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Introduction

One of the basic problems in geometric graph theory is to decide if a given
graph can be drawn on a given planar point set using pairwise noncrossing
straight line edges. In a more demanding version, the points and the vertices
of the graph are colored and each vertex has to be placed in a point of the
same color (see the survey [8] for further references). Interesting and non-
trivial questions arise already if we want to embed a 2-colored path on a 2-
colored point set. The authors of several papers have focused on embeddings
of so-called alternating paths, which are paths with no monochromatic edge.

Consider an arbitrary 2n-element equicolored (n points red and n points
blue) point set in the plane. We would like to determine or estimate the
number of points on the longest noncrossing path such that edges join points
of different color and are straight line segments.

In the general case there is still not so much known. If the color classes
are separated by a line, then there is a noncrossing, alternating Hamiltonian
path on the point set [1]. The same result holds if one of the color classes is
exactly the set of vertices of the convex hull [1]. If the color classes are not
separated by a line, then there are point sets with no noncrossing, alternating
Hamiltonian path for n ≥ 8, even if the points are in convex position. By
the existence of halving lines the result in [1] yields at least n points on
the longest noncrossing, alternating path for any equicolored point set of 2n
points.

Erdős [6] asked what happens if we restrict the points to be in convex
position.

ℓ(P) = max
U is a noncrossing alternating path

ℓ(U),

where ℓ(U) is the number of points on U .

ℓ(n) = min
P is equicolored

ℓ(P),

where P is any colored planar 2n-element convex point set.
Without loss of generality we may assume that the points are on a cir-

cle. Erdős conjectured that the following configuration was asymptotically
extremal. Let n be divisible by four. Divide the circle into four intervals
that consist of n

2
red, n

4
blue, n

2
red and 3n

4
blue points, respectively. In this

configuration there are 3n
2
+ 2 points on the longest noncrossing, alternating

path.
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Figure 1: The coloring Pα,ℓ where ℓ denotes the common length of the short
monochromatic arcs in the two middle arcs (here ℓ = 2)

Kynčl, Pach and Tóth [10] disproved the above conjecture with a sin-
gle construction in 2008 and gave the 4

3
n + O(

√
n) upper and the n +

Ω
(

√

n/ logn
)

lower bound. The upper bound is conjectured to be asymp-

totically tight.

Results

In my Ph.D. thesis I present a class of configurations exihibiting the upper
bound 4

3
n + O(

√
n) [7] in a convex point set for the number of points on

noncrossing, alternating paths. This result is joint work with my advisor
Péter Hajnal.

This class of configurations can be described as follows. Let Pα,ℓ be a
coloring of the 2n = 12L equicolored point set where α ∈ [−1, 1] and ℓ is the
length of certain consecutive monochomatic arcs, see Figure 1. We assume
that αL is an integer. On Figure 1 the number of points of monochromatic
and mixed colored arcs in the coloring Pα,ℓ is shown in the central angle of
each arc.

We proved the following result:
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Figure 2: How to code a colored point set as a Dyck path

Theorem 1. [7] If ℓ = Θ(
√
n), then ℓ(Pα,ℓ) =

4n
3
+O(

√
n).

This class was also found independently by Jan Kynčl [9] using computer
search.

The essence of the proof of the lower bound in [10] is a clever way to define
an arc so that it is unbalanced (contains significantly more points from one of
the color classes) while it is assumed that the alternation between the colors
is small along the circle. We did the same using a completely different idea
and we obtained a better result [7].

The basic idea of our improvement is a simple coding of the colored point
set. We code our point set as a Dyck path, that is, we introduce for each red
point a unit up line segment and for each blue point we introduce a unit down
line segment, see an example for the coloring and the coding on Figure 2.
The height of the walk reflects how the colors are alternating. Since we code
an equicolored point set the walk ends at the level of starting. We cut the
closed walk at any point that belongs to the lowest level. This way we obtain
a Dyck path coding our colored point set.

Actually, our code contains all the combinatorial information we need to
consider the problem. Our Dyck path has 2n steps. Each step starts on a
level and ends at a neighboring level.

After using some tricky arguments we can locate an unbalanced arc and
we obtain the following theorem:

Theorem 2. [7] ℓ(n) ≥ n + Ω(
√
n).

The proof techniques introduced the notion of separated matchings, that
is, matchings where no two edges cross geometrically and all edges can be
crossed by a line.
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If someone considers the observed examples in the literature, then the
number of points on the longest noncrossing alternating path is between n
and 2n, while the number of alternations among the colors is o(n). Note,
if the number of alternations is linear in n, then the longest noncrossing,
alternating path gets ”long”. If the number of alternations is o(n), then
the existence of a long noncrossing, alternating path implies the existence
of a large separated matching. The existence of a large separated matching
always implies the existence of a long noncrossing, alternating path. Hence,
we should concentrate on separated matchings.

