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Összefoglalás 65

Acknowledgement 68

Index 69

Bibliography 71



List of Figures

2.1 Possible rectangles to pack . . . . . . . . . . . . . . . . . . . . 14

3.1 Contradiction: cycle with length at most 2d + 1 . . . . . . . . 28

3.2 Contradiction: cycle with length at most 4d + 1 . . . . . . . . 28

3.3 Online coloring bipartite graph . . . . . . . . . . . . . . . . . 30

3.4 Contradiction: odd cycle with length at most 2d + 1 . . . . . . 31

3.5 Contradiction: odd cycle with length at most 4d + 1 . . . . . . 31

3.6 2-coloring of Hk+1(ONL) . . . . . . . . . . . . . . . . . . . . 36

4.1 Uniformly µ-decomposable space . . . . . . . . . . . . . . . . 42

4.2 Partitioning of a phase . . . . . . . . . . . . . . . . . . . . . . 48

3



Chapter 1

Introduction: competitive
analysis

Online algorithms have been investigated for approximately 30 years. One
of the main methods to measure the performance of online algorithms is a
worst case analysis called competitive analysis. Its roots can be found in
combinatorial optimization theory, in particular Graham’s work [23]. In an
online problem the parts of the input sequence (input set equipped with
an ordering) appear one by one and the online algorithm must produce a
sequence of decisions about these parts that will have an impact on the final
quality of its overall performance. Each of these decisions must be made based
on the already appeared part of the input sequence without any information
about the future (for more details see [11]).

To introduce some notions we begin with discussion of optimization prob-
lems which can be either cost minimization or profit maximization. Here we
will consider the former case. An optimization problem of cost minimization
consists of a set I of inputs and a cost function. Associated with every input
I is a set of feasible outputs, and associated with each feasible output is a
positive real representing the cost of the output with respect to I, among
which the minimal is denoted by opt(I). Given any legal input I an algo-
rithm A computes a feasible output. The cost associated with this output is
denoted by A(I).

An online algorithm A is called (strictly) c-competitive for some c > 0 if
for all finite input sequences

A(I) ≤ c · opt(I).

The competitive ratio of A is the smallest c such that A is c-competitive. An
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CHAPTER 1. INTRODUCTION: COMPETITIVE ANALYSIS 5

algorithm A is weakly c-competitive if there is a constant a such that for all
finite input sequence I,

A(I) ≤ c · opt(I) + a.

The weak competitive ratio of A is the smallest c such that A is c-competi-
tive.

There are several ways to view online problems. One is to consider them
as a game between an online player and a malicious adversary. The online
player runs an online algorithm on an input that is created by the adversary.
The adversary’s goal is to construct the worst possible input maximizing the
competitive ratio, based only on knowledge of the algorithm used by the
online player. That is, the adversary tries to make the task expensive to the
online player, but, at the same time, maintaining the optimal cost low. The
adversary is often identified with an algorithm providing the best possible
(optimal) cost.

For deterministic online algorithms the adversary knows what the online
player’s response will be to each input element. So it does not matter whether
the adversary has to construct the whole input sequence in advance or has
the possibility to construct it piecewise, after the response of the player. For
randomized online algorithms it does not hold, therefore the nature of the
adversaries can be defined several ways (see [9] for a comparison).

• The first and most frequently used variant is the oblivious adversary,
which must construct the input sequence in advance based only on the
description of the online algorithm and pays the optimal cost.

• A much stronger version is the adaptive online adversary : makes the
next request based on the algorithm’s answers to the previous ones,
but also serves it immediately.

• The strongest one is the adaptive offline adversary : makes the next
request based on the algorithm’s answers to the previous ones, but
serves them optimally at the end.

We say that a randomized online algorithm A is c-competitive against an
adversary if there exists a constant a such that the expected difference of
the cost of A and c times the adversary’s cost is at most a for any finite
input sequence. By the following theorem the adaptive offline adversary is so
strong that randomization adds no power against it.
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Theorem 1 (Ben-David et al. [9]) If there is a randomized algorithm that
is c-competitive against any adaptive offline adversary then there also exists
an c-competitive deterministic algorithm.

We will play against oblivious adversary so we call a randomized online
algorithm c-competitive if it is c-competitive against the oblivious adversary
(recall that the cost of the oblivious adversary is the optimal cost), i.e. if
there exists a constant a such that for any input sequence I

E[A(I)] ≤ c · opt(I) + a.

The competitive ratio of A is the smallest c for which A is c-competitive.

The first family of problems we will consider is the family of online
scheduling, in which jobs are given with processing time and have to be
assigned to machines handling them. Jobs arrive one by one, and they have
to be scheduled immediately at their arrival. The cost is the processing time
of the most loaded machine plus extra costs. In our model one may pur-
chase machines and reject jobs by paying some penalty. We will construct a
constant-competitive algorithm in this model.

The second family, the online graph coloring, is a well studied problem.
The vertices of the input graph are revealed one by one and have to be
colored immediately. The cost of an algorithm is obviously the number of
colors it uses. We will consider two families of graphs with n vertices and
generalize known algorithms. We will give upper bounds of their competitive
ratio depending on n and the parameter of the family of graphs. Moreover,
we will generalize the online graph coloring problem to a kind of hypergraph
coloring and prove lower and upper bounds of competitive ratios in several
families of hypergraphs.

One of the best-known online problems is the online k-server problem
in which k servers are given, occupying different points of a metric space.
The input is a request sequence, also consisting of the points of the metric
space. We have to serve each request by moving a server there. The cost
is the sum of the distances covered by the k servers. We will consider a
randomized version. Usually a randomized online algorithm for the k-server
problem is called c-competitive if it is c-competitive in the above sense with
a depending (only) on the initial configuration of the servers (i.e., neither
the metric space nor the initial configuration are parts of the input). We
will present a randomized online algorithm on so-called decomposable spaces
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which is o(k)-competitive on specific metric spaces called HSTs with small
height. We also define another type of the problem in which one can reject
some requests by paying some penalty. For this model we will present a
(deterministic) online algorithm on uniform spaces (i.e., spaces where the
distance is 1 between any two points) and prove that its competitive ratio is
the best possible apart from some constant additive term a.

We will use the following well-known notations.

• [n] = {1, 2, . . . , n} stands for the set of the first n positive integers.

• ϕ = 1+
√

5
2

is the golden ratio.

• Hk =
∑k

i=1 i−1 is the kth harmonic number.

• Pr(E) is the probability of event E .

• E[η] is the expected value of the random variable η.

• Cn is a cycle (graph) of length n.

• Kn,n is a complete bipartite graph with color classes of size n.

• o, O, Ω and Θ are the Bachmann–Landau notations.



Chapter 2

Scheduling with machine cost
and rejection

2.1 Preliminaries

The area of scheduling theory has large literature and several models (see
in [40]). In one of the most fundamentals and simplests we have a fixed
number of machines and the jobs arrive from a list (list model). The ith job
has processing time pi. We consider the “parallel machines case” where m
machines are given. To schedule a job we have to assign it to a machine. We
have to schedule each job and no machine may simultaneously run two jobs.
By the load of a machine we mean the sum of processing times of all jobs
assigned to it and the makespan is the maximum of loads. The cost is the
makespan, therefore our goal is to minimize it.

In the online version of the problem the jobs and their processing times are
revealed one by one. When a job is revealed the online algorithm has to assign
to a machine without any information about the further jobs. Algorithm
LIST is the first algorithm in this model has been developed by Graham
[23] in 1966.

Algorithm LIST
When the `th job is revealed assign it to the machine where the
actual load is minimal.

In fact, Algorithm LIST tries to balance the loads of the machines.

8
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Theorem 2 (Graham [23]) The competitive ratio of Algorithm LIST is
2− 1/m.

2.1.1 Scheduling with machine cost

In machine scheduling usually there is a fixed set of machines and a given
set of jobs must be scheduled on the machines. In the last few years some
generalized models were investigated where it is allowed to change the set of
machines.

The problem of scheduling with machine cost is defined in [25]. In this
model the number of machines is not a given parameter of the problem: the
algorithm has to purchase the machines, and the goal is to minimize the cost
spent for purchasing the machines plus the makespan. In [25] the problem
where each machine has cost 1 is investigated. It can be supposed without
loss of generality that the machines have cost 1, any constant cost can be
reduced to this problem by scaling the processing times. The jobs arrive one
by one and the decision maker has to decide in each step whether to buy
new machines and then schedule the job on one of the already purchased
machines without any information about the further jobs. Imreh and Noga
[25] presented the following algorithm. ρ = (0 = ρ1, ρ2, . . . , ρi, . . . ) is an
increasing sequence.

Algorithm Aρ

(i) When the `th job is revealed Aρ purchases machines (if neces-
sary) so that the current number of machines i satisfies ρi ≤∑`

j=1 pj < ρi+1.

(ii) We schedule the jth job on a least loaded machine, according
to the LIST algorithm.

Theorem 3 (Imreh, Noga [25]) The competitive ratio of Algorithm Aρ is
ϕ for ρ = (0, 4, 9, 16, . . . , i2, . . .).

They showed also that no online algorithm can have smaller competitive ratio
than 4/3. In [16] the problem is further investigated and a 1.5798-competitive
algorithm is presented.
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2.1.2 Scheduling with rejection

In the original scheduling problem the algorithm has to schedule each job.
The problem of scheduling with rejection is defined in [6]. In this model, it
is possible to reject the jobs. The jobs are characterized by a processing time
and a penalty . In this problem the cost is the sum of the makespan and the
penalties of all rejected jobs.

Denote pi the processing time of ith job and wj its penalty. Bartal et al.
[6] developed algorithm Reject-Total-Penalty(α). It has a parameter α which
plays the role of a threshold. In the j-th step Rj denotes the set of the indices
of the rejected jobs, moreover Rj,m = {i | i ∈ Rj, wi > pi/m}.

Algorithm RT P(α)
jth step:

(i) If wj ≤ pj/m, we reject the jth job.
(ii) If wj > pj/m, and wj +

∑
i∈Rj−1,m

wi ≤ αpj, we reject the jth
job.

(iii) Otherwise, we schedule it on a least loaded machine, according
to the LIST algorithm.

Theorem 4 (Bartal et al. [6]) The Algorithm RT P(ϕ − 1) is (1 + ϕ)-
competitive.

Bartal et al. [6] also proved that there is no online algorithm that is
c-competitive for some constant c < 1 + ϕ and all m.

2.1.3 Scheduling with machine cost and rejection

The results of the rest of the chapter can be found in [34].

Hereinafter we consider a more general model MCR combining the above
two approaches. Here the machines are not given to the algorithm in advance
but the algorithm must purchase them, and the jobs can be rejected. Here
the cost is the makespan plus the cost of purchasing the machines plus the
sum of the penalties of the rejected jobs so our goal is to minimize it. We
suppose that each machine has cost 1. We call the total cost of purchasing
the machines machine purchasing cost .

Consider an arbitrary list of jobs and denote the set of its indices by J .
Let J ′ ⊆ J . For the sake of convenience we denote by A(J ′) the cost of the
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schedule produced by algorithm A on input list generated by J ′, the cost of
the optimal schedule is denoted by opt(J ′).

In the problem the jth job has a processing time pj and a penalty which
is the cost of rejecting it, denoted by wj. For a set H ⊆ J we make use of the
notations PH =

∑
j∈H

pj and WH =
∑
j∈H

wj. As a shorthand we denote P{1,...,`}

by simply writing P`.

In the following we will introduce several algorithms. We note that in [18]
the authors observe that the problem is a generalization of the Ski-Rental
Problem [37] which can be described as follows: A sportsman can either rent
a pair of skis, in this case he must pay 1 unit of money by each occasion, or
he can buy a pair of skis for N unit of money. When should he buy the pair
of skis to pay totally the least money? This problem is equivalent to the very
special case of the MCR problem, where all jobs have size 0, and penalty
1/N . It is well known that no algorithm with smaller competitive ratio than
2 exists for the solution of the Ski-Rental Problem and therefore neither for
MCR problem.

2.2 Results on MCR

In this section we develop and analyze some algorithms for the solution of
the problem. Since we have rules for purchasing the machines and for the
rejection and scheduling of the jobs it is a straightforward idea to combine
these rules and build algorithms for the complex problem. In the first part
we show the surprising result that the simple combinations of these rules are
not constant competitive.

2.2.1 Mixed algorithms

In the following algorithms, α is a given constant, ρ = (0 = ρ1, ρ2, . . . , ρi, . . .)
is an increasing sequence. In the j-th step Aj denotes the set of the indices of
accepted jobs, Rj denotes the set of the indices of the rejected ones, moreover
Rj,m = {i | i ∈ Rj, wi > pi/m} and Rj,0 = {i | i ∈ Rj, wi > pi}. In the j-th
step Aj denotes the set of the indices of accepted jobs and Rj the set of the
rejected ones. In all cases we start with 0 machines.
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1st combined algorithm (CA1).
jth step:

(i) When the jth job appears, we purchase machines (if neces-
sary) so that the current number of machines m satisfies ρm ≤
PAj−1∪{j} < ρm+1.

(ii) If wj ≤ pm/m, we reject the jth job.
(iii) If wj > pm/m, and WRj−1,m

+ wj ≤ αpj, we also reject it.
(iv) Otherwise, we schedule it on a least loaded machine, according

to Algorithm LIST .

Proposition 5 There is no such c for which algorithm CA1 is c-competitive.

Proof. Assume that CA1 is c-competitive for some c > 0. Let n > c, J = {1},
p1 = ρn+1 and w1 = 1. For this job, the optimal schedule rejects it and
opt(J) = 1 holds. Algorithm CA1 also rejects it, but it purchases n + 1
machines; so its cost CA1(J) = n + 2 > n > c · opt(J), from the constraint
n > c. From this contradiction follows that CA1 is not c-competitive. 2

We also investigate the following similar algorithm which can handle the
counterexample given above.

2th combined algorithm (CA2).
jth step:

(i) When the jth job appears, we compute the number m such
that ρm ≤ PAj−1∪{j} < ρm+1 holds.

(ii) If wj ≤ pm/m, we reject the jth job.
(iii) If wj > pm/m, and WRj−1,m

+ wj ≤ αpj, we also reject it.
(iv) Otherwise if necessary, we purchase machines so that the cur-

rent number of them reaches m; after that, we schedule it on
a least loaded machine, according to Algorithm LIST .

Proposition 6 There is no such c for which algorithm CA2 is c-competitive.

