)

Now if we assume that the overestimation parameter D is known in (3.30), we can
specify a threshold value ϵ which guarantees the success of the Newton step in the sense
that we receive a narrower interval than the input one. From (3.30) it follows that the
requested condition is

w(X) ≤ 2 · f ′(x̃)

D · w(F ′′(X))− c
. (3.31)

Thus, if

ϵ =
2 · f ′(x̃)

D · w(F ′′(X))− c
,

holds, the Newton step returns a narrower interval than the input one. In the second
case we have D > D1 and D ≤ D2, which doesn't provide useful information due to the
latter inequality. The third case (D ≤ D1 and D ≤ D2) is similar to the �rst one. We
obtain a similar statement if f ′(x̃) < 0 (Case 2 in the proof of Theorem 3.8) is supposed.

Example 3.12. The Newton step is not successful for the function f(x) = 1
20
(x+4)(x+

2)(x+1)(x− 1)(x− 3)+ 2 over the interval X = [−1.6,−1.4] if D > 1.2994. Now if we
apply the condition (3.31) for D = 1.2994, we �nd that if w(X) < 0.2, then the Newton
step is successful. This result means that in case of intervals which contains the local
minimizer point, has a smaller width than 0.2 and use the �xed D value in (3.12), the
Newton step returns a narrower interval than the input one.

An inclusion function F (X) is isotone if X ⊆ Y implies F (X) ⊆ F (Y ). Almost every
inclusion function used in numerical procedures possess this property. The inclusion
function F ′′

new de�ned in (3.12) is naturally isotone for each �xed value of D. However,
the next statement says that if the value of D have to be de�ned dynamically so that
the Newton step shouldn't be successful, then the resulting inclusion function will not
be isotone.

Proposition 3.13. The inclusion function F ′′
new with the smallest value of D, con-

structed in the proof of the Theorem 3.8, is not isotone.

Proof. In order to prove this statement it is enough to �nd a counterexample. For
example, consider the function f(x) = 1

20
(x + 4)(x + 2)(x + 1)(x − 1)(x − 3) + 2. The
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inclusion function of f de�ned by (3.12) and constructed according to the Theorem 3.8,
is not isotone over the following intervals.

If X1 = [−1.60,−1.5], then D > 3.7569. A suitable value of D is 3.76 and F ′′
new(X1) =

[−1.41, 7.46].

If X2 = [−1.65,−1.45], then D > 1.3002. A suitable value of D is 1.31 and F ′′
new(X2) =

[−0.70, 6.81].

If X3 = [−1.7,−1.4], then D > 0.6353. A suitable value of D is 0.64 and F ′′
new(X3) =

[−0.46, 6.67].

Consequently, X1 ⊂ X2 ⊂ X3 and F ′′
new(X3) ⊂ F ′′

new(X2) ⊂ F ′′
new(X1), thus F ′′

new is
not isotone.

The essential meaning of the Proposition 3.13 is that small argument intervals require
large excess width to make the Newton step ine�ective. In other words, by choosing
a rather small value of the decision parameter ϵ, the success of the Newton step may
be increased. The above result may appear somewhat surprising since usually the iso-
tonicity is ful�lled by the inclusion functions. Nevertheless, the following statement says
that we always can choose values for D such that the resulted inclusion function will be
isotone.

Proposition 3.14. The values of D can always be chosen so that the inclusion function
F ′′
new constructed in the Theorem 3.8 will be isotone.

Proof. From the proof of the Theorem 3.8 it follows that the constructed D value can
be chosen arbitrary large. Therefore, for every intervals X1 and X2 where X1 ⊆ X2 we
can choose the values of D such that F ′′

new(X1) ⊆ F ′′
new(X2) holds.

The above proposition is demonstrated by the following example:

Example 3.15. Consider again the function f(x) = 1
20
(x+4)(x+2)(x+1)(x− 1)(x−

3) + 2 and intervals X1, X2 and X3.

If X1 = [−1.60,−1.5], then D > 3.7569. A suitable value of D is 3.76 and F ′′
new(X1) =

[−1.41, 7.46].

If X2 = [−1.65,−1.45], then D > 1.3002. A suitable value of D is 2 and F ′′
new(X2) =

[−2.16, 8.20].

If X3 = [−1.7,−1.4], then D > 0.6353. A suitable value of D is 1.5 and F ′′
new(X3) =

[−3.18, 9.38].

Consequently, X1 ⊂ X2 ⊂ X3 and F ′′
new(X1) ⊂ F ′′

new(X2) ⊂ F ′′
new(X3). Obviously the

above steps can be repeated for any two intervals X1 and X2 (X1 ⊂ X2).

Theorem 3.16. For a given multivariate function f and X interval, with w(X) <
ϵ, there exists an inclusion function of the Hessian for which the Newton step is not
successful in the sense that the length of the interval X does not decrease or it divides
the interval X into many subintervals.
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Proof. The multivariate Newton method can be described by the equations:

G(x̃(k)) +H(X(k))(N(X(k), x̃(k))− x̃(k)) = 0, (3.32)

X(k+1) = X(k) ∩N(X(k), x̃(k)), k = 1, 2, . . . , (3.33)

where x̃(k) = mid(X(k)), G is the inclusion function of the gradient, and H is the
inclusion function of the Hessian matrix.

The operatorN is that developed by Hansen and Sengupta (see Hansen and Sengupta
[54]), and it uses a Gauss-Seidel procedure. Preconditioning of the equation (3.32) with
C the midpoint inverse of H(X) gives

C ·H(X)(N(X, x̃)− x̃) = −C ·G(x̃).

By de�ning
M = C ·H(X), b = C ·G(x̃),

the interval Gauss-Seidel procedure proceeds component by component to give the iter-
ation

N(X(k), x̃(k)) = x̃
(k)
i −

bi +
∑i−1

j=1Mij(X
(k+1)
j − x̃

(k+1)
j ) +

∑n
j=i+1Mij(X

(k)
j − x̃

(k)
j )

Mii

,

(3.34)

X
(k+1)
i = X

(k)
i ∩N(X(k), x̃(k)), (3.35)

where x̃(k) = mid(X(k)) and k = 1, 2, . . . .

