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Introduction

One of the basic problems in geometric graph theory is to decide if a given
graph can be drawn on a given planar point set by pairwise noncrossing
straight line edges. It is an easy observation that any planar point set in
general position admits a noncrossing Hamiltonian path. In a more demand-
ing version of the problem, the points and the vertices of the graph are
colored and each vertex has to be placed in a point of the same color (see
the survey [18] for further references). Interesting and not so easy questions
arise already if the points are colored by two colors and we want to embed a
path where the colors are alternating. Several authors have focused on this
question recently and obtained appealing results.

Consider an arbitrary 2n-element equicolored (n points red and n points
blue) point set in the plane. We would like to determine or estimate the
number of points on the longest noncrossing path such that edges join points
of different color and are straight line segments. We call such two-colored
paths where edges connect points of different color alternating.

For the case when our points are in general position there are very few
results. We know that if the color classes are separated by a line, then there
is a noncrossing, alternating Hamiltonian path on the point set [1]. The
same result holds if one of the color classes is exactly the set of vertices of
the convex hull [1]. If the color classes are not separated by a line, then there
are colored point sets with no noncrossing, alternating Hamiltonian path for
n ≥ 8, even if the points are in convex position.

Kaneko et al. [19] considered point sets with odd cardinality as well. An
equitable coloring means that the sizes of the two color classes differ by at
most one. They proved that any equitably colored set of at most 12 points
or of 14 points admits a noncrossing, alternating Hamiltonian path. On
the other hand, Kaneko et al. [19] gave examples of equitably colored sets
of n points admitting no noncrossing, alternating Hamiltonian path for any
n > 12, n 6= 14.

The existence of halving lines and the result in [1] imply that for any
equicolored point set of 2n points there are at least n points on the longest
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noncrossing, alternating path.
Erdős [11] asked what happens if we restrict the points to be in convex

position.
ℓ(P) = max

U is a noncrossing alternating path
ℓ(U),

where ℓ(U) is the number of points on U .

ℓ(n) = min
P is equicolored

ℓ(P),

where P is any colored planar 2n-element convex point set.
Without loss of generality we may assume that the points are on a cir-

cle. Erdős conjectured that the following configuration was asymptotically
extremal. Let n be divisible by four. Divide the circle into four intervals
that consist of n

2
red, n

4
blue, n

2
red and 3n

4
blue points, respectively. In this

configuration there are 3n
2
+ 2 points on the longest noncrossing, alternating

path.
Kynčl, Pach and Tóth [23] disproved the above conjecture of Erdős with

a single construction in 2008 and gave the 4
3
n + O(

√
n) upper and the n +

Ω
(√

n/ logn
)
lower bound. At about the same time Abellanas et al. showed

a very similar construction for the same upper bound [2]. The upper bound
is conjectured to be asymptotically tight.

In my Ph.D. thesis I include my results in this area. In the first two chap-
ters I investigate the convex case. I describe several constructions presenting
more classes of configurations among them. I also give an improvement for
the lower bound to n + O(

√
n) [17]. The proof of the lower bound in [23]

is based on arcs which contain significantly more points from one color class
than from the other. At the same time the number of alternations between
the colors is small along the circle. We do the same using a completely
different idea and we obtain a better result.

I show a class of configurations exihibiting the upper bound 4
3
n+O(

√
n)

[17]. This class contains the [23] construction in its extremal position. Other-
wise, our class differs from the two earlier constructions in a considerable
feature. While the previous constructions allowed only one interval with
alternating short monochromatic arcs, ours allows two of them.

The methods used in the proofs introduced the notion of separated match-
ings. These are special geometrically noncrossing matchings where all matched
pairs of points can be separated by a single line. In other words, there is a
line that intersects all the edges of the matching.

I give several new constructions with at most 4
3
n +O(

√
n) points in any

separated matching [25]. Among them there is a class of configurations
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that significantly differs from all known previous constructions. It contains
arbitrary many intervals of alternating short monochromatic arcs. I also
present a type of coloring such that among these colorings in the optimal one
any separated matching contains at most 4

3
n+O(

√
n) points.

These results emphazise the importance of the separated matching con-
jecture [23] that can be formulated as follows. Let 2k denote the number
of alternations between the two colors in a 2n-element point set on the cir-
cle. Then for any fixed k and large n, any configuration admits a separated
matching that contains at least 2k−1

3k−2
2n+ o(n) points.

Separated matchings have further advantages compared to alternating
paths. They are simpler. Moreover, every alternating path consists of a sep-
arated matching part and side edges completed to a path. If we consider
examples with small discrepancy coloring (that is, the difference in cardi-
nality of the color classes is bounded on any interval) that alone guarantees
a long noncrossing, alternating path. This is a consequence of the frequent
alternations of colors along the circle caused by small discrepancy. Regard-
ing separated matchings small discrepancy coloring is a case that we should
consider. It might even lead to a deeper understanding of the problem.

Furthermore, investigating colorings with small discrepancy might yield
an improvement at the lower bound. I prove that for any coloring with
dicrepancy d ≤ 3 there is a separated matching containing at least 4n

3
points

[25].

In the third chapter we consider the colored point set to be in a special
position [7]. Here we will allow that the difference of the color classes is at
most one. Our point set will be on a double-chain which we define as follows.
A convex or a concave chain is a finite set of points in the plane lying on
the graph of a strictly convex or a strictly concave function, respectively. A
double-chain consists of a convex chain and a concave chain such that any
line determined by any of the chains does not intersect the other chain. We
prove [7] if both chains of the double-chain contain at least one fifth of all the
points, then there exists a noncrossing, alternating Hamiltonian path. On the
other hand, the above property does not hold if one of the chains contains at
most ≈ 1/29 of all the points [7]. This result is so far the strongest evidence
by it that the convex setting of our point set might be an extremal case.

In the fourth chapter of my thesis I introduce a combinatorial game played
on a cycle with weights assigned to its vertices. This game was devised by
Peter Winkler who posed it at the conference Building Bridges, honouring
the 60th birthday of László Lovász, in Budapest in 2008.

Bob cuts a circular pizza into slices of not necessarily equal size and shares
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it with Alice by taking turns alternately. One slice is taken in each turn. The
first turn is Alice’s. She may choose any of the slices. In all other turns only
those slices can be chosen that have a neighbor slice already taken. How
much of the pizza can Alice gain?

There was a puzzle formulated by Dan Brown in 1996 asking whether
Bob can get more than half of the pizza. Here Bob can easily ensure one
half of the pizza for himself. For example, he may cut the pizza into an even
number of slices of equal size where he will always obtain exactly one half.
The pizza game described by Peter Winkler originates from this puzzle.

Peter Winkler conjectured that Alice can obtain 4/9 of the pizza for any
cutting. We settled this conjecture in the affarmative [9]. Moreover, we
characterized Alice’s gain based on the number of slices. We also devised an
algorithm that computes her strategy in O(n) time for a given cutting of the
pizza into n slices [9]. We described the minimal pizza cuttings (regarding
the number of slices and also regarding the number of weights of slices) where
Bob had a strategy to gain 5/9 of the pizza. We gave a quadratic algorithm
that stores an optimal turn for the player on turn for each position of the
game [9].

Finally, I would like to give a glimpse of further research not included in
the thesis. In a follow-up paper we investigate generalizations of this game
[8]. Instead of a cycle any graph G can be considered. We restrict G to be
connected. We have some freedom how to set the rules. We may require
the taken part to be connected, or the remaining part to be connected, or
both. Note, in the original pizza game all the listed rules are equal. For any
of the mentioned three rules and for any k ≥ 1 we present a k-connected
graph where Bob has a strategy to obtain almost all of the total weight. We
also prove the PSPACE-completeness of some decision problems formulated
in this context [8].
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Chapter 1

Noncrossing Alternating Paths

in Convex Point Sets

1.1 Introduction

All our graphs will be drawn in the plane. Furthermore, edges of a graph will
be always straight line segments. It is an easy observation that any point set
in general position in the plane admits a noncrossing Hamiltonian path. In
case our point set is colored we get to new interesting problems. Consider
an equicolored 2n-element planar point set, that is, let n points be red and
n points be blue. We will restrict edges to connect points of different colors.

In this chapter we will investigate the Erdős’ version of the problem. The
root of our discussion is going to be a convex setting of the equicolored 2n-
element point set. We will be searching for long noncrossing paths. As edges
have endpoints of different color each path will be alternating in the point
set. The goal is to give an estimate or determine the number of points on
the longest noncrossing, alternating path.

We state the problem formally below:

ℓ(P) = max
U is a noncrossing alternating path

ℓ(U),

where ℓ(U) is the number of points on U .

ℓ(n) = min
P is equicolored

ℓ(P),

where P is any colored planar 2n-element convex point set.
Without loss of generality we may assume that the points are on a circle.

Erdős constructed a configuration that he thought to be asymptotically ex-
tremal, see in the Introduction. It contained a noncrossing, alternating path
of 3n

2
+ 2 points but not longer.
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Kynčl, Pach and Tóth [23] disproved the above conjecture in 2008 by a
single construction proving the 4

3
n + O(

√
n) upper bound. In [23] they also

showed the n + Ω
(√

n/ logn
)
lower bound. The only other result towards

the Erdős problem was a very similar also isolated construction in [2].
In this chapter I include our proof of the improvement on the lower bound.

We showed that there are at least n+Ω(
√
n) points on the longest noncross-

ing, alternating path [17]. Here we present a class of configurations for the
4
3
n + O(

√
n) upper bound [17] as well. This class was also found by Jan

Kynčl [22] using computer search.
If the alternations among the color classes are very frequent along the

circle, then it ensures a long noncrossing, alternating path. Therefore it is
advisable to restrict the number of alternations. However, all configurations
that show the current best upper bound contain at least one interval where
short monochromatic arcs alternate. Our construction exels because it is a
class of configurations. In its extremes it coincides with the [23] construction.

1.2 Notations

Let P be a planar point set of 2n points in convex position. We index our
points according to their circular order along the perimeter of their convex
hull: P1, P2, . . . , P2n where the arithmetics of the indices is the modulo 2n
arithmetics. Two elements of P, Pi and Pj, define two arcs (two subsets of
P): a(Pi, Pj) = {Pi, Pi+1, . . . , Pj} and a(Pj, Pi) = {Pj, Pj+1, . . . , Pi}. Let A
be an arc. The complement of A (in P) will be also an arc: the complement
of arc a(Pi, Pj) is the arc a(Pj+1, Pi−1). The closed straight line segment
determined by Pi and Pj is denoted by [PiPj]. Segments [PiPj] and [PkPl]
are crossing if and only if the four indices are pairwise different, furthermore
Pk and Pl lie in different arcs determined by Pi and Pj . It is easy to see
that “to be crossing” is a symmetric relation. A path in P is just an ordered
subset of P: p1, p2, . . . , pℓ. We can think about a path as the sequence of
segments [pi, pi+1]. A path is noncrossing if it consists of pairwise noncrossing
segments. The length of a path P is the number of points in P , and we use
the notation length(P ).

A coloring of P is a function c : P → {red, blue}. The coloring c is an
equicoloring if |c−1(red)| = |c−1(blue)|(= |P|/2 = n). Let R = c−1(red) and
B = c−1(blue). In the following P will denote a 2n-element convex planar
point set P with an equicoloring c.

Observe, as we restricted edges to connect points of different colors, for
each path p1, p2, . . . , pℓ the color of pi is the same as the color of pj if and
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only if i and j are of the same parity. In other words, as we walk along the
path the red and blue points alternate.

We can partition P into disjoint nonempty arcs in such a way that
each arc is monochromatic and the sequence of these monochromatic arcs
R1, B1, R2, B2, . . . , Rr, Br along the perimeter is alternating in color. The arc
Ri is a red monochromatic arc and Bi is the next blue monochromatic arc in
the above sequence. Arcs Ri and Bi are called runs for every i ∈ {1, . . . , r}.
The common number of red runs and blue runs is called the run parameter
of the colored point set, and it is denoted by run(P).

From the definitions above one can see that the problem is really a com-
binatorial question. For example we can assume that P is on a circle or on
an ellipse.

In the next section we summarize the previous result. Finally we describe
our improvement.

1.3 Initial observations

Let s be any line that is disjoint from P and cuts our point set into two
nonempty parts. Then s determines two complementary arcs: A and Ac. We
call these arcs/point sets the sides of s.

The elements of a matching on the point set P are edges determined by
two elements of P. The endpoints of an edge are called matched points. A
matching M of P is a separated matching with axe s if the following three
properties are satisfied:

(a) any element of M crosses the axe s (that is, if we take two matched
elements of P, then they belong to different sides of s);

(b) different elements of M do not cross each other;

(c) the two endpoints of any element of M have different colors (that is,
our earlier rule that edges connect points of different colors apply here,
too)

In other words, a matching is separated (with axe s) if and only if it matches
pairs consisting of a red and a blue point from different sides of s in a non-
crossing way. The size of a separated matching M is the number of points
in M . We denote the number of elements of the set M by |M |. Note, here
it means the number of edges in M as M is a matching.

The elements of a separated matching can be easily joined to form a
noncrossing path. Our next claim summarizes this observation.
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Observation 1. If M is a separated matching, then we can find a noncross-
ing, alternating path of length 2|M |.

This can be improved easily by using edges (if possible) that are not
intersecting the line s. First we need a definition.

Let M be a separated matching (with axe s cutting our point set into two
sides: arcs A and Ac). Let alt(M) be the number of alternations between the
colors along A following the perimetrical order. Note, that arc A contains
one endpoint of each element of M . We call a separated matching M with
alt(M) = 0 an Erdős matching.

For any separated matching M there is a path P on the point set of M
such that the edges of M give the odd edges of P . Note, this path is not
unique. There are exactly two such paths depending on it which color we
choose to be the color of the first point of P . If we want to enlarge P , we
may incorporate new points into P if possible. The new edges we get may or
may not cross the line s. If an edge does not cross s, we call it a side edge.

Observation 2. ([23]) There exist side edges and a suitable Erdős matching
so that they can be connected into a noncrossing, alternating path of n +
run(P)− 1 points.

The following lemma says that in certain sense every path is a separated
matching improved by side edges.

Observation 3. Let P be an arbitrary noncrossing, alternating path in P.
Take a line s such that the first and last edge of P are crossed by s. Then we
can choose a separated matching M with axe s from the edges of P in such
a way that the size of M is at least length(P )− 2run(P).

Note that the axe is not uniquely defined.

Proof. Throw away all edges of P that are not crossed by the line s. Thus we
obtain subpaths P1, . . . , Pl of P . From each subpath of odd length delete the
first edge. In the remainder of each subpath keep every other edge starting
from the first edge. We get a separated matching M .

We will count how many points on P participate in M . The side edges
of P form subpaths S1, . . . , Sl−1 where Si connects Pi to Pi+1 on P for i ∈
{1, . . . , l− 1}. We constructed M in such a way that at least one point from
each Si participates in M (the point in Pi ∩ Si). Each side edges has its
endpoints in different runs. Hence, the number of disregarded points can be
bounded from above by the total number of runs and the result follows.
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If someone considers the observed examples in the literature, then length(P )
is between n and 2n, while run(P) is o(n). If run(P) is linear in n, the longest
noncrossing path beats the best known lower bound by Observation 2. Hence,
assuming run(P) = o(n) is reasonable, we should concentrate on separated
matchings.

Let m(P) denote the maximum size of the separated matchings on the
point set P.

1.4 Previous methods

The idea of the obvious lower bound is very simple.
Take any line s that cuts the point set P into two parts. If |A∩R|, |Ac ∩

B| ≥ t, then take t many points from A∩R and t many points from Ac ∩B.
The two t-element point sets are separated by the line s. We can match their
elements in a noncrossing way and hence we obtain a separated matching of
2t points.

Observation 4. There is an Erdős matching M of size at least n and hence
a noncrossing, alternating path of length n.

All what we described was known to Erdős. He showed in the following
way that it was easy to find a separated matching of size n. Take any halving
line s of the point set P. Let A be the arc with red majority (|A ∩ R| ≥
|A∩B|). It turns out that Ac must have blue majority. Hence, the parameter
t in the above argument is at least n/2. We obtain a noncrossing alternating
path of length at least n.

The main ingredient of the improvement is summarized in the following
observation. First we need to introduce a simple notion. Let A be an arc in
P of even size. Then there is a unique partition of A into two arcs of the
same size that we call half-arcs.

Observation 5. (Implicit in [23]) If we can find an arc A, with half-arcs:
A = Ar∪̇Ab such that |Ar∩R|−|Ar∩B| ≥ t and |Ab∩B|−|Ab∩R| ≥ t, then
there is a separated matching M of size at least n+ t, moreover alt(M) ≤ 1.

Proof. In other words, Ar contains at least t more red points than blue points
and Ab contains at least t more blue points than red ones, while the size of
Ar and Ab equals. Let s denote this common size. In Ar take the closest
⌈s+t

2
⌉many red points to Ab. Similarly, in Ab take the closest ⌈s+t

2
⌉many blue

points to Ar. We will match these red and blue points with each other so that
we get a separated matching of size 2⌈s+t

2
⌉. We will increase this matching by

adding further edges that we obtain by Erdős’ method. Furthermore, we will
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Figure 1.1: How to code P as a Dyck path

get a separated matching M with alt(M) ≤ 1 (there might be an alternation
in color at the place where we attach the two matchings). Simple calculation
gives that outside the two matched intervals there are at least n− s red and
n − s blue points. Therefore, we can construct a separated matching M of
size at least n+ t.

The essence of the proof of the lower bound in [23] is a clever way to define
an arc A, where the red-blue coloring is unbalanced assuming that run(P) is
small. We do the same using a completely different idea and obtain a better
result in the following section.

1.5 Improved lower bound

The basic idea of our improvement is a simple visualisation/coding of the
colored P. The code-diagram will be part of the grid G consisting of the
(x, y) points with integer coordinates. We walk along the perimeter making
steps from a point to the succeeding one. Depending on the color of the
passed point we make a step on the grid G. Each step increases the x-
coordinate by 1. The change of the y coordinate will code the color of the
passed point: if it was red, then the step increases the y-coordinate by 1;
if it was blue, then the step decreases the y-coordinate by 1. We show an
example for the coloring and coding on Figure 1.1.