Proof. Assume that CA2 is c-competitive for some c > 0. Let n and k be two
integers such that n > 2c and ρ2/2 ≤ n/k < ρ2. Furthermore, let |J | = kn,
and for all j ∈ J let pj = wj = n/k. If we purchase n machines and schedule
k jobs on each of them, the cost will be n + k(n/k) = 2n. From this we can
conclude opt(J) ≤ 2n. Since algorithm CA2 rejects all the jobs, its cost is
CA2(J) = kn(n/k) = n2. From the constraint n > 2c, n2 > 2cn holds, so
CA2 is not c-competitive. 2
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3rd combined algorithm (CA3).
jth step:

(i) Let m be the actual number of the machines. If wj ≤ pm/m,
we reject the jth job.

(ii) If wj > pm/m, and WRj−1,m
+ wj ≤ αpj, we also reject it.

(iii) Otherwise if necessary, we purchase machines so that the num-
ber of them m satisfies ρm ≤ PAj−1∪{j} < ρm+1. After that, we
schedule it on a least loaded machine, according to Algorithm
LIST .

Proposition 7 There is no such c for which algorithm CA3 is c-competitive.

Proof of Proposition 6 can also be applied to this case.

2.2.2 Algorithm Optcopy

In this section we present a more sophisticated algorithm. The basic idea is
that instead of the original problem we consider a relaxed version, where we
replace part of the cost of the schedule (purchasing cost of machines plus the
makespan) with a lower bound of it.

Suppose that we accepted a set of jobs, denote the set of their indices
by A, furthermore m machines were purchased, and the current makespan
is M . Then Mm ≥ PA, thus m ≥ PA/M . So we obtain that for the cost of
the schedule M + m ≥ M + PA/M is valid. Let lA denote the greatest pro-
cessing time that belongs to a job with indices in A. We define the following
expression:

MA :=

{
max {√PA, lA}, if PA > 1
1 otherwise

Concerning the value of MA the following statement comes immediately
by the definition.

Lemma 8 For two arbitrary sets A1 and A2 of indices, if A1 ⊆ A2 then
MA1 ≤ MA2.

Now for an arbitrary set A of indices let
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TA :=





MA +
PA

MA

if A 6= ∅
0 if A = ∅

The geometrical meaning of TA is the following: if we consider the jobs as
rectangles with sides 1 and pi, then 2TA is the smallest possible perimeter of
the rectangles which can be used to pack the rectangles assigned to the jobs.
Figure 2.1 shows the possible such rectangles.

lA
lA

PA

√
PA

√
PA

PA/lA

(a) 1 ≤ √
PA < lA (b) 1, lA ≤

√
PA (c) 0 < PA < 1

1 1 1

Figure 2.1: Possible rectangles to pack

By this interpretation we can prove easily the following statements.

Lemma 9 For two arbitrary sets A1 and A2 of indices, if A1 ⊆ A2 then
TA1 ≤ TA2.

Lemma 10 Let A be an arbitrary nonempty set and x ≥ max{1, lA} an
arbitrary positive number. Then

x +
PA

x
≥ TA.

Using Lemma 10 we immediately obtain the following statement for the
case where rejection is not allowed (also proven in [25]).

Lemma 11 [25] The cost of an optimal schedule with machine cost of the
jobs with indices from set A when no rejection is allowed is at least TA.
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In [25], Theorem 2 proves that Algorithm Aρ with the sequence ρ =
(0, 4, . . . , i2, . . . ) is ϕ competitive in the model where the rejection of the
jobs is not allowed. In the proof the authors show that for an arbitrary set A
of indices Aρ(A)/opt(A) ≤ ϕ. This is shown by case analysis, in each case the
inequality Aρ(A)/TA ≤ ϕ is proven and by Lemma 11 this shows the required
statement. Therefore the same proof proves the following statement:

Lemma 12 [25] For Algorithm Aρ with the sequence ρ(0, 4, . . . , i2, . . . ) and
an arbitrary input set A of indices when no rejection is allowed,

Aρ(A) ≤ ϕTA.

Now we can define the relaxed problem. Jobs arrive, each job has a pro-
cessing time and a penalty. We have to find a solution where the total penalty
paid for the rejected jobs plus the value TA for the set A of indices of ac-
cepted jobs is minimal. We call this problem relaxed . For a set J of indices
of jobs the cost of the optimal solution of the relaxed problem is denoted by
ropt(J). From Lemma 11 the following statement follows.

Corollary 13 For an arbitrary set J of indices of jobs

ropt(J) ≤ opt(J).

Proof. Consider an optimal solution of the original problem on input J . Let
A be the set of the indices of the accepted jobs, R be the set of the indices
of the rejected jobs. Then by Lemma 11 we obtain that

opt(J) ≥
∑
j∈R

wj + TA.

On the other hand, using the sets R and A in the case of the relaxed problem
the value of the objective function is

∑
j∈R wj + TA. Therefore we obtain a

feasible solution of the relaxed problem with not larger objective function
value than opt(J), thus the statement of the corollary follows. 2

To develop algorithm Optcopy we have to examine the structure of the
optimal solutions of the relaxed problem. For a set of indices J denote Jk the
set of the first k indices of J . Then the following statement is valid.

Lemma 14 Suppose that A*
k−1 is the set which belongs to an optimal solution

of the relaxed problem on set Jk−1. Then the relaxed problem on set Jk has
an optimal solution such that A*

k−1 is a subset of the set of the indices of the
accepted jobs.
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Proof. Assume that there is no such optimal solution. Let Ak be the set
of the indices of the accepted jobs and Rk the set of the indices of rejected
jobs in an optimal solution of the relaxed problem on set Jk. As we assumed,
A*

k−1 6⊆ Ak. Therefore A*
k−1 6= ∅. We have to deal with the following two

cases: when k ∈ Rk and when k ∈ Ak.

Case 1. k ∈ Rk

If we use Ak as the index set of accepted jobs we receive a feasible solution
of the relaxed problem on set Jk−1, therefore we obtain that

ropt(Jk−1) ≤ WRk\{k} + TAk
.

If we substitute the definition of ropt(Jk−1) and we increase both side by wk

then we get that

WR*
k−1

+ wk + TA*
k−1

≤ WRk
+ TAk

,

where R*
k−1 = Jk−1 \A*

k−1. On the other hand, the right side is ropt(Jk) thus
we obtained that

WR*
k−1∪{k} + TA*

k−1
≤ ropt(Jk).

Let A*
k := A*

k−1, that is an optimal solution naturally satisfying the prop-
erty A*

k−1 ⊆ A*
k. This is a contradiction.

Case 2. k ∈ Ak

Case 2 has two subcases: (a) MA*
k−1

> MAk
and (b) MA*

k−1
≤ MAk

.

(a) MA*
k−1

> MAk

We obtain by Lemma 8 that MA*
k−1∪{k} ≥ MA*

k−1
. Then using Lemma 10 with

the values x = MA*
k−1

and A = A*
k−1 ∪ {k} (the conditions of the lemma are

satisfied since MA*
k−1

> MAk
≥ pk) we obtain that

TA*
k−1∪{k} ≤ MA*

k−1
+

PA*
k−1∪{k}

MA*
k−1

= TA*
k−1

+
pk

MA*
k−1

.

On the other hand, if we use the sets Rk and Ak \ {k} we have a feasible
solution of the relaxed problem on set Jk−1, thus

WR*
k−1

+ TA*
k−1

+
pk

MA*
k−1

= ropt(Jk−1) +
pk

MA*
k−1

≤ WRk
+ TAk\{k} +

pk

MA*
k−1
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Furthermore
pk

MA*
k−1

<
pk

MAk

is valid and by Lemma 10 (with values x =

MAk
and A = Ak \ {k})

TAk\{k} ≤ MAk
+

PAk\{k}
MAk

follows. Therefore we obtain that

WRk
+ TAk\{k} +

pk

MA*
k−1

< WRk
+ MAk

+
PAk\{k}
MAk

+
pk

MAk

= ropt(Jk).

Using the chain of inequalities proven above we obtain that

WR*
k−1

+ TA*
k−1∪{k} < ropt(Jk),

which is a contradiction, thus this case is not possible.

(b) MA*
k−1

≤ MAk

If we use the sets R*
k−1∪(Rk∩A*

k−1) and Ak∩A*
k−1 we have a feasible solution

of the relaxed problem on set Jk−1, thus

ropt(Jk−1) ≤ WR*
k−1

+ WRk∩A*
k−1

+ TAk∩A*
k−1

.

Then we apply Lemma 10 with the values x = MA*
k−1

and A = Ak ∩ A*
k−1

(the conditions hold since MA*
k−1

≥ MAk∩A*
k−1

by Lemma 8), and we obtain

that

TAk∩A*
k−1

≤ MA*
k−1

+
PAk∩A*

k−1

MA*
k−1

,

therefore

ropt(Jk−1) ≤ WR*
k−1

+ WRk∩A*
k−1

+ MA*
k−1

+
PAk∩A*

k−1

MA*
k−1

(2.1)

Using ropt(Jk−1) = WR*
k−1

+ MA*
k−1

+ PA*
k−1

/MA*
k−1

and PA*
k−1

= PAk∩A*
k−1

+

PRk∩A*
k−1

, by inequality (2.1) and by the constraint of the subcase it follows
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that
PRk∩A*

k−1

MAk

≤
PRk∩A*

k−1

MA*
k−1

≤ WRk∩A*
k−1

(2.2)

If we use Lemma 10 with the values x = MAk
and A = Ak ∪ A*

k−1 (the
conditions of the lemma hold since MAk

≥ lAk
, MAk

≥ MA*
k−1

≥ lA*
k−1

) then

we obtain

WRk∩R*
k−1

+ TAk∪A*
k−1

≤ WRk∩R*
k−1

+ MAk
+

PAk∪A*
k−1

MAk

(2.3)

From inequality (2.2) we get

WRk∩R*
k−1

+ MAk
+

PAk∪A*
k−1

MAk

=

WRk∩R*
k−1

+ MAk
+

PAk∩A*
k−1

+ PAk∩R*
k−1

+ PRk∩A*
k−1

+ pk

MAk

≤
WRk∩R*

k−1
+ WRk∩A*

k−1
+ TAk

= ropt(Jk) (2.4)

Let A*
k := Ak ∪ A*

k−1.
Using inequalities (2.3) and (2.4) it follows that A*

k provides an optimal
solution and A*

k−1 ⊆ A*
k, what is again a contradiction. 2

The relaxed problem can be solved in polynomial time. The algorithm
which solves the problem is based on the following structural property.

Lemma 15 For the jth job we consider the problem REL(j) which is the
restricted relaxed problem where it is given that j is the index of the largest
accepted job. Order the set of jobs whose indices are not larger than j by
the value pi/wi into an increasing sequence. Then REL(j) has an optimal
solution which is a prefix of this sequence.

Proof. Consider the problem REL(j) for the jth job and let A and R be the
sets of the indices of the accepted and rejected jobs in an optimal solution.
Let i 6= j be the index of the accepted job maximizing the value pi/wi. Since
A and R are the optimal sets we obtain that

WR + TA ≤ WR∪{i} + TA\{i}

On the other hand, MA ≥ MA\{i} thus by Lemma 10 we obtain that
MA + (PA − pi)/MA ≥ TA\{i}. Therefore
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WR + TA ≤ WR + wi + MA +
PA − pi

MA

= WR + TA + wi − pi

MA

.

Thus we obtained that pi/wi ≤ MA.

Now suppose that the solution does not satisfy the property stated in the
lemma. Then there exists a job with index k 6= j and with properties pk ≤ pj

and pk/wk ≤ pi/wi which is rejected. Consider the feasible solution which also
accepts this job. Then the value of the objective function is WR\{k} + TA∪{k}
and by Lemma 10 we obtain that

WR\{k} + TA∪{k} ≤ WR − wk + MA +
PA + pk

MA

.

On the other hand, pk/wk ≤ pi/wi ≤ MA thus Pk/MA ≤ wk which yields
that WR\{k} + TA∪{k} ≤ WR + TA. Therefore accepting job with index k does
not increase the value of the objective function and this proves the statement
of the lemma. 2

By Lemma 15 we can find a polynomial time algorithm which solves the
relaxed problem. (We consider the restricted problem REL(j) for each j and
we investigate the possible prefixes of the ordered sequences and choose the
best solution.) Furthermore by Lemma 14 we can find in each step such an
optimal solution of the relaxed problems for the set Jk where the size of the
maximal accepted job is increasing. Using such maximal jobs and the prefixes
of the ordered sequences in each steps we have a polynomial time algorithm
giving optimal solutions which satisfy Lemma 14. We call this algorithm
Relopt . Denote the sets of the indices of the accepted jobs from Jk by A*

k

and the set of the indices of rejected jobs by R*
k. Therefore A*

i ⊆ A*
k if i ≤ k.

Then the following statement holds.

Lemma 16 For the above defined sets, the following inequality is valid:

n∑
j=1

WR*
j−1∩A*

j
≤ TA*

n
.

Proof. We have R*
j \ {j} ⊆ R*

j−1 by A*
j−1 ⊆ A*

j . Therefore

ropt(Jj−1) = WR*
j\{j} + WR*

j−1∩A*
j
+ TA*

j−1
.
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On the other hand, using the sets R*
j \ {j} and A*

j \ {j} we get a feasible
solution of the relaxed problem on set Jj−1, thus

ropt(Jj−1) ≤ WR*
j\{j} + TA*

j\{j},

so substituting the definition of ropt(Jj−1) we obtain that

WR*
j−1∩A*

j
≤ TA*

j\{j} − TA*
j−1

.

Therefore

n∑
j=1

WR*
j−1∩A*

j
≤

n∑
j=1

(TA*
j\{j} − TA*

j−1
).

On the other hand by Lemma 9 we obtain TA*
j\{j} ≤ TA*

j
, thus

n∑
j=1

WR*
j−1∩A*

j
≤

n∑
j=1

(TA*
j
− TA*

j−1
) = TA*

n
,

and this is what we have to prove. 2

Now we are ready to define the class Optcopyρ of algorithms. Each algo-
rithm form this class rejects all the jobs rejected by Relopt, therefore it does
not accept more jobs than the optimal solution of the relaxed problem. On
the other hand, it may reject more jobs than an optimal solution, but we can
prove some bounds on the amount of the accepted jobs.

Algorithm OCρ

At the arrival of a new job perform the following steps.

(i) If it is rejected by Relopt, reject it, otherwise go to step (ii)
(ii) Schedule the job by Algorithm Aρ, where in the machine pur-

chasing rule only the accepted jobs are taken into account.