In this iteration, after the i-th component of N(X(k), x̃(k)) is computed using (3.34),
the intersection (3.35) is performed. The result is then used to calculate subsequent
components of N(X(k), x̃(k)).

At �rst, we consider the simple case when the inclusion of the Hessian matrix is used
instead of the preconditioned version of it. Suppose that it has the following form:

H =


H11 H11 · · · H1n

H21 H22 · · · H2n
...

...
. . .

...
Hn1 Hn2 · · · Hnn

 ,

where Hij : Rn → R, i, j = 1, . . . , n are also inclusion functions. We also suppose
that 0 /∈ Hii, i = 1, . . . , n. Similarly to the equation (3.34), in the iteration we divide
by a diagonal element of the H matrix. Hence, in this case we should determine the
overestimation of the Hii, i = 1, . . . , n inclusion functions so that at the end of the
iteration should obtain more then one interval. On the other hand, the operator N
in an iteration is similar to the equation (3.15). Although the inclusion function Hii

usually is not a single-variable function, still the value of D can be determined similarly
to the Theorem 3.8. As a result of the described procedure for some i, the component
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Xi consists of two intervals separated by an open set (gap). In this case the box X may
be split normal to this coordinate direction. In order to avoid an exponential increase
of the number of subboxes the further steps are applied to the hull of the subboxes in
such cases. A splitting is therefore only done once during the iteration, vertical to the
direction of the largest gap or two largest gaps at the end of the iteration.

Consequently, if for some i the component Xi is subdivided, then the box X will be
splitted into at least two subboxes. Thus, the Newton step is not e�cient in this case.

Next consider the case when the preconditioned Hessian matrix is used. The pre-
condition aim to transform the original system to a system that is almost diagonally
dominant. This kind of systems can be solved more e�ciently with the Gauss-Seidel
method. This case is very similar to the previous one. The main di�erence is that in an
iteration we divide by Mii instead of Hii, where

Mii =
n∑

j=1

cijHji, i = 1, . . . , n,

and cij, i, j = 1, . . . , n are the elements of the matrix C. Although Mii is more complex
than Hii the construction is similar to the �rst case.

3.3.5.2 The general case

The whole construction from the symmetric case can be transformed for inclusion
functions with non-symmetric overestimation. In this case we suppose that D′ ̸= D′′

holds in (3.12).

Theorem 3.17. For a given single-variable function f and interval X, with w(X) < ϵ,
there exists an inclusion function of the second derivative with non-symmetric overes-
timation for which the Newton step is not successful in the sense that the width of the
interval X does not decrease, or it divides the interval X into many subintervals.

Proof. The proof is similar to the Theorem 3.8. As a result, we �nd that D′ > D1 and
D′′ > D2, where D1 and D2 are de�ned by (3.23), (3.24) (Case 1) and (3.26),(3.27)
(Case 2), respectively.

As we have seen previously, D1 or D2 will be negative. In this case the F ′′
new(X)

cannot be an overestimation of the F ′′(X), which is inacceptable in our case (where
F ′′(X) is the range of the second derivative). In order to avoid this, we modify the
relative values D′ and D′′ of the overestimation in the following way:

D′ > max(0, D1) and D
′′ > max(0, D2).

Obviously, we may have D′ = 0 or D′′ = 0. In this case the lower bound or the upper
bound of the F ′′(X) will not be modi�ed. The chosen values also guarantees that the
obtained new inclusion function is an overestimation of the original one and the resulted
interval after the Newton step contains the local minimizer point.
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Proposition 3.18. The inclusion function F ′′
new with the smallest values of D′ and D′′,

constructed in the proof of the Theorem 3.17, is not isotone.

Proof. The proof is similar to the Proposition 3.13. Consider the function f(x) = x3−2x.
The inclusion function of f de�ned by (3.12) and constructed according to the Theorem
3.17, is not isotone over the following intervals.

If X1 = [0.7, 0.9], then D′ > 4.1667 and D′′ ≥ 0. A suitable value of D′ and D′′ is 4.2
and 0. F ′′

new(X1) = [−0.84, 5.4].

If X2 = [0.6, 1], then D′ > 1.6667 and D′′ ≥ 0. A suitable value of D′ and D′′ is 1.67
and 0. F ′′

new(X2) = [−0.40, 6.0].

If X3 = [0.5, 1.1], then D′ > 0.9074 and D′′ ≥ 0. A suitable value of D′ and D′′ is 0.91
and 0. F ′′

new(X3) = [−0.27, 6.6].

Consequently, X1 ⊂ X2 ⊂ X3 and F ′′
new(X1)  F ′′

new(X2)  F ′′
new(X3), thus F ′′

new is
not isotone. In this case the relation F ′′

new(X3) ⊂ F ′′
new(X2) ⊂ F ′′

new(X1) doesn't hold
(see the example in the symmetric case) due to the isotonicity of the F ′′ (the upper
bound of F ′′

new is equal with the upper bound of F ′′).

Proposition 3.19. The values of D′ and D′′ can always be chosen so that the inclusion
function F ′′

new constructed in the Theorem 3.17 will be isotone.

Proof. The proof is similar to the Proposition 3.14.

The above proposition is demonstrated by the following example:

Example 3.20. Consider again the function f(x) = x3 − 2x and intervals X1, X2 and
X3.

If X1 = [0.7, 0.9], then D′ > 4.1667 and D′′ ≥ 0. A suitable value of D′ and D′′ is 4.2
and 0. F ′′

new(X1) = [−0.84, 5.4].

If X2 = [0.6, 1], then D′ > 1.6667 and D′′ ≥ 0. A suitable value of D′ and D′′ is 1.87
and 0. F ′′

new(X2) = [−0.88, 6.0].