So the height of the walk reflects how the colors are changing. Since we
code an equicoloring the walk ends at the level of starting. We can fold our
diagram to the surface of a cylinder to obtain a closed walk that reflects
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the circular behaviour of our geometric point set. We call the horizontal
line through the lowest point of our diagram the 0-level. We choose our
coordinate system in such a way that the 0-level is the x-axis. For a non-
negative integer h the line described by the equation y = h is called h-level.
Note, the h-level and h′-level are neighboring levels if and only if |h−h′| = 1.

We cut the closed walk at any point that belongs to the 0-level. This
way we obtain a Dyck path (for example see [27]) coding our colored point
set. Actually, our code contains all the combinatorial information we need
to consider the problem.

Our Dyck path has 2n steps. Each step starts on a level and ends at
a neighboring level. Walking through a run (monochromatic arc) our code
changes its height monotonicly. Hence, for any h there are at most run(P)
many steps stepping up to the h-level and there are at most run(P) many
steps stepping down to the h-level. We choose t so that more than n steps
are above the t-level and t is maximal among the levels with this property.
The 0-level has all 2n many steps above it. As we lift the level one by one
we decrease the number of “steps above” by at most 2 · run(P). From this
it is straightforward to derive that

t ≥
⌊

n− 1

2 · run(P)

⌋
.

Let σ be the i-th step of our Dyck path. Let σ′ be the 2n + 1 − i-th step,
the symmetric pair of σ. Note, t is chosen in such a way that we can find a
step σ above t-level with its symmetric pair also above t-level. Indeed: if we
consider each step below t-level and its symmetric pair, we cannot obtain all
the steps. Any remaining step is suitable for σ.

Theorem 6. Let P be a 2n-element point set in convex position with an
equicoloring. There is a separated matching M with alt(M) ≤ 1 and of size
at least

n+

⌊
n− 1

2 · run(P)

⌋
.

Proof. Let t be the level as above. Let σ and σ′ be two symmetric steps of
the coded P above t-level. Steps σ and σ′ correspond to two points S and S ′

of P. Then σ and σ′ define two complementary arcs A and Ac in P. Let F
and L be the points corresponding to the first and the last step, respectively,
of the Dyck path. One of the two arcs, say A, contains the point F and
hence it contains the point L, a neighbor of F on the Dyck path. According
to the symmetricity of σ and σ′, F and L are the two middle points of A.
Hence, A = a(S ′, L)∪̇a(F, S) is the partition of A into two half-arcs. As we
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walk from F to S the coding Dyck path raises from 0-level to above t-level.
This color coding implies that |a(F, S) ∩ R| − |a(F, S) ∩ B| > t. Similarly,
|a(S ′, L) ∩ B| − |a(S ′, L) ∩R| > t.

By Observation 5 our claim is true.

The following corollary is immediate.

Corollary 7.

ℓ(n) ≥ n− 1 +

√
n− 1

2
= n+ Ω(

√
n).

Proof. We know that ℓ(P) ≥ n + run(P) − 1 and ℓ(P) ≥ n +
⌊

n−1
2·run(P)

⌋
.

Hence, for arbitrary P we know that the average of the two lower bounds
above is also a lower bound. The average of the two bounds is the promised
bound by simple arithmetics.

1.6 Limits of the known methods

Let us assume that an adversary can fix the initial point of our path in a
given P. Erdős’ method works in this case and we are guaranteed to find a
noncrossing path of length n. But in the adversary version of the problem
we cannot beat the trivial bound. To see this, devide our points into two
complementary arcs of equal length. Points in one of the arcs obtain color
red while points on the other arc will be blue. If the initial point is the
middle point of the red arc, then the longest noncrossing path has length at
most n + 2.

Our method works more carefully. We code the coloring by a circular
Dyck path and choose an arbitrary step starting at 0-level of this code as
an initial point. So we narrow the set of possible initial points to the set of
minimal points D. Assume that an adversary picks one element of D and we
are forced to start our path from there. Our lower bound is exhibited by a
path starting at the point given by the adversary of length at least n+Ω(

√
n).

By this generous setting we cannot improve the order of magnitude of our
lower bound. Consider the following coloring. Let n = 2k. Take k red, k
blue points and then

√
k red and

√
k blue points alternating

√
k many times

on the circle. If the adversary party marks the first point of the red run
of length k (this point is beside a blue run of

√
k points), then the longest

noncrossing path has the promised length.
The number of alternations in the matching is bounded by a constant in

the lower bounds. In the case of Erdős’ bound alt(M) = 0. In [23] and in
our approach alt(M) ≤ 1 for the constructed matching M . If we insist to
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come up with a matching part with constant alternation parameter, then we
cannot beat the obvious bound n by more than a constant: take the red-
blue completely alternating coloring (red, blue, red, blue,. . . ). If we do the
alternation in blocks of length

√
n, then even the side edges cannot help and

we cannot improve our lower bound of n+ Ω(
√
n) points.

So the moral of the above remarks is that we must choose the initial
point of our path carefully and use a lot of alternations when we consider the
matching part of the path. The present techniques are not fulfilling these
requirements.

1.7 New constructions

In [23] the upper bound was proved by a single construction and by its analy-
sis. There was even a conjecture that this construction and the construction
of Abellanas (that is very much alike) are isolated constructions showing the
upper bound of order 4n

3
. We show a different — although — related way to

construct a rich family of colored point sets exhibiting the [23] upper bound.
We think that these constructions strengthen the belief that the [23] upper
bound has the right order of magnitude and might guide the research towards
a proof of that.

To describe a colored point set we use the following notation. Let Mr×ℓ

denote r many consecutive runs altenating in color of length ℓ. We call a
building block of this type Mr×ℓ a mixed run. Regarding the notion of run
that we introduced before, in the following we usually say homogeneous run
to stress that a run is monochromatic. The notations BL and RL denote a
blue and a red run of length L, respectively. Let α ∈ [−1, 1], and let Pα,ℓ be

B2 = B2L,R3 = R(1+α)L,M1 = Mr×ℓ,R4 = R(1+α)L,B1 = B2L,

R1 = R(1−α)L,M2 = Mr′×ℓ,R2 = R(1−α)L,

where ℓ is arbitrary and r, r′ satisfy the following equalities rℓ = (2 − 2α)L
and r′ℓ = (2 + 2α)L. Hence, Pα,ℓ is an equicolored point set of 2n = 12L
points. We assume that αL is an integer. In the case of α = −1, 1 we get
the [23] construction if we set ℓ = Θ(

√
L) (they considered this size in order

to have o(n) many runs).
On Figure 1.2 the number of points is proportional to the central angle

of the arc. Note, that M1 is the shorter among the mixed runs.
We claim that the size of the largest separated matching in Pα,ℓ has the

same order of magnitude as the construction of [23].

Theorem 8. m(Pα,ℓ) ≤ 4n
3
+O(ℓ).
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R3

M2

R1

B1

R4

I J

Figure 1.2: The coloring Pα,ℓ

Proof. Let M be an optimal separated matching on Pα,ℓ. We assume that
the axe of M divides the point set into an upper and a lower side and the
matched upper and lower points are ordered from left to right. We can
partition the edges of the matching into classes in such a way that on each
side (upper, lower) the endpoints belong to one run or one mixed run:

M = e1, e2, . . . ei1

∣∣∣ei1+1, . . . ei2

∣∣∣ . . .
∣∣∣eis . . . e|M |.

In each block the upper endpoints of the matching come from the same
run, similarly the lower endpoints do so as well. We consider the mixed runs
as a periodic repetition of M2×ℓ. We will assume that no period of a mixed
run contains two points that are matched in different blocks of M . To have
this property, we might have to throw away O(ℓ) many edges fromM but this
does not harm the claim of the Theorem. To do this initial decomposition
of M , we need to have at most constant many blocks (here we have at most
9). It is useful to make the following straightforward observations.
Observation A If a mixed run is matched to a homogeneous run, at most
half of the points will be matched in the mixed run.
Observation B If we have six points P1, P2, P3, P4, P5, P6 on C in this
order, then all three edges [P1P2], [P3P4] and [P5P6] cannot participate in a
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separated matching.
We intruduce two special arcs onC. Let I = R4∪B1∪R1 and J = R2∪B2∪R3,
see Figure 1.2. We will consider a few different cases based on the edges of
the separated matching.
1st case: There is no edge in M that connects I and J .

We define an arc M̃1 in M2 such that M̃1 is of length (2 − 2α)L and
consists of full periods. If there is an edge in M between M1 and M2, let
M̃1 be an arc with the above properties that includes an endpoint of each
edge between M1 and M2. As M is optimal if there are two edges e and f
connecting M1 and M2, we may assume that all points are matched between
e and f .

If there is no edge in M connecting M1 and M2, we consider two cases. lf
there are two consecutive edges e and f with an endpoint in M2 say on the
upper side, such that e has its other endpoint on I ∪M2 and f has its other
endpoint on J ∪M2, then we define M̃1 to contain a point from the arc of
M2 determined by the endpoints of e and f on the upper side.

If no edges like e and f exist, then as a consequence of Observations A
and B there are at most 8L = 4n

3
points in M . In this case we are done.

Delete all edges from M that include points of M1 ∪ M̃1 and add a per-
fect matching between M1 and M̃1. Our modification leads to a separated
matching which we denote by M ′. Observe, the size of M ′ is at least the size
of M . This follows by considering the decomposition of M into blocks and
by Observation A. Hence, in M ′ the points of M1 and M̃1 will substitute the
possible deleted points from M . By Observation B an easy calculation gives
that the size of M ′ is at most 2(2−2α)L+2(1+α)L+2(1+α)L = 8L = 4n

3
.

2nd case: There is an edge in M that connects I and J .
We modify M in the following way. We match M1 fully to itself and M2

as well. Then we add all edges of M that connect I to J . Observe, we get a
separated matching M ′.

The set of edges connecting I to J divide all other edges of M into two
groups: egdes to the left, edges to the right. If to the left/right there is no
edge in M with both endpoints in I or in J , then by Observation A the
number of points in M is obviously at most the number of points of Mi to
the left/right, respectively.

Suppose there is an edge within I or J . Note, by Observation B there
cannot be an edge within each of I and J to the left/right, respectively.
Therefore, we may assume the edge is in I and it is to the left (similar
arguments hold in the other cases). By Observation B there is no edge from
Mi to J nor any edge within Mi where Mi lies to the left of edges connecting
I and J . During the modification of M the edges within I were discarded.
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Take as many blue endpoints of the disregarded edges as |M | − |M ′|. Basic
computing arguments show that these endpoints can be matched to J (more
precisely to Ri that is neighboring to Mi). We add these additional edges to
M ′.

A simple calculation gives that the size of M ′ is at most (2+2α)L+(2−
2α)L+ 4L = 8L = 4n

3
.

If we want to restrict the length of the longest noncrossing path we need
to restrict the number of runs, too.

Observation 9. If ℓ = Θ(
√
n), then ℓ(Pα,ℓ) =

4n
3
+O(

√
n).

Proof. In any path we can distinguish a separated matching and side edges
connected in a suitable way. The size of the maximum separated matching
is 4n

3
+ O(

√
n) by Theorem 8. As the number of side edges is restricted to

O(
√
n), we showed the desired bound.

The construction Pα,ℓ was found independently by Jan Kynčl [22] using
computer search.

1.8 Further questions

Several directions of research remain open in the area. First of all we mention
the main conjecture regarding alternating paths.

Conjecture. Every equicolored convex point set of 2n points admits an
alternating path of 4n

3
+ o(n) points.

Our results emphasize the importance of the following conjecture.

Conjecture. ([23]) For any fixed k and large n, every equicoloring of 2n
points admits a separated matching of size at least 2n2k−1

3k−2
+ o(n) where k is

the run parameter of the point set.

The class of constructions that we gave in the previous section shows that
the order of magnitude claimed above is feasible.
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Chapter 2

Separated Matchings in

Colored Convex Sets

2.1 Introduction

So far we were considering alternating paths although in our methods sepa-
rated matchings already appeared. Noncrossing, alternating paths and sepa-
rated matchings are closely related to each other. Observation 1 and Obser-
vation 3 underline the importance of separated matchings. For the sake of
completeness we repeat the definition of this notion: a separated matching is
matching where edges do not intersect geometrically and there is a line that
crosses all the edges.

The cited two observations imply that if the run parameter is o(n), then
the length of the longest noncrossing, alternating path is basically the same
as the size of the maximum separated matching. In this chapter we only
consider the problem of separated matchings for convex sets.

Formally:

m(P) = max
M is a separated matching in P

size(M),

where size(M) is the number of points in M .

m(n) = min
P is equicolored

m(P),

where P is any colored planar 2n-element convex point set.
In this chapter we exhibit a new class of configurations allowing at most

4
3
n +O(

√
n) points in any separated matching [25]. This class of configura-

tions significantly differs from all known previous constructions. It contains

17



arbitrary many intervals of alternating short monochromatic arcs which con-
trasts with the [23] construction containing one such interval and also with
the construction in the first chapter containing two such intervals. We also
present a type of coloring such that among these colorings in the optimal one
any separated matching contains at most 4

3
n+O(

√
n) points.

An advantage of separated matchings is that we may consider point sets
with low discrepancy. If we restrict the discrepancy (that is, the maximum
difference in cardinality of color classes on any interval), we obtain an in-
teresting result. For discrepancies two and three we prove that there are at
least 4

3
n points in the maximum separated matching [25]. So far no one was

concerned with discrepancy since low discrepancy means many alternations
among the two colors. If the run parameter is large that alone guarantees
a long noncrossing, alternating path as a result of Observation 2. However,
when we consider separated matchings, it is reasonable to investigate this
case. We believe it might shed light on the difficulties of the original Erdős
problem.

2.2 Notations

We introduce some basic definitions that are necessary to describe the con-
structions and that we use throughout the proofs.

Let our 2n-element equicolored convex point set be denoted by P . We
may assume without loss of generality that our points are on the circle C.
An arc is an interval of points on C ∩ P . The size of an arc is the number
of its elements. In an arc the points are ordered, we always read the order
in clockwise direction. A run is a maximal set of consecutive points on C of
the same color. The length of the run is the number of its elements.

A matching is a set of pairwise disjoint edges. Note, that the notion of
matching is meant in geometrical sense, that is, no two edges cross in it. The
size of a matching is defined as the total number of points participating in
it, which is twice the number of edges. A separated matching is a matching
where all edges can be crossed by a line.

This crossing yields a natural ordering of the edges of the matching.
Separated matchings are closely related to noncrossing, alternating paths.
Observe, that for every separated matching S on a convex point set, there is
a noncrossing, alternating path R such that the vertex set of R coincides with
the vertex set of S and all edges of S are contained in R . We construct R in
the following way. The edges of S will follow each other on R in their natural
ordering. Hence, every other edge of R will belong to S. The remaining edges
of R will connect differently colored endpoints of consecutive edges of S. As
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a consequence of the properties of the separated matching we can always
draw a noncrossing, alternating path R in this way. We remark that R is
not unique. For every S exactly two such paths exist depending on it which
color will be chosen to be the color of the starting point of R.

The previous configurations contained long runs colored red or blue and at
most two arcs consisting of alternating short runs of the two colors. Our class
contains arbitrary many arcs of alternating short runs. The idea originates
from the Kynčl-Pach-Tóth construction. We cut that construction into two
pieces. We repeat the two pieces in arbitrary order an equal number of times
along the circle.

We introduce some special arcs called blocks. They will be the building
elements of our constructions. The first two types of blocks will be of the
same size but they will contain a different number of points of the two color
classes. However, altogether the number of red and blue points will be equal
on the union of two blocks of different types. In the first two types of blocks
the common size of blocks will be 3s. The bluish block will consist of a red
run of length s and a blue run of length 2s. We denote the bluish block by
(s, 2s) block. The reddish block will consist of a red run of length s followed
by a mixed arc M . The mixed arc M consists of 2s points alternating in
color, see Figure 2.1. Hence the reddish block will contain 2s red and s blue
points. We denote the reddish block by (s, s(1, 1)) block.

If needed we introduce notations R and B for red runs of size s, and for
blue runs of size 2s, respectively. We call R, B and M subblocks as they are
the main building elements of blocks.

An (as, bs) block consists of a red run of as points and a blue run of bs
points. An s(b, a) block consists of a red run of length b followed by a blue
run of length a and this a + b colored points are repeated s many times.
Consequently, an s(b, a) block consists of s consecutive arcs of size a + b of
the same coloring pattern. We call the unit of this pattern of a + b points a
period. Specifically, an s(2, 1) block consists of the triple of two red and one
blue point repeated s many times. The period is two red points followed by
a blue point.

We say that the discrepancy is d if on any interval on the circle C the
difference between the cardinality of color classes is at most d. We will
investigate the case of low discrepancy.

We say that an arc A faces arcs A1, A2,. . . , An if all vertices of A that
participate in the separated matching S have their pair in S on one of the
arcs A1, A2,. . . , An.
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Figure 2.1: Two types of blocks

2.3 Constructions and theorems

We will describe two main constructions and then we give another one by
generalizing one of them.

The first construction is C1(s, t): Take t consecutive (s, 2s) blocks on C
followed by t many s(2, 1) blocks. Each block has size 3s. Of course the last
t many blocks can be considered as one st(2, 1) block.

The second construction is C1
+(a, b, s, t): In C1(s, t) instead of (s, 2s)

blocks we take (as, bs) blocks and instead of the s triples we take s(b, a)
blocks. Note that C1

+(1, 2, s, t) = C1(s, t). Each block has size (a+ b)s.
The third construction is a class of coloring C2(s, t): Take t many (s, 2s)

blocks and t many (s, s(1, 1)) blocks in arbitrary order along C. In other
words, the same number of bluish and reddish blocks are placed along the
circle in an arbitrary order.