We have the following result.

Theorem 17 Algorithm OCρ with the sequence ρ = (0, 4, 9, 16, . . . , i2, . . .) is
(ϕ + 1)-competitive.
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Proof. Denote An the set of the indices of jobs scheduled by Algorithm OCρ

and A*
n the set of indices of jobs accepted by Relopt. Since An ⊆ A*

n and
because of Lemma 12

OCρ(J) = WRn +Aρ(An) ≤ WRn + ϕTA*
n
, (2.5)

furthermore by the definition of the algorithms Optcopy and Relopt we obtain
that

Rn =
n⋃

j=1

R*
j =

n−1⋃
j=1

(
R*

j \R*
j+1

) ∪R*
n =

n−1⋃
j=1

(
R*

j ∩ A*
j+1

) ∪R*
n,

so applying Lemma 16

WRn = WR*
n

+
n−1∑
j=1

WR*
j∩A*

j+1
≤ WR*

n
+ TA*

n
. (2.6)

Finally applying inequalities (2.5) and (2.6), we get

OCρ(J) ≤ WR*
n

+ (1 + ϕ) TA*
n
≤ (1 + ϕ)opt(J)

and this is exactly what we have to prove. 2

We note that we could not determine the competitive ratio of the algo-
rithm: we just proved an upper bound on it. On the other hand, it is easy
to see that the competitive ratio of the algorithm is at least 2+2ϕ

ϕ+1/ϕ
≈ 2, 34.

Consider the following sequence of jobs: the first job is (ϕN, ϕN), and then
N3 jobs of size (1/N,∞) followed by one job of size (ϕN,∞) follows. (The
second part of the example is the same which was used in [25].) Then Algo-
rithm OCρ will reject the first job and accept the others, it will schedule the
first N3 by purchasing N machines and putting N2 jobs on each machine.
The final job will be placed on an arbitrary machine. Therefore, the cost of
Algorithm OCρ will be N + N + 2ϕN . The optimal cost is no more than
ϕN + d(N + 2ϕ)/ϕe. So, the competitive ratio of Algorithm OCρ is at least

(2 + 2ϕ)N

ϕN + d(N + 2ϕ)/ϕe
N→∞−−−−−→ 2 + 2ϕ

ϕ + 1/ϕ
.



Chapter 3

Coloring graphs and
hypergraphs

3.1 Preliminaries

In this chapter on hypergraph we mean a structure H = (V,E) where V
is the finite set of the vertices of the hypergraph and E is a subset of the
nonempty subsets of V called the set of the edges. If each edge has at most
two elements than H is a graph (in this case we will write G instead of H).
We suppose that each edge has at least two elements.

We can define coloring of a hypergraph many ways (see in [10]). Here we
consider the one which is an assignment of positive integers (called colors)
to the vertices of the hypergraph so that every edge contains vertices having
different colors. For a hypergraph H the minimum number of colors which
is enough to color the hypergraph is called the chromatic number of the
hypergraph and is denoted by χ(H).

The notion of online graph appeared in [29], followed by that of online
hypergraph which is the generalization of online graph defined first in [2].
An online hypergraph is a structure H≺ = (H,≺) where H = (V,E) is a
hypergraph and ≺ is a linear order of its vertices. We call a vertex the first,
second, . . ., and ending vertex of an edge according to the ordering ≺. Let
Hi denote the online hypergraph induced by the ≺-first i elements Vi of V .

An online hypergraph coloring algorithm colors the i-th vertex of the
hypergraph by only looking at the subhypergraph Hi. For an online algorithm
A and an online hypergraph H≺, the cost is the number of colors used by A

22
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to color H≺ which is denoted by χA(H≺). Clearly, opt(H≺) = χ(H). For a
hypergraph H, χA(H) denotes the maximum of the χA(H≺) values over all
orderings ≺. Clearly, the competitive ratio of an algorithm A on a class Γ of
hypergraphs is supH∈Γ χA(H)/χ(H).

Online graph coloring has been investigated in several papers, one can
find many details on the problem in the survey paper [26]. Several results are
proved about the following straightforward online graph coloring algorithm
First Fit (FF).

Algorithm FF
When a vertex arrived assign to it the least color which does not
make a monochromatic edge.

In [24] it is shown that this algorithm is the best possible for the trees,
where the authors constructed a tree Tk on 2k−1 vertices such that for every
online algorithm A, χA(Tk) ≥ k. But more general Algorithm FF is not
effective: for every positive integer there exists a 2-colorable online graph
G≺ on 2n vertices such that χFF(G≺) = n. To verify this consider G =
Kn,n − {aibi : i ∈ [n]}, where {aibi : i ∈ [n]} is a perfect matching in Kn,n.
Let ≺ be the input sequence a1 ≺ b1 ≺ a2 ≺ b2 ≺ . . . ,≺ an ≺ bn. Then
Algorithm FF colors each ai and bi with color i.

The following online algorithm is developed by Lovász (posed as “an easy
exercise” in [29], see [26] for details)

Algorithm AA
Consider the input sequence v1≺ . . .≺vn of an online 2-colorable
graph G≺.
When vi is presented there is a unique partition (I1, I2) of the con-
nected component of G≺

i to which vi belongs, into independent sets
such that vi ∈ I1. Assign vi the least color not already assigned to
some vertex of I2.

Obviously Algorithm AA produces a coloring.

Theorem 18 (Lovász, Saks, Trotter [29]) For every 2-colorable graph G
on n vertices χAA(G) ≤ 2 log2 n.
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The best known lower bound [41] states that no online algorithm can
color every k-colorable graph on n vertices with less then Ω(logk−1 n) colors.
In [27] an online algorithm is presented which colors k-colorable graphs on
n vertices with at most O(n1−1/k!) colors. As a part of this algorithm the
author introduces Algorithm Bn which uses less than 2n1/2 colors to color
any online graph on n vertices that induces neither C3 nor C5. Let v be a
vertex of a graph G. Denote N(v) the set of the neighbors of v in G. For any
S ⊂ V (G) let us define N(S) =

⋃
v∈S N(v) \ S.

Algorithm Bn

Consider the input sequence v1≺ . . .≺vn of an online graph G≺ con-
taining neither C3 nor C5. Initialize by setting Ui = ∅ for all i > n1/2.
At the s-th stage the algorithm processes the vertex vs as follows.

(i) If there exists i ∈ [n1/2] such that vs is not adjacent to any
vertex colored i then color vs by the least such i. (Coloring by
Algorithm FF with n1/2 colors.)

(ii) Otherwise, if there exists i > n1/2 such that vs ∈ N(Ui) then
color vs by the least such i.

(iii) Otherwise, let j be the least integer i > n1/2 with Ui = ∅. Set
Uj = {v ∈ N≺(vs) : the color of v is at most n1/2} and color
vs with j.

The following lemma holds for Algorithm Bn.

Lemma 19 (Kierstead [26, 27]) Algorithm Bn produces a coloring of any
graph G≺ on n vertices that induces neither C3 nor C5 with fewer than 2n1/2

colors.

The girth of a graph G denoted g(G) is the length of its shortest cycle and
the oddgirth of G denoted go(G) is the length of its shortest odd cycle. In the
next two sections we will generalize Kierstead’s result above for graphs with
high girth and graphs with high oddgirth. In the latter case we will apply
Algorithm AA.

Concerning the online hypergraph coloring problem we are not aware of
any results about this area. The only online problem for hypergraphs which
has been investigated is the problem of finding independent sets. This prob-
lem has been investigated in [2], where an Θ(n/k) lower and upper bound is
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presented for the competitive ratio of deterministic algorithms. Some results
from online graph coloring which belong to particular subclasses can be ex-
tended easily: the algorithms and their competitive analysis for the trees, the
graphs with bounded degree, k-claw free graphs, graphs without induced C3

and C5 (see [19] and [27] for the results on graphs). On the other hand, the
results for general graphs cannot be extended. In this chapter we will show
that in contrast to the online graph coloring there is no online algorithm with
sublinear competitive ratio for the general online hypergraph coloring prob-
lem. Moreover the hypergraph which proves the lower bound is 2-colorable
(bipartite graphs can be colored by 2 log n colors online).

We also investigate some particular hypergraph classes. We give the per-
formance of Algorithm FF and we present matching lower bounds. We show
that in the case of 2-colorable k-uniform hypergraphs no online algorithm
exists which can color every such hypergraph with less than dn/(k − 1)e
colors and we show that Algorithm FF colors these hypergraphs with this
much colors. Furthermore we consider hypergraphs with matching number k,
showing that Algorithm FF colors these hypergraphs with 2k + 1 colors. As
a consequence we obtain that this algorithm colors the projective planes with
3 colors. We show that this bound is the best possible, we prove that there
exists no online algorithm which can color a projective plane with less then
3 colors. (We note that the projective planes of order q > 2 are 2-colorable).

We use the following notions. A hypergraph is called k-uniform if each
edge contains k vertices. The degree of a vertex is the number of edges con-
taining it, the maximal degree of a hypergraph is the maximum of the degrees
of the vertices. By the matching number ν(H) of a hypergraph H we mean
the maximal number of pairwise disjoint edges of H.
Recall that a finite projective plane of order q is a q + 1-uniform hypergraph
H = (V,E) satisfying the following properties:

1. Given any two distinct vertices, there is exactly one edge that contains
both vertices.

2. The intersection of any two distinct edges contains exactly one vertex.

3. There exists a set of four vertices, no three of which belong to the same
edges.

For more information on projective planes the reader is referred to [12]. The
Let us note that by the definitions it follows immediately that the matching
number of the finite projective planes is 1.
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The distance dist(u, v) of vertices u and v is the length of the shortest uv
path. For a positive integer d, let Nd(v) be the set of vertices with positive
distance at most d from vertex v:

Nd(v) = {u ∈ V (H) : 1 ≤ dist(u, v) ≤ d}.

Nd,odd(v) is the set of vertices with a positive odd distance at most d from
vertex v:

Nd,odd(v) = {u ∈ V (H) : 1 ≤ dist(u, v) ≤ d and dist(u, v) is odd}.

For any S ⊂ V (H) let us define

Nd(S) =
⋃
v∈S

Nd(v) \ S and Nd,odd(S) =
⋃
v∈S

Nd,odd(v) \ S.

Let N≺
d (v) the set of vertices preceding v with a positive distance at most d

from vertex v:

N≺
d (v) = {u ∈ V (H≺) : u≺v, 1 ≤ dist(u, v) ≤ d}.

N≺
d,odd(v) is the set of vertices preceding v with a positive odd distance at

most d from vertex v:

N≺
d,odd(v) = {u ∈ V (H≺) : u≺v, 1 ≤ dist(u, v) ≤ d and dist(u, v) is odd}.

Note that N1(v) = N(v) and N≺
1 (v) = N≺(v) are just the neighbors and

preceding neighbors of v, furthermore N1(S) = N(S).

We can assume that our graph coloring online algorithms know the num-
ber of vertices of graph G by the following Lemma [26].

Lemma 20 (Kierstead [26]) Let Γ be a class of graphs and f be an integer
valued function on the positive integers such that f(x) ≤ f(x+1) ≤ f(x)+1,
for all x. If for every n, there exist an online coloring algorithm An such
that for every graph G ∈ Γ on n vertices, χAn(G) ≤ f(n) then there exists
a fixed online coloring algorithm A such that for every G ∈ Γ on n vertices
χA(G) ≤ 4f(n).
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3.2 Results on graphs with forbidden sub-

graphs

The results of this section can be found in [33].

3.2.1 Graphs with high girth

Now we generalize Kierstead’s algorithm for graphs with high girth.

Algorithm Bn,d

Consider the input sequence v1≺ . . .≺vn of an online graph G≺ with
g(G) > 4d + 1. Initialize by setting Ui = ∅ for all i > dn1/(d+1).

s-th stage.

(i) If there exists i ∈ [dn1/(d+1)] such that vs is no adjacent to any
vertex colored i then color vs by the least such i.

(ii) Otherwise, if there exists i > dn1/(d+1) such that vs ∈ Nd(Ui)
then then color vs by the least such i.

(iii) Otherwise, let j be the least integer i > dn1/(d+1) with Ui = ∅.
Set Uj = N≺

d (vs) and color vs with j.

Theorem 21 Algorithm Bn,d produces a coloring of any graph G≺ on n ver-
tices with girth g > 4d + 1 with less than (d + 1)n1/(d+1) colors.

Our proof goes along the same line as Kierstead’s proof.

Proof. First we prove that Bn,d produces a coloring. Assume to the contrary
that two adjacent vertices x≺y have the same color j. Clearly y is not colored
by Step (i). Thus j > dn1/(d+1) and hence x is not colored by Step (i). Since
only the first vertex colored j can be colored by Step (iii), y must be colored
by Step (ii). If x is colored by Step (iii) then Uj ⊂ Nd(x) and y ∈ Nd(Uj)
so there exists z ∈ Uj that both dist(x, z) ≤ d and dist(y, z) ≤ d hold. But
then G≺ contains a cycle of length at least 2d + 1, a contradiction (Figure
3.1 shows this case, the waves denote paths with length at most d).
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x y

Nd(x) Uj

Nd(Uj)

Figure 3.1: Contradiction: cycle with length at most 2d + 1

If x is colored by Step (ii) then both x and y are in Nd(Uj) so there
exist (not necessarily distinct) x′, y′ ∈ Uj with dist(x′, x) ≤ d, dist(y′, y) ≤ d,
dist(x′, z) ≤ d and dist(y′, z) ≤ d where z is the first vertex colored with j.
In this case G≺ contains a cycle with length at most 4d + 1, a contradiction
(Figure 3.2 shows this case, the waves denote paths with length at most d).
So Bn,d produces a coloring.

Nd(x) Uj

yx

Nd(Uj)

z

Figure 3.2: Contradiction: cycle with length at most 4d + 1

Now we give an upper bound for the number of colors used by Bn,d.
At most dn1/(d+1) colors are used in Step (i). Let j > dn1/(d+1) and zj be
the first vertex colored j. From the assumption on g(G) it follows that the
subgraph induced by Uj ∪ {j} is a tree. Since zj is not colored by Step (i) it
has neighbors colored 1, 2, . . . , dn1/(d+1) in Uj and each vertex x ∈ Nd−1(zj)
colored i ≤ dn1/(d+1) have neighbors colored 1, 2, . . . , i − 1 in Uj. Thus, for
each S ⊂ [dn1/(d+1)], |S| ≤ d there exists x ∈ Uj such that the colors occurring
on the (unique) zj–x path are exactly the elements of S ∪ {j}. So counting
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the zj–x paths with length at most d over all possible x we get that

|Uj| ≥
d∑

`=1

(
dn1/(d+1)

`

)
>

(
dn1/(d+1)

d

)
> nd/(d+1).