If X3 = [0.5, 1.1], then D′ > 0.9074 and D′′ ≥ 0. A suitable value of D′ and D′′ is 1.1
and 0. F ′′

new(X3) = [−0.96, 6.6].

Consequently, X1 ⊂ X2 ⊂ X3 and F ′′
new(X1) ⊂ F ′′

new(X2) ⊂ F ′′
new(X3). Obviously the

above steps can be repeated for any two intervals X1 and X2 (X1 ⊂ X2).

Theorem 3.21. For a given multivariate function f and X interval, with w(X) <
ϵ, there exists an inclusion function of the Hessian for which the Newton step is not
successful in the sense that the length of the interval X does not decrease or it divides
the interval X into many subintervals.

Proof. The proof is analogous to the Theorem 3.16. The only di�erence is that the D′

and D′′ values should be determined according to the Theorem 3.17.
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3.4 Application in sensor network localization

3.4.1 Introduction

Location awareness is important for wireless sensor networks since many applications
such as environment monitoring (animal habitat monitoring, bush �re surveillance, wa-
ter quality monitoring, etc.), vehicle tracking and mapping, military applications (bat-
tle�eld surveillance) depend on knowing the locations of sensor nodes.

Sensor network localization refers to the process of estimating the locations of sen-
sors using measurements between neighboring sensors. In sensor network localization,
it is assumed that a small fraction of sensors, called anchors, have a priori information
about their positions. The coordinates of the anchor nodes may be obtained by using
a global positioning system (GPS) or manual deployment at a point with known posi-
tion. Most sensors do not have a priori information about their locations because it is
often too expensive to include a GPS adapter in each sensor node or due to constraints
on cost and complexity. These sensor nodes without a priori position information are
referred to as the non-anchor nodes and their coordinates are to be estimated by sen-
sor network localization algorithms. These algorithms di�er in their assumptions about
network con�guration and mobility, the distribution of the calculation process and hard-
ware capabilities. The location calculation can be done using centralized algorithms or
distributed ones. In a centralized algorithm the sensor nodes transmit the data to a
central computer, where calculation is performed to determine estimated location of
each node. In distributed algorithms, there is no central computer. Each non-anchor
node estimates its location using measurements between neighbouring nodes and the
location estimates of its neighbours.

Considering hardware capabilities, two categories of localization methods can be dis-
tinguished: distance-based and connectivity based. Distance-based methods (also called
range-based) use inter-sensor distance or angle measurements in location calculation.
There are many approaches for the implementation of the centralized distance-based
algorithms. The most important are the following: multidimensional scaling (see Shang
et al. [106]), semide�nite programming (see Biswas and Ye [13]) and simulated anneal-
ing (see Kannan et al. [61], Niewiadomska-Szynkiewicz and Marks [79]). Connectivity-
based (also called range-free) algorithms do not rely on measurement techniques. They
use the connectivity information to derive the locations of the non-anchor nodes. The
most important connectivity-based algorithms are hop-counting techniques. Examples
of connectivity-based methods are presented in Niculescu and Nath [78], and Shang
et al. [106].

In this thesis, we focus on localization methods based on distance measurements.

3.4.2 Mathematical formulation of the localization problem

The mathematical model of the distance-based general localization problem con-
sidered on the plan can be described as follows. Suppose we have a set of m anchor
nodes with known positions ak ∈ R2, k = 1, . . . ,m, and n non-anchor nodes xj ∈ R2,
j = 1, . . . , n with unknown locations. For each pair of two nodes in the sensor network,
we de�ne the Euclidean distance dkj = ||ak−xj|| between anchors and non-anchors, and
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dij = ||xi − xj|| between two non-anchors, j = 1, . . . , n and i ̸= j.

Based on the emitted signal, a sensor have the capability to estimate the distances
from the neighboring nodes. The sets of neighboring nodes can de�ned as collections of
nodes located within transmission ranges (radio ranges) of given nodes. Hence, for all
anchors and non-anchors we de�ne the following sets:

Nk = {(k, j) : dkj ≤ rk}, j = 1, . . . , n,

Ni = {(i, j) : dij ≤ ri}, j = 1, . . . , n,

where rk and ri are radiuses (maximal transmission ranges) of the k-th anchor node and
the i-th non-anchor node, respectively.

The measured values d̃kj and d̃ij of true distances dkj and dij are produced by
measurement methods described in Mao et al. [66]. These methods involve measurement
errors, hence each distance value d̃kj and d̃kj represents the true distance corrupted with
noise describing the uncertainty of the distance measurement,

d̃kj = dkj + ξkj, d̃ij = dij + ξij,

where ξkj and ξij denote measurement errors.

Based on the above de�nitions, the general localization problem can be formulated in
the following way: estimate the locations of non-anchor nodes xj ∈ R2, j = 1, . . . , n with
unknown positions, if positions of anchor nodes ak ∈ R2 and noisy distance measure-
ments d̃kj, d̃ij are known. The presented model can be formulated as an optimization
problem with the aim to minimize the sum of errors in sensor positions for �tting the
distance measurements.

3.4.3 Solution approaches

The previously described distance-based localization problem can be formulated as
a quadratic optimization problem, and then transformed to a standard semide�nite
programming problem. Such formulation is presented in Biswas and Ye [13]. This kind
of optimization problems can be solved by interior point methods based on SDP solvers.

Another approach is to formulate the optimization problem with the following non-
linear performance function and apply global optimization methods to solve it:

min
x̂

{
m∑
k=1

∑
j∈Nk

(
||ak − x̂j|| − d̃kj

)2
+

n∑
i=1

∑
j∈Ni

(
||x̂i − x̂j|| − d̃ij

)2}
, (3.36)

where x̂i and x̂j denote, respectively, estimated positions of nodes i and j, d̃kj and d̃ij
are measured distances between the pairs of nodes (k, j) and (i, j), and Ni, Nk are sets
of neighboring nodes.