Theorem 10. In C1(s, t) the size of every separated matching is at most
4
3
n+O(s+ t).

The upper bound is optimal if we disregard the remainder term. To see
it, let us construct the following separated matching. If we match the blue
points of the first t blocks (the bluish ones) to the red points of the last t
many blocks (s many reddish triples), then we obtain a separated matching
of size 4

3
n.
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Theorem 11. In C1
+(a, b, s, t) the ratio of the size of the largest separated

matching to the total number of points is

max

{
2min{a, b}

a + b
,
max{a, b}

a+ b

}
+O(

(a+ b)(s + t)

n
).

It follows that the order of magnitude of the size of the largest separated
matching is at least 4

3
n. Equality occurs when max{a, b} = 2min{a, b}. So

C1(s, t) is optimal among C1
+(a, b, s, t).

Theorem 12. Let C2 be any coloring from C2(s, t). Then the size of every
separated matching in C2 is at most 4

3
n+O(s+ t).

Theorem 13. Let C3 be that coloring from C2(1000, t) where the reddish and
bluish blocks alternate. Then size of the largest separated matching in C3 is
at least 1.34n.

Note, that we refer to the O(s + t) as remainder term. If a and b are
constants, then we may do the following. Since s · t = O(n), we can choose s
and t so that s, t = O(

√
n) and the order of magnitude of O(s+ t) becomes

negligible. This is how the reader should think about the first three theorems.
The fourth theorem is an exception, there we choose a setting where s is a

large constant and t is ǫ ·n. So O(s+ t) is very small but not negligible. The
reason for choosing such a setting is that in C3 the discrepancy of the coloring
is constant (2000). At the same time the size of the optimal matching is very
close to the conjectured value. In the fifth section we finish the chapter with
a few claims on coloring with low discrepancy.

2.4 Proofs

Take any separated matching S in a coloring of C from one of our theorems.
Let line l be the axe, that is, a line that crosses all members of S. We think
of l as a horizontal line deviding C into an upper and lower part. We can
assume that both the upper and lower part of C consist of whole blocks by
disregarding at most O(s) edges of S. In case a and b are not constants, then
we discard at most O((a+ b)s) edges.

The edges of the matching can be ordered according to their intersection
with l. We can partition the edges of S into classes in such a way that on
each side (upper, lower) the endpoints belong to one subblock. The previous
partition determines O(t) pairs of arcs facing each other on C. Furthermore,
if an arc A determined by the partition belongs to a mixed subblock, then
we achieve that A contains complete periods. This can be done by removing
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at most O(t) many edges. If the choice for a and b are not constants, then
the previous disregarding affects at most O((a+ b)t) edges.

Let S0 be the remainder of S. We call it the normalized matching. To
prove the upper bounds of our theorems without loss of generality we may
assume that we work with an arbitrary normalized matching.

Proof of Theorem 10: We will show that the ratio of points in S0

to all 2n points on C is at most 2
3
. Thanks to the simple structure of C1

we partition the elements of the normalized matching S0 into three classes.
The first class contains edges with both endpoints in (s, 2s) blocks. Edges
with one endpoint in an (s, 2s) block and the other endpoint in an s(2, 1)
block belong to the second class. The remaining edges with both endpoints
in s(2, 1) blocks we put in the third class. Note, some classes may be empty
here. We can assume that borderlines between classes preserve complete
blocks.

In the first and in the third class at most 2
3
of the vertices are in S0

because in both types of blocks 1
3
of the points is of one color and 2

3
is of the

other color.
In the second class assume there are L many (s, 2s) blocks facing a mixed

coloring with period (2, 1). Let x denote the ratio of matched points in the
red subblocks to the total number of points in the red subblocks. Let y
be the same considering the blue subblocks. Hence, x · (L · s) points are
matched out of the L · s red points and y · (L · 2s) points are matched out
of the L · 2s blue points. The pairs of the x · (L · s) red points in S0 are
blue points in the (2, 1)-periodic part. Hence, these pairs are contained in at
least x · (L · s) many periods. Similarly, the pairs of y · (L · 2s) blue points
come from y · (L ·2s)/2 many periods (each period contains 2 red points). To
prove the upper bound we can assume that the whole point set is the L(s, 2s)
blocks facing x · (L · s) + y · (L · 2s)/2 many periods. Hence, its size equals
3Ls+3xLs+3yLs. The number of matched points is 2[x · (L ·s)+y · (L ·2s)].
Their ratio is

2xLs + 4yLs

3Ls+ 3xLs+ 3yLs
=

2

3
· x+ 2y

1 + x+ y
≤ 2

3
· x+ 2y

x+ 2y
=

2

3
.

This completes the proof of Theorem 10.

Proof of Theorem 11: Estimating the upper bound is the same as
above with a small technical difficulty. We analogously partion S0 into three
classes. We can bound the ratio of the number of matched points to the total
number of points in each of the classes. In the case of edges from the first
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and third class the upper bound is

2min{a, b}
a + b

.

In the case of edges from the second class the ratio is bounded above by

f(x, y) =
2

a+ b
· ax+ by

1 + x+ y
.

It is not hard to see that f(x, y) is a quasiconvex function over the [0, 1]×[0, 1]
domain, that is, its sublevel sets

Sα = {(x, y) ∈ [0, 1]× [0, 1] : f(x, y) ≤ α}

are convex for all α. So its maximum is attained in one of the vertices of its
square domain:

f(x, y) ≤ max{f(0, 0), f(0, 1), f(1, 0), f(1, 1)}= max

{
0,

b

a + b
,

a

a+ b
,
2

3

}
=

= max

{
max{a, b}

a+ b
,
2

3

}
.

The overall ratio can be bounded by

max

{
2min{a, b}

a + b
,
max{a, b}

a+ b
,
2

3

}
= max

{
2min{a, b}

a+ b
,
max{a, b}

a+ b

}
.

The final equality is straightforward to check.
Finally, we claim that the upper bound is optimal. To see that we con-

struct two matchings. We can assume that a ≤ b. In the first matching the
blue points from t(as, bs) will be matched with the red points from ts(b, a).
There will be bs points matched in each block. The corresponding ratio is
b

a+b
. In the second matching the same types of blocks will be faced to each

other. We pair up the half of the (as, bs) blocks with the other half of (as, bs)
blocks. The matching will go between the pairs of blocks. The red subblock
in a block will be matched to the blue subblock in its pair, and vice versa.
Thus, in each block we can match 2as points. We can do the same inside the
s(b, a) blocks considering the periods in the same way as subblocks above.
The corresponding ratio is 2a

a+b
.

This completes the proof of Theorem 11.
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Proof of Theorem 12: Take a maximal normalized separated matching
S0 on C2 (an arbitray member of C2(s, t)). We will show that the size of S0

is at most 4
3
n.

In each block the ratio between the color classes is 2 : 1. Hence, in each
block we may call points of the major and the minor color class major and
minor points, respectively. The number of minor points on C2 is 2n

3
. Our

proof will be an assignment: to each edge of S0 we injectively assign a minor
point. When we assign the point p to edge e, we say mark p for e.

If one endpoint of an edge e is minor point and the other endpoint is
major point, then mark the minor point for e. If both endpoints of e are
minor points, then mark the blue endpoint for e. Note, in this case the
blue endpoint is in a mixed M subblock. Non-marked minor points give the
set of free vertices. Observe, the set of free vertices is changing during the
procedure of marking new points.

If both endpoints of e are major points, we distinguish two cases. If the
major red point is in a mixed subblock, then we mark for e the free blue
point that is in the same period with the red endpoint of e. Otherwise, we
call e a bad edge. Note, in this case one endpoint of e is in a blue B subblock
and the other endpoint of e is in a red R subblock which is in an (s, s(1, 1))
block. Bad edges are grouped according to blue subblocks. We can assume
that B is on the upper side of l. Take a blue subblock B and consider the
bad edges incident to it. Let R be the red subblock pair of B, that is, R and
B form a block together. We distinguish different cases.

Case 1: Subblock R contains only free vertices. Let k denote the number
of bad edges incident to B. If the red endpoints of the k bad edges are in
the same red subblock, then k ≤ s and we can mark different elements of R
for each of the bad edges.

If the red endpoints come from different subblocks (of reddish blocks),
then consider the mixed subblock M in the block of the rightmost bad edge’s
lower endpoint. Let j be the number of vertices matched inM . Consequently,
we have s − j free vertices in M and s free vertices in R, altogether 2s − j
free vertices. As k + j ≤ 2s, we get k ≤ 2s − j as desired. Hence, we can
mark a different free vertex for each bad edge in B.

Case 2: There is a non-free vertex in R. Let this non-free vertex be
incident to edge e. Let B′ be the blue subblock of the low endpoint of e and
R′ the red subblock pair of B′, see Figure 2.2. Let k, M and j be defined as
previously. Let m be the number of vertices matched in R′. Therefore, the
number of free vertices is s− j on M and s−m on R′ which gives 2s− j−m
free vertices altogether.

Ifm > 0 or no vertex inM is matched to a vertex inR, then j+k+m ≤ 2s,
it follows that k ≤ 2s − j − m as desired. Hence, we can mark a different
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Figure 2.2: Case 2

free vertex for each bad edge incident to B.
If m = 0 and there is a vertex in M matched to a vertex in R, then k ≤ s.

In this case mark different vertices of R′ for each bad edge incident to B.

For each blue subblock B we marked free vertices in the subblock pair of
B or in a subblock which was facing B (that is, these points were in R, or in
M in case M was facing B, or in R′ which necessarily faced B). Therefore,
for each blue subblock the set of the possible free vertices was well defined
and disjoint of the set of free vertices for any other blue subblock.

This completes the proof of Theorem 12.

Proof of Theorem 13: This is a special case of Theorem 12. The
constants in front of s and t are small as a consequence of the number of
disregarded edges in the normalization procedure. The claim of the theorem
is immediate.

Although our goal is to investigate seperated matchings, we mention that
if the choices for a and b in C+

1 (a, b, s, t) are not constants, then for suitable
choice we can achieve that the run parameter of the coloring is o(n) and
at the same time the remainder term is o(n), too. So we also gain new
constructions for colored point set with short alternating paths.

2.5 Low discrepancy

When the discrepancy d is rather small we found the following lower bounds
for the size of the maximum separated matching. For d = 1 the coloring
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r

r
′

Figure 2.3: Discrepancy 2: At most 1
3
of all the points can be lost.

is alternating, hence all 2n points participate in the maximum separated
matching.

The case of discrepancy at most 2 is little bit more technical.

Theorem 14. For any coloring with dicrepancy d = 2 there is a separated
matching of size at least 4n

3
.

Proof. We describe a new way how to visualize the colored point set: we
introduce for each red point a unit up line segment and for each blue point
a unit down line segment. This corresponds to the drawing scheme in [17].
(When the discrepancy is 1, then these up and down segments alternate.)

Actually, we will not choose a good axe. We can be given any axe that
halves the number of runs and we will construct the separated matching of
the desired size.

Since d = 2, there will be two types of runs: runs of length 1 and runs of
length 2. Consequently, there will be at most two up and at most two down
segments in each run, see Figure 2.3. Let us take a drawing for any case of
d = 2 and halve the number of runs by taking an axe t. Then we pair up
all the runs. The run r will have pair run r′ if r and r′ are on different sides
of t but for the same distance to t regarding the number of runs. We make
the separated matching S so that each run will face only its pair. All runs
of length 1 will be fully covered in S. Consider the runs of length 2. If a run
r of length 2 faces a run r′ of length 1, then 2

3
of the vertices of r and r′ will

be in S. Otherwise, the run r is also fully covered in S. Hence, there exists
a separated matching of size at least 4n

3
.

For d = 3 we have the same result.
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Figure 2.4: The arc of three red points on the left faces the three arcs on the
right, respectively. The number at a vertex on the right side shows the ratio
of matched points in case the corresponding point is an endpoint of its run.

2

3

Figure 2.5: The right arc faces the left arc.

Theorem 15. For any coloring with d = 3 there is a separated matching of
size at least 4n

3
.

The proof of this theorem is similar to the previous proof. Unfortunately,
we need a more sophisticated pairing for runs. We do not give the full case
analysis. We only give the pictures of the cases: the left and right hand side
of the picture correspond to intervals of the colored point set that will be
faced to each other. We always face one specific side to the other side where
we mark the ratio of points that can be matched on the considered intervals,
see Figure 2.4, Figure 2.5 and further pictures below. Some of the endpoints
can vary on the sides and in that case we put the corresponding ratios to the
alternate endpoints. On Figure 2.4 we merge more cases. There the left side
contains a sigle interval while the right side contains three intervals. We face
the left side to the intervals on the right, respectively.

Note that the number of points altogether on the two intervals that face
each other in the case analysis is at most 14. Observe, the sketch of the case
analysis on the pictures.
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2.6 Open problems

Our results call the attention to the following conjecture which is a more
appealing consequence of the Kynčl-Pach-Tóth conjecture.

Conjecture.[17] Every equicoloring of 2n points in convex position ad-
mits a separated matching of size 4

3
n+ o(n).

The constructions presented in this chapter suggest that even the O(
√
n)

remainder term is feasible. At the same time they show that the order of
magnitude claimed above is the best possible.

It would be an interesting result to settle it in the affarmative. That
would also prove the conjecture on alternating paths.
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Chapter 3

Hamiltonian Alternating Paths

on Bicolored Double-Chains

3.1 Introduction

In this chapter we find arbitrarily large “universal” sets for which any eq-
uitable 2-coloring admits a noncrossing, alternating Hamiltonian path. We
prove the “universality” for so-called double-chains with each chain contain-
ing at least one fifth of all the points. Double-chains were first considered in
[12]. In the previous chapters we investigated only point sets with an even
number of points. Here we will allow that the sizes of the color classes differ
by at most one.

A convex or a concave chain is a finite set of points in the plane lying
on the graph of a strictly convex or a strictly concave function, respectively.
A double-chain (C1, C2) consists of a convex chain C1 and a concave chain
C2 such that each point of C2 lies strictly below every line determined by C1

and similarly, each point of C1 lies strictly above every line determined by
C2 (see Fig. 3.1). Note that we allow different sizes of the chains C1 and C2.

Let (C1, C2) be a double-chain, and let p1, p2, . . . , pk ∈ C1∪C2 be distinct

C1

C2

Figure 3.1: An equitably 2-colored double-chain (C1, C2)
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points of C1∪C2. The polygonal line p1p2 . . . pk consisting of the k−1 straight
line segments p1p2, p2p3, . . . , pk−1pk is shortly called the path p1p2 . . . pk. The
path p1p2 . . . pk is noncrossing if any two non-consecutive segments in it are
disjoint. The path p1p2 . . . pk is Hamiltonian (for the double-chain (C1, C2))
if it visits all the points of C1 ∪ C2 (that is, k = |C1|+ |C2|).

Suppose that the points of a double-chain (C1, C2) are colored by two
colors. Then a path p1p2 . . . pk is alternating if the endpoints of each segment
are colored by different colors. A path on C1 ∪ C2 is a good path if it is
noncrossing, Hamiltonian and alternating.

An equitable 2-coloring of a double-chain (C1, C2) is a coloring of C1∪C2

by two colors such that the sizes of the color classes differ by at most one.
We use red and blue as the colors in the colorings. Here is our main result,
see in [7]:

Theorem 16. Let (C1, C2) be a double-chain whose points are colored by
an equitable 2-coloring, and let |Ci| ≥ 1/5(|C1| + |C2|) for i = 1, 2. Then
(C1, C2) has a good path. Moreover, a good path on (C1, C2) can be found in
linear time.

On the other hand, we show that double-chains with highly unbalanced
sizes of chains do not admit a good path for some equitable 2-colorings [7]:

Theorem 17. Let (C1, C2) be a double-chain whose points are colored by an
equitable 2-coloring, and let C1 be periodic with the following period of length
16: 2 red, 4 blue, 6 red and 4 blue points. If |C1| ≥ 28(|C2|+1), then (C1, C2)
has no good path.

3.2 Proof of Theorem 16

The main idea of our proof is to cover the chains Ci by a special type of
pairwise noncrossing paths, so-called hedgehogs, and then to connect these
hedgehogs into a good path by adding some edges between C1 and C2.

3.2.1 Notation used in the proof

For i = 1, 2, let bi be the number of red points of Ci and let wi := |Ci| − bi
denote the number of blue points of Ci.

Since the coloring is equitable, we may assume that b1 ≥ w1 and w2 ≥ b2.
Then red is the major color of C1 and the minor color of C2, and blue is the
major color of C2 and the minor color of C1. Points in the major color, that
is, red points on C1 and blue points on C2, are called major points. Points
in the minor color are called minor points.
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Figure 3.2: A hedgehog in C1

Points on each Ci are linearly ordered according to the x-coordinate. An
interval of Ci is a sequence of consecutive points of Ci. An inner point of an
interval I is any point of I which is neither the leftmost nor the rightmost
point of I.

A body D is a non-empty interval of a chain Ci (i = 1, 2) such that all
inner points of D are major. If the leftmost point of D is minor, then we
call it a head of D. Otherwise D has no head. If the rightmost point of D
is minor, then we call it a tail of D. Otherwise D has no tail. If a body
consists of just one minor point, this point is both the head and the tail.

Bodies are of the following four types. A 00-body is a body with no head
and no tail. A 11-body is a body with both head and tail. The bodies of
remaining two types have exactly one endpoint major and the other one
minor. We will call the body a 10-body or a 01-body if the minor endpoint is
a head or a tail, respectively.

Let D be a body on Ci. A hedgehog (built on the body D ⊆ Ci) is a
noncrossing alternating path H with vertices in Ci satisfying the following
three conditions: (1) H contains all points of D, (2) H contains no major
points outside of D, (3) the endpoints of H are the first and the last point
of D. A hedgehog built on an αβ-body is an αβ-hedgehog (α, β = 0, 1). If
a hedgehog H is built on a body D, then D is the body of H and the points
of H that do not lie in D are spines. Note that each spine is a minor point.
All possible types of hedgehogs can be seen on Fig. 3.3 (for better lucidity,
we will draw hedgehogs with bodies on a horizontal line and spines indicated
only by a “peak” from now on).