Since zj 6∈ N(Ui) if i 6= j that is Ui ∩ Uj = ∅, at most n/(nd/(d+1)) = n1/(d+1)

colors are used in Steps 2 and 3. Thus

χBn,d
(G≺) ≤ (d + 1)n1/(d+1).

2

If G≺ an online graph G≺ on n vertices with g(G) > g = 4d + 1 then
χBn,d

≤ g+3
4

n4/(g+3). We note that Erdős [20] proved that for any g > 0 and
sufficiently large n there exists a graph G on n vertices with girth greater
than g and with χ(G) > n1/(2g).

3.2.2 Graphs with high oddgirth

We will use Algorithm AA as an auxiliary algorithm and we need a slight
improvement of Theorem 18.

Lemma 22 Suppose that G≺ is a 2-colorable online graph and AA uses at
least k colors on a connected component C of G≺

i . Let v ∈ C be a vertex
colored k by Algorithm AA. Then both color classes of C contain at least
2k/2−1 vertices having distance at most k from v.

Proof. We argue by induction on k and note that the base step is trivial.
For the induction step observe that if AA assigns color k + 2 to vi then AA
must have already assigned color k to some vertex vp ∈ I2 ∩N1(vi) and color
k +1 to some other vertex in I2∩N1(vi). Thus AA must have assigned color
k to some vertex vq ∈ I1 ∩N2(vi). AA assigned the same color to vp and vq,
hence vp and vq must be in separate components of G≺

t where t = max{p, q}
(see Figure 3.3). Thus by the induction hypothesis each of the color classes of
these connected components must have at least 2k/2−1 vertices with distance
at most k from vp or vq and so the color classes of the components of vi have
at least 2(k+2)/2−1 vertices with distance at most k + 2 from vi. 2
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vp

vq vi

I2

I1
k+2

kk+1

k

Figure 3.3: Online coloring bipartite graph

Now we generalize Algorithm Bn for graphs with high oddgirth.

Algorithm BOn,d

Consider the input sequence v1≺ . . .≺vn of online graph G≺ with
go(G) > 4d + 1. Set r = (n/(2d log2 2d))1/2. Initialize by setting
Si = ∅ for all i ∈ [r] and Ui = ∅ for all i > r. At the s-th stage the
algorithm processes the vertex vs as follows.

(i) If there exists i ∈ [r] such that the subgraph induced by Si ∪
{vs} is 2-colorable and Algorithm AA uses at most 2 log2 2d
colors to color Si ∪ {vs}, then let j be the least such i. Set
Sj = Sj ∪{vs} and color vs (in the subgraph induced by Sj) by
Algorithm AA using colors 2(j− 1) log2 2d+1, . . . , 2j log2 2d.

(ii) Otherwise, if there exists i > r such that vs ∈ Nd,odd(Ui) then
color vs with the least such i.

(iii) Otherwise, let j be the least integer i > r such that Ui = ∅.
Set Uj = N≺

d,odd(vs) ∩ (
⋃r

`=1 S`) and color vs with j.

Theorem 23 Algorithm BOn,d produces a coloring of any graph G≺ on n
vertices having oddgirth greater than 4d + 1 with at most 2(2n log2 2d/d)1/2

colors.

Proof. First we prove that BOn,d produces a coloring. Assume to the contrary
that two adjacent vertices x≺y have the same color j. Clearly y is not colored
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by Step (i). Thus j > r and hence x is not colored by Step (i). Since only
the first vertex colored j can be colored by Step (iii), y must be colored by
Step (ii). If x is colored by Step (iii) then Uj ⊂ Nd,odd(x) and y ∈ Nd,odd(Uj)
so there exists z ∈ Uj that both dist(x, z) ≤ d and dist(y, z) ≤ d are odd.
But then G≺ contains a closed walk with odd length at most 2d + 1 so it
contains an odd cycle with length at most 2d + 1, a contradiction (Figure 3.4
shows this case, the waves denote paths with odd length at most d).

x y

Nd(x) Uj

Nd(Uj)

Figure 3.4: Contradiction: odd cycle with length at most 2d + 1

If x is colored by Step (ii) then both x and y are in Nd,odd(Uj) so there
exist (not necessarily distinct) x′, y′ ∈ Uj with odd distances dist(x′, x) ≤ d,
dist(y′, y) ≤ d, dist(x′, z) ≤ d and dist(y′, z) ≤ d where z is the first vertex
colored with j. In this case G≺ contains a closed walk with odd length at
most 4d + 1, a contradiction (Figure 3.5 shows this case, the waves denote
paths with odd length at most d). So BOn,d produces a coloring.

Nd(x) Uj

yx

Nd(Uj)

z

Figure 3.5: Contradiction: odd cycle with length at most 4d + 1

Now we give an upper bound for the number of colors used by BOn,d.
At most 2r log2 2d colors are used in Step (i). Let j > r and zj be the first
vertex colored j. Now we show that |Uj∩Sk| ≥ d for all k ≤ r. Since zj is not
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colored by Step (i), we have two cases. In the first case the subgraph induced
by Sk∪{zj} contains an odd cycle containing zj with length at least 4d+1 so
|Uj∩Sk| ≥ d by the definition of Uj. In the second case the subgraph induced
by Sk ∪ {zj} has is 2-colorable but Algorithm AA uses at least 2 log2 2d + 1
colors to color this subgraph. From the proof of Lemma 22 it follows that
|Uj∩Sk| ≥ 2(2 log2 2d)/2−1 = d. Since Sk∩S` = ∅ if k 6= `, we get that |Uj| ≥ rd.
Since Ui ∩ Uj = ∅ if i 6= j, at most n/(rd) colors are used in Steps 2 and 3.
Thus

χGB(G≺) ≤ 2r log2 2d +
n

rd

= 2

(
n

2d log2 2d

)1/2

log2 2d +
n

d
(

n
2d log2 2d

)1/2

= 2

(
2n log2 2d

d

)1/2

.

2

We note that running BOn,d on G with oddgirth 4d + 1 choosing r =
(n/(2d))1/2 and exploiting that the subgraphs induced by Sj (j ∈ [r]) are

2-colorable we get that χ(G) ≤ 2r + n
rd

= 2
(

2n
d

)1/2
.

3.3 Results on hypergraphs

The results of this section can be found in [35].

3.3.1 2-colorable k-uniform hypergraphs

In this part we consider the case of 2-colorable k-uniform hypergraphs with
k ≥ 3. We prove the following result.

Theorem 24 Let k ≥ 3. For every online hypergraph coloring algorithm A
there exists a 2-colorable k-uniform hypergraph H on n vertices with χA(H) ≥
dn/(k − 1)e. If H is a k-uniform hypergraph then χFF(H) ≤ dn/(k − 1)e.

Proof. Let A be an arbitrary online hypergraph coloring algorithm, define
the online hypergraph Hn,A on n vertices as follows. Any vertex vi is the
ending vertex of the following edges: for each color c which is used by A
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for at least k − 1 vertices we have and edge ec,i which contains the vertices
colored with c by A and vi.

Note that if k − 1 vertices are colored with a color c by A, then each of
the following vertices is contained in an edge together with these c-colored
vertices. Therefore no more vertex can get the color c. This means that each
color is used at most k−1 times. Consequently we obtained that χA(Hn,A) ≥
dn/(k − 1)e.

Now we show that this hypergraph is k-uniform and 2-colorable. Let us
observe that each edge in Hn,A contains k vertices, where the first k − 1 are
colored with the same color by A. Consider the following 2-coloring of Hn,A.
Every vertex which is colored with a new color by A gets the color 1, the
other vertices get the color 2. By the above observation on the first k − 1
vertices of the edges it follows that the first vertex gets the color 1, the second
vertex gets the color 2 (since k ≥ 3 it has the same online color) which yields
that there is no monochromatic edge in this coloring. Therefore we showed
that the hypergraph is 2-colorable.

Now consider Algorithm FF . If less than k − 1 vertices are colored by
Algorithm FF with some color c then Algorithm FF does not use a fur-
ther color for the next vertex because the graph is k-uniform. Therefore the
number of colors used by Algorithm FF is not more than dn/(k − 1)e. 2

The theorem shows that the competitive ratio of Algorithm FF is dn/(k−
1)e/2 on this class and no better algorithm can be defined for this class.
Therefore we obtained the following result.

Corollary 25 Algorithm FF is an optimal online algorithm for the class of
2-colorable k-uniform hypergraphs.

We must note that in this case not only Algorithm FF but many rea-
sonable coloring algorithms can color the above hypergraph with dn/(k−1)e
colors. Any algorithm which uses each color at most k − 1 times gives a
coloring of the hypergraph.

Moreover this theorem also proves (with k = 3) that contrary to the case
of the online graph coloring in the case of hypergraphs no online algorithm
with sublinear competitive ratio exists.

Corollary 26 For every online hypergraph coloring algorithm A there exists
a 2-colorable hypergraph H on n vertices with χA(H) ≥ n/2.
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3.3.2 Hypergraphs with maximal degree k

In this part we consider the case of 2-colorable hypergraphs with maximal
degree k. It is easy to see that any hypergraph with maximal degree k is k+1
colorable, since Algorithm FF colors them with at most k + 1 colors.

Extending the result of [24] on trees, for each online algorithm A a d-
uniform online hypergraph can be constructed on dk vertices with maximal
degree k such that A uses at least k + 1 colors to color it in the following
way: we can build hypergraph T recursively from disjoint online hypergraphs
T1, . . . , T(d−1)k in this order and a new vertex v. We can achieve that A uses
dj/(d− 1)e colors to color hypergraph Tj on ddj/(d−1)e vertices by induction.
It is easy to see that we can choose a vertex set V such that each hypergraph
Tj contains exactly one vertex in V and for each color i there are at most
d − 1 vertices in V colored i by A. Partitioning V into classes V1, . . . , Vk

with sizes d− 1 such that if each same-colored d− 1-tuple in V assigned to
same class and adding new edges Vj ∪{v} we get the required hypergraph on
(d− 1)(1 + d + d2 + . . . + dk−1) + 1 = dk vertices, since if there are at most k
colors used by A coloring T1, . . . , T(d−1)k then V1, . . . , Vk are monochromatic
so v must get color k + 1 by A.

Treating the problem more carefully we can give a stronger result for
2-colorable hypergraphs.

Theorem 27 For every online hypergraph coloring algorithm A and integer

d > 2 there exists a 2-colorable d-uniform hypergraph H on at most (d−1)k−1
d−2

vertices with maximal degree k such that χA(H) ≥ k + 1.

Proof. For an arbitrary online algorithm ONL we use the following recursive
algorithm to construct the hypergraph H. H0 is a hypergraph which contains
one vertex and no edge. Then H0 is colored with one color by any online
algorithm, and the maximal degree of H0 is 0.

Suppose that for every online algorithm A we have a d-uniform hyper-

graph Hk(A) on (d−1)k−1
d−2

vertices having maximal degree at most k and for
which A uses at least k +1 colors. Let ONL1 = ONL and let ONL2 be the
online algorithm which colors the vertices in the same way as ONL1 colors
them after coloring a disjoint copy of Hk(ONL1). In general, let ONLj be
the online algorithm which colors the vertices in the same way as ONL1

colors them after coloring disjoint copies of Hk(ONL1) . . . , Hk(ONLj−1).
We build Hk+1(ONL) as follows. We give the disjoint d-uniform online hy-
pergraphs Hk(ONL1), . . . , Hk(ONLd−1) in this order to the algorithm. We
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distinguish the following two cases.
If ONL does not use the same k + 1 colors for hypergraphs Hk(ONL1), . . .
and Hk(ONLd−1) then the sequence is finished, the hypergraph which we ob-
tained can be chosen to Hk+1(ONL): ONL uses at least k + 2 colors for it,
and the maximal degree is k ≤ k +1. The number of vertices of Hk+1(ONL)
is at most

(d− 1)
(d− 1)k − 1

d− 2
<

(d− 1)k+1 − 1

d− 2
.

Otherwise, ONL uses the same colors for Hk(ONL1), . . . and Hk(ONLd−1)
then we obtain Hk+1 as follows. We give an extra vertex v at the end of
the algorithm which closes the following vertices. For each color i we define
one edge containing the first vertex from each Hk(ONLj) with color i, and
vertex v. Then ONL has to use a new color for vertex v, thus it uses k + 2
colors. Concerning the degrees of the vertices, v has degree k + 1, the degree
of the other vertices is increased by at most 1, therefore the maximum degree
of Hk+1(ONL) is at most k + 1. The number of vertices of Hk+1(ONL) is
at most

(d− 1)
(d− 1)k − 1

d− 2
+ 1 =

(d− 1)k+1 − 1

d− 2
.

To prove the theorem we have to show that Hk(ONL) is 2-colorable
for each k and for each online algorithm ONL. We prove by induction
that for each k and for each online algorithm ONL there exists such a
2-coloring of Hk(ONL) in which each vertex obtaining a new color from
algorithm ONL has color 1. For H0 the statement is trivial. Now suppose
that the statement holds for k, we prove it for k + 1. Let ONL be an ar-
bitrary online algorithm. If Hk+1(ONL) consists of the d − 1 disjoint hy-
pergraphs Hk(ONL1), . . . , Hk(ONLd−1) then the statement is trivial, we
can use the 2-colorings of Hk(ONL1), . . . , Hk(ONLd−1), and the statement
follows. Now suppose that Hk+1(ONL) is given by the d − 1 hypergraphs
and the extra vertex v. Then we can give the following coloring. Color
Hk(ONL1) by induction, color Hk(ONL2), . . . , Hk(ONLd−1) also by in-
duction but swapping the colors, finally give color 1 to vertex v. By the
induction hypothesis it follows that the edges which are included in one of
Hk(ONL1), . . . , Hk(ONLd−1) are not monochromatic. The edges which in-
tersect each of Hk(ONL1), . . . , Hk(ONLd−1) contain the first occurrence of
the online color i in Hk(ONL1) (this gets color 1 in the 2-coloring), the first
occurrence of the online color i in Hk(ONL2), . . . , Hk(ONLd−1) (these get
color 2 in the 2-coloring), thus these edges are also not monochromatic (Fig-
ure 3.6 shows this case).
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Figure 3.6: 2-coloring of Hk+1(ONL)

There are no other edges, therefore we gave a 2-coloring. Furthermore the
extra property of the coloring also remains valid, the first occurrences of
the online colors used for Hk+1(ONL) get color 1 in the 2-coloring by the
induction hypothesis (observe that all these vertices are in Hk(ONL1) in
which we did not swap colors) and the first occurrence of the fresh color
(vertex v) again obtains color 1 in the 2-coloring. 2

3.3.3 Hypergraphs with bounded matching number

Considering this class of hypergraphs Algorithm FF can achieve the follow-
ing performance.