The most frequently used global optimization methods are the simulated annealing
(see Kannan et al. [61], Mao et al. [66]) and genetic algorithms (see Zhang et al. [118]).
There are hybrid localization methods (see Niewiadomska-Szynkiewicz and Marks [79])
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which combine trilateration techniques and stochastic methods. These methods in the
�rst phase provide an initial solution. The solution of the �rst phase is modi�ed by
applying stochastic optimization methods.

In our approach, we tried to �nd the global optimum of the objective function (3.36)
using the INTLAB based global optimization tool. One reason for using it was to
represent the uncertainty in the distance measurements with interval variables, but the
obtained result doesn't provide useful information in the sense that the �nal interval was
too wide. Therefore, we tried to solve the problem without incorporating the uncertainty
into the intervals.

Finding the global optimum of the (3.36) objective function with the INTLAB based
global optimizer is a time consuming task especially using hundreds of sensors. Hence,
we tried to �nd an approximated solution using the trilateration technique. Trilatera-
tion is an approach to determine the position of an unknown node using three references
located at known positions. If we have more than three nodes, it is called multilater-
ation. As the inter-node distances are corrupted with noise, the trilateration has no
unique solution. Hence, we are looking for that point, which minimizes the sum of dis-
tances from the nodes with know positions. There are many solution approaches to the
trilateration like the quadratic equation method, Cayley-Menger determinant method,
nonlinear least squares method. We used the last one combined with the INTLAB based
global optimizer.

Trilateration can be applied in an iterative manner to determine the locations of all
nodes in the following way: initially an unknown node, if possible, is located based on
its neighbors by trilateration. After being aware of its location, it becomes a reference
node to localize other unknown nodes in the subsequent localization process. This step
continues iteratively, gradually turning the unknown nodes to known.

The noisy distance measurement degrades the quality of trilateration in the following
aspects: uncertainty, non-consistency, ambiguity and error propagation has its e�ect.
There are heuristic methods (see Savarese et al. [103], Yang and Liu [115]) which try to
improve the quality of the trilateration. In our approach, we use four randomly selected
reference nodes to determine the position of a node.

3.4.4 Numerical results

The solution of the localization problem largely depends on the number of anchor
and non-anchor nodes and their positions, on the number of the neighboring nodes,
on the error of the measured distances and on the value of the transmission range. In
our numerical tests we used 200 nodes with randomly generated positions in a [0, 1] ×
[0, 1] square region. The proportion of anchor nodes was 10%. We assumed a �xed
transmission range r for all nodes. The measured distance between nodes is blurred by
introducing a Gaussian noise into the true distance in the following way:

d̃kj = dkj(1 + randn() · nf),

d̃ij = dij(1 + randn() · nf),

where dkj and dij are the true distances, randn() is a Gaussian distributed random
variable with 0 mean and variance 1 and nf is the noise factor with the value of 10%.
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Figure 3.6: The iterative trilateration result with noise free distances.

For the performance evaluation we used the mean error between the estimated and
the true position of non-anchor nodes, de�ned as

LE =
1

n

n∑
i=1

(||x̂i − xi||)2

r2
100%,

where LE is the localization error, xi is the true position of sensor node i, x̂i is the
estimated location of sensor node i and r is the transmission range.

In Figure 3.6, the true and estimated locations are shown in case when there is no
error in the distance measurements. Figure 3.7 presents the cases when we use three
(trilateration) and four neighboring nodes (multilateration) with noisy distances. The
corresponding localization errors are 0.0005%, 66.7%, and 24.8%, respectively. The
anchor nodes are marked with diamonds, the true positions of non-anchor nodes with
circle while the estimated locations with stars. The localization error is denoted by lines
connecting the real and estimated locations.

We evaluated the multilateration using some key metrics: the accuracy of the location
estimates versus the anchor nodes number and radio range. The presented numerical
results are the average of ten executions.

Figure 3.8(a) shows the impact of the number of anchor nodes and radio range on
localization accuracy. As it can be observed, the localization error decreases as the
number of anchor nodes increases. Using more anchor nodes it makes the localization
easier but it also increases the deployment costs.

The transmission range determines the number of neighbors of a node (see Table
3.9) and may have a serious impact on localization accuracy. A relationship between
transmission range vs. average connectivity (neighbor nodes number) is shown in Figure
3.8(b). In this case, as the radio range increases, the localization error decreases.
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Figure 3.7: The trilateration and multilateration results with r = 0.2 and nf = 10%.

Table 3.9: Transmission range vs. average connectivity.

Trans. range 1.4 1.6 1.8 2.0 2.2 2.4
Connectivity 10 13 17 20 24 28

The summary of the computational experiences is that using the iterative multilat-
eration technique with randomly selected four reference nodes, the localization error
will be about 25%. This value can be decreased by increasing the anchor nodes num-
ber or the radio range. The found locations with the iterative multilateration can be
also improved by solving the (3.36) general global optimization problem using the faster
C-XSC solver.

(a) Number of anchor nodes vs. localization ac-
curacy.

(b) Radio range vs. localization accuracy.

Figure 3.8: Impact of the number of anchor nodes and radio range on localization
accuracy.



Chapter 4

Summary and conclusions

In this study, two important �elds of the continuous global optimization have been
considered: the stochastic and the interval arithmetic based global optimization. In
both cases, we have implemented new algorithms in order to solve bound constrained
global optimization problems. All implementations were done in MATLAB.

In the �rst part of the thesis we have presented the stochastic type method GLOBAL.
We managed to improve the old algorithm in several aspects. The modi�ed UNIRANDI
local search method works now without dimension related problems. We use the BFGS
local search algorithm instead of the earlier DFP method. We have also tested the new
GLOBAL on standard test function and compared it with the old method and also
with the C-GRASP method. On the basis of the testing we can state that the new
implementation is at least as good or even better in terms of e�ciency as the old one
was, while the reliability of the solution has been increased substantially. Due to the
better quasi-Newton local search method, the new version is much better for smooth
problems even in terms of the necessary number of objective function evaluations.