On each Ci, maximal intervals containing only major points are called
runs. Clearly, runs form a partition of major points. For i = 1, 2, let ri
denote the number of runs in Ci.
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00-hedgehogs

01-hedgehogs

10-hedgehogs

11-hedgehogs

Figure 3.3: Types of hedgehogs (sketch)

3.2.2 Proof in the even case

Throughout this subsection, (C1, C2) denotes a double-chain with |C1|+ |C2|
even. Since the coloring is equitable, we have b1 + b2 = w1 + w2. Set

∆ := b1 − w1 = w2 − b2.

First we give a lemma characterizing collections of bodies on a chain Ci

that are bodies of some pairwise noncrossing hedgehogs covering the whole
chain Ci.

Lemma 18. Let i ∈ {1, 2}. Let all major points of Ci be covered by a set D of
pairwise disjoint bodies. Then the bodies of D are the bodies of some pairwise
noncrossing hedgehogs covering the whole Ci if and only if ∆ = d00 − d11,
where dαα is the number of αα-bodies in D.

Proof. An αβ-hedgehog containing t major points contains (t − 1) + α + β
minor points. It follows that the equality ∆ = d00 − d11 is necessary for the
existence of a covering of Ci by disjoint hedgehogs built on the bodies of D.

Suppose now that ∆ = d00 − d11. Let F be the set of minor points on Ci

that lie in no body of D, and let M be the set of the mid-points of straight
line segments connecting pairs of consecutive major points lying in the same
body. It is easily checked that |F | = |M |. Clearly F ∪ M is a convex or a
concave chain. Now it is easy to prove that there is a noncrossing perfect
matching formed by |F | = |M | straight line segments between F and M (for
the proof, take any segment connecting a point of F with a neighboring point
of M , remove the two points, and continue by induction); see Fig. 3.4.

If f ∈ F is connected to a point m ∈ M in the matching, then f will be a
spine with edges going from it to those two major points that determined m.
Obviously, these spines and edges define noncrossing hedgehogs with bodies
in D and with all the required properties.
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Figure 3.4: A noncrossing matching of minor points and midpoints (in C1)

C2

C1

Figure 3.5: 00-hedgehogs connected to a good path

The following three lemmas and their proofs show how to construct a
good path in some special cases.

Lemma 19. If ∆ ≥ max{r1, r2}, then (C1, C2) has a good path.

Proof. Let i ∈ {1, 2}. Since ri ≤ ∆ ≤ max{bi, wi}, the runs in Ci may
be partitioned into ∆ 00-bodies. By Lemma 18, these 00-bodies may be
extended to pairwise noncrossing hedgehogs covering Ci. This gives us 2∆
hedgehogs on the double-chain. They may be connected into a good path by
2∆− 1 edges between the chains in the way shown in Fig. 3.5.

Lemma 20. If r1 = r2, then (C1, C2) has a good path.

Proof. Set r := r1 = r2. If r ≤ ∆ then we may apply Lemma 19. Thus, let
r > ∆.

Suppose first that ∆ ≥ 1. We cover each run on each Ci by a single body
whose type is as follows. On C1 we take ∆ 00-bodies followed by (r − ∆)
10-bodies. On C2 we take (from left to right) (∆ − 1) 00-bodies, (r − ∆)
01-bodies, and one 00-body. By Lemma 18, the r bodies on each Ci can
be extended to hedgehogs covering Ci. Altogether we obtain 2r hedgehogs.
They can be connected to a good path by 2r − 1 edges between C1 and C2

(see Fig. 3.6).
Suppose now that ∆ = 0. We add one auxiliary major point on each Ci

as follows. On C1, the auxiliary point extends the leftmost run on the left.
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· · · · · ·

C2

C1

Figure 3.6: A good path in the case r1 = r2 > ∆ ≥ 1

On C2, the auxiliary point extends the rightmost run on the right. This does
not change the number of runs and increases ∆ to 1. Thus, we may proceed
as above. The good path obtained has the two auxiliary points on its ends.
We may remove the auxiliary points from the path, obtaining a good path
for (C1, C2).

A singleton s ∈ Ci is an inner point of Ci (i = 1, 2) such that its two
neighbors on Ci are colored differently from s.

Lemma 21. Suppose that C1 has no singletons and C2 can be covered by
r1 − 1 pairwise disjoint hedgehogs. Then (C1, C2) has a good path.

Proof. For simplicity of notation, set r := r1. We denote the r−1 hedgehogs
on C2 by P1, P2, . . . , Pr−1 in the left-to-right order in which the bodies of these
hedgehogs appear on C2. For technical reasons, we enlarge the leftmost run
of C1 from the left by an auxiliary major point σ.

Our goal is to find r hedgehogs H1, H2, . . . , Hr on C1∪{σ} such that they
may be connected with the hedgehogs P1, P2, . . . , Pr−1 into a good path. For
each j = 1, . . . , r, the body of the hedgehog Hj will be denoted by Dj. For
each j = 1, . . . , r, Dj covers the j-th run of C1 ∪ {σ} (in the left-to-right
order). We now finish the definition of the bodies Dj by specifying for each
Dj if it has a head and/or a tail. The body D1 is without head. For j > 1,
Dj has a head if and only if Pj−1 has a tail. The last body Dr is without tail
and Dj , j < r, has a tail if and only if Pj has a head.

It follows from Lemma 18 that we may add or remove some minor points
on C1 ∪ {σ} so that D1, . . . , Dr can then be extended to pairwise noncross-
ing hedgehogs H1, . . . , Hr covering the “new” C1. More precisely, there is a
double-chain (C ′

1, C2) such that D1, . . . , Dr can be extended to pairwise non-
crossing hedgehogs H1, . . . , Hr covering C ′

1, where either C ′
1 = C1 ∪ {σ} or

C ′
1 is obtained from C1 ∪{σ} by adding some minor (blue) points on the left

of C1 ∪ {σ} (say) or C ′
1 is obtained from C1 ∪ {σ} by removal of some minor

(blue) points lying in none of the bodies D1, . . . , Dr. Then the concatenation
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· · ·

C2

C1

Figure 3.7: A good path in the case of no singletons on C1

H1P1H2P2 · · ·Hr−1Pr−1Hr shown in Fig. 3.7 gives a good path on (C ′
1, C2).

This good path starts with the point σ. Removal of σ from it gives a good
path P for the double-chain (C ′

1\{σ}, C2). The endpoints of P have different
colors. Thus, P covers the same number of red and blue points. red points
on P are the (|C1| + |C2|)/2 red points of (C1, C2). Thus, P covers exactly
|C1|+ |C2| points. It follows that |C ′

1 \ {σ}| = |C1| and thus C ′
1 \ {σ} = C1.

The path P is a good path on the double-chain (C1, C2).

The following lemma will be used to find a covering needed in Lemma 21.

Lemma 22. Suppose that |Ci| ≥ k, ri ≤ k and ∆ ≤ k for some i ∈ {1, 2} and
for some integer k. Then Ci can be covered by k pairwise disjoint hedgehogs.

Proof. The idea of the proof is to start with the set D of |Ci| bodies, each of
them being a single point, and then gradually decrease the number of bodies
in D by joining some of the bodies together. We see that ∆ = d00−d11, where
dαα is the number of αα-bodies in D. If we join two neighboring 00-bodies to
one 00-body and withdraw a single-point 11-body from D (to let the minor
point become a spine) at the same time, the difference between the number
of 00-bodies and the number of 11-bodies remains the same and |D| decreases
by two. We can reduce |D| by one while preserving the difference d00 − d11
by joining a 00-body with a neighboring single-point 11-body into a 01- or a
10-body. Similarly we can join a 01- or a 10-body with a neighboring (from
the proper side) single-point 11-body into a new 11-body to decrease |D| by
one as well. When we are joining two 00-bodies, we choose the single-point
11-body to remove in such a way to keep as many single-point 11-bodies
adjacent to 00-bodies as possible. This guarantees that we can use up to ri
of them for heads and tails.

We start with joining neighboring 00-bodies and we do this as long as
|D| > k + 1 and d00 > ri. Note that by the assumption ∆ ≤ k, we will
have enough single-point 11-bodies to do that. When we end, one of the
following conditions holds: |D| = k, |D| = k + 1 or d00 = ri. In the first
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case we are done. If |D| = k + 1, we just add one head or one tail (we
can do this since d00 + d11 = |D| = k + 1 ≥ d00 − d11 + 1, which implies
d11 > 0). If d00 = ri, then each run is covered by just one 00-body. We
need to add |D| − k heads and tails. We have enough single-point 11-bodies
to do that since d11 = |D| − d00 = |D| − ri ≥ |D| − k. On the other hand,
ri − d11 = ∆ ≥ 0, so the number of heads and tails needed is at most ri.
Therefore, all the single-point 11-bodies are adjacent to 00-bodies and we
can use them to form heads and tails.

In all cases we get a set D of k bodies. Now we can apply Lemma 18 to
obtain k pairwise disjoint hedgehogs covering Ci.

By a contraction we mean removing a singleton with both its neighbors
and putting a point of the color of its neighbors in its place instead. It is easy
to verify that if there is a good path in the new double-chain obtained by this
contraction, it can be expanded to a good path in the original double-chain.

Now we can prove our main theorem in the even case.

Proof. Without loss of generality we may assume that r1 ≥ r2. In the case
r1 = r2, we get a good path by Lemma 20. In the case ∆ ≥ r1, we get a
good path by Lemma 19. Therefore, the only case left is r1 > r2, r1 > ∆.

If there is a singleton on C1, we make a contraction of it. By this we
decrease r1 by one and both r2 and ∆ remain unchanged. If now r1 = r2 or
r1 = ∆, we again get a good path, otherwise we keep making contractions
until one of the previous cases appears or there are no more singletons to
contract.

If there is no more singleton to contract on C1 and still r1 > r2 and
r1 > ∆, we try to cover C2 by r1 − 1 pairwise disjoint paths. Before the
contractions, |C2| ≥ |C1|/4 did hold and by the contractions we could just
decrease |C1|, therefore it still holds.

All the maximal intervals on the chain C1 (with possible exception of
the first and the last one) have now length at least two, which implies that
r1 ≤ |C1|/4+1. Hence |C2| ≥ |C1|/4 ≥ r1−1, so we can create r1−1 pairwise
disjoint hedgehogs covering C2 using Lemma 22. Then we apply Lemma 21
and expand the good path obtained by Lemma 21 to a good path on the
original double-chain.

There is a straightforward linear-time algorithm for finding a good path
on (C1, C2) based on the above proof.
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3.2.3 Proof in the odd case

In this section we prove Theorem 16 for the case when |C1|+ |C2| is odd. We
set ∆ = w2 − b2 and proceed similarly as in the even case. On several places
in the proof we will add one auxiliary point ω to get the even case (its color
will be chosen to equalize the numbers of red and blue points). We will be
able to apply one of the Lemmas 19–21 to obtain a good path. The point ω
will be at some end of the good path and by removing ω we obtain a good
path for (C1, C2).

Without loss of generality we may assume that r1 ≥ r2. In the case
r1 = r2, we add an auxiliary major point ω, which is placed either as the left
neighbor of the leftmost major point on C1 or as the right neighbor of the
rightmost major point on C2. Then we get a good path by Lemma 20 and
the removal of ω gives us a good path for (C1, C2).

In the case ∆ ≥ r1, we add an auxiliary point ω to the same place and
we get a good path by Lemma 19. Again, the removal of ω gives us a good
path for (C1, C2).

Now, the only case left is r1 > r2, r1 > ∆. If there are any singletons
on C1, we make the contractions exactly the same way as in the proof of the
even case. If Lemma 19 or 20 needs to be applied, we again add an auxiliary
point ω and proceed as above.

If there is no more singleton to contract on C1 and still r1 > r2 and
r1 > ∆, we have |C2| ≥ |C1|/4 ≥ r1 − 1 as in the proof of the even case and
we can use Lemma 22 to get r1 − 1 pairwise disjoint hedgehogs covering C2.
Now we need to consider two cases: (1) If b1 + b2 > w1 + w2, then we find a
good path for (C1, C2) in the same way as in the proof of Lemma 21, except
we do not add the auxiliary point σ. (2) If b1 + b2 < w1 + w2, we add an
auxiliary point ω as the right neighbor of the rightmost major point on C1.
The number r1 didn’t change so Lemma 21 gives us a good path. Again, the
removal of ω gives us a good path for (C1, C2).

There is a straightforward linear-time algorithm for finding a good path
on (C1, C2) based on the above proof.

3.3 Unbalanced double-chains with no good

path

In this section we prove Theorem 17. Let (C1, C2) be a double-chain whose
points are colored by an equitable 2-coloring, and let C1 be periodic with
the following period: 2 red, 4 blue, 6 red and 4 blue points. Let |C1| ≥
28(|C2|+ 1). We want to show that (C1, C2) has no good path.
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Suppose on the contrary that (C1, C2) has a good path. Let P1, P2, . . . , Pt

denote the maximal subpaths of the good path containing only points of C1.
Since between every two consecutive paths Pi, Pj in the good path there is at
least one point of C2, we have t ≤ |C2|+1. In the following we think of C1 as
of a cyclic sequence of points on the circle. Note that we get more intervals
in this way. Theorem 17 now directly follows from the following theorem.

Theorem 23. Let C1 be a set of points on a circle periodically 2-colored
with the following period of length 16: 2 red, 4 blue, 6 red and 4 blue points.
Suppose that all points of C1 are covered by a set of t noncrossing alternating
and pairwise disjoint paths P1, P2, . . . , Pt. Then t > |C1|/28.

Proof. Each maximal interval spanned by a path Pi on the circle is called
a base. Let b(Pi) denote the number of bases of Pi. A path with one base
only is called a leaf. We consider the following special types of edges in the
paths. Long edges connect points that belong to different bases. Short edges
connect consecutive points on C1. Note that short edges cannot be adjacent
to each other. A maximal subpath of a path Pi spanning two subintervals
of two different bases and consisting of long edges only is called a zig-zag. A
path is separated if all of its edges can be crossed by a line. Note that each
zig-zag is a separated path. A maximal separated subpath of Pi that contains
an endpoint of Pi and spans one interval only is a rainbow . We find all the
zig-zags and rainbows in each Pi, i = 1, 2, . . . , t. Note that two zig-zags, or a
zig-zag and a rainbow, are either disjoint or share an endpoint. A branch is
a maximal subpath of Pi that spans two intervals and is induced by a union
of zig-zags.

For each path Pi that is not a leaf construct the following graph Gi. The
vertices of Gi are the bases of Pi. We add an edge between two vertices
for each branch that connects the corresponding bases. If Gi has a cycle
(including the case of a “2-cycle”), then one of the corresponding branches
consists of a single edge that lies on the convex hull of Pi. We delete such an
edge from Pi and don’t call it a branch anymore. By deleting a corresponding
edge from each cycle of Gi we obtain a graph G′

i, which is a spanning tree of
Gi. The branch graph G′ is a union of all graphs G′

i.
Let L denote the set of leaves and B the set of branches. Let P =

{P1, P2, . . . , Pt}.
Observation 24. The branch graph G′ is a forest with components G′

i.
Therefore,

|B| =
∑

i,Pi /∈L

(b(Pi)− 1).
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The branches and rainbows in Pi do not necessarily cover all the points of
Pi. Each point that is not covered is adjacent to a deleted long edge and to a
short edge that connects this point to a branch or a rainbow. It follows that
between two consecutive branches (and between a rainbow and the nearest
branch) there are at most two uncovered points, that are endpoints of a
common deleted edge. By an easy case analysis it can be shown that this
upper bound can be achieved only if one of the nearest branches consists of
a single zig-zag.

In the rest of the chapter, a run will be a maximal monochromatic interval
of any color. In the following we will count the runs that are spanned by the
paths Pi. The weight of a path P , w(P ), is the number of runs spanned by
P . If P spans a whole run, it adds one unit to w(P ). If P partially spans a
run, it adds half a unit to w(P ).

Observation 25. The weight of a zig-zag or a rainbow is at most 1.5. A
branch consists of at most two zig-zags, hence it weights at most three units.

Lemma 26. A path Pi that is not a leaf weights at most 3.5k + 3.5 units
where k is the number of branches in Pi.

Proof. According to the above discussion, for each pair of uncovered points
that are adjacent on Pi we can join one of them to the adjacent branch
consisting of a single zig-zag. To each such branch we join at most two
uncovered points, hence its weight increases by at most one unit to at most
2.5 units. The number of the remaining uncovered points is at most k + 1.
Therefore, w(Pi) ≤ 3k + 3 + 0.5 · (k + 1) = 3.5k + 3.5.

Lemma 27. A leaf weights at most 3.5 units.

Proof. Let L be a leaf spanning at least two points. Consider the interval
spanned by L. Cut this interval out of C1 and glue its endpoints together
to form a circle. Take a line l that crosses the first and the last edge of L.
Note that the line l doesn’t separate any of the runs. Exactly one of the arcs
determined by l contains the gluing point γ.

Each of the ending edges of L belongs to a rainbow, all of whose edges
cross l. It follows that if L has only one rainbow, then this rainbow covers
the whole leaf L and w(L) ≤ 1.5. Otherwise L has exactly two rainbows, R1

and R2. We show that R1 and R2 cover all edges of L that cross the line l.
Suppose there is an edge s in L that crosses l and does not belong to any of
the rainbows R1, R2. Then one of these rainbows, say R1, is separated from
γ by s. Then the edge of L that is the second nearest to R1 also has the same
property as the edge s. This would imply that R1 spans two whole runs, a
contradiction. It follows that all the edges of L that are not covered by the
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rainbows are consecutive and connect adjacent points on the circle. There
are at most three such edges; at most one connecting the points adjacent
to γ, the rest of them being short on C1. But this upper bound of three
cannot be achieved since it would force both rainbows to span two whole
runs. Therefore, there are at most two edges and hence at most one point in
L uncovered by the rainbows. The lemma follows.