Theorem 28 For any hypergraph H Algorithm FF gives a coloring of H
with at most 2 · ν(H) + 1 colors.
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Proof. Consider an arbitrary hypergraph H and suppose that Algorithm
FF used k colors to color it. For every i ≤ k/2 consider a vertex vi which
gets the color 2i. By the definition of Algorithm FF it follows that there
exists an edge Ei whose last vertex is vi and the other vertices get the color
2i− 1 by Algorithm FF . Then considering the edges Ei, i = 1, . . . , bk/2c we
obtain pairwise disjoint edges, and ν(H) ≥ bk/2c follows, which proves the
theorem. 2

Since any two edges of the finite projective planes are intersecting (the
matching number is 1) we also obtained the following result.

Corollary 29 Algorithm FF colors the finite projective planes with at most
3 colors.

It is easy to see that the finite projective planes with order greater than 2
are two colorable. (Consider three points which are not collinear. Color these
points with color 1, the points of the lines which connect these points get
the color 2, the other points of the plane gets color 1.) On the other hand
as the following statement shows there exists no online algorithm which can
use less colors than Algorithm FF in this cases.

Theorem 30 No online algorithm exists which can color a finite projective
plane with less than 3 colors.

Proof. Consider an arbitrary online algorithm A and a finite projective plane
with order q. Give the points of the finite projective plane to the algorithm
in the following order. The first q2 points arrive such that none of the lines
are completed (the remaining q + 1 points will give one line of the plane
furthermore they will finish all the other lines). Now distinguish the following
two cases.

If A uses more than two colors then the statement is obvious. Suppose
that A uses at most two colors 1 and 2. Without loss of generality we can
suppose that the number of points colored by 1 is not less than the number
of points colored by 2.

First suppose that at least q points is colored by 2. Then the next point
which arrives will finish a line which contains q points of color 1, and a line
which contains q points of color 2. SinceA cannot construct a monochromatic
line it has to use a new color for this point and the statement of the theorem
follows.
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Now suppose that there are at most q− 1 points of color 2. Then each of
the q + 1 uncolored points has a line through it with q points of color 1. So
now on we cannot use color 1. Since the uncolored points are on one line, it
is impossible to use only color 2. This completes the proof. 2



Chapter 4

The k-server problem

4.1 Preliminaries

In the theory of designing efficient virtual memory-management algorithms,
the well studied paging problem plays a central role. Even the earliest op-
eration systems contained some heuristics to minimize the amount of copy-
ing memory pages, which is an expensive operation. A generalization of the
paging problem, called the k-server problem was introduced by Manasse,
McGeoch and Sleator in [31], where the first important results were also
achieved.

To give the definition of the general problem we need the notion of metric
spaces. A metric space is a pair M = (M, dist) where M is a set of points
and dist : M × M → R is a metric distance function with the following
properties:

• dist(x, y) ≥ 0 for all x, y ∈ M ,

• dist(x, y) = dist(y, x) for all x, y ∈ M ,

• dist(x, y) + dist(y, z) ≥ dist(x, z) for all x, y, z ∈ M ,

• dist(x, y) = 0 holds if and only if x = y.

The diameter of M is maxx,y∈M{dist(x, y)}.
The k-server problem can be formulated as follows. Given a metric space

with k mobile servers that occupy distinct points of the space and a sequence
of requests (points), each of the requests has to be served, by moving a server

39
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from its current position to the requested point. The goal is to minimize the
total cost, that is the sum of the distances covered by the k servers; the
optimal cost for a given sequence % is denoted opt(k, %).

A k-server algorithm is online if it serves each request immediately when it
arrives (without any prior knowledge about the future requests). The k-server
conjecture (see [31]) states that there exists an algorithm that is k-competi-
tive for any metric space. Manasse et al. proved that k is a lower bound [31],
and Koutsoupias and Papadimitriou showed 2k − 1 is an upper bound for
any metric space [28].

In the randomized version there are more problems that are still open.
The randomized k-server conjecture states that there exists a randomized
algorithm with a competitive ratio Θ(log k) in any metric space. The best
known lower bound is Ω(log k/ log log k) which follows from the results of
[8] (see also [5]). A natural upper bound is the bound 2k + 1 given for the
deterministic case.

By restricting our attention to metric spaces with a special structure,
better bounds can be achieved: for uniform metric spaces where the distance
is 1 between any two points, Fiat et al. [21] proved a lower bound Hk ≈
log k. McGeoch and Sleator [30] constructed an algorithm called Partition,
later Achlioptas et al. [1] presented another algorithm called Equitable, both
being Hk-competitive. Although these algorithms are the best possible for the
uniform spaces, yet we review the less effective algorithm Marking developed
by Fiat et al. in [21] since our algorithms will be its extension in some sense.
The algorithm maintains a set of marked vertices.

Algorithm MARK
Initially the marked vertices are exactly those that are covered by
servers. After each request, the marks are updated, followed by a
server movement if necessary, as follows:

(i) Marking: Each time a vertex is requested, that vertex is marked.
The moment k + 1 vertices are marked, all the marks except
the one on the most recently requested vertex are erased.

(ii) Serving: If the requested vertex is already covered by a server,
then no servers shall move. If the requested vertex is not cov-
ered, then a server is chosen uniformly at random from among
the unmarked vertices, and this server is moved to cover the
requested vertex.
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Theorem 31 (Fiat et al. [21]) Algorithm MARK is 2Hk-competitive on
uniform spaces.

In the next section we also consider a restriction of the problem, namely
we seek for an efficient randomized online algorithm for metric spaces that
are “µ-HST spaces” [5] and defined as follows:

Definition 32 For µ ≥ 1, a µ-hierarchically well-separated tree (µ-HST) is
a metric space defined on the leaves of a rooted tree T . To each vertex u ∈ T
there is associated a label Λ(u) ≥ 0 such that Λ(u) = 0 if and only if u is
a leaf of T . The labels are such that if a vertex u is a child of a vertex v
then Λ(u) ≤ Λ(v)/µ. The distance between two leaves x, y ∈ T is defined as
Λ(lca(x, y)), where lca(x, y) is the least common ancestor of x and y in T .

The µ-HST spaces play an important role in the probabilistic embedding
technique developed by Alon et al. [3] and Bartal [4]. Fakcharoenphol et al [22]
proved that every metric space on n points can be β-probabilistically approxi-
mated by a set of µ-HSTs, for an arbitrary µ > 1 where β = O(µ log n/ log µ).

In [39], µ-decomposable spaces have been introduced. We consider a spe-
cial case of this notion as follows:

Definition 33 Let M be a metric space. We call M uniformly µ-decom-
posable for some µ > 1 if its points can be partitioned into t ≥ 2 blocks,
B1, . . . , Bt such that the following conditions both hold:

1. whenever x, y ∈ M are belonging to different blocks, their distance is
exactly ∆, the diameter of M;

2. the diameter of each Bi is at most ∆/µ.

For example, a µ-HST with at least two points is a uniformly µ-decomposable
metric space.

Seiden [39] proved the existence of an O(polylog k)-competitive algorithm
for Ω(k log k)-decomposable spaces, where the space can be partitioned into
O(log k) uniform blocks, each having diameter 1, and where the distance of
any two blocks is at least c·k·log k. In his work he also showed that for binary
HST’s (where each non-leaf node has exactly two children) there exists an
O(log3 k)-competitive algorithm, provided the parameter µ of the HST is
sufficiently large. We study decomposable spaces too, but unlike the above
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Figure 4.1: Uniformly µ-decomposable space with blocks B1, B2 and B3.
(Source: [39])

result our spaces consist of an arbitrary number of (not necessarily uniform)
blocks with large distance between them. By slightly modifying the approach
of Csaba and Lodha [13] and Bartal and Mendel [7]1 we show that there exists
a polylog k-competitive algorithm for any µ-HST that has a small depth and
arbitrary maximum degree t, given µ ≥ k. Our algorithm heavily relies on
the technical notion of demand (Definition 34), which plays a central role in
the description and the analysis of the algorithm.

For the rest of the section we fix a uniformly µ-decomposable metric space
M having a diameter ∆, consisting of the blocks B1, . . . , Bt, with maximal
diameter δ such that µ = ∆/δ.

For a given request sequence % we denote its ith member by %i, and the
prefix of % of length i by %≤i. The length of the sequence is denoted |%|.

The set of points where the servers are staying at a given time is a config-
uration. Given a block Bs, a request sequence % and an initial configuration
C in Bs, let As(C, %) denote the cost computed by the algorithm A for the
subsequence of % consisting of the requests arriving to Bs. For any number `
of servers, let As(`, %) stand for max|C|=`As(C, %), where C runs over all the
initial configurations in Bs consisting of ` servers. Also, let opts(C, %) denote

1Although the publication has been withdrawn (see
http://arxiv.org/abs/cs.DS/0406033), the approach itself is still valuable.
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the optimal cost for the subsequence of % consisting of the requests arriving
to Bs, starting from configuration C and let

opts(`, %) = min
|C|=`

opts(C, %).

Thus, if % is nonempty, opts(0, %) is defined to be infinite.

Rejection in online problems first appeared in online scheduling [6], later
in online bin packing [17], coloring graphs [19] and other problems. Hence
it is a natural idea to investigate generalized model of k-server problem in
which to each request a penalty is assigned which the algorithm has to pay
if reject it. We give some results in this area on uniform spaces at the end of
this chapter.

4.2 A randomized algorithm on decompos-

able spaces

The results of this section can be found in [32].

Our algorithm is based on the following notion.

Definition 34 The demand of the block Bs for the request sequence % is

Ds(%) := min{` | opts(`, %) + `∆ = min
j
{opts(j, %) + j∆}},

if % is nonempty, otherwise it is 0.

Intuitively, Ds(%) denotes the least number of servers to be moved into
the initially empty block Bs to achieve the optimal cost for the sequence %.
Observe that Ds(%) is finite since it is a nonnegative integer bounded by e.g.
|%|.

We note that in [15] a model has been investigated, where one does not
have a fixed number of servers but they can be bought. The expression
min`{opts(`, %) + `∆} can be seen as the optimal cost in a model where
one has to buy the servers, for a cost of ∆ each.

In the rest of the section, the notion of demand of the blocks will play
a crucial role. We now state a conjecture which would simplify the ensuing
calculations, if it happened to be verified; however, we did not succeed to
prove or disprove it yet.
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Conjecture 35 For any block Bs, request sequence % inside Bs and index
0 < i < |%|, the difference Ds(%≤i+1)−Ds(%≤i) is either 0 or 1.

A weaker, but still open question is that whether the sequence (Ds(%≤i))
|%|
i=1

is monotone for every % and Bs.

We also introduce a technical notion.

Definition 36 Suppose N is a metric space, A is a randomized online algo-
rithm, f is a real function and µ > 0 is a real number satisfying the following
conditions:

1. f(`)/ log ` is monotone non-decreasing;

2. for any 0 < ` ≤ µ and request sequence % in N ,

E[A(`, %)] ≤ f(`) · opt(`, %) +
f(`) · ` · diam(N )

log `
. (4.1)

Then we call A an (f, µ)-efficient algorithm on N .

Observe that if A is (f, µ)-efficient on N , then A is f(k)-competitive for the
k-server problem on N for any 0 < k < µ.

Our aim is to prove the following theorem:

Theorem 37 Suppose M is a uniformly µ-decomposable space and A is an
(f, µ)-efficient algorithm on each block of M. Then there exists an (f ′, µ)-
efficient algorithm on M, where f ′(x) is defined as c · f(x) log x for some
absolute constant c > 0.

For the rest of the section we now fix an algorithm A and a real function
f such that A is an (f, µ)-efficient algorithm on each block of (the already
fixed)M. In the next subsection we define the algorithm which will be proven
to be (f ′, µ)-efficient on M. In the rest of the section we suppose that k ≤ µ
is an arbitrary integer.

4.2.1 Algorithm Shell

The algorithm uses A as a subroutine and it works in phases. Let %(p) denote
the sequence of the pth phase. In this phase algorithm Shell works as follows:
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Algorithm SH
Initially we mark the blocks that contain no servers.

When %
(p)
i , the ith request of this phase arrives to block Bs, we

compute the demand Ds(%
(p)
≤i ) and the maximal demand

D∗
s(%

(p)
i ) = max{Ds(%

(p)
≤j)|j ≤ i}

for this block (note that these values do not change in the other
blocks).

(i) If D∗
s(%

(p)
i ) is less than the number of servers in Bs at that

moment, then the request is served by algorithmA, with respect
to the block Bs.

(ii) If D∗
s(%

(p)
i ) becomes equal to the number of servers in Bs at

that moment, then the request is served by algorithm A, with
respect to the block Bs and we mark the block Bs.

(iii) If D∗
s(%

(p)
i ) is greater than the number of servers in Bs at that

moment, we mark the block Bs and perform the following sub-
task until we have D∗

s(%
(p)
i ) servers in that block or we cannot

execute the steps (this happens when all the blocks become
marked):

Choose an unmarked block Bs′ randomly uniformly, and a
server from this block also randomly. We move this chosen
server to the block Bs (such a move is called a jump), either
to the requested point, or, if there is already a server occu-
pying that point, to a randomly chosen unoccupied point
of Bs. If the number of servers in Bs′ becomes D∗

s′(%
(p)
i )

via this move, we mark that block. In both Bs and Bs′ we
restart algorithm A from the current configuration of the
block.

If we cannot raise the number of servers in block Bs to D∗
s(%

(p)
i )

by repeating the above steps (all the blocks became marked), then
phase p + 1 is starting and the last request is belonging to this new
phase.

Intuitively, Algorithm SH consists of the following parts: the server move-
ments inside a block are handled by the inner algorithm A, while the “jumps”
from a block to another are determined by an online matching algorithm
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(introduced by Csaba and Pluhár [14]), whose requests are induced by the
demands. One may regard maximal demands as markings of the blocks.