I gave several new constructions that allow at most 4

3
n + O(

√
n) points

in any separated matching [12]. Among them there was a class of configura-
tions that significantly differs from all known previous constructions. I also
presented a type of coloring such that among these colorings in the optimal
one any separated matching contains at most 4

3
n +O(

√
n) points.

I will describe two main constructions and then I give another one by
generalizing one of them.

The size of a separated matching is the number of points in it. An (as, bs)
block consists of a red arc of as points and a blue arc of bs points. An s(b, a)
block consists of a red arc of length b followed by a blue arc of length a and
this a+ b colored points are repeated s many times.

The first construction is C1(s, t): Take t consecutive (s, 2s) blocks on the
circle followed by t many s(2, 1) blocks.

The second construction is C1
+(a, b, s, t): Take t consecutive (as, bs)

blocks on the circle followed by tmany s(b, a) blocks. Note that C1
+(1, 2, s, t) =

C1(s, t).
The third construction is a class of coloring C2(s, t): Take t many (s, 2s)

blocks and t many (s, s(1, 1)) blocks in an arbitrary order along C.
I proved the following results:

Theorem 3. [12] In C1(s, t) the size of every separated matching is at most
4

3
n+O(s+ t).

Theorem 4. [12] In C1
+(a, b, s, t) the ratio of the size of the largest separated

matching to the total number of points is

max

{

2min{a, b}
a + b

,
max{a, b}

a+ b

}

+O

(

(a+ b)(s + t)

n

)

.

It follows that the order of magnitude of the size of the largest separated
matching is at least 4

3
n. Equality occurs when max{a, b} = 2min{a, b}. So

C1(s, t) is optimal among C1
+(a, b, s, t).
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Theorem 5. [12] Let C2 be any coloring from C2(s, t). Then the size of every
separated matching in C2 is at most 4

3
n+O(s+ t).

Theorem 6. [12] Let C3 be that coloring from C2(1000, t) where the reddish
and bluish blocks alternate. Then size of the largest separated matching in
C3 is at least 1.34n.

If a and b are constants in C+

1 (a, b, s, t), we can think about our theorems
in the following way. Since s · t = O(n), we can choose s and t so that s, t =
O(

√
n) and the order of magnitude of O(s+ t) becomes negligible. If a and b

are not constants, then for a suitable choice we can achieve that the number
of alternations is o(n) and at the same time the remainder term is o(n), too
which leads to new constructions with short noncrosssing, alternating paths.

The sixth theorem is an exception, there we choose a setting where s is a
large constant and t is ǫ ·n. So O(s+ t) is very small but not negligible. The
reason for choosing such a setting is that in C3 the discrepancy of the coloring
is constant (2000). At the same time the size of the optimal matching is very
close to the conjectured value.

There is a conjecture related to separated matchings which would be in-
teresting to prove.

Conjecture. [7] Every equicolored convex point set of 2n points admits
a separated matching of size 4

3
n+O(

√
n).

I was also investigating point sets with small discrepancy coloring, that
is, point sets where the difference in cardinality of color classes is bounded
from above on any interval of consecutive points. Separated matchings are
simpler than alternating paths. Each alternating path consists of a separated
macthing part and side edges which are connected to form a path. Small dis-
crepancy itself means many alternations among the two colors, and that alone
guarantees a long noncrossing, alternating path. It is a further advantage of
separated matchings that we can consider cases with small discrepancy. We
believe it might lead to a better understanding of the problem.

Theorem 7. [12] For any coloring with dicrepancy d ≤ 3 there is a separated
matching of size at least 4n

3
.

Unfortunately, already the case of dicrepancy three is rather technical
to prove by the used methods. The proof is based on paring of the arcs of
different color. It could be feasible to find a better pairing algorithm and
broaden the result.
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Figure 3: An equicolored double-chain (C1, C2)

With my advisor’s Pavel Valtr’s research group in Prague we considered
a specific position of points. Our point set was on a double-chain which we
defined in the following way. A convex or a concave chain is a finite set
of points in the plane lying on the graph of a strictly convex or a strictly
concave function, respectively. A double-chain consists of a convex chain and
a concave chain such that any line determined by any of the chains does not
intersect the other chain, see Figure 3.

With these settings in 2008 we proved (Cibulka, Kynčl, Mészáros, Stolař,
Valtr) the following result:

Theorem 8. [4] If both chains of the double-chain contain at least one fifth of
all the points, then there exists a noncrossing, alternating Hamiltonian path.
On the other hand, the above property does not hold if one of the chains
contains at most ≈ 1/29 of all the points.