Lemma 28. |L| ≥ ∑
i,Pi /∈L

(b(Pi)− 2) + 2.

Proof. The number of runs in C1 is at least 4. By Lemma 27, if all the paths
Pi are leaves, then at least 2 of them are needed to cover C1 and the lemma
follows.

If not all the paths are leaves, we order the paths so that all the leaves
come at the end of the ordering. The path P1 spans b(P1) bases. Shrink
these bases to points. These points divide the circle into b(P1) arcs each of
which contains at least one leaf. If P2 is not a leaf then continue. The path
P2 spans b(P2) intervals on one of the previous arcs. Shrink them to points.
These points divide the arc into b(P2)+1 subarcs. At least b(P2)−1 of them
contain leaves. This increased the number of leaves by at least b(P2) − 2.
The case of Pi, i > 2, is similar to P2. The lemma follows by induction.

Corollary 29. |B| ≤ |P| − 2.

Proof. Combining Lemma 28 and Observation 24 we get the following:

|B| =
∑

i,Pi /∈L

(b(Pi)− 1) =
∑

i,Pi /∈L

(b(Pi)− 2) + |P| − |L|+ 2− 2 ≤ |P| − 2.

Now we are in position to finish the proof of Theorem 23. If the whole
C1 is covered by the paths Pi, then

∑t
i=1w(Pi) ≥ |C1|/4. Therefore,

|C1| ≤ 4 · (3.5|B|+ 3.5(|P| − |L|) + 3.5|L|) < 4 · 7|P| = 28|P|.
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3.4 Open problems

Our result on the double-chain suggests that the convex position of points
might be an extremal case regarding the length of the longest noncrossing,
alternating path. Although it is not known what role convexity plays in the
problem. In the general case more basic questions arise. One of the goals
would be to settle the following problem. It is still open in general position
if the trivial lower bound of n points could be improved by more than a
constant (see also the book [5]).

Problem. Does an equitably colored point set always admit a noncross-
ing, alternating path of n + f(n) points where f(n) is unbounded?

We may investigate other interesting special positions of our point set.
Instead of the double-chain we could consider the point set to be on two
convex chains.

Problem. How long is the longest noncrossing, alternating path in an
equitably colored point set placed on two convex chains?
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Chapter 4

Solution of Peter Winkler’s

Pizza Problem

4.1 Introduction

Peter Winkler posed the following problem at the conference Building Bridges,
honouring the 60th birthday of László Lovász, in Budapest in 2008. Bob and
Alice are sharing a pizza. Bob cuts the pizza into slices of not necessarily
equal size. Afterwards they take turns alternately to divide it among them-
selves. One slice is taken in each turn. In the first turn Alice takes any
slice. In the forthcoming turns one may take a slice if it is adjacent to some
previously taken slice. This is called the Polite Pizza Protocol. How much
of the pizza can Alice gain?

The original puzzle, that is determining whether Bob can get more than
half of the pizza, was devised by Dan Brown in 1996. Bob can easily ensure
for himself one half of the pizza. For example, he may cut the pizza into an
even number of slices of equal size. Then Bob always obtains exactly one
half. Peter Winkler found out that Bob can actually get 5/9 of the pizza if
he cuts the pizza properly—see Theorems 33 and 34 for such cuttings. He
conjectured that Alice can obtain 4/9 of the pizza for any cutting. The main
aim of this chapter is to show a strategy of Alice proving this conjecture.

The pizza after Bob’s cutting may be represented by a circular sequence
P = p0p1 . . . pn−1 and by the sizes |pi| ≥ 0 (for i = 0, 1, . . . , n−1); for simplic-
ity of notation, throughout the chapter we do not separate the elements of
(circular) sequences by commas. The size of P is defined by |P | := ∑n−1

i=0 |pi|.
Throughout the chapter the indices are counted modulo n.

For 1 < j ≤ n, if one of the players chooses a slice pi in the (j − 1)-st
turn and the other player chooses pi−1 or pi+1 in the j-th turn, then the j-th
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turn is called a shift, otherwise it is called a jump. Except for the first and
the last turn, there are two choices in each turn and exactly one of them is
a shift and the other one is a jump. The last turn is always a shift.

If some strategy of a player allows the player to make at most j jumps,
then we call it a j-jump strategy. We remark that given a circular sequence
P of length n, Alice has exactly n zero-jump strategies on P , determined by
Alice’s first turn.

Let Σ be a particular strategy of one of the players. We say that Σ is a
strategy with gain g if it guarantees the player a subset of slices with the sum
of sizes at least g. Note that according to this definition, if Σ is a strategy
with gain g then it is also a strategy with gain g′ for any g′ ≤ g.

If the number of slices is even, Alice has the following zero-jump strategy
with gain |P |/2. She partitions the slices of the pizza into two classes, even
and odd, according to their parity in P . In the first turn Alice takes a slice
from the class with the sum of slice sizes at least |P |/2. In all her forthcoming
turns she makes shifts, thus forcing Bob to eat from the other class in each
of his turns.

All results in this chapter can be found in [9]. Here is our main result.

Theorem 30. For any P , Alice has a two-jump strategy with gain 4|P |/9.
More generally, we determine Alice’s guaranteed gain for any given num-

ber of slices.

Theorem 31. For n ≥ 1, let g(n) be the maximum g ∈ [0, 1] such that for
any cutting of the pizza into n slices, Alice has a strategy with gain g|P |.
Then

g(n) =





1 if n = 1,
4/9 if n ∈ {15, 17, 19, . . .},
1/2 otherwise.

Moreover, Alice has a zero-jump strategy with gain g(n)|P | when n is even
or n ≤ 7, she has a one-jump strategy with gain g(n)|P | for n ∈ {9, 11, 13},
and she has a two-jump strategy with gain g(n)|P | for n ∈ {15, 17, 19, . . .}.

If we make a restriction on the number of Alice’s jumps we get the fol-
lowing results.

Theorem 32. (a) Alice has a zero-jump strategy with gain |P |/3 and the
constant 1/3 is the best possible.
(b) Alice has a one-jump strategy with gain 7|P |/16 and the constant 7/16
is the best possible.

Due to Theorem 31, the following theorem describes all minimal cuttings
for which Bob has a strategy with gain 5|P |/9.
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Theorem 33. For any ω ∈ [0, 1], Bob has a one-jump strategy with gain
5|P |/9 if he cuts the pizza into 15 slices as follows: Pω = 0010100(1 +
ω)0(2−ω)00202. These cuttings describe, up to scaling, rotating and flipping
the pizza upside-down, all the pizza cuttings into 15 slices for which Bob has
a strategy with gain 5|P |/9.

For ω = 0 or ω = 1, the cutting in Theorem 33 has slices of only three
different sizes 0, 1, 2. If all the slices have the same size, then Alice always
gets at least half of the pizza. But two different slice sizes are already enough
to obtain a cutting with which Bob gets 5/9 of the pizza.

Theorem 34. Up to scaling, rotating and flipping the pizza upside-down,
there is a unique pizza cutting into 21 slices of at most two different sizes for
which Bob has a strategy with gain 5|P |/9. The cutting is 001010010101001010101.

In subsection 4.7.1 we describe a linear-time algorithm for finding Alice’s
two-jump strategy with gain g(n)|P | guaranteed by Theorem 31.

Theorem 35. There is an algorithm that, given a cutting of the pizza with
n slices, performs a precomputation in time O(n). Then, during the game,
the algorithm decides each of Alice’s turns in time O(1) in such a way that
Alice makes at most two jumps and her gain is at least g(n)|P |.

There is also a straightforward quadratic-time dynamic algorithm finding
optimal strategies for each of the two players.

Claim 36. There is an algorithm that, given a cutting of the pizza with
n slices, computes an optimal strategy for each of the two players in time
O(n2). The algorithm stores an optimal turn of the player on turn for all the
n2 − n+ 2 possible positions of the game.

We remark that, unlike in Theorem 30, the number of Alice’s jumps in her
optimal strategy cannot be bounded by a constant. In fact, it can be as large
as ⌊n/2⌋ − 1 for n ≥ 2 (see Observation 57 in subsection 4.7.2). A similar
statement holds for the number of Bob’s jumps in his optimal strategy.

The following question is still open.

Problem 1. Is there an algorithm that uses o(n2) time for some precompu-
tations and then computes each optimal turn in constant time?

We remark that we even don’t know if Alice’s optimal first turn can be
computed in time o(n2).

Independently of us and approximately at the same time, K. Knauer, P.
Micek and T. Ueckerdt [21] also proved Theorem 30 and some related results.

The chapter is organized as follows. Theorem 30 is proved in subsec-
tion 4.2. Section 4.3 contains examples of cuttings showing that the constant
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Figure 4.1: A cutting of a pizza and the corresponding characteristic cycle.

4/9 in Theorem 30 cannot be improved. Section 4.4 is devoted to the proof
of Theorem 31. Theorems 33 and 34 are proved in Section 4.5. Section 4.6
contains the proof of Theorem 32. The algorithms from Theorem 35 and
Claim 36 are described in Section 4.7.1 and Section 4.7.2, respectively.

In a follow-up paper [8] we discuss generalizations of the Pizza Problem.

4.2 The lower bound

When the number of slices is even, Alice can always gain at least |P |/2. Here
we prove the lower bound on her gain when n ≥ 3 is odd.

4.2.1 Preliminaries

If the number of slices is odd, instead of the circular sequence P = p0p1 . . . pn−1

we will be working with the related circular sequence V = v0v1 . . . vn−1 =
p0p2 . . . pn−1p1p3 . . . pn−2 that we call the characteristic cycle (see Figure 4.1).
The size of the characteristic cycle is denoted by |V |. Clearly |V | = |P |.

An arc is a sequence of at most n − 1 consecutive elements of V . If
we talk about the first or the last element of an arc, we always consider it
with respect to the linear order on the arc inherited from the characteristic
cycle V . For an arc X = vivi+1 . . . vi+l−1, its length is l(X) := l and its
size is |X| := ∑i+l−1

j=i |vj|. An arc of length (n + 1)/2 is called a half-circle.
Figure 4.2 shows an example of a game on V . The slice taken in the i-th
turn is labeled by the initial letter of the player with i in the subscript.

At any time during a game, a player may decide to make only shifts
further on. The player will take one or two arcs of the characteristic cycle
afterwards. An example of such a game when Alice decided to make no more
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B2

B4

B6

A7

Figure 4.2: A game illustrated on the characteristic cycle V (the turns are
A1, B2, A3, . . . ). The turns B4 and A5 are jumps and all the other turns
(except A1) are shifts.
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Figure 4.3: An example of a game where both players used a zero-jump
strategy.
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Figure 4.4: Situation before Bob’s turn with the two possible options marked
by arrows (left) and two of the possible ends of the game where Alice made
no more jumps (middle and right).

jumps is depicted on Figure 4.4 (slices taken before the decision point are
labeled with ∗, and selected pairs of slices neighboring in the original pizza
are connected by dashed segments). The slices she took after the decision
point are forming two arcs that are separated in between by some arc of
previously taken slices.

Observation 37. Consider a position after Alice’s turn Aj , j 6= 1, n. We
have V = T1R1T2R2, where ℓ(T1) = ℓ(T2) + 1 = (j +1)/2, ℓ(R1) = ℓ(R2), T1

and T2 are two arcs of already taken slices, and R1 and R2 are two arcs con-
taining the remaining slices. Suppose that all the remaining turns of Alice
(Aj+2, Aj+4, . . . , An) are shifts. Then, regardless of Bob’s remaining turns
Bj+1, . . . , Bn−1, the slices taken by Alice in the turns Aj+2, Aj+4, . . . , An nec-
essarily form two arcs X1 and X2 such that X1T1X2 is a half-circle of V .

In addition, for any half-circle Y1T1Y2, Bob can choose his turns Bj+2, . . . ,
Bn−1 so that X1 = Y1 and X2 = Y2.

Proof. We will show by induction that before any Bob’s turn Bj+2k+1, the
slices taken by him in turns Bj+1, . . . , Bj+2k−1 form two arcs Z1 and Z2

such that Z = Z1T2Z2 is an arc and his two possible moves are on the
two neighbors of Z. This is true for Bj+1 and by induction if this is true
before Bj+2k+1, then Bob takes for Bj+2k+1 one of the two neighbors of Z
and Z ′ := Z ∪ Bj+2k+1 is an arc. After Alice’s shift, Bob’s shift would be
a neighbor of Bj+2k+1, thus a neighbor of Z ′. Bob’s jump would be the
neighbor of Z different from Bj+2k+1, thus a neighbor of Z ′.

For any given half-circle Y1T1Y2 and before any of Bob’s turns Bj+1, . . . ,
Bn−1, the two slices available for Bob are neighbors of an arc of length at most
(n−3)/2 which is not a subarc of Y1T1Y2. Thus one of the two slices available
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Figure 4.5: Two possible choices of Bob’s next turn (left) and the two possible
ends of the game where Bob made no more jumps (middle and right).

for him is not in Y1T1Y2 and Bob can choose his turns Bj+1, . . . , Bn−1 so that
X1 = Y1 and X2 = Y2.

If Bob decides to make only shifts for the rest of the game, he takes one
arc afterwards. Namely, if there are two arcs of already taken slices in V
at his decision point, then the arc that will be taken by Bob is neighboring
these two arcs at both of its ends (see Figure 4.5).

Observation 38. Consider a position after Alice’s turn Aj , j 6= 1, n. We
have V = T1R1T2R2, where ℓ(T1) = ℓ(T2) + 1 = (j + 1)/2, ℓ(R1) = ℓ(R2),
T1 and T2 are two arcs of already taken slices, and R1 and R2 are two arcs
containing the remaining slices. Bob’s turn Bj+1 may be on the last slice of
R1 or on the first slice of R2. If Bj+1 is on the last slice of R1 and all the
remaining turns of Bob are shifts then, regardless of Alice’s remaining turns,
Bob will take R1 and Alice will take R2 in this phase of the game. Similarly,
if Bj+1 is on the first slice of R2 and all the remaining turns of Bob are shifts
then, regardless of Alice’s remaining turns, Bob will take R2 and Alice will
take R1 in this phase of the game.

Proof. Similarly to the proof of Observation 37, it is easy to prove by induc-
tion that if Bob played Bj+1 on R1, then before each Alice’s turn, the two
slices available for her are from R2.

4.2.2 Minimal triples

For each v in V the potential of v is the minimum of the sizes of half-circles
covering v. The maximum of the potentials in V is the potential of V , which
we further denote by p(V ). It is an immediate conclusion that Alice has
a strategy with gain p(V ) because by choosing an element with potential
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equal to p(V ) and making only shifts afterwards Alice obtains at least p(V ).
Therefore we may assume that p(V ) < |V |/2.

A covering triple of half-circles is a triple of half-circles such that each
element of V appears in at least one of the three half-circles. We allow two
half-cirles to be equal in the covering triple. A covering triple is minimal if
it contains a half-circle of minimum size (among all n half-circles), all half-
circles forming the triple have size at most p(V ) and none of them may be
replaced in the triple by a half-circle of strictly smaller size.

Claim 39. Each half-circle of minimum size lies in at least one minimal
triple.

Proof. Take a half-circle H1 of minimum size. Consider vk and vk+(n−3)/2 the
two uncovered elements neighboring H1 on V . Let H2 be the half-circle of
size at most p(V ) that covers vk and as many elements of V not covered by
H1 as possible. We define H3 in the same way for vk+(n−3)/2. The above triple
of half-circles covers V . If it is not the case, then take an uncovered element
v. Consider a half-circle H that has minimal size among half-circles covering
v. At least one of vk and vk+(n−3)/2 is covered by H . This contradicts the
choice of H2 or H3. So we get that the given triple of half-circles forms a
covering triple. Now while any of the half-circles can be replaced in the triple
by a half-circle of strictly smaller size, we replace it. Obviously H1 won’t be
replaced as it is a half-circle of minimum size. Consequently the triple we
get is a minimal triple.

Observation 40. If the size of a half-circle in a minimal triple is z then
Alice has a zero-jump strategy with gain z.

Proof. As in a minimal triple all half-circles are of size at most p(V ) and Alice
has a zero-jump strategy with gain p(V ), the statement of the observation
follows.

Claim 41. Let p(V ) < |V |/2. Then any minimal triple contains three pair-
wise different half-circles, and thus there is a partition of V into six arcs
A,B,C,D,E, F such that the half-circles in the minimal triple are ABC,
CDE and EFA (see Figure 4.6). The lengths of the arcs satisfy l(A) =
l(D) + 1 ≥ 2, l(C) = l(F ) + 1 ≥ 2 and l(E) = l(B) + 1 ≥ 2.

Proof. If two of the three half-circles in a minimal triple are equal then V can
be covered by two half-circles of the triple. Since each half-circle in the triple
has size at most p(V ), the total size of the pizza is at most 2p(V ) < |V |, a
contradiction. If at least one of B,D, F has length 0, we argue exactly in the
same way.
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Figure 4.6: The partitioning of the characteristic cycle given by the covering
half-circles.

We have l(ABC) + l(EFA) = n + 1 = l(A) + · · · + l(F ) + 1, therefore
l(A) = l(D) + 1 ≥ 2. The other two equalities are analogous.

4.2.3 An auxiliary one-jump strategy

Throughout this subsection we assume that p(V ) < |V |/2. We fix any min-
imal triple T of half-circles. By Claim 41, it yields a partition of V into six
arcs A,B,C,D,E, F such that the half-circles in the triple are ABC,CDE,
EFA (see Figure 4.6). We further use the notation a := |A|, b := |B|, and
so on.

We define a median slice of an arc X = vivi+1 . . . vi+l to be a slice vk ∈ X
such that

∑k−1
j=i |vj| ≤ |X|/2 and

∑i+l
j=k+1 |vj| ≤ |X|/2. Observe that any arc

of positive length has at least one median slice.

Claim 42. Alice has a one-jump strategy for V with gain b/2 + min{c +
d, f + a} if p(V ) < |V |/2.