For any phase p of Algorithm SH we can associate a matching problem
MX. We recall from [14] that an online matching problem is defined similarly
to the online k-server problem with the following two differences:

1. Each of the servers can move only once;

2. The number of the requests is at most k, the number of the servers.

The underlying metric space of MX is a finite uniform metric space that has
the blocks Bs as points and a distance ∆ between any two different points.
Let D̂s(p) denote the number of servers that are in the block Bs just at the
end of phase p. Now in the associated matching problem we have D̂s(p− 1)
servers originally occupying the point Bs. During phase p, if some value
D∗

s increases, we make a number of requests in point Bs for the associated
matching problem: we make the same number of requests that the value D∗

s

has been increased with. Each of these requests have to be served by a server,
moreover, one server can handle only one request (during the whole phase).

We also associate an auxiliary matching algorithm, AMA on this struc-
ture as follows. While there exists a server in the block Bs which have not
served any request yet, let this server handle the request arriving to Bs.
Otherwise, D∗

s increases at some time, causing jumps. These jumps are cor-
responding to requests of the associated matching problem; AMA satisfies
these requests by the servers that are corresponding to those involved in these
jumps.

For convenience we modify the request sequence % in a way that does
not increase the optimal cost and does not decrease the cost of any online
algorithm, hence the bounds we get for this modified sequence will hold also
in the general case. The modification is defined as follows: we extend the
sequence by repeatedly requesting the points of the halting configuration of
a (fixed) optimal solution. We do this till

∑t
s=1 D∗

s(%
(u)
≤i ) becomes k. Observe

that the optimal cost does not change via this transformation, and any online
algorithm works the same way in the original part of the sequence (hence
online), so the cost computed by any online algorithm is at least the original
computed cost.

In the following two subsections we will give an upper bound for the
cost of Algorithm SH and several lower bounds for the optimal cost in an
arbitrary phase. Theorem 37 easily follows from these.
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We remark that the number t of blocks do not appear in the statement of
Theorem 37, which is not surprising, since in each phase, at most 2k blocks
of M can be involved. This comes from the fact that each server jumps at
most once during one phase (since if a server jumps into a block, that block
has to be a marked one, thus the server is not allowed to jump out from that
block during the same phase).

Upper bound

In the first step we prove an auxiliary result.

If p is not the last phase, let %(p)+ denote the request sequence we get by
adding the first request of phase p + 1 to %(p). Now we have

D∗
s(%

(p)) ≤ D̂s(p) ≤ D∗
s(%

(p)+) (4.2)

and in all blocks but at most one we have equalities there (this is the block
that causes termination of the pth phase).

Denote

mp :=
t∑

s=1

max{0, D̂s(p)− D̂s(p− 1)}. (4.3)

Since the auxiliary metric space is uniform, the optimal cost is mp ·∆.

From Lemma 6 of [14] we immediately get the following:

Lemma 38 The expected cost of AMA is at most log k ·mp∆.

A lemma similar in nature to the above was also presented in [13].

Lemma 39 The expected cost of Algorithm SH in the pth phase is at most

f(k)

(
t∑

s=1

opts(Ds(%
(p)+), %(p)) +

(
t∑

s=1

Ds(%
(p)+)− k

)
∆

)

+
(
f(k) log k + f(k) + log k

)
mp∆ +

f(k)

log k
∆.

Proof. Consider the pth phase of an execution of Algorithm SH on the
request sequence %. We fix a possible associated execution τ of AMA (which
satisfies the request sequence induced by %); let Eτ denote the event that the
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execution of AMA is this τ . We will give an upper bound to the overall
expected cost of Algorithm SH during phase p assuming τ . After that, we
get the expected cost appearing in Lemma 39 as a weighted sum.

Let Bs be a block in which some request arrives during this phase. For
the sake of convenience we will omit the subscript s when it is clear from
the context. While the block Bs is unmarked, only jump-outs can happen
from this block (in phase p); let d− be the number of these jump-outs. After
Bs has been marked, only jump-ins happen into this block; let d+ be the
number of these jump-ins and let d = d− + d+ denote the total number of
jumps involving Bs during phase p.

Also, for any 1 ≤ i ≤ d− let ri be the index of the request in %(p) which
causes the ith jump-out from Bs, and for any 1 ≤ i ≤ d+ let rd−+i be the
index of the request which causes the ith jump-in to Bs.

Denote σi = %
(p)
ri . . . %

(p)
ri+1−1, where %

(p)
r0 is the first request of the phase and

%
(p)
rd+1−1 is the last request of the phase. (In other words, σi is the ith maximal

segment of %(p) between two jumps. Figure 4.2 shows an illustration.)

It is clear that the number of servers inside Bs does not change between
two jumps; for each 0 ≤ i ≤ d, let ki denote the number of servers inside Bs

during σi. Finally, let `i = Ds(%
(p)
<ri+1

) (the demand of Bs for the sequence

%
(p)
<ri+1

). Observe that `i ≤ k for each i, moreover Ds(%
(p)
≤ri

) is exactly ki, when
i > d−, and is strictly less than ki, when i < d−.

jump outs outs ins ins
σ0 ↓ σ1 ↓ σ2 ↓ σ3 ↓ σ4

%
(p)
j :

︷ ︸︸ ︷
. . . %

(p)
r1−1

︷ ︸︸ ︷
%(p)

r1
. . . %

(p)
r2−1

︷ ︸︸ ︷
%(p)

r2
. . . %

(p)
r3−1

︷ ︸︸ ︷
%(p)

r3
. . . %

(p)
r4−1

︷ ︸︸ ︷
%(p)

r4
. . .

Figure 4.2: Partitioning of a phase. Here d− = d+ = 2.

A jump-in to the block satisfies the last request, hence there is no server
movement inside the block during a jump. The expected cost of non-jump
movements in this block (this is called the inner cost) is, applying (4.1), at
most

d∑
i=0

E[As(ki, σi)| Eτ ] ≤
d∑

i=0

(
f(ki)opts(ki, σi) +

ki · f(ki)

log ki

δ
)

≤ f(k)
d∑

i=0

opts(ki, σi) + δ

d∑
i=0

ki · f(ki)

log ki

. (4.4)
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(Recall that Eτ is the random event that τ is the associated run of AMA.)

We bound the right hand side of (4.4) piecewise. In the first step we bound
the inner costs till the (d− − 1)th jump (which is still a jump-out):

d−−1∑
i=0

opts(ki, σi) ≤
d−−1∑
i=0

opts(kd− , σi) ≤ opts(kd− , %
(p)
≤rd−

). (4.5)

From the last jump-out till the last jump-in:

d−1∑

i=d−
opts(ki, σi) ≤

d−1∑

i=d−
opts(`i, σi)

=
d−1∑

i=d−

(
opts(`i, σi) + opts(`i, %

(p)
≤ri

)− opts(`i, %
(p)
≤ri

)
)

≤
d−1∑

i=d−

(
opts(`i, %

(p)
<ri+1

)− opts(`i, %
(p)
≤ri

)
)

≤
d−1∑

i=d−

((
opts(ki+1, %

(p)
<ri+1

) + (ki+1 − `i)∆
)

− (
opts(ki, %

(p)
≤ri

) + (ki − `i)∆
))

(4.6)

≤
d−1∑

i=d−

(
opts(ki+1, %

(p)
≤ri+1

)− opts(ki, %
(p)
≤ri

) + (ki+1 − ki)∆
)

= opts(kd, %
(p)
≤rd

)− opts(kd− , %
(p)
≤rd−

) + (kd − kd−)∆. (4.7)

Inequality (4.6) follows from Definition 34, since the demand of Bs for %
(p)
<ri+1

is `i and the demand of Bs for %
(p)
≤ri

is ki.

Since kd ≥ Ds(%
(p)), analogously we get

opts(kd, σd) ≤ opts(Ds(%
(p)), σd)

≤ opts(Ds(%
(p)), %(p))− opts(Ds(%

(p)), %
(p)
≤rd

)

≤ opts(Ds(%
(p)+), %(p)) + (Ds(%

(p)+)−Ds(%
(p)))∆

− opts(kd, %
(p)
≤rd

)− (kd −Ds(%
(p)))∆ (4.8)

= opts(Ds(%
(p)+), %(p))− opts(kd, %

(p)
≤rd

)

+(Ds(%
(p)+)− kd)∆. (4.9)

Again, (4.8) follows from Definition 34, since the demand of Bs for %(p) is

Ds(%
(p)) and the demand of Bs for %

(p)+
≤rd

is kd. Note that if the first request
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of the p + 1th phase arrives to block Bs, then Ds(%
(p)) < D(%

(p)+), otherwise
the two demands are equal.

Summing up the right hand sides of (4.5), (4.7) and (4.9) we get

d∑
i=0

opts(ki, σi) ≤ opts(Ds(%
(p)+), %(p)) + (Ds(%

(p)+)− kd−)∆, (4.10)

and substituting this to the right hand side of (4.4) we get that the expected
inner cost in Bs is at most

f(k)
(
opts(Ds(%

(p)+), %(p)) + (Ds(%
(p)+)− kd−)∆

)
+

d∑
i=0

ki · f(ki)

log ki

δ. (4.11)

On the other hand,

Ds(%
(p)+)− kd− = (DS(%(p)+)− D̂s(p)) + (D̂s(p)− kd−), (4.12)

where we know that (D̂s(p)− kd−) is the number of jump-ins into this block.

From Definition 36,

d∑
i=0

ki · f(ki)

log ki

δ ≤ f(k)

log k
δ

d∑
i=0

ki

(since ki ≤ k). Recall that by definition ki denotes the number of servers
in Bs, after the ith jump involving block s. Summing these values for every
block and for every jump, we get (|τ | + 1)k as an upper bound, where |τ |
is the total number of jumps. Hence, the sum of the expressions of the form
ki·f(ki)
log ki

δ can be bounded by

(|τ |+ 1)
f(k)

log k
kδ. (4.13)

We also remark that
|τ | ≤ k, (4.14)

since any server can jump at most once: after a server jumps into a block,
the block has to be marked, thus no server can jump out from that given
block in this phase.

Now we bound the cost of the jumps. Let T be the set of the potential
associated runs of AMA and let η be the random variable Eτ 7→ |τ |, for
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each τ ∈ T . Applying Lemma 38 we get that the expected value of the total
number of jumps is

E[η] =
∑
τ∈T

Pr(Eτ )|τ | ≤ log k ·mp (4.15)

Summing up the results (4.11), (4.12), (4.13) and (4.15) for all the blocks
and applying the law of total expectation we get the following bound for the
expected cost of Algorithm SH:

t∑
s=1

d−s +d+
s∑

i=0

E[As(ki, σi) + η∆] (4.16)

=
∑
τ∈T


Pr(Eτ )

t∑
s=1

d−s +d+
s∑

i=0

E[As(ki, σi)| Eτ ]


 + E[η]∆

≤
∑
τ∈T

Pr(Eτ )

(
f(k)

( t∑
s=1

opts(Ds(%
(p)+), %(p)+)

+
t∑

s=1

(
Ds(%

(p)+)− D̂s(p)
)
∆ + |τ |∆

)
+ (|τ |+ 1)

f(k)

log k
kδ

)

+ log k ·mp ·∆

≤
∑
τ∈T

Pr(Eτ )f(k)

( t∑
s=1

opts(Ds(%
(p)+), %(p)+) +

t∑
s=1

Ds(%
(p)+)∆− k∆

)

+
∑
τ∈T

Pr(Eτ )|τ |
(

f(k)∆ +
f(k)

log k
kδ

)
+

f(k)

log k
kδ + log k ·mp ·∆ (4.17)

≤ f(k)

(
t∑

s=1

opts(Ds(%
(p)+), %(p)+) +

t∑
s=1

Ds(%
(p)+)∆− k∆ + log k ·mp∆

)

+

(
f(k)

log k
mp log k +

f(k)

log k
+ mp log k

)
∆,

if we apply (4.15),
∑

τ∈T Pr(Eτ ) = 1 and kδ ≤ ∆ in (4.17). 2
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Analyzing the optimal cost

Consider an optimal solution of the k-server problem. Let C∗
s (%) be the max-

imal number of servers in Bs of this optimal solution during % and let Cs(%)
be the number of servers in Bs of the optimal solution at the end %. We mod-
ify % as follows: we extend each phase (except the last one) with a copy of
the first request of the next phase, and consider %(p)+ instead of %(p). In this
section we bound the optimal cost for this modified sequence. It is obvious
that the optimal cost of these sequences is the same.

Observe that for any s and p, C∗
s (%(p)+) ≥ Cs(%

(p−1)+), since each (modi-
fied) phase p begins with the last configuration of phase p− 1.
Then,

∑t
s=1(C

∗
s (%(p)+)−Cs(%

(p−1)+)) is clearly a lower bound for the number
of jumps of the optimal solution during (the modified) phase p. Thus, the
cost of the optimal solution during %(p)+ (which has Cs(%

(p−1)+), s = 1, . . . , t
as the initial configuration) can be bounded by

opt(k, %(p)+) ≥
t∑

s=1

(C∗
s (%(p)+)− Cs(%

(p−1)+))∆ (4.18)

+
t∑

s=1

opts(C
∗
s (%(p)+), %(p)+),

i.e., ∆ times a lower bound for the number of jumps, plus a lower bound for
the inner cost, where we treat each block as if we had the maximal number
of servers during the whole phase.

Lemma 40

opt(k, %(p)+) ≥
t∑

s=1

opts(Ds(%
(p)+), %(p)+) +

(
t∑

s=1

Ds(%
(p)+)− k

)
∆.

Proof. From Definition 34 we have

t∑
s=1

(
opts(C

∗
s (%(p)+), %(p)+) + (C∗

s (%(p)+)− Cs(%
(p−1)+))∆

)

≥
t∑

s=1

(
opts(Ds(%

(p)+), %(p)+) + (Ds(%
(p)+)− Cs(%

(p−1)+))∆
)
.

Since
∑t

s=1 Cs(%
(p−1)+) = k, the statement follows by (4.19). 2



CHAPTER 4. THE K-SERVER PROBLEM 53

Proposition 41 For any s and p,

opts(C
∗
s (%(p)+), %(p)+) + (C∗

s (%(p)+)− Cs(%
(p−1)+))∆

≥ max{0, D∗
s(%

(p)+)− Cs(%
(p−1)+)}∆.