We also evaluated the performance of the GLOBAL algorithm on the BBOB-2009
noiseless testbed, containing problems which re�ect the typical di�culties arising in
real-world applications. The results show that up to a small function evaluation budget,
GLOBAL performs well.

The e�ectivity of the method have been illustrated by solving an optimization prob-
lem from the domain of pension system. The conclusion of the numerical test is that on
the investigated problem the improved GLOBAL algorithm was able to �nd good ap-
proximations of the global minimizer points while the amount of computational e�orts
needed remained limited and in the acceptable region.

The second part of the thesis is concerned with interval arithmetic based branch
and bound methods. Our aim was to provide an easy to use reliable global optimiza-
tion method using MATLAB. We have proposed some algorithms which are based on
the old method implemented in C-XSC. The �rst simple algorithm can solve global
optimization problems without using derivative information. The second algorithm is
a more sophisticated one using the common accelerating devices: the cuto� test, the
concavity test, the monotonicity test, and the interval Newton step. Both algorithms
were tested on standard test functions and compared with the old one. Summarizing
the numerical results, we can state that the new implementation is in several indicators
(e.g. number of function, gradient and Hessian evaluations, number of iterations, and
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memory complexity) in essence equivalent to the old one. The CPU time needed is
as a rule by at least two order of magnitude higher for the INTLAB version � as it
can be anticipated regarding the interpreter nature of MATLAB. In spite of the lower
speed, the new interval global optimization methods can well be suggested as an early
modeling and experimentation tool for the veri�ed solution of bound constrained global
optimization problems.

Furthermore, we described a new algorithm using a simple condition for applying
the Newton step. We have completed a computational test in order to compare the
new condition with the old one. Based on the results we can state that we managed
to reduce signi�cantly the necessary computation time and the total number of Hessian
evaluations with the help of the new condition.

We also investigated the theoretical aspects of the Newton step on a prede�ned class
of inclusion functions of the second derivative. More precisely, we analyzed those cases
when the Newton step with the new condition is not successful in the sense that the
width of the interval does not decrease or the current interval will be divided into many
subintervals. According to the found results, we managed to characterize the cases when
the Newton step is not successful.

Finally, we analyzed the localization problem of sensor networks using interval arith-
metic techniques. We found an initial solution of sensor locations by iterative multi-
lateration with randomly selected four reference nodes. The obtained localization error
can be decreased by increasing the anchor nodes number or the radio range.



Összefoglalás

A doktori értekezés a folytonos globális optimalizálás két fontos témakörével, a
sztochasztikus- valamint az intervallum aritmetikán alapuló módszerekkel foglalkozik.
Mindkét módszer esetén a feltétel nélküli esetet vizsgáltuk és különböz® algoritmusokat
alkalmaztunk ezek megoldására. Valamennyi algoritmust MATLAB környezetben im-
plementáltunk.

A dolgozat els® részében a sztochasztikus módszerekkel foglalkoztunk. Bemutattuk
az ismertebb módszereket, valamint azok elméleti hátterét. A dolgozat ezen részének
alapja a GLOBAL két-fázisú, sztochasztikus optimalizáló módszer. Az algoritmust si-
került javítani a helyi keres® módszerek tekintetében. Az UNIRANDI helyi keres® ered-
ményessége most már nem függ a feladat dimenziójától. A régi DFP kvázi-Newton
alapú helyi keres® helyett, a hatékonyabb BFGS változatot használtuk. Az új GLOBAL
algoritmust összehasonlítottuk a régi változattal, valamint egy szintén két-fázisú mód-
szerrel, a C-GRASP-el. Az összevetések eredményeként megállapítható, hogy az új
módszer legalább annyira jó a hatékonyság tekintetében, mint a régi GLOBAL mód-
szer, a megbízhatóság alapján pedig egyértelm¶ a javulás a régi változathoz képest.
A C-GARSP módszerrel való összehasonlítás eredményeként elmondható, hogy az új
GLOBAL a függvényhívások számának tekintetében felülmúlja a másik módszert.

A GLOBAL módszert vizsgáltuk sima függvények halmazán, a BBOB-2009 konfe-
rencia keretén belül. A tesztfeladatok jól szemléltették a gyakorlati feladatok nehézségeit,
és az eredmények alapján a GLOBAL nagyon jól teljesített kis függvényhívás számig.

Az eljárás hatékonyságát teszteltük egy valós feladaton is, amelyben optimális nyug-
díjjárulék tervezés volt a cél. A numerikus tesztek alapján elmondható, hogy a GLOBAL
jó közelít® megoldást talált az optimum helyre valamint a megfelel® futási id® is elfo-
gadható.

A dolgozat második része intervallum aritmetikán alapuló korlátozás és szétválasztás
típusú optimalizálási algoritmusok vizsgálatával foglalkozik. Egy numerikusan meg-
bízható, könnyen használható, globális optimalizálási algoritmusnak az implementálása
volt a cél, felhasználva a korábbi módszereket. Különböz® algoritmus változatokat
javaslunk a dolgozatban, amelyek struktúrája nagyjából követi a C-XSC-ben imple-
mentált régi eljárás szerkezetét.

Az els® algoritmus célja olyan globális optimalizálási feladatok megoldása, amelyek-
ben nem feltételezünk semmilyen információt a célfüggvény deriváltjáról. A második egy
összetettebb algoritmus, amely már használja a következ® gyorsító teszteket: kivágási-,
konkavitási-, monotonitási teszt, és Newton lépés. Mindkét algoritmust numerikusan is
teszteltük ismert függvényhalmazon és összehasonlítottuk a régi módszerrel. Összegezve
a teszteredményeket elmondható, hogy az INTLAB alapú algoritmus hatékonysági mu-
tatói nagyjából megegyeznek vagy hasonlók a C-XSC alapú eljárás mutatóival � a CPU
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id® kivételével. A CPU id® esetében egy-két nagyságrenddel nagyobb értékeket kaptunk,
amely a MATLAB interpreter módban való m¶ködésének tudható be. Ennek ellenére
az új globális optimalizálási módszer hasznos modellez® eszköz lehet optimalizálási fe-
ladatok kezdeti tanulmányozására. Különösen igaz ez olyan feladatok esetén, amelyekre
a CPU id® a növekedés ellenére is elfogadható mérték¶.