Proof. By Claim 41 we have that l(B) > 0. In the first turn Alice takes a
median slice vk of B. Consequently Bob is forced to start in E. He may
take the element vk+(n−1)/2 or vk+(n+1)/2. Alice makes only shifts while the
shift implies taking an element of B. In the meantime Bob necessarily takes
elements from E. In the turn, when Alice’s shift would imply taking an
element outside of B, Alice makes a jump instead. In that moment some
initial arc E0 of E starting from the boundary of E is already taken. Let E1

be the remaining part (subarc) of E. Alice takes the available element of E1.
Note, that such an element exists since in the sequence P , all the neighbors
of the slices of B are in E, (see Figure 4.7). The half-circle X1E0X2 can
replace either CDE or EFA in the fixed minimal triple. Thus due to the

52



X1

X2

A13

A15

A17

A19

A21

A23

E0

B12

B14

B16

B18

B20

B22

A9

B8

A11

B10

A1
A5

A3

B2

B4

B6

B

A

F D

C

A7

E

A1
A5

A3

B2

B4

B6

B

A

F D

C

A7

E

Figure 4.7: One-jump strategy: Alice chooses a jump rather than a shift
(left) and makes no more jumps afterwards (right).

minimality of the triple, the size of X1X2 is always at least the size of either
CD or FA. As Alice obtained at least the half of B before the jump, in the
end she gains at least b/2 + min{c+ d, f + a}.

Corollary 43. Alice has a one-jump strategy for V with gain (a+ b+ c)/4+
(d+ e+ f)/2 if p(V ) < |V |/2.

Proof. By Claim 42 Alice has a strategy with gain b/2 + min{c + d, f + a}.
Without loss of generality we may assume this sum is g1 := b/2 + c + d.
Alice also has a strategy with gain g2 := e + f + a by Observation 40.
Combining the two results Alice has a gain max{g1, g2} ≥ g1/2 + g2/2 =
(a + c+ d+ e+ f)/2 + b/4 ≥ (a+ b+ c)/4 + (d+ e+ f)/2.

4.2.4 A two-jump strategy

Throughout this subsection we assume that p(V ) < |V |/2 and that V is par-
titioned into six arcs A, . . . , F in the same way as in the previous subsection.

In this subsection we describe a strategy satisfying the following claim.

Claim 44. Alice has a two-jump strategy for V with gain b/2+e/4+min{c+
d, f + a} if p(V ) < |V |/2.
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4.2.5 Two phases of the game

Let B = vivi+1 . . . vi+∆. Then E = vjvj+1 . . . vj+∆+1, where j = i+(n−1)/2.
Consider the circular sequence V ′ = vivi+1 . . . vi+∆ vj vj+1 . . . vj+∆+1 obtained
by concatenating the arcs B and E.

LetH be a half-circle of V ′ containing vj . Then its size is not smaller than
the size of E, since otherwise the half-circle CDE of V could be replaced in
the minimal triple T by a half-circle of smaller size—namely by the half-circle
formed by the slices contained in CD and in H .

Similarly, if H is a half-circle of V ′ containing vj+∆+1, then its size is also
not smaller than the size of E. Since each half-circle of V ′ contains vj or
vj+∆+1, it follows that E is a half-circle of V ′ of minimum size.

If p(V ′) ≥ |V ′|/2 then Alice has a zero-jump strategy Σ for V ′ with gain
p(V ′) ≥ |V ′|/2 ≥ b/2 + e/4. Otherwise, by Corollary 43 (applied on V ′),
Alice has a one-jump strategy Σ for V ′ with gain b/2 + e/4 (we use the fact
that E is a half-circle of V ′ of minimum size, and therefore it is contained
in a minimal triple yielding a partition of V ′ into six arcs A′, B′, . . . , F ′ such
that E = A′B′C ′ and B = D′E ′F ′).

Briefly speaking, Alice’s strategy on V follows the strategy Σ as long as
it is possible, then Alice makes one jump and after that she makes only shifts
till the end of the game.

In the rest of this subsection (subsection 4.2.4), we consider a game G on
V . We divide the turns of G into two phases. The first phase of G is the
phase when Alice follows the strategy Σ and it ends with Bob’s turn. Alice’s
first turn that does not follow (and actually cannot follow) the strategy Σ is
the first turn of the second phase of G. It is always a jump and all the other
turns of Alice in the second phase are shifts.

We now describe Alice’s strategy in each of the two phases of G in detail.

4.2.6 Alice’s strategy in the first phase

As mentioned above, Alice has a one-jump strategy Σ for V ′ with gain b/2+
e/4. We now distinguish two cases.

Case 1: The strategy Σ is a zero-jump strategy. Let the first turn in the
zero-jump strategy Σ be on a slice q ∈ V ′. The first turn could be also on
any other point of V ′ with the same or larger potential. Observe that the
potentials of the slices in V ′ are e on E and at least e on B. Therefore we
may assume that q lies in B.

In the game G, Alice makes her first turn also on q. In the second turn
Bob can choose between two slices in E. In the subsequent turns Alice makes
shifts as long as Bob’s previous turn was neither on the first nor on the last
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Figure 4.8: Case 1: After the end of first phase, Alice chooses a jump rather
than a shift (two examples shown).

slice of E. Consider all slices taken by Bob up to any fixed moment during
the first phase of the game G. They always form a subarc of E (and the
slices taken by Alice form a subarc of B). The first turn in which Bob takes
the first or the last slice of E is the last turn of the first phase. Note that
after that Alice’s shift would be either on the last slice of A or on the first
slice of C (see Figure 4.8). But Alice makes a jump and this jump is the first
turn of the second phase. Note that this jump is in E (see Figure 4.8).

Case 2: The strategy Σ is not a zero-jump strategy. Following the proof of
Corollary 43, we may suppose that Σ is the strategy that we describe below.

By Claim 39, the half-circle E of minimum size is contained in some
minimal triple T ′ of half-circles of V ′. The triple T ′ determines a partition
of V ′ into six arcs A′, B′, . . . , F ′ in the same way as T determined a partition
of V into A,B, . . . , F . We may suppose that E = A′B′C ′ and B = D′E ′F ′.

We may suppose that the size of B′ is positive, since otherwise one of the
half-circles C ′D′E ′ and E ′F ′A′ has size at least b/2+ e/2 and thus Alice has
a zero-jump strategy for V ′ with gain b/2+ e/2, allowing us to use the above
Case 1.

In the first turn Alice takes a median slice of B′. Then in the second
turn Bob can choose between two slices of E ′. In the subsequent turns Alice
makes shifts as long as Bob’s previous turn was neither on the first nor on
the last slice of E ′. In each moment in this part of the game Bob’s turns form
a subarc of E ′. At the first instance when Bob takes the first or the last slice
of E ′, Alice makes a jump, which is always in E ′ (see Figure 4.9). Note that
so far the game was an analogue of the first phase in Case 1, with B′ and E ′

in place of B and E, respectively. After her first jump Alice makes shifts as
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Figure 4.9: Case 2: During the first phase, Alice makes a jump rather than a
shift (left) and then she makes an other jump after the end of the first phase
(right).

long as Bob’s previous turn was neither on the first nor on the last slice of E.
Note that Bob’s turns in this part of the game are in E (see Figure 4.9). At
the first instance when Bob takes the first or the last slice of E, Alice makes
a jump, which is already the first turn of the second phase. This jump is
necessarily in E (see Figure 4.9).

4.2.7 Alice’s strategy in the second phase

Alice’s strategy in the second phase is very simple. Above we describe the
first phase and also the first turn of the second phase, which is always a jump
done by Alice. In the rest of the second phase Alice makes only shifts.

4.2.8 Analysis of Alice’s gain

Since the first phase of G ends by Bob’s turn on the first or on the last slice
of E, we may suppose without loss of generality that it ends with Bob’s turn
on vj . Then the part of V removed in the first phase of G is a union of some
initial subarc B0 of B and some initial subarc E0 of E. Let E1 be the arc
formed by the slices of E not taken in the first phase of G, thus E = E0E1,
and let e1 := |E1|. In her jump at the beginning of the second phase of G,
Alice takes the first slice of E1.

By Observation 37, all the slices taken by Alice in the second phase of
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G form two arcs X1 and X2 such that X1E0X2 is a half-circle of V (see
Figure 4.7). Since none of the half-circles CDE and EFA can be replaced
in the triple T by a half-circle of a strictly smaller size, the sum |X1|+ |X2|
achieves its minimum either for X1 = CD and X2 = E1, or for l(X1) = 0
and X2 = E1FA. Thus, the portion collected by Alice in the second phase
of G is at least e1 +min{c+ d, f + a}.

Now, consider an auxiliary game G′ on V ′ consisting of two phases defined
as follows. The turns in the first phase of G′ are exactly the same as the turns
in the first phase of G (this is a correct definition, as all turns in the first
phase of G are in B ∪ E and the first or the last slice of E is taken only at
the very end of the first phase). In the second phase of G′, both Alice and
Bob make only shifts.

We claim that Alice actually follows the one-jump strategy Σ in the whole
game G′. This is obvious in the first phase of G′. Further, if Σ is a zero-jump
strategy then Alice clearly follows Σ also in the second phase of the game
G′. Otherwise Alice makes her only jump in the first phase of the game (see
Case 2 in Paragraph 4.2.6) and thus again she follows Σ also in the second
phase of G′.

By Observation 38, Alice collects exactly the slices of E1 in the second
phase of G′. Thus, if g denotes the portion collected by Alice in the first
phase of G′ then g + e1 is her portion in the whole game G′. Since the
strategy Σ guarantees gain b/2 + e/4 to Alice, we get g + e1 ≥ b/2 + e/4.

Alice’s portion in the whole game G is at least g+(e1+min{c+d, f+a}) ≥
b/2 + e/4 + min{c+ d, f + a}, which completes the proof of Claim 44.

4.2.9 Proof of the lower bound

Proof of Theorem 30. If the number of slices is even then Alice has a zero-
jump strategy with gain |P |/2.

We further suppose that the number of slices is odd. We consider the
characteristic circle V . If p(V ) ≥ |V |/2 then Alice has a zero-jump strategy
with gain |V |/2 = |P |/2.

Suppose now that p(V ) < |V |/2. Then V may be partitioned into six
arcs A, . . . , F as in Claim 41. Without loss of generality, we may assume
that a+ b+ c ≤ c+ d+ e ≤ e+ f + a. Thus, a+ b ≤ d+ e and c+ d ≤ f + a.
By Observation 40, Alice has a zero-jump strategy with gain

g1 := e + f + a.

By Claim 44, Alice has a two-jump strategy with gain

g2 := b/2 + e/4 + min{c+ d, f + a} = b/2 + e/4 + c+ d.
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By an analogue of Claim 44, Alice also has a two-jump strategy with gain

g3 := f/2 + c/4 + min{a+ b, d+ e} = f/2 + c/4 + a+ b.

One of the three strategies gives gain

max{g1, g2, g3} ≥ (3g1 + 4g2 + 2g3)/9

= (5a+ 4b+ 9c/2 + 4d+ 4e+ 4f)/9 = (4|P |+ a+ c/2)/9 ≥ 4|P |/9.

4.3 The upper bound

In this section we show a strategy for Bob that guarantees him 5/9 of the
pizza. Then Bob has to cut the pizza into an odd number of slices, since
otherwise Alice has a strategy with gain |P |/2, as was observed in the intro-
duction. Before each turn of Bob, the number of the remaining slices is even.
The sequence of all the remaining slices can be then written as

pipi+1pi+2 . . . pi+2j−1.

Let K := pipi+2 . . . pi+2j−2 and L := pi+1pi+3 . . . pi+2j−1 be the sequences of
slices on odd and even positions respectively.

We use the following reformulation of Observation 38:

Observation 45. Before any of his turns, Bob has a strategy that guarantees
him max{|K|, |L|} in addition to what he already has. In the strategy Bob
makes only shifts, except possibly for the first turn.

Proof. We prove that Bob can get all slices from L. A similar proof shows
that he can get all slices from K. In his first turn, Bob takes pi+2j−1 ∈ L.
In each other turn, Bob makes shifts. Then before each of Alice’s turns, the
two slices available for her are from K.

Claim 46. Bob has a one-jump strategy with gain 5|P |/9 if he cuts the pizza
into 15 slices in the following way: 002020030300404.

Proof. The size of the pizza is 18, which means that Bob wants to get slices
with sum of sizes at least 10.

We consider all possible first moves of Alice:
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1. Alice takes a zero slice located between two nonzero slices. The sizes
of the slices remaining after her turn are

a00b0b00c0c00a,

where the elements of K are underlined and a, b and c are in one of
the six possible bijections with 2, 3 and 4. Then |K| = 2c + a and
|L| = 2b+ a and by a case analysis of the possible values of a, b and c,
Bob gets max{|K|, |L|} ≥ 10.

2. Alice takes a zero slice located between a zero slice and a nonzero slice.
This leads to

a0a00b0b00c0c0

and Bob gets max{|K|, |L|} = max{2a+ 2c, 2b} = 2a+ 2c ≥ 10.

3. Alice takes a nonzero slice. The situation is then

0a00b0b00c0c00.

Bob now takes the rightmost slice and then makes shifts until he either
takes a or the two slices c. This leads to three possible cases:

(a) 00b0b00c0c0,

(b) 00b0b00c0,

(c) 0a00b0b00.

After Alice takes one of the available zero slices, we use Observation 45
to show that the gain of Bob in these three cases is

(a) a+max{|K|, |L|} = a +max{2b, 2c},
(b) a+ c+max{|K|, |L|} = a + c+max{2b, c} = a + c+ 2b,

(c) 2c+max{|K|, |L|} = 2c+max{2b, a} = 2c+ 2b.

In any of the three cases and for any bijective assignment of the values
2, 3 and 4 to a, b and c, Bob gets slices of total size at least 10.

Corollary 47. For any ω ∈ [0, 1], Bob has a one-jump strategy with gain
5|P |/9 if he cuts the pizza into 15 slices as follows: Pω = 0010100(1+ω)0(2−
ω)00202.
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Proof. The claim holds for ω = 1/2, since P1/2 is a scale-down of the pizza
considered in Claim 46.

Clearly, if some slices of P1/2 have total size at least 5 then also the
corresponding slices of Pω, ω ∈ [0, 1], have total size at least 5. Therefore,
Bob can ensure gain 5|Pω|/9 = 5 for Pω, ω ∈ [0, 1], with the same strategy as
for P1/2.

In subsection 4.4 we show that Bob has no strategy with gain 5|P |/9
for pizza cuttings with fewer than 15 slices. Moreover, in subsection 4.5 we
show that Corollary 47 describes essentially all cuttings into 15 slices that
guarantee Bob 5/9 of the pizza.

Claim 48. For any odd n ≥ 15, Bob has a one-jump strategy with gain
5|P |/9 using some cutting of the pizza into n slices.

Proof. For n = 15 the claim follows from Claim 46. For larger n, we take
the cutting P from Claim 46 and add n − 15 zero slices between some two
consecutive zero slices in the sequence.

If Alice starts in one of the added slices, then the situation is similar to
the case 2 of the proof of Claim 46. The only difference is that there might
be additional zeros at the beginning and at the end of the sequence. But
these zeros either do not change the values of |K| and |L| or swap the two
values. Thus Bob can get max{|K|, |L|} = 10.

Otherwise Bob uses the strategy from the proof of Claim 46. In cases 1, 2,
the even number of consecutive newly added zero slices does not change the
value of max{|K|, |L|} and Bob can thus get slices of total size 10. In case 3,
Alice first takes the slice of size a. The even number of added zero slices does
not change the fact that before she is able to take any other nonzero slice,
Bob takes either the slice of size a or the two slices of size c. After this, the
value of max{|K|, |L|} is the same as in the proof of Claim 46.

For ω = 0 or ω = 1, the cutting used in Corollary 47 has slices of only
three different sizes 0, 1, 2. If all the slices have the same size, then Alice
always gets at least half of the pizza. But two different slice sizes are already
enough to obtain a cutting with which Bob gets 5/9 of the pizza:

Claim 49. If Bob can make slices of only two different sizes, then he can
gain 5/9 of the pizza by cutting the pizza into 21 slices of sizes 0 and 1 in
the following way: 001010010101001010101.

Moreover for any odd n ≥ 21, there is a cutting with n slices of two
different sizes of slices, for which Bob has a one-jump strategy with gain
5|P |/9.
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Proof. Let n ≥ 21 and let the cutting be (00)m1010101001010010101 where
m ≥ 1. After Alice makes her first turn, there will be an even number of
slices remaining and they can be partitioned into two classes based on their
parity in the new sequence. If Alice takes a slice of size 0 in the first turn,
necessarily one of the classes will contain more slices of size 1 than the other
class. Bob’s strategy will be to take the available element of the bigger class
in each turn. Consequently Alice will be forced to take an element of the
smaller class in each turn. If in the first turn Alice takes a slice of size 1 but
the previous partitioning still gives two classes of different size, Bob uses the
same strategy. Obviously Bob gains at least 5/9 of the pizza in these cases.

There are three slices of size 1 indicated by bold which if taken in the
first turn result in a partitioning into two classes of equal size:

(00)m1010101001010010101.
The sequences below show the situation after the first turn, the vertical

line indicates the place of the taken slice:

1. (00)m 1010|0100101 0010101

2. (00)m101010100 10|0010101

3. (00)m101010100 10100|0101

Bob takes the underlined slice of size 0 in his first turn. He will make
shifts until he gets to one of the borders of the boxes indicated above, then
he makes a jump in his next turn and afterwards only shifts till the end of
the game.

Regardless of what turns Alice makes, depending on the case Bob will
obtain at least one or two slices of size 1 before anybody reaches outside the
given box. As he makes a jump in his next turn and later only shifts, he will
get all slices of size 1 outside the box. Therefore in all cases his gain adds up
to at least 5/9 of the pizza.

The claim can also be checked for any fixed odd number n ≥ 21 with a
computer program based on the algorithm from subsection 4.7.2.