Proof. Let %(p)∗ be the subsequence of %(p) which we get by omitting each
request that arrives to a block Bs after the demand of that block reaches
D∗

s(%
(p)+) (note that %(p)∗ is not necessarily a prefix of %(p)). Now we have

two cases: first, if D∗
s(%

(p)+) > Cs(%
(p−1)+), then by Definition 34

opts(C
∗
s (%(p)+), %(p)+) + (C∗

s (%(p)+)− Cs(%
(p−1)+))∆

≥ opts(C
∗
s (%(p)+), %(p)∗) + (C∗

s (%(p)+)− Cs(%
(p−1)+))∆

≥ (opts(D
∗
s(%

(p)+), %(p)∗) +
(
D∗

s(%
(p)+)− Cs(%

(p−1)+))
)
∆

≥ max{0, D∗
s(%

(p)+)− Cs(%
(p−1)+)}∆.

Otherwise it holds that

max{0, D∗
s(%

(p)+)− Cs(%
(p−1)+)} = 0,

and also obviously

opts(C
∗
s (%(p)+), %(p)+) + (C∗

s (%(p)+)− Cs(%
(p−1)+))∆ ≥ 0.

2

Lemma 42 The optimal cost is at least

1

6

∑
p>1

mp ·∆.

Proof. Since
t∑

s=1

D̂s(p) =
t∑

s=1

Cs(%
(p−1)+) = k, it holds that

t∑
s=1

max{0, D̂s(p)− Cs(%
(p−1)+)}∆

=
t∑

s=1

1

2
|D̂s(p)− Cs(%

(p−1)+)|∆. (4.19)

Summing up the cost of the jumps performed by the optimal solution we get

t∑
s=1

|Cs(%
(p)+)− Cs(%

(p−1)+)|∆ ≤ 2 · opt(k, %(p)+). (4.20)
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Note that the factor of 2 comes from the fact that each jump appears twice
on the left hand side. Applying to (4.19) the statement of Proposition 41 and
equality (4.19), using D∗

s(%
(p)+) ≥ D̂s(p) we get

2 · opt(k, %(p)+)

≥
t∑

s=1

(|D̂s(p)− Cs(%
(p−1)+)|)∆. (4.21)

Now summing (4.21) and (4.20) and applying the triangle inequality we get

4 · opt(k, %(p)+)

≥
t∑

s=1

(|D̂s(p)− Cs(%
(p−1)+)|+ |Cs(%

(p)+)− Cs(%
(p−1)+)|)∆

≥
t∑

s=1

|D̂s(p)− Cs(%
(p)+)|∆. (4.22)

Also, from summing (4.21) and (4.22), the latter relativized to phase p− 1,
and applying again the triangle inequality,

2 · opt(k, %(p)+) + 4 · opt(k, %(p−1)+)

≥
t∑

s=1

(|D̂s(p)− Cs(%
(p−1)+)|+ |D̂s(p− 1)− Cs(%

(p−1)+)|)∆

≥
t∑

s=1

|D̂s(p)− D̂s(p− 1)|∆ = mp ·∆, (4.23)

and the statement follows. 2

Proof of Theorem 37

Now we are able to prove the theorem about competitiveness of Algorithm
SH (see page 45).

Proof. [Theorem 37] The first term in the right hand of the formula in Lemma
39 can be bounded by f(k)opt(k, %(p)+) by Lemma 40. Furthermore if p = 1
we can write k instead of m1 log k by (4.14), otherwise applying 42 we get
that

∑
p mp∆ can be bounded by ∆·k

log k
+ 6 · opt(k, %).



CHAPTER 4. THE K-SERVER PROBLEM 55

Summing up,

E(SH(%)) ≤ f(k)opt(k, %)

+

(
∆ · k
log k

+ 6 · opt(k, %)

) (
f(k) log k + f(k) + log k

)

+
f(k)

log k
∆,

= opt(k, %)
(
6f(k) log k + 7f(k) + 6 log k

)

+
f(k) log k + f(k) + log k + f(k)/ log k

log k
· k ·∆

hence Algorithm SH is (f ′, µ)-efficient on M with f ′(k) = O(f(k) log k). 2

4.2.2 Conclusions

Starting from algorithm Partition, Equitable or Marking and iterating The-
orem 37 we get the following result:

Corollary 43 There exists a (c1 log k)h-competitive randomized online al-
gorithm on any µ-HST of height h (here µ ≥ k), where c1 is a constant.
Consequently, when h < log k

log c1+log log k
, this algorithm is o(k)-competitive.

It is a bit more natural to require ∆ ≥ δn0 to hold, where n0 is the
size of the greatest block. If additionally n0 < k holds, we may get a better
competitive ratio.

4.3 Results on the k-server problem with re-

jection

In the rest of the chapter we investigate a more general model in which the
requests can be rejected. The results of this section are in [36]. In this problem
the ith request is a pair (%i, wi) for each i, where %i is a point and wi > 0
is the penalty for the rejection. Each request can be served the same way as
before, or optionally it also can be rejected at the penalty given along with
the request. The cost of an algorithm is the sum of the distances covered by
the k servers plus the sum of the penalties of the rejected requests.



CHAPTER 4. THE K-SERVER PROBLEM 56

4.3.1 Deterministic problem on uniform spaces

Theorem 44 There is no weakly c-competitive online algorithm for the k-
server problem with rejection on uniform spaces with c < 2k.

Proof. Suppose that there exists a weakly (2k− c′)-competitive algorithm A
on an uniform space M with c′ > 0, a ≥ 0. We construct the following input
sequence % for A. Let be C the initial configuration and v /∈ C a point of M.
Let N > k2(2 + a + (a + 3)/2)2 be a large positive integer and ε = 1/

√
N .

Each element of % consists of the point of C ∪{v} which is not in the current
configuration of algorithm A and a penalty ε. The request sequence ends
when the number of server movements of A achieves N (we can suppose that
it achieves N , otherwise it is easy to see that there is no such c for which
A is c-competitive). We note that there are N requests (including the first)
differing form the preceding one. Let W stand for the sum of the penalties
payed by algorithm A. So the cost of A on input % is A(k, %) = N + W . We
deal with the following two cases.

Case 1. N · (1− 2ε) < W .
Obviously the optimal cost is at most dN/ke, which is the cost of serving
all requests with the server covering a point which will be requested at the
very latest after the current request. In this solution at least k − 1 requests
arriving to different points covered by servers follow each server movement.
Applying this and the assumption on A we get that

A(k, %) ≤ (2k − c′) · opt(k, %) + a

< (2k − c′) · (N/k + 1) + a

= N · (2− c′/k) + (2k − c′ + a),

with c′ > 0 and some a. Moreover by the assumption of this case

A(k, %) = N + W > N · (2− 2ε) = 2N − 2
√

N

but it is a contradiction by the choice of N .

Case 2. N · (1− 2ε) ≥ W .
Clearly, the number of requests is N+W/ε, so the average number of requests
arriving to a point is r = (N + W/ε)/k. Therefore, there exists a point u
to which at most r requests arrive. The cost of the solution which initially
moves the server covering u to v if u 6= v and rejects all requests which are
not covered, therefore also the optimal cost, is at most rε + 1. Applying this
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and the assumption on A we get that

A(k, %) ≤ (2k − c′) · opt(k, %) + a

< (2k − c′) ·
(

Nε + W

k
+ 1

)
+ a

= 2Nε + 2W − c′ · Nε + W − k − ka/c′

k

= 2
√

N + 2W − c′ ·
√

N + W − k − ka/c′

k
.

On the other hand by the assumption of this case

A(k, %) = N + W > 2Nε + 2W = 2
√

N + 2W

but it is again a contradiction by the choice of N . 2

We present a weakly competitive algorithm for the k-server problem with
rejection on uniform spaces called Threshold. Algorithm Threshold uses the
marking procedure seen before and is picky. Let t > 0 be some fixed value.

Algorithm T Ht

To each point a counter is assigned. Initially each counter is set to 0
and all the vertices are unmarked. After each request, the marks are
updated, followed by a server movement if necessary, as follows:

(i) Increase the value of the counter of the requested point by the
penalty of the request.

(ii) If the value assigned to the requested point is at least t, mark
that point. At the moment when k+1 points become marked, all
the marks (including this new one) are erased and all counters
are set to 0.

(iii) If the requested point is already covered by a server, then no
servers shall move.

(iv) If the requested point is unmarked and not covered then the
request is rejected.

(v) If the requested point is marked and not covered, then the least
recently moved server is moved to cover the requested point.
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Theorem 45 Algorithm T H1 is weakly (2k + 1)-competitive on uniform
spaces.

Proof. Let M be a uniform space and ε > 0 be arbitrary. First of all we
make the following observations. If in the request sequence we exchange a
request with several requests arriving to the same point such that the sum of
the penalties of the new requests is equal to the penalty of the old request,
the optimal cost does not increase and the cost of Algorithm T H1 does not
decrease. Therefore we can suppose without loss of generality that the penalty
of each request is at most ε. The second observation is that we can divide the
input sequence into phases by the marking procedure in the following way: a
phase ends with the request which causes mark erasing and new phase begins
immediately after this request. The point where this request arrives is called
the terminating point of the phase.

We call the points of M having a counter value strictly between 0 and
1(= t) at the end of phase p non-critical points of phase p. Denote np the
number of points of M to which at least one request arrives in phase p. If p
is not the last phase, then np > k. Let ` denote the number of points having
a counter value at least 1 at the end of the last phase. There are exactly
np − ` non-critical points of phase p if p is the last phase and np − k − 1
such points if p is not the last one. There are at least np− k points to which
requests arrive increasing the optimal cost in phase p (either by penalty or
by the cost of server moving). Let Wp stand for the sum of the values of those
counters belonging to non-critical points of phase p. Therefore the optimal
cost in phase p is at least Wp + 1 if p is not the last phase, otherwise it is at
least max{Wp − k + `, 0}, so the total optimal cost is

opt(k, %) ≥
∑

p

(Wp + 1)− 1− k + ` ≥
∑

p

(Wp + 1)− 1− k.

The cost of Algorithm T H1 is at most

• Wp + 2` in the last phase,

• Wp + 2k + 1 otherwise,

therefore

T H1(k, %) ≤
∑

p

(Wp + 2k + 1 + ε)− 1− 2k + 2`

≤ (2k + 1 + ε)(opt(k, %) + 1 + k)− 1
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holds with the chosen ε. But since ε was chosen arbitrarily, we get that

T H1(k, %) ≤ (2k + 1)opt(k, %) + 2k2 + 3k.

2

4.3.2 Randomized problem on uniform spaces

Finally we investigate the randomized version of Algorithm T Ht. Let t > 0
be some fixed value.

Algorithm RT Ht

To each point a counter is assigned. Initially each counter is set to 0
and all the vertices are unmarked. After each request, the marks are
updated, followed by a server movement if necessary, as follows:

(i) Increase the value of the counter of the requested point by the
penalty of the request.

(ii) If the value assigned to the requested point is at least t, mark
that point. At the moment when k+1 points become marked, all
the marks (including this new one) are erased and all counters
are set to 0.

(iii) If the requested point is already covered by a server, then no
servers shall move.

(iv) If the requested point is unmarked and not covered then the
request is rejected.

(v) If the requested point is marked and not covered, then a server
is chosen uniformly at random from among the ones occupying
an unmarked vertex and is moved to cover the requested point.

Recall that Hk =
∑k

i=1 1/k.

Theorem 46 Algorithm RT H2 is (6Hk +2)-competitive on uniform spaces.

Proof. Analogously the deterministic case we again can assume that the
penalty of each request is at most ε. We can divide the input sequence into
phases like in the deterministic case. The marking procedure, so also each
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phase, does not depend on the random choices of Algorithm RT H2. We use
the notations of the proof of Theorem 45.

At first we give lower bounds to the optimal cost. Now the non-critical
points of phase p are exactly the points with counter value strictly between
0 and 2 at the end of phase p. There are exactly np− ` non-critical points of
phase p if p is the last phase and np − k − 1 such points if p is not the last
one. There are at least np − k points to which requests arrive increasing the
optimal cost in phase p (either by penalty or by the cost of server moving).
Now the requests arriving to such a point increase the optimal cost by

• at least 1 if the sum of the penalties exceeds 1;

• or, by the sum of these penalties (i.e., the value of the counter of the
given point at the end of the phase) otherwise.

In any case, each non-critical point of a phase p contributes by at least half of
the values of their counters at the end of the phase (since by non-criticalness,
each of these counters is bounded by 2).

Therefore,

opt(k, %) ≥
∑

p

(
Wp

2
+ 1). (4.24)

Moreover, the optimal cost does not increase if we omit any request arriving
to non-critical points from the request sequence. Consider an optimal solu-
tion. Without loss of generality we can suppose that it is lazy, i.e., it does
not move any server in response to a request to a covered point and moves
at most one server in response to a request to an uncovered point. For any
given algorithm, there is always a lazy one that incurs no more cost in the
original k-server problem (see in [31]) so there is a lazy one in the k-server
problem with rejection too. Call a request causing server movement accord-
ing to Algorithm RT H2 a critical request and call a point to which a critical
request arrives in phase p a critical point of phase p. There are at most k
critical points in each phase. Consider a critical point v in phase p. Suppose
that the chosen optimal solution does not move any server to v in phase p.
So there exists a server s which does not move in phase p. The value of the
counter of v is more than 2 at the end of phase p. Therefore the cost of the
considered solution decreases if we modify the solution such that s moves to v
at the beginning and return to its original position at the end of phase p, but
this is a contradiction by the optimality of the solution. Consider the critical
requests of phase p. Denote %′ the subsequence of % consisting of the requests
arriving to critical points of the actual phase. Denote %c the sequence of the
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critical requests with penalties increased to infinity. So we can suppose that
each request in %′ is served by the considered optimal solution and we get
that

opt(k, %) ≥ opt(k, %′) ≥ opt(k, %c). (4.25)

The cost of RT H2 in phase p is the cost on critical points of phase p
plus the sum of the penalties of requests arriving to non-critical points of
phase p plus an additional cost of 2, which is the sum of the penalties of
the requests arriving to the terminating point of phase p. Observe that each
critical point causes at most 2+1 cost in Algorithm RT H2 and the server
moving is according to Algorithm MARK on input %c. Moreover we know
that Algorithm MARK is 2Hk-competitive. Applying these facts and also
inequalities (4.24) and (4.25) we get

E[RT H2(k, %)] =
∑

p

(Wp + 2) + E(RT H2(k, %′))

≤
∑

p

(Wp + 2) + (2 + 1) · E(MARK(%c))

≤ 2 · opt(k, %) + 3 · 2Hk · opt(k, %c)

≤ (6Hk + 2)opt(k, %) + 2k.