Vizsgáltunk továbbá egy olyan algoritmust, amelyben a Newton lépés bekapcsolására
egy új feltételt alkalmaztunk. Ennek az a lényege, hogy minden olyan intervallumra
alkalmazzuk a Newton lépést, amelynek szélessége kisebb, mint egy el®re megadott érték.
Az INTLAB alapú algoritmust teszteltük az új feltétellel, és a kapott eredményeket
összehasonlítottuk a korábbi eredményekkel. Ez alapján elmondható, hogy az új feltétel
segítségével jelent®sen sikerült csökkenteni a teljes futásid®t, valamint a Hesse mátrix
kiértékelések számát.

A Newton lépés bekapcsolására használt új feltétel elméleti hátterét is megvizsgál-
tuk, a másodrend¶ derivált egy el®re megadott befoglalófüggvény osztályán. Azokat
az eseteket tanulmányoztuk, amikor az el®bbi feltételt alkalmazva a Newton lépés nem
eredményes abban az értelemben, hogy vagy nem is csökken az intervallum mérete, vagy
sok darabra osztja fel az aktuális intervallumot. Az eredmények alapján elmondható,
hogy sikerült jellemezni azokat az eseteket, amelyre a Newton lépés nem eredményes a
fenti értelemben.

Befejezésként szenzorhálózatok lokalizálási problémáját vizsgáltuk intervallumos mód-
szerekkel. Az iteratív ívmetszést alkalmazva kezdeti közelít® megoldásokat találtunk
a szenzorok pozíciójára. Az iteráció során egy csomópont meghatározására négy, is-
mert pozíciójú szomszédos csomópontot választottunk véletlenszer¶en. A lokalizálási
hiba csökkenthet®, ha az ismert helyzet¶ csomópontok számát, vagy a hatókör sugarát
növeljük.



Appendix A

A collection of global optimization test
problems

In the following, we list the objective functions denoted by f and the bounds used
in our tests, the abbreviated and full names, the dimensionality and the known global
minimizer points, and the corresponding function values of the problems.

S5: Shekel-5 (x ∈ R4):

f(x) = −
5∑

i=1

1

(x− ai)(x− ai)T + ci
.

Coe�cients:

i ai ci
1 (4.0, 4.0, 4.0, 4.0) 0.1
2 (1.0, 1.0, 1.0, 1.0) 0.2
3 (8.0, 8.0, 8.0, 8.0) 0.2
4 (6.0, 6.0, 6.0, 6.0) 0.4
5 (3.0, 7.0, 3.0, 7.0) 0.4

Bounds: 0 ≤ xi ≤ 10, i = 1, . . . , 4.

Global minimum:

x∗ = (4.0000371, 4.0001332, 4.0000371, 4.0001332)T ,

f ∗ = −10.15319967.

S7: Shekel-7 (x ∈ R4):

f(x) = −
7∑

i=1

1

(x− ai)(x− ai)T + ci
.

Coe�cients:
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i ai ci
1 (4.0, 4.0, 4.0, 4.0) 0.1
2 (1.0, 1.0, 1.0, 1.0) 0.2
3 (8.0, 8.0, 8.0, 8.0) 0.2
4 (6.0, 6.0, 6.0, 6.0) 0.4
5 (3.0, 7.0, 3.0, 7.0) 0.4
6 (2.0, 9.0, 2.0, 9.0) 0.6
7 (5.0, 5.0, 3.0, 3.0) 0.3

Bounds: 0 ≤ xi ≤ 10, i = 1, . . . , 4.

Global minimum:

x∗ = (4.0005729, 4.0006893, 3.999489, 3.9996061)T ,

f ∗ = −10.40294056.

S10: Shekel-10 (x ∈ R4):

f(x) = −
10∑
i=1

1

(x− ai)(x− ai)T + ci
.

Coe�cients:

i ai ci
1 (4.0, 4.0, 4.0, 4.0) 0.1
2 (1.0, 1.0, 1.0, 1.0) 0.2
3 (8.0, 8.0, 8.0, 8.0) 0.2
4 (6.0, 6.0, 6.0, 6.0) 0.4
5 (3.0, 7.0, 3.0, 7.0) 0.4
6 (2.0, 9.0, 2.0, 9.0) 0.6
7 (5.0, 5.0, 3.0, 3.0) 0.3
8 (8.0, 1.0, 8.0, 1.0) 0.7
9 (6.0, 2.0, 6.0, 2.0) 0.5
10 (7.0, 3.6, 7.0, 3.6) 0.5

Bounds: 0 ≤ xi ≤ 10, i = 1, . . . , 4.

Global minimum:

x∗ = (4.000746, 4.00059, 3.999663, 3.999509)T ,

f∗ = −10.53640981.

H3: Hartman-3 (x ∈ R3):

f(x) = −
4∑

i=1

ci exp

(
−

3∑
j=1

aij(xj − pij)
2

)
.

Coe�cients:
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i ai pi ci
1 (3.0, 10.0, 30.0) (0.36890, 0.11700, 0.26730) 1.0
2 (0.1, 10.0, 35.0) (0.46990, 0.43870, 0.74700) 1.2
3 (3.0, 10.0, 30.0) (0.10910, 0.87320, 0.55470) 3.0
4 (0.1, 10.0, 35.0) (0.03815, 0.57430, 0.88280) 3.2

Bounds: 0 ≤ xi ≤ 1, i = 1, . . . , 3.

Global minimum:

x∗ = (0.1146143, 0.55564988, 0.85254695)T ,

f ∗ = −3.86130579.

H6: Hartman-6 (x ∈ R6):

f(x) = −
4∑

i=1

ci exp

(
−

6∑
j=1

aij(xj − pij)
2

)
.