4.4 Fixed number of slices

Here we prove Theorem 31. The theorem is trivial for n = 1 and easy
for n even as observed in the introduction. Further, the theorem for n ∈
{15, 17, 19, . . .} follows from Theorem 30 and Claim 46. An upper bound
g(n) ≤ 1/2 for any n ≥ 2 can be seen on the pizza 1100 . . . 00. It remains
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to show that Alice has a one-jump strategy with gain 1/2 for any pizza
p1p2 . . . pn, where n is odd and 3 ≤ n ≤ 13.

Let n be odd and let 3 ≤ n ≤ 13. We partition the characteristic cycle
V = v1v2 . . . vn into six arcs A,B, . . . , E in the same way as in subsection 4.2.
We may suppose that each of the six arcs has a positive length, since other-
wise Alice has a zero-jump strategy with gain |P |/2 (by Claim 41). Therefore,
as l(A) = l(D)+1, l(C) = l(F )+1 and l(E) = l(B)+1, and n ≤ 13, at least
one of the arcs B,D, F has length at most 1 (and hence, exactly 1). Due to
the symmetries, it therefore suffices to prove the following claim:

Claim 50. If l(B) = 1 then Alice has a one-jump strategy with gain 1/2.

Proof. First we describe a one-jump strategy with gain b+min{c+d, f +a}.
Alice’s first turn in the strategy is on the only slice of B. Recall that l(E) =
l(B) + 1 = 2. Bob can choose between the two slices of E in the second
turn. Alice takes the other slice of E in the third turn of the game. In the
rest of the game, Alice makes only shifts, thus collecting slices of some pair
of arcs X1 and X2 such that X1EX2 is a half-circle (see Figure 4.7). Since
none of the half-circles CDE and EFA can be replaced in the triple T by a
half-circle of a strictly smaller size, the sum |X1|+ |X2| achieves its minimum
either for X1 = CD and X2 = ∅, or for X1 = ∅ and X2 = FA. Thus, the
portion collected by Alice in the whole game is at least

g1 := b+min{c+ d, f + a}.

By two applications of Observation 40, Alice also has a zero-jump strategy
with gain

g2 := max{c+ d+ e, e+ f + a}.
One of the two strategies is a one-jump strategy with gain

max{g1, g2} ≥ (g1 + g2)/2 = 1/2.

4.5 Cuttings into 15 and 21 slices

Here we prove that Bob’s cuttings described in subsection 4.3 include all pizza
cuttings into 15 and into at most 21 slices where he gets his best possible
gain. Theorem 31 implies the minimality of 15 slices as well.

Claim 51. Corollary 47 describes, up to scaling, rotating and flipping the
pizza upside-down, all the pizza cuttings into 15 slices for which Bob has a
strategy with gain 5|P |/9.
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Proof. Suppose Bob cuts the pizza into 15 slices so that Alice cannot gain
more than 4|P |/9. It follows that p(V ) ≤ 4/9 < 1/2. By Claim 41, the
characteristic cycle can be partitioned into non-empty arcs A,B,C,D,E, F
such that ABC,CDE and EFA form a minimal triple.

Following the proof of Theorem 30, we assume without loss of generality
that a+b+c ≤ c+d+e ≤ e+f+a and we consider the same three strategies
with gains g1, g2 and g3. Combining the assumption g1, g2, g3 ≤ 4|P |/9 with
the inequalities (3g1 + 4g2 + 2g3)/9 ≥ (4|P | + a + c/2)/9 ≥ 4|P |/9 we get
equalities everywhere. Consequently, g1 = g2 = g3 = 4|P |/9 and a = c = 0.
This, in particular, implies that e + f = b/2 + e/4 + d = f/2 + b = 4|P |/9.

Now we show that e = 0. Applying Claim 50 three times, we get that
l(B) = l(D) = l(F ) = 2 and l(A) = l(C) = l(E) = 3. Particularly, the
length of the circular sequence V ′ obtained by concatenating arcs B and E
is 5. Hence, by Theorem 31, Alice has a strategy with gain b/2 + e/2 on V ′.
Following the proof of Claim 44 we get a two-jump strategy on V with gain
b/2 + e/2 + c + d = g2 + e/4 = 4|P |/9 + e/4. Therefore e = 0.

It follows that f = 4|P |/9, b = 2|P |/9 and d = 3|P |/9. If one of the two
slices in B had size greater than |P |/9, then by the proof of Claim 42 Alice
would have a one-jump strategy with gain greater than |P |/9+c+d = 4|P |/9.
It follows that both slices in B have size exactly |P |/9. Similarly, using an
analogue of Claim 42, we conclude that both slices in F have size exactly
2|P |/9 and both slices in D have size at most 2|P |/9.

Lemma 52. Let P = p1p2 . . . pn be a cutting of a pizza into an odd num-
ber of slices for which Bob has a strategy with gain g ≥ |P |/2. Let x =
mini∈{1,2,...,n} |pi| and let P ′ = p′1p

′
2 . . . p

′
n be a cutting of a pizza with slices of

sizes |p′i| = |pi| − x. If x > 0, then for the cutting P ′ Bob has a strategy with
gain strictly greater than g|P ′|/|P |.

Proof. Let Σ be Bob’s strategy for the cutting P with gain g ≥ |P |/2. For
the cutting P ′, Bob uses the same strategy Σ. In this way he is guaranteed
to get a subset Q′ ⊂ P ′ of (n−1)/2 slices such that the corresponding subset
Q ⊂ P has size at least g. Therefore, Bob’s gain is

∑

p′
i
∈Q′

|p′i| =
∑

pi∈Q

(|pi| − x) ≥ g − x(n− 1)/2.

Since |P ′| = |P | − xn, we have to show that (g − x(n − 1)/2)|P | >
g(|P | − xn), which is equivalent to x(n− 1)|P |/2 < xng. The last inequality
follows directly from the assumptions g ≥ |P |/2 and x > 0.
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Claim 53. Corollary 49 describes, up to scaling, rotating and flipping the
pizza upside-down, all the pizza cuttings into at most 21 slices of at most two
different sizes for which Bob has a strategy with gain 5|P |/9.

Proof. Let P be a cutting of the pizza into n ≤ 21 slices of at most two
different sizes for which Bob has a strategy with gain 5|P |/9. If n is even,
then Alice has a (zero-jump) strategy with gain |P |/2. If all slices have
positive size, then by Theorem 30 and Lemma 52, Bob has no strategy with
gain 5|P |/9. Therefore n is odd and at least one slice in P has size 0. So we
can without loss of generality assume that each slice has size 0 or 1.

Now we proceed exactly as in the proof of Claim 51, up to the point where
we are showing that e = 0. After we apply Claim 50 (three times), we only
conclude that l(B), l(D), l(F ) ≥ 2 and consequently l(A), l(C), l(E) ≥ 3.
The length of the circular sequence V ′ obtained by concatenating arcs B and
E is then at most 11. The rest of the argument that e = 0 is exactly the same
as in the proof of Claim 51. We also conclude that f = 4|P |/9, d = 3|P |/9
and b = 2|P |/9.

Since the numbers f, d and b are non-negative integers, their sum must
be a positive multiple of 9. Since l(F ) + l(D) + l(B) ≤ 12 and the size
of each arc is bounded by its length, we have |P | = 9, f = 4, d = 3 and
b = 2. Consequently, l(F ) ≥ 4, l(D) ≥ 3, l(B) ≥ 2 and l(C) ≥ 5, l(A) ≥
4, l(E) ≥ 3. Since l(A) + · · ·+ l(F ) ≤ 21, none of these six inequalities may
be strict. Therefore A = 0000, B = 11, C = 00000, D = 111, E = 000 and
F = 1111.

4.6 One-jump strategies

The main aim of this section is to prove Theorem 32.
The following corollary proves Theorem 32 (a).

Corollary 54. Alice has a zero-jump strategy for V with gain |V |/3. The
constant 1/3 is the best possible.

Proof. The gain |V |/3 trivially follows from Observation 40.
Let V = 100100100. For every element v of V there is a half-circle Cv of

size not greater than |V |/3 covering it. So no matter which element v Alice
takes in the first turn, as Alice only makes shifts, Bob can play in such a way
that Alice gets Cv.

In the rest of this subsection we prove Theorem 32 (b).

64



4.6.1 Lower bound

In this subsection we show the strategy for Alice to gain at least 7/16 of the
pizza.

We can assume that the number of slices is odd and that p(V ) < |V |/2
(otherwise Alice has a strategy with gain |P |/2 ≥ 7|P |/16).

We also fix a minimal triple of half-circles and a partition of V into arcs
A,B,C,D,E and F given by Claim 41.

We can use the zero-jump strategy with gain equal to p(V ) and the one-
jump strategies from Claim 42 (and its analogues). It can be shown, however,
that these strategies alone guarantee Alice only 3/7 of the pizza.

To improve Alice’s gain we introduce one more one-jump strategy.

Claim 55. Alice has a one-jump strategy with gain 3b/8 + e/2 + min{c +
d, f + a} if p(V ) < |V |/2.

Proof. If 3b/8− e/2 ≤ 0, Alice starts by taking a slice from E and then she
makes shifts only. As observed in the proof of Claim 42, the potential of
any slice in E (and thus Alice’s gain) is equal to e + min{c + d, f + a} ≥
3b/8 + e/2 + min{c+ d, f + a}.

For the rest of the proof we assume that 3b/8 − e/2 > 0. The main idea
of the Alice’s strategy is to start with taking a slice somewhere in the arc B
and to jump at some appropriate moment before crossing the boundary of
B.

Let k = l(B). For i = 0, 1, . . . k, let Bi be the initial subarc of B of
length i. Symmetrically, let B′

i be the arc containing the last i slices of B.
Similarly we define arcs Ei and E ′

i for i = 0, 1, . . . k + 1. For i = 0, 1, . . . k,
let h(i) = |Bi| − |Ei| and h′(i) = |B′

i| − |E ′
i|.

The functions h and h′ can be used to measure the difference between
Alice’s and Bob’s gain during the first phase (before Alice decides to jump).
We call this difference an advantage of Alice. During the first phase, Alice
takes a sub-arc of B and Bob takes an equally long subarc of E. If Alice took
Bj \Bi and Bob took Ej \Ei during the first phase, then Alice’s advantage is
h(j)− h(i). The other possibility is that Bob took Ej+1 \Ei+1; equivalently,
Alice took B′

i′ \B′
j′ and Bob took Ei′ \ Ej′, where i′ = k − i and j′ = k − j.

In this case the advantage of Alice is h′(j′)− h′(i′).
By the minimality of the triple that determined the arcs A,B, . . . , F ,

both functions h and h′ are non-negative.
Similarly as in the previous strategies, Bob’s best choice after Alice’s

jump is to let Alice take the rest of the arc E and one of the arcs CD or
FA. It follows that if Alice’s advantage is g, then her gain will be at least
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g + e + min{c + d, f + a}. It only remains to show that Alice can always
achieve an advantage greater than or equal to 3b/8− e/2.

Let i be the largest index such that h(i) ≤ 3b/8 − e/2. Symmetrically,
Let i′ be the largest index such that h′(i′) ≤ 3b/8− e/2. We distinguish two
cases.

Case 1: i + i′ ≤ k. Equivalently, Bi and B′
i′ are disjoint. Observe that we

actually have i + i′ ≤ k − 1. Alice starts by taking any of the slices from
B \ (Bi ∪Bi′). She jumps as soon as Bob takes the first or the last slice from
E.

During the first phase either Alice took Bj and Bob took Ej for some
j ≥ i + 1, or Alice took B′

j′ and Bob took E ′
j′ for some j′ ≥ i′ + 1. Alice’s

advantage is g = h(j) > 3b/8−e/2 in the first case and g = h′(j′) > 3b/8−e/2
in the second case.

Case 2: i+ i′ > k. Divide the arc B into consecutive arcs B1 = Bk−i′, B
2 =

Bi \Bk−i′ and B3 = B′
k−i. Similarly the arc E is divided into E1 = Ek−i′+1,

E2 = Ei \ Ek−i′+1 and E3 = E ′
k−i+1.

Since |E2| ≥ |E2|−|B2| = −(h(i)+h′(i′)−(b−e)) ≥ b−e−2(3b/8−e/2) =
b/4, we have min(|E1|, |E3|) ≤ (e−b/4)/2. We can without loss of generality
assume that |E1| ≤ |E3|, hence |E1| ≤ (e − b/4)/2. Note that the arc B1

(and hence E1) is non-empty, as |B1| ≥ |B1| − |E1| = b− e− (|B′
i′ | − |E ′

i′|) =
b− e− h′(i′) ≥ 5b/8− e/2 > b/4 > 0.

Alice now plays as in the proof of Claim 42, where B is replaced by B1

and E is replaced by E1. That is, she starts with taking the median slice of
B1 and jumps as soon as Bob takes the first or the last slice of E1. In this
way she gets an advantage

g ≥ |B1|/2−|E1| = (|B1|−|E1|)/2−|E1|/2 = (b−e−h′(i′))/2−|E1|/2 ≥
(5b/8− e/2)/2− (e− b/4)/4 = 3b/8− e/2.

Remark. By iterating the strategy from Claim 55 we obtain an infinite se-
quence Σ1,Σ2, . . . of one-jump strategies, where Σk+1 recursively uses Σk in
the same way as the strategy Σ1 from Claim 55 used the strategy Σ0 from
Claim 42. These iterated strategies give better gain when the ratio b/e tends
to 1. However, if the ratio b/e is smaller than 5/3, the strategies Σi are
beaten by the previous one-jump strategies that start outside the arcs B and
E.

Proof of the lower bound in Theorem 32 (b). As in the proof of Theorem 30,
we may without loss of generality assume that a+b+c ≤ c+d+e ≤ e+f+a.

By Observation 40, Alice has a zero-jump strategy with gain

g1 := e + f + a.
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Figure 4.10: Characteristic cycle of the cutting used in Claim 56.

By Claim 44, Alice has a one-jump strategy with gain

g2 := b/2 + min{c+ d, f + a} = b/2 + c+ d.

By an analogue of Claim 44, Alice also has a one-jump strategy with gain

g3 := f/2 + min{a+ b, d+ e} = f/2 + a+ b.

By Claim 55, Alice has a one-jump strategy with gain

g4 := 3b/8 + e/2 + min{c+ d, f + a} = 3b/8 + e/2 + c + d.

One of these four strategies gives gain

max{g1, g2, g3, g4} ≥ (5g1 + 3g2 + 4g3 + 4g4)/16 =

= (9a+ 7b+ 7c+ 7d+ 7e+ 7f)/16 = (7|P |+ 2a)/16 ≥ 7|P |/16.

4.6.2 Upper bound

Claim 56. If Alice is allowed to make only one jump, then Bob has a strategy
with gain 9|P |/16. This gain is achieved for the following cutting of the pizza
into 23 slices: 20200200202006060050500.

Proof. The characteristic cycle V is depicted on Figure 4.10. The size of the
pizza is 32, which means that we need to show that Bob can get slices with
the sum of the sizes at least 18.

The potential of the cutting is 14, thus Alice has no zero-jump strategy
with gain greater than 14.
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It is easy to check that on the cutting sequence P , every zero slice has a
neighboring nonzero slice and both neighbors of every nonzero slice are zero
slices. If Alice starts by taking some zero slice, then Bob takes the nonzero
slice. Alice can then jump, but since she cannot make any more jumps, she
would get only at most the potential of V . If she does not jump, she takes
a zero slice in her next turn and from Observation 38, Bob can take one of
the two arcs. Since Bob already took a nonzero slice, the sum of the sizes
of the two arcs is at most 30. If both the arcs have size 15, then both must
contain a slice of size 5 because there are no other slices of odd size. But
this is impossible because the two slices with size 5 are neighbors on the
characteristic cycle. Thus one of the arcs has size at most 14 and if Bob
chooses the other one, he gets 18 for the whole game.

Now we may assume that Alice starts by taking a nonzero slice. In his
first turn, Bob takes a zero slice such that Alice cannot take a nonzero slice
in the next turn. In the first phase, Bob makes shifts. The first phase ends
after Alice’s jump or if Bob’s shift would allow Alice to take a nonzero slice
in her next turn.

If Alice jumped in the first phase, she would get at most the slice from
her first turn plus the potential of one of its two neighbors from the cutting
sequence P . But it is easy to verify that this would mean a gain at most
14 for Alice. If Alice did not start in v4 or in v10 and did not jump, then it
is easy to verify that after the first phase, one of the two Bob’s zero-jump
strategies from Observation 38 guarantees Bob gain 18.

If Alice started in v10 and the first phase did not end by Alice’s jump, then
Bob continues making shifts until either Alice jumps or his shift would allow
Alice to take the v18 slice in her next turn. This is the second phase. If Alice
jumped during the second phase then Bob can make sure that she gets at
most |v10|+ |v14|+ |v4|+ |v5| = 12, see Figure 4.11 (left)). If she did not jump
until the end of the second phase, then from Observation 38, Bob can make
sure that Alice gets at most |v10|+ |v14|+ |v9| = 14, see Figure 4.11 (right).

If Alice started in v4 and the first phase did not end by Alice’s jump, then
Bob starts the second phase by making a jump and then only shifts. The
second phase ends after Alice’s jump or if Bob’s shift would allow Alice to
take v9. If Alice jumped during the second phase then Bob can make sure
that she gets at most |v4| + |v5| + |v18| + |v19| = 14, see Figure 4.12 (left).
Otherwise we use Observation 38 to show that Bob can make sure that Alice
gets at most |v4|+ |v5|+ |v0|+ |v1| = 8, see Figure 4.12 (right).
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Figure 4.11: Two examples of games starting in v10 illustrating how Bob can
prevent Alice from gaining more than 14.
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Figure 4.12: Two examples of games starting in v4 illustrating how Bob can
prevent Alice from gaining more than 14.
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4.7 Algorithms

4.7.1 Linear algorithm

In this subsection we describe an algorithm proving Theorem 35.
For a given cutting of the pizza with n slices, the algorithm computes

Alice’s two-jump strategy with gain 4|P |/9 in time O(n).
Without loss of generality we may assume that |V | is a part of the in-

put. The algorithm first computes consecutively the sizes of all n half-circles
and finds a half-circle of minimum size in the following way. Consider the
characteristic cycle V = v0v1 . . . vn−1. For i = 0 to n − 1 let si be the vari-
able in which the size of the half-circle with starting point vi, continuing in
clockwise direction, is stored. Let s be the size of a currently minimal half-
circle H , and v the starting point of H . In the initialization step, compute
s0 :=

∑(n−1)/2
j=0 |vj| and set s := s0 and v := v0. Then for i = 1, 2, . . . , n− 1,

compute si := si−1 − |vi−1| + |v(n+2i−1)/2|. If si < s, then set s := si and
v := vi. The above computations can be done in time O(n).