2

Obviously, the original k-server problem is a special case of the k-server
problem with rejection, chosen all penalties to be infinity. Therefore the lower
bound Hk of the competitive ratio holds in this model also.



Summary

This thesis is concerned with online problems. There are several families of
problems of which an online version is defined. Here were considered three ar-
eas: the scheduling, the graph coloring and its generalization for hypergraphs
and the k-server problem.

At first the thesis summarizes the basic notations of competitive analysis
in general.

The first family of problems is the family of online scheduling, in which
jobs are given with processing time, which have to be assigned to machines
handling them. Jobs arrive one by one, and they have to be scheduled im-
mediately at their arrival. The cost is the processing time of the most loaded
machine (called the makespan) plus extra costs if there are any. In the model
with machine cost [25] one may purchase machines. Algorithm called Aρ [25]
is ϕ-competitive in this model. In the model with rejection the online algo-
rithm may reject jobs by paying some penalty [6]. Algorithm called RT P(α)
[6] is (ϕ+1)-competitive and no online algorithm exists that is c-competitive
for some c < ϕ + 1 in this model. The surprising fact turns out from investi-
gation of the combination of the models above that the simple combinations
of Aρ and RT P(α) are not efficient, i.e., they are not c-competitive for any
constant c in the combined model. In this situation the investigation of the
relaxed version of the problem helps. There exists a solution (Relopt) of the
relaxed problem having a behavior in terms of accepting which is consistent
on the sequence of prefixes of the input, i.e. if it accepts a job on a prefix
then it doesn’t rejects that job on any longer prefix, and this solution can
be computed in polynomial time. Furthermore the sum of the penalties of
job which at first were rejected but later were accepted by Relopt can be
bounded above with the optimal cost. Algorithm Optcopy was constructed
on the basis of these results. This algorithm rejects the most recent job if
Relopt does at least once and schedules the accepted jobs according to Aρ.
The main result of this part that algorithm Optcopy is (ϕ + 1)-competitive.
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The second family, the online graph coloring, is a well studied problem.
There is an ordering given on the vertices of the input graph and the vertices
are revealed one by one in this order and have to be colored immediately
seeing only the subgraph spanned by the already revealed vertices. The cost
of an algorithm is obviously the number of colors it uses. At first the gener-
alizations of Algorithm Bn [27] are considered which colors graphs inducing
neither C3 nor C5 for graphs with high girth and high oddgirth. The first
generalization is Bn,d, which colors online graphs on n vertices with girth
greater than 4d + 1 with at most (d + 1)n1/(d+1) colors. The second gener-
alization is BOn,d, which uses an algorithm defined by Lovász which colors
bipartite graphs on n′ vertices with at most log2 n′ colors (see [26]) as an
auxiliary algorithm. BOn,d colors online graphs on n vertices with oddgirth
greater than 4d + 1 with at most 2(2n log2 2d/d)1/2 colors.

Graph coloring can be generalized to hypergraphs in several ways. In
the generalization considered here an ordering on the vertices is given, and
the vertices are revealed one by one in this order and have to be colored
immediately in such a way that edges containing only vertices which are
already revealed don’t become monochromatic. The most natural and sim-
plest algorithm is the First Fit (FF). It turned out that on several classes of
hypergraphs FF is the best online algorithm according to the competitive
analysis. The results in this model are the following.

Let k ≥ 3. For every online hypergraph coloring algorithm A there
exists a 2-colorable k-uniform hypergraph H on n vertices for which
χA(H) ≥ dn/(k − 1)e.
If H is a k-uniform hypergraph then χFF(H) ≤ dn/(k − 1)e.
For every online hypergraph coloring algorithm A and integer d > 2

there exists a 2-colorable d-uniform hypergraph H on at most (d−1)k−1
d−2

vertices with maximal degree k such that χA(H) ≥ k + 1.
Furthermore, FF colors hypergraphs with maximal degree k with at
most k + 1 colors.

For any hypergraph H Algorithm FF gives a coloring of H with at
most 2 · ν(H)+1 colors where ν(H) is the matching number of H, i.e.,
the maximal number of pairwise disjoint edges of H.

No online algorithm exists which can color a projective plane with less
than 3 colors.
Furthermore, FF colors the projective planes with at most 3 colors.
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At the end of the thesis some results on the k-server problem are given.
There are several metric spaces on which o(k)-competitive randomized algo-
rithms (the competitive ratio of which does not depend on any parameter
of the space) for the k-server problem have been developed. Algorithm Shell
(SH) is one of them. It works on so-called decomposable spaces, and uses
an algorithm A which serves the requests inside the blocks as auxiliary al-
gorithm. The basis of execution of SH is the notion of the demand of a
block, which means the number of servers for which the cost of moving them
into the (empty) block plus the optimal cost inside the block is minimal.
SH works in phases and keeps the number of servers in the block never less
than their demand. If it moved a server into a block in a phase it will not
move server outside from that block during the phase. The requests inside
the block are served by A. If A is f(k)-competitive in each block then SH is
c · f(k) log k-competitive when using A. Furthermore, if the metric space is a
so-called µ-HST for some µ > k and height h, then starting from a c′Hk-com-
petitive algorithm one can define a (c1 log k)h-competitive algorithm applying
SH in a recursive manner. If h < c2 log k/ log log k, then this algorithm is
o(k)-competitive.

The extension of the k-server problem with rejection in which the al-
gorithm may reject the request by paying some penalty is also considered.
Algorithm T H is constructed for the deterministic version of the model, and
RT H is a randomized variant. Both of them use a marking procedure hence
they work in phases as Algorithm MARK [21] does. The corresponding
results are the following.

There is no weakly c-competitive online algorithm for the k-server prob-
lem with rejection on uniform space with c < 2k.
Furthermore, Algorithm T H (with appropriate parameter) is weakly
(2k + 1)-competitive on uniform spaces.

Obviously, the lower bound Hk of the competitive ratio of the original
model holds in this model also.
Furthermore, Algorithm RT H (with appropriate parameter) is (6Hk +
2)-competitive on uniform spaces.

The spectrum of the problems tackled in the thesis is wide, thus it is not
fully comprehensive, but rather opens several (hopefully) promising direc-
tions for future research.



Összefoglalás

A dolgozat online problémákkal foglalkozik. Több problémacsaládnak defini-
álták online változatát. Ezek közül három terület került elő: az ütemezés,
a gráfsźınezés, illetve annak egy általánośıtása hipergráfokra, valamint a k-
szerver probléma.

A dolgozat eleje a kompetit́ıv elemzéssel kapcsolatos legfontosabb alapfo-
galmakat foglalja össze általánosan.

Az első problémakör az online ütemezés, amelyben ütemezési idővel ren-
delkező munkák érkeznek sorban, amelyeket gépekhez kell rendelni. A költség
a legtovább futó gép működési ideje (makespan) és az esetleges egyéb költ-
ségek összege. A gépköltséges modellben [25] a gépeket 1 költségért lehet
vásárolni, az elutaśıtásos modellben [6] pedig a munkákat bizonyos büntetés
fejében el lehet utaśıtani. Mindkét modellben ismert hatékony algoritmus: az
előbbiben a ϕ-kompetit́ıv Aρ algoritmus [25], mı́g az utóbbiban a (ϕ + 1)-
kompetit́ıv RT P(α) [6], amelyről igazolták azt is, hogy nem létezik nála
hatékonyabb online algoritmus a kompetit́ıv elemzés szempontjából. A két
modell kombinációjának vizsgálatából kiderül az a meglepő tény, hogy a fenti
két hatékony algoritmus egyszerű kombinációi nem hatékonyak, azaz nem
létezik olyan c konstans, amelyre c-kompetit́ıv lenne bármelyik is. Seǵıtséget
a probléma relaxált változatának vizsgálata jelentett. A relaxált változatnak
létezik olyan optimális megoldása (Relopt), amely a munkák elfogadását te-
kintve konzisztensen viselkedik a input kezdőszeleteinek sorozatán (rövidebb
kezdőszeleten elfogadott munkát hosszabbon sem utaśıt el). Az is teljesül,
hogy ez a megoldás polinom időben kiszámı́tható, illetve a Relopt által ko-
rábban elutaśıtott, de később elfogadott munkák összbüntetése felülről kor-
látozható az optimális költséggel. Ezek alapján lett megkonstruálva az Opt-
copy algoritmus, amely a munkák elfogadását tekintve a Relopt algoritmus
döntését alkalmazza a legutolsó munkára, az elfogadott munkákat pedig Aρ

seǵıtségével ütemezi. Ennek a résznek a fő eredménye, hogy az Optcopy al-
goritmus (ϕ + 1)-kompetit́ıv.
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A második problémacsalád az online sźınezési problémákat foglalja magá-
ba. Az eredeti gráfsźınezési problémában adott az input gráf csúcsain egy sor-
rend, ebben a sorrendben érkeznek a csúcsok. A soron következő csúcs sźınét
azonnal meg kell adni, az eddig érkezett csúcsok által fesźıtett részgráfot
látva. A költség nyilvánvalóan a használt sźınek száma. Először a C3- és C5-
mentes gráfokat sźınező Bn [27] algoritmus általánośıtása került sorra nagy
derékbőségű illetve nagy páratlan derékbőségű gráfokra. Az egyik általánośı-
tott algoritmus Bn,d, amely n csúcsú, 4d+1-nél nagyobb derékbőségű gráfokat
sźınez online módon legfeljebb (d + 1)n1/(d+1) sźınnel. A másik BOn,d, amely
segédalgoritmusként Lovász páros gráfokat (legfeljebb a csúcsszámban loga-
ritmikus számú sźınnel) sźınező online algoritmusát (ld. [26]) használja. A
BOn,d algoritmus olyan n-csúcsú gráfokat sźınez online módon legfeljebb
2(2n log2 2d/d)1/2 sźınnel, amelyek nem tartalmaznak 4d + 2-nél rövidebb
páratlan kört.

Az online gráfsźınezés hipergráfokra többféle módon általánośıtható. Az
itt tekintett általánośıtásban az online hipergráf csúcsain szintén adott egy
sorrend, és a sorrendben érkező csúcs sźınét azonnal meg kell adni úgy, hogy
azon élek közül, amelyek csak addig érkezett csúcsokat tartalmaznak, egyik se
legyen monokromatikus. Az egyik legtermészetesebb és legegyszerűbb algorit-
mus a First Fit (FF), amelyről több hipergráfosztály esetében kiderült, hogy
nincs is nála hatékonyabb algorimus. A dolgozatban szereplő eredmények
ebben a modellben a következők:

Legyen k ≥ 3. Bármely A online algoritmusra van olyan n csúcsú 2-
sźınezhető k-uniform online hipergráf, amely sźınezéséhez A legalább
dn/(k − 1)e sźınt használ.
Továbbá FF bármely n csúcsú 2-sźınezhető k-uniform online hipergráf
sźınezéséhez legfeljebb dn/(k − 1)e sźınt használ.

Bármely A online algoritmusra és d > 2 és k pozit́ıv egészekre létezik

olyan 2-sźınezhető d-uniform legfeljebb (d−1)k−1
d−2

csúcsú és k maximális
fokú hipergráf, amely sźınezéséhez A legalább k + 1 sźınt használ
Továbbá a k maximális fokú hipergráfok sźınezéséhez FF legfeljebb k+1
sźınt használ.

Minden H online hipergráfra az FF által használt sźınek száma legfel-
jebb 2·ν(H)+1, ahol ν(H) a maximális független élrendszer elemszáma.

FF a véges projekt́ıv śıkok sźınezéséhez legfeljebb 3 sźınt használ.
Továbbá nincs olyan online algoritmus, amely egy véges projekt́ıv śıkot
3-nál kevesebb sźınnel tudna sźınezni.
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A dolgozat végén a k-szerver problémával kapcsolatos eredmények szere-
pelnek. A véletlen k-szerver problémára kevés metrikus téren ismert o(k)-
kompetit́ıv algoritmus (ahol az algoritmus kompetit́ıv hányadosa nem függ a
tér más paraméterétől). Az egyik eredmény ezen algoritmusok tárát bőv́ıti.
Úgynevezett µ-felbontható tereken működik a Shell algoritmus (SH), amely
segédalgoritmusként egy, a tér blokkjain hatékony A algoritmust használ. Az
algoritmus működésének lényege, hogy az igény (demand) fogalmát definiálja
a blokkokon, amely tulajdonképpen az a szerverszám, amelyre a szerverek be-
mozgatásának költsége (az üres blokkba) plusz a blokkon belül az optimális
költség minimális. Az algoritmus fázisokban működik, minden blokkban leg-
alább annyi szervert tart, amennyi az igény, és amelyik blokkba vitt szervert,
onnan már nem visz el abban a fázisban. A blokkokon belül az A algorit-
must használja a kérések kiszolgálására. Ha A algoritmus f(k)-kompetit́ıv a
blokkokon, akkor SH algoritmus A-val c ·f(k) log k-kompetit́ıv. Továbbá egy
h magas µ-HST-n, ahol µ > k, valamelyik, az uniform téren c′ ·Hk-kompetit́ıv
algoritmusból indulva SH algoritmust rekurźıv módon alkalmazva kapunk
egy (c1 log k)h-kompetit́ıv algoritmust. Ha h < c2 log k/ log log k, akkor a
kapott algoritmus o(k)-kompetit́ıv.

A k-szerver problémának definiálható elutaśıtásos modellje is, amelyben a
kéréseket – bizonyos büntetés fizetése mellett – el is lehet utaśıtani. A modell
determinisztikus változatában konstruált algoritmus T H, a véletlen változa-
tában pedig RT H. Mindkettő – a MARK [21] algoritmushoz hasonlóan –
jelölő algoritmus. A velük kapcsolatos eredmények a következők:

A k-szerver probléma elutaśıtásos változatára uniform téren nincs olyan
(determinisztikus) online algoritmus, amely gyengén c-kompetit́ıv lenne
valamely c < 2k-ra.
Továbbá T H algoritmus (megfelelő paraméterrel) (2k + 1)-kompetit́ıv
uniform tereken.

RT H algoritmus (megfelelő paraméterrel) (6Hk+2)-kompetit́ıv uniform
tereken.
Továbbá az eredeti probléma Hk alsó korlátja itt is alsó korlát a véletlen
algoritmusok kompetit́ıv hányadosára.

Az áttekintett problémák köre viszonylag széles. Habár ennélfogva nem
teljesen átfogó, sok további lehetőséget nyit meg.
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