Coe�cients:

i ai pi ci
1 (10.0, 3.0, 17.0, 3.5, 1.7, 8.0) (0.1312, 0.1696, 0.5569, 0.0124, 0.8283, 0.5886) 1.0
2 (0.05, 10.0, 17.0, 0.1, 8.0, 14.0) (0.2329, 0.4135, 0.8307, 0.3736, 0.1004, 0.9991) 1.2
3 (3.0, 3.5, 1.7, 10.0, 17.0, 8.0) (0.2348, 0.1451, 0.3522, 0.2883, 0.3047, 0.6650) 3.0
4 (17.0, 8.0, 0.05, 10.0, 0.1, 14.0) (0.4047, 0.8828, 0.8732, 0.5743, 0.1091, 0.0381) 3.2

Bounds: 0 ≤ xi ≤ 1, i = 1, . . . , 6.

Global minimum:

x∗ = (0.2016895, 0.1500106, 0.4768739, 0.2753324, 0.31165161, 0.65730053)T ,

f ∗ = −3.32236801.

GP: Goldstein and Price (x ∈ R2):

f(x) = (1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)) ·
(30 + (2x1 − 3x2)

2(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)).

Bounds: −2 ≤ xi ≤ 2, i = 1, 2.

Global minimum: x∗ = (0,−1)T , f∗ = 3.

SHCB: Six-hump camel-back function (x ∈ R2):

f(x) = 4x21 − 2.1x41 +
1

3
x61 + x1x2 − 4x22 + 4x42.

Bounds: −2 ≤ xi ≤ 2, i = 1, 2.

Global minimum:

X∗ =

{
(0.08984201,−0.71265640)T

(−0.08984201, 0.71265640)T ,

f ∗ = −1.03162845.
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BR: Branin (x ∈ R2):

f(x) =

(
5

π
x1 −

5.1

4π2
x21 + x2 − 6

)2

+ 10

(
1− 1

8π

)
cos x1 + 10.

Bounds: −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15.

Global minimum:

X∗ =


(−π, 12.275)T
(π, 2.275)T

(9.42478, 2.475)T ,

f ∗ = 0.397887.

RB2, RB5, RB10: Rosenbrock (x ∈ Rn, n = 2, 5, 10, respectively):

f(x) =
n−1∑
i=1

[
100(xi+1 − x2i )

2 + (xi − 1)2
]
.

Bounds: −1.2 ≤ xi ≤ 1.2, i = 1, . . . , n.

Global minimum: x∗ = (1, . . . , 1︸ ︷︷ ︸
n

)T , f∗ = 0.

ZH5, ZH10: Zakharov (x ∈ Rn, n = 5, 10, respectively):

f(x) =
n∑

i=1

x2i +

(
n∑

i=1

0.5ixi

)2

+

(
n∑

i=1

0.5ixi

)4

.

Bounds: −5 ≤ xi ≤ 10, i = 1, . . . , n.

Global minimum: x∗ = (0, . . . , 0︸ ︷︷ ︸
n

)T , f∗ = 0.

THCB: Three-hump camel-back function (x ∈ R2):

f(x) = 12x21 − 6.3x41 + x61 + 6x2(x2 − x1).

Bounds: −3 ≤ xi ≤ 3, i = 1, 2.

Global minimum: x∗ = (0, 0)T , f ∗ = 0.

Easom: Easom (x ∈ R2):

f(x) = − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2).

Bounds: −100 ≤ xi ≤ 100, i = 1, 2.

Global minimum: x∗ = (π, π)T , f ∗ = −1.

Shubert: Shubert (x ∈ R2):

f(x) =

(
5∑

i=1

i cos((i+ 1)x1 + i)

)(
5∑

i=1

i cos((i+ 1)x2 + i)

)
.

Bounds: −10 ≤ xi ≤ 10, i = 1, 2.

Global minimum: 18 global minimizer points, f ∗ = −186.7309.
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L3: Levy-3 (x ∈ R2):

f(x) =
5∑

i=1

i cos((i− 1)x1 + i)
5∑

j=1

j cos((j + 1)x2 + j).

Bounds: −10 ≤ xi ≤ 10, i = 1, 2.

Global minimum:

X∗ =



(4.97647760, 4.85805687)T

(4.97647760,−1.42512842)T

(4.97647760,−7.70831373)T

(−1.30670770, 4.85805687)T

(−1.30670770,−1.42512842)T

(−1.30670770,−7.70831373)T

(−7.58989301, 4.85805687)T

(−7.58989301,−1.42512842)T

(−7.58989301,−7.70831373)T ,

f ∗ = −176.54179313.

L5: Levy-5 (x ∈ R2):

f(x) =
5∑

i=1

i cos((i− 1)x1 + i)
5∑

j=1

j cos((j + 1)x2 + j)

+(x1 + 1.42513)2 + (x2 + 0.80032)2.

Bounds: −10 ≤ xi ≤ 10, i = 1, 2.

Global minimum: x∗ = (−1.306853,−1.424845)T , f∗ = −176.137578.

L8, L9, L10, L11, L12: Levy (x ∈ Rn, n = 3, 4, 5, 8, 10, respectively):

f(x) =
n−1∑
i=1

(yi − 1)2(1 + 10 sin2(πyi+1))

+ sin2(πy1) + (yn − 1)2,

with yi = 1 + (xi − 1)/4, i = 1, . . . , n.

Bounds: −10 ≤ xi ≤ 10, i = 1, . . . , n.

Global minimum: x∗ = (1, . . . , 1︸ ︷︷ ︸
n

)T , f∗ = 0.

L13, L14, L15, L16, L18: Levy (x ∈ Rn, n = 2, 3, 4, 5, 7, respectively):

f(x) =
n−1∑
i=1

(xi − 1)2(1 + sin2(3πxi+1))

+(xn − 1)2(1 + sin2(2πxn)) + sin2(3πx1).
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Bounds: −10 ≤ xi ≤ 10, i = 1, . . . , n for n = 2, 3, 4 and −5 ≤ xi ≤ 5, i = 1, . . . , n
for n = 5, 7.