In the area of long noncrossing, alternating paths on a 2-colored point set
there remain more open questions still. The gap is remarkable between the
best lower and upper bound gained so far in the convex case. The general
case would be also an iteresting line of research.

Finally, I would like to describe the results in the last part of my thesis.
With Pavel Valtr’s research group we settled a conjecture of Peter Winkler [5].
The problem is the following. Bob cuts a pizza into slices of not necessarily
equal size and shares it with Alice by alternately taking turns. One slice
is taken in each turn. The first turn is Alice’s. She may choose any of the
slices. In all other turns only those slices can be chosen that have a neighbor
slice already taken. How much of the pizza can Alice gain? Peter Winkler
conjectured that Alice can obtain 4/9 of the pizza for any cutting.

The pizza after Bob’s cutting may be represented by a circular sequence
P = p0p1 . . . pn−1 and by the sizes |pi| ≥ 0 (for i = 0, 1, . . . , n − 1). For
1 < j ≤ n, if one of the players chooses a slice pi in the (j − 1)-st turn and
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Figure 4: A cutting of a pizza and the corresponding characteristic cycle.

the other player chooses pi−1 or pi+1 in the j-th turn, then the j-th turn is
called a shift, otherwise it is called a jump.

If the number of slices is even, we can easily argue that Alice gains at
least the half of the pizza. If the number of slices is odd, instead of the
circular sequence P = p0p1 . . . pn−1 we will be working with the related cir-
cular sequence V = v0v1 . . . vn−1 = p0p2 . . . pn−1p1p3 . . . pn−2 that we call the
characteristic cycle, see Figure 4.

Here is our main result:

Theorem 9. [5] For any P , Alice has a two-jump strategy with gain 4|P |/9.

More generally, we determine Alice’s guaranteed gain for any given num-
ber of slices.

Theorem 10. [5] For n ≥ 1, let g(n) be the maximum g ∈ [0, 1] such that
for any cutting of the pizza into n slices, Alice has a strategy with gain g|P |.
Then

g(n) =







1 if n = 1,
4/9 if n ∈ {15, 17, 19, . . .},
1/2 otherwise.

Moreover, Alice has a zero-jump strategy with gain g(n)|P | when n is even
or n ≤ 7, she has a one-jump strategy with gain g(n)|P | for n ∈ {9, 11, 13},
and she has a two-jump strategy with gain g(n)|P | for n ∈ {15, 17, 19, . . .}.

If we make a restriction on the number of Alice’s jumps we get the fol-
lowing results.

Theorem 11. [5] (a) Alice has a zero-jump strategy with gain |P |/3 and the
constant 1/3 is the best possible.
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(b) Alice has a one-jump strategy with gain 7|P |/16 and the constant 7/16
is the best possible.

Due to Theorem 10, the following theorem describes all minimal cuttings
for which Bob has a strategy with gain 5|P |/9.

Theorem 12. [5] For any ω ∈ [0, 1], Bob has a one-jump strategy with
gain 5|P |/9 if he cuts the pizza into 15 slices as follows: Pω = 0010100(1 +
ω)0(2−ω)00202. These cuttings describe, up to scaling, rotating and flipping
the pizza upside-down, all the pizza cuttings into 15 slices for which Bob has
a strategy with gain 5|P |/9.

For ω = 0 or ω = 1, the cutting in Theorem 12 has slices of three different
sizes 0, 1, 2. If all the slices have the same size, then Alice always gets at least
half of the pizza. But two different slice sizes are already enough to obtain a
cutting with which Bob gets 5/9 of the pizza.

Theorem 13. [5] Up to scaling, rotating and flipping the pizza upside-
down, there is a unique pizza cutting into 21 slices of at most two differ-
ent sizes for which Bob has a strategy with gain 5|P |/9. The cutting is
001010010101001010101.

We describe a linear-time algorithm for finding Alice’s two-jump strategy
with gain g(n)|P | guaranteed by Theorem 10.

Theorem 14. [5] There is an algorithm that, given a cutting of the pizza
with n slices, performs a precomputation in time O(n). Then, during the
game, the algorithm decides each of Alice’s turns in time O(1) in such a way
that Alice makes at most two jumps and her gain is at least g(n)|P |.

Using the ideas of the proofs above it is also straightforward to present
an efficient algorithm for finding optimal strategies for each of the two play-
ers. The algorithm design uses dynamic programing and its running time is
quadratic.

Claim 15. [5] There is an algorithm that, given a cutting of the pizza with
n slices, computes an optimal strategy for each of the two players in time
O(n2). The algorithm stores an optimal turn of the player on turn for all the
n2 − n+ 2 possible positions of the game.
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