After these precomputations we get a half-circle H of minimum size that
we fix. Let vk and vk+(n−3)/2 be the two uncovered elements neighboring H on
V . In the following the algorithm computes the potentials of the elements of
the uncovered arc X = vk . . . vk+(n−3)/2. Any half-circle covering an element
vi of X also covers vk or vk+(n−3)/2. Let the right potential of vi be the
minimum of the sizes of half-circles covering both vi and vk+(n−3)/2. The
algorithm computes the right potential pr for vk by comparing the values of
sk−1 and sk, that is, pr(vk) := min{sk−1, sk}. For i = k + 1 to k + (n −
3)/2 set pr(vi) := min{pr(vi−1), si}. Analogously let the left potential of vi
be the minimum of the sizes of half-circles covering both vi and vk. The
computation of the left potentials pl is similar. Obviously the potential of vi
is min{pl(vi), pr(vi)}. The computations are done in time O(n).

The potential of any element of X is at least as big as the potential of
any element of H due to the minimality of H . Therefore p(V ) is equal to
the maximal potential on X . If p(V ) ≥ |V |/2, then the algorithm returns an
element of potential p(V ) in time O(n). This will be Alice’s first turn and
all her other turns will be shifts that can be computed in time O(1).

From now on we assume that p(V ) < |V |/2. The algorithm finds the
index j ∈ X for which pl(vj) + pr(vj) is minimal among all j such that
both pl(vj) and pr(vj) do not exceed p(V ). There exists such a j ∈ X as a
consequence of Claim 39 and Claim 41. Let H1 be the half-circle that gives
the left potential pl(vj) for vj , and H2 the half-circle that gives the right
potential pr(vj) for vj. Then H,H1 and H2 form a minimal triple. Indeed,
suppose that there is a half-circle in the triple that can be replaced by a
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half-circle of strictly smaller size. Clearly, this half-circle is not H but H1 or
H2. A contradiction to the choice of j. We get that the triple is minimal.

Knowing the minimal triple the algorithm computes A,B,C,D,E, F and
V ′ in time O(n). If p(V ′) ≥ |V ′|/2, a slice of potential p(V ′) can be found in
time O(n). Otherwise, the algorithm computes the arcs A′, B′, C ′, D′, E ′, F ′

on V ′ similarly as above in time O(n). A median slice of B′ can be found
in time O(n) by traversing B′ twice. At first the algorithm computes |B′|.
Then it adds the sizes of the elements one by one again and checks in every
step if the sum exceeds |B′|/2. That will occur at a median slice.

The algorithm orders a+b+c, c+d+e and e+f+a. Assume without loss
of generality that a+b+c ≤ c+d+e ≤ e+f+a. According to subsection 4.2.9
Alice has three strategies with gains g1 := e+ f + a, g2 := b/2 + e/4 + c+ d
and g3 := f/2+ c/4+a+ b. These strategies were computed in time O(n) as
described above. Alice chooses one of the three strategies corresponding to
max{g1, g2, g3}. Once the strategy is known, Alice’s turn can be computed
in time O(1) in any position of the game.

4.7.2 Optimal strategies

The following result implies, for example, that Alice can be forced to make
only jumps (except A1, An) in her optimal strategy.

Observation 57. (i) For any odd n ≥ 3 and for any of the 2n−2n permu-
tations allowed in the game on n slices, the pizza can be cut into n slices in
such a way that if both Alice and Bob make only optimal turns then the order
of taken slices is the chosen permutation.

(ii) For any even n ≥ 4 and for any of the 2n−3n plausible permutations
in which Alice’s second turn is a jump, the pizza can be cut into n slices in
such a way that if both Alice and Bob make only optimal turns then the order
of taken slices is the chosen permutation.

Proof. We give the sizes 1, 1/2, 1/4, . . . in the order in which we want the
slices to be taken.

Now we describe an algorithm that computes both player’s optimal strat-
egy for a given cutting of the pizza with n slices in time O(n2).

Proof of Claim 36. A position of a game is an arc X characterized by its
leftmost slice xl and its rightmost slice xr or the empty-set if there are no
more slices left. If l(X) = 1, then xl = xr. There are n2 − n + 2 possible
positions X . The parity of l(X) determines whose turn it will be. For i = 0
to n − 1 the algorithm traverses all X with l(X) = i and decides the best
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strategy for the player on turn. The best possible gain on X is the value of
X , denoted by v(X). The algorithm stores v(X) for all positions X . For
i ∈ {0, 1} the strategy is obvious and v(X) = |X|. Let X − x be the arc X
omitting the slice x. For i ≥ 2, v(X) = |X| − min{v(X − xj), v(X − xr)}
and the player takes the corresponding slice yielding the minimum in the
previous expression. All this can be done in time O(n2).

A program implementing the algorithm described above can be down-
loaded from the following webpage: http://kam.mff.cuni.cz/˜cibulka/pizza.
The program can be used to verify Claims 46, 49 and 56.
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Summary

In the first part of my thesis I investigate the problem of long noncrossing,
alternating paths and separated matchings that are closely related to each
other. There is a 2n-element equicolored point set in the plane. We would
like to determine or estimate the number of points on the longest, noncross-
ing alternating path. Edges are straight line segments connecting points of
different color.

In the first chapter we exhibit a class of convex configurations showing
the currently known best upper bound [17] of 4n

3
+O(

√
n) points. This bound

is conjectured to be asymptotically tight. Previously, there existed only two
very similar single constructions for the upper bound of the same order of
magnitude in [2, 23]. Our class of configurations differs from the earlier
constructions in an important characteristic. The previous ones contained
exactly one interval with alternating short monochromatic arcs. Our class
contains two such intervals. In its extreme cases our configuration coincides
with the [23] construction.

We also improved the best known lower bound to n + O(
√
n) [17]. It

should be possible to still improve this bound although additional techniques
are needed to the previous ones. One of our main ideas is to code the point
set as a Dyck path. We can imagine the circular colored point set as steps up
and steps down depending on the color of the passed point. This vizualization
determines levels in the point set. We cut the circular sequence at a point
which belongs to the lowest level and that is how we gain our Dyck path. This
path posesses all the combinatorial information about the colored point set
that we need to consider the problem with. By this new coding we managed
to find an unbalanced arc that leads to the improvement of the lower bound.
But our method has limits. It chooses the starting point of the arc that is
the essence of the proof from the lowest level of the diagram. If an adversary
party decides according to this logics which arc we may use, then our bound
cannot be improved.

The proof techniques introduced the notion of separated matchings. These
are geometrically noncrossing matchings where the set of all edges can be
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crossed by a single line. At some colorings searching for separated matchings
or searching for long noncrossing, alternating paths is the same problem.
First of all if there is a separated matching, we can always complete it to a
noncrossing, alternating path. In the literature the number of alternations
between the colors along the circle is o(n) in the considered examples. The
reason for this is the following. If the number of alternations is linear in n,
then the length of the noncrossing, alternating path on the point set easily
beats the currently known best lower bound. While if we set the number
of alternations to o(n), then the existence of a long noncrossing, alternating
path implies the existence of a separated matching of the same size.

The second chapter contains several other constructions [25] that allow at
most 4

3
n+O(

√
n) points in any separated matching. There are two main con-

figurations and a third, a generalization of one of the previous constructions.
I describe a class of configurations that significantly differs from all known
other contsructions. It contains arbitrary many intervals of alternating short
monochromatic arcs. The idea of it originates from the [23] configuration. I
cut it into two parts and glue the parts together in arbitrary order an equal
number of times. I also show a type of coloring such that in the optimal
coloring there are at most 4

3
n +O(

√
n) points in any separated matching.

We define types of separated matchings [17]. The axe that intersects
all the edges divides the circle into two intervals. Each interval contains
an endpoint of each edge. If there is no alternation between the colors of
endpoints on any of these intervals, then we call our matching an Erdős
matching. In some sense this is the simplest case. Erdős paired the points
in this way when he gave the trivial lower bound of n points.

The number of the alternations between the colors of endpoints on the
previous two intervals has a significant effect on the lower bound. This
number is bounded from above by a constant in each of the matchings that
were used so far in the proofs. In the case of an Erdős matching this constant
is zero. In [23] and in our approach [17] it is one as there is at most one
alternation in the constructed matchings. If we insist to come up with a
matching part with constant alternation parameter, then we cannot beat the
obvious bound n by more than a constant. So the conclusion is that we
should include a lot of alternations and choose the axe carefully in order to
obtain a large separated matching.

Proving the following conjecture would also settle the conjecture on al-
ternating paths. The size 4

3
n+O(

√
n) is feasible below as well.

Conjecture. Every equicoloring of 2n points in convex position admits
a separated matching of size 4

3
n+ o(n).
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Investigating the case of small discrepancy gave interesting results and
also a hope to get a better understanding of the problem. When the discrep-
ancy is two or three I prove that there are at least 4

3
n points in the maximum

separated matching [25]. Although the truth might be much closer to 2n by
our current methods it is not easy to reveal it. A pairing algorithm of inter-
vals yields the result. It would be feasible to improve it by new ideas. Also
the case of the subsequent relatively small discrepancies seems promising.
Just by our current methods it gets rather extensive.

In the third chapter we consider a non-convex special position of the
equicolored 2n-element point set. The points are on a double-chain which
consists of a convex and a concave chain, respectively. We can imagine both
the convex and concave chain as flipped semi-circles. We place them so that
no line determined by any of the chains intersects the other chain. We show
[7] that if both chains contain at least one fifth of all the points, then there
is a noncrossing, alternating Hamiltonian path on the point set. While this
does not hold if one of the chains contain at most ≈ 1/29 of all the points.

It is not clear what role convexity plays in the problem. The previous
result suggests that the convex position might be an extremal case. Regard-
ing the general position there is not so much known. A couple of papers are
dealing with some special cases [1, 18, 19]. We know that if the color classes
are separated by a line, then there is a noncrossing, alternating Hamiltonian
path [1]. Together with the existence of halving lines this result implies that
there are at least n points on the longest noncrossing, alternating path for an
arbitrary position of the points. There is no non-trivial lower bound known
in the general case while the best upper bound is for convex position.

In the fourth chapter we study the following combinatorial game played
by two players. Alice and Bob are sharing a pizza by alternately taking turns.
The pizza is cut into not necessarily equal slices. There is one slice taken in
each turn. The first turn is Alice’s when she may take any of the slices. In all
other turns only such a slice may be taken which has a neighbor slice already
taken. We show that Alice always has a strategy to obtain 4/9 of the pizza
[9]. We characterize her gain based on the number of slices. We also devise
an algorithm that computes her strategy in O(n) time for a given cutting of
the pizza into n slices [9]. We distinguish two types of turns of a player. We
call it a shift when the player takes a neighboring slice to the previously taken
slice. Otherwise it is a jump. We determine Alices best possible gain when
the number of jumps is restricted. We describe the minimal pizza cuttings
(regarding the number of slices and also regarding the number of weights of
slices) where Bob has a strategy to gain 5/9 of the pizza. We give a quadratic
algorithm that stores an optimal turn for the player on turn for each position
of the game [9].
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The research presented in the thesis was continued. I sketch some further
results (not included in the thesis). The previous problem can be generalized.
We may look at it as follows. Given a connected graph G with nonnegative
weights assigned to its vertices, the players alternately take one vertex of G
in each turn. The first turn is Alice’s. The vertices are to be taken according
to one (or both) of the following two rules: (T) the subgraph of G induced
by the taken vertices is connected during the whole game, (R) the subgraph
of G induced by the remaining vertices is connected during the whole game.
In the continuation of our research we showed [8] that under all the three
combinations of rules (T) and (R), for every ε > 0 and for every k ≥ 1 there
is a k-connected graph G for which Bob has a strategy to obtain (1 − ε) of
the total weight of the vertices. This contrasts with the original Pizza game
played on a cycle.

We also showed that the problem of deciding whether Alice has a winning
strategy (that is, a strategy to obtain more than half of the total weight)
is PSPACE-complete if condition (R) or both conditions (T) and (R) are
required. We considered two variations of the game. Canonical game TR:
the first player who violates condition (T) or (R) loses the game. Misere
game TR: the first player who has no move satisfying conditions (T) and (R)
wins the game. We proved [8] that it is PSPACE-complete to decide who
has the winning strategy in the canonical game TR and in the misere game
TR.

Numerous open problems remain in this research. We could not determine
what the complexity is of deciding who has the winning strategy in game T.
It would be also interesting to investigate what the complexity is of deciding
who has the winning strategy in game R and in game T when the input
graph G is a tree.
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Összefoglaló

Doktori értekezésem első felében a hosszú metszésmentes, alternáló utak
és a szeparált párośıtások kérdését vizsgáltam, amelyek egymással szorosan
összefüggnek. Vegyünk egy tetszőleges 2n elemű, kiegyensúlyozott sźınezésű,
śıkbeli ponthalmazt. A feladat meghatározni vagy megbecsülni a leghossz-
abb metszésmentes, alternáló úton lévő pontok számát. Az élek különböző
sźınű pontokat összekötő egyenes szakaszok.

Az első fejezetben szerkesztettünk egy konvex helyzetű konfiguráció osz-
tályt, amely a legjobb ismert, 4n

3
+ O(

√
n), felső korlátot bizonýıtja [17].

Ez a korlát a sejtés szerint aszimptotikusan éles. Korábban két, nagyon
hasonló, egyedi konstrukció létezett ugyanilyen nagyságrendű felső korláttal
[2, 23]. A mi konstrukció osztályunk különbözik az előbbiektől egy fontos tu-
lajdonságban. Az előbbi két konstrukció pontosan egy-egy intervallumot tar-
talmazott, ahol rövid monokromatikus ı́vek váltották egymást. Az általunk
adott konstrukció osztály két ilyen intervallumot tartalmaz, és a paraméterek
szélsőértékeire egybeesik a [23] konstrukcióval.

Az alsó korlátot megjav́ıtottuk n + O(
√
n)-re [17]. Ez a korlát még biz-

tosan jav́ıtható, de új technikára van szükség az eddigi technikák mellett. Az
egyik fő ötletünk a ponthalmaz Dyck-útként való kódolása. Ez a megjeleńıtés
szinteket határoz meg a ponthalmazon belül. Pontjaink körkörös sorrendjét
elvágjuk egy, a legalsó szinten lévő, pontnál, és ı́gy nyerjük Dyck-utunkat. Ez
az út minden kombinatorikus információt magába foglal, amelyre szükségünk
van a probléma kezeléséhez. Az új kódolás seǵıtségével sikerült rámutatnunk
egy kiegyensúlyozatlan ı́vre, amely az alsó becslés jav́ıtását eredményezte.
De módszerünknek vannak korlátai. Módszerünk a bizonýıtást mozgató ı́vet
a diagram leglasó szintje alapján keresi. Ha egy ellenfél mondja meg, hogy
ezen logikát követve, melyik ı́vet használjuk, akkor becslésünk nem jav́ıtható.

A bizonýıtási technikák természetes módon vezetnek el a szeparált párośı-
tás fogalmához. Ezek geometriailag metszésmentes párośıtások, ahol az élek
halmaza egyetlen egyenessel elmetszhető. Bizonyos sźınezésekben hosszú
metszésmentes, alternáló utakat vagy szeparált párośıtásokat keresni ugyanazt
jelenti. Először is, ha van egy szeparált párośıtásunk, azt mindig ki tudjuk
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bőv́ıteni metszésmentes, alternáló úttá. Az irodalomban vizsgált példákban a
sźınek közötti alternálások száma a kör mentén o(n). Ennek oka a következő.
Ha az alternálások száma lineáris volna, akkor a leghosszabb metszésmentes,
alternáló út hossza könnyen meghaladná a jelenlegi legjobb alsó korlátot.
Mı́g, ha az alternálások számát o(n)-re rögźıtjük, akkor a hosszú metszésmen-
tes, alternáló út léte maga után vonja az ugyanolyan méretű szeparált párośı-
tás létét.

A második fejezet tartalmaz jónéhány másik konstrukciót [25], amelyek
4
3
n+O(

√
n) pontot engednek meg tetszőleges szeparált párośıtásban. Két fő

konfigurációt adtam meg, majd egy harmadikat, amely az egyikük általánośı-
tása. Léırtam egy konfiguració osztályt, amely lényegesen eltér az összes
korábbi konstrukciótól. Tetszőlegesen sok intervallumot tartalmaz, amelyben
rövid monokromatikus ı́vek alternálnak. Az ötlete a [23] konfiguráción alap-
szik. Ezt két részre vágtam, és a részeket tetszőleges sorrendben, azonos mul-
tiplicitással megismételtem a kör mentén. Egy sźınezési formát is meghatároz-
tam úgy, hogy közülük az optimális sźınezésben legfeljebb 4

3
n+O(

√
n) pont

van minden szeparált párośıtásban.
Definiáltuk a szeparált párośıtások t́ıpusait [17]. Az egyenes, amely elmet-

szi az összes élet, a kört két intervallumra osztja. Mindkét intervallum tar-
talmazza minden él egy-egy végpontját. Ha a végpontok sźınei között nincs
alternálás az egyik intervallumon (ekkor a másikon sincs), Erdős-párośıtásról
beszélünk. Bizonyos értelemben ez a legegyszerűbb eset. Erdős ily módon
párośıtotta a pontokat, amikor a triviális n-es alsó korlátot igazolta.

A végpontok sźınei