Global minimum: x∗ = (1, . . . , 1︸ ︷︷ ︸
n

)T , f∗ = 0.

Schw2.1: Beale (x ∈ R2):

f(x) = (1.5− x1 + x1x2)
2 + (2.25− x1 + x1x

2
2)

2 + (2.625− x1 + x1x
3
2)

2.

Bounds: −1.5 ≤ x1 ≤ 7.5, −4 ≤ x2 ≤ 5.

Global minimum: x∗ = (3, 0.5)T , f ∗ = 0.

Schw3.1: Schwefel (x ∈ R3):

f(x) =
3∑

i=1

(
(x1 − x2i )

2 + (xi − 1)2
)
.

Bounds: −10 ≤ xi ≤ 10, i = 1, 2, 3.

Global minimum: x∗ = (1, 1, 1)T , f∗ = 0.

Schw2.5: Booth (x ∈ R2):

f(x) = (x1 + 2x1 − 7)2 + (2x1 + x2 − 5)2.

Bounds: −5 ≤ xi ≤ 5, i = 1, 2.

Global minimum: x∗ = (1, 3)T , f ∗ = 0.

Schw2.7: Box 3D (x ∈ R3):

f(x) =
10∑
k=1

(
exp(

−kx1
10

)− exp(
−kx2
10

)− (exp(
−k
10

)− exp(−k))x3
)2

.

Bounds: −10 ≤ xi ≤ 10, i = 1, 2, 3.

Global minimum: x∗ = (0, 0, 0)T , f∗ = 0.

Schw2.10: Kowalik (x ∈ R4):

f(x) =
11∑
i=1

(
ai − x1

b2i + bix2
b2i + bix3 + x4

)
.

Coe�cients:
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i ai
1
bi

1 0.1957 0.25
2 0.1947 0.50
3 0.1735 1.00
4 0.1600 2.00
5 0.0844 4.00
6 0.0627 6.00
7 0.0456 8.00
8 0.0342 10.00
9 0.0323 12.00
10 0.0235 14.00
11 0.0246 16.00

Bounds: 0 ≤ xi ≤ 0.42, i = 1, . . . , 4.

Global minimum:

x∗ = (0.19283345, 0.19083623, 0.12311729, 0.13576598)T ,

f∗ = 3.074859878 · 10−4.

Schw2.14: Powell (x ∈ R4):

f(x) = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)

4.

Bounds: −4 ≤ xi ≤ 5, i = 1, . . . , 4.

Global minimum: x∗ = (3,−1, 0, 1)T , f ∗ = 0.

Schw2.18: Matyas (x ∈ R2):

f(x) = 0.26(x21 + x22)− 0.48x1x2.

Bounds: −30 ≤ xi ≤ 30, i = 1, 2.

Global minimum: x∗ = (0, 0)T , f ∗ = 0.

Schw3.2: Schwefel (x ∈ R3):

f(x) =
3∑

i=2

(
(x1 − x2i )

2 + (xi − 1)2
)
.

Bounds: −1.89 ≤ xi ≤ 1.89, i = 1, 2, 3.

Global minimum: x∗ = (1, 1, 1)T , f∗ = 0.

Schw3.7: Schwefel (x ∈ R10):

f(x) =
10∑
i=1

x10i .

Bounds: −1.89 ≤ xi ≤ 1.89, i = 1, . . . , 10.

Global minimum: x∗ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , f∗ = 0.
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Griew5: Griewank-5 (x ∈ R5):

f(x) =
5∑

i=1

x2i
400

−
5∏

i=1

cos(
xi√
i
) + 1.

Bounds: −600 ≤ xi ≤ 500, i = 1, . . . , 5.

Global minimum: x∗ = (0, 0, 0, 0, 0)T , f ∗ = 0.

Griew7: Griewank-7 (x ∈ R7):

f(x) =
7∑

i=1

x2i
4000

−
7∏

i=1

cos(
xi√
i
) + 1.

Bounds: −600 ≤ xi ≤ 500, i = 1, . . . , 7.

Global minimum: x∗ = (0, 0, 0, 0, 0, 0, 0)T , f∗ = 0.

R4: Ratz-4 (x ∈ R2):
f(x) = sin(x21 + 2x22) exp(−x21 − x22).

Bounds: −3 ≤ xi ≤ 3, i = 1, 2.

Global minimum:

X∗ =

{
(0.0,−1.4575221047)T

(0.0, 1.4575221047)T ,

f ∗ = −0.10689134.

R5, R6, R7, R8: Ratz (x ∈ Rn, n = 3, 5, 7, 9, respectively):

f(x) =

(
sin2

(
π
x1 + 3

4

) n−1∑
i=1

(
xi − 1

4

)2(
1 + 20 sin2

(
π
xi+1 + 3

4

)))2

.

Bounds: −10 ≤ xi ≤ 10, i = 1, . . . , n.

Global minimum: x∗ = (1, . . . , 1︸ ︷︷ ︸
n−1

, [−10, 10])T , f∗ = 0.

EX2: a simpli�ed practical parameter estimation problem (x ∈ R5):

f(x) =
6∑

i=1

∣∣∣∣fi − (x1 + x2
ωx3
i

+ ı

(
ωix4 −

x5
ωx3
i

))∣∣∣∣2 ,
where the fi-s are 5.0− 5.0ı, 3.0− 2.0ı, 2.0− ı, 1.5− 0.5ı, 1.2− 0.2ı and 1.1− 0.1ı,
and ωi = πi/20, for i = 1, 2, ..., 6 (here ı is the imaginary unit, and i is an index).

Bounds: [0.0, 1.0]2 × [1.1, 1.3]× [0.0, 1.0]2.

Global minimum:

x∗ = (0.60629546, 0.55676269, 1.13180770, 0.75020138, 0.62190075)T ,

f ∗ = 0.21245983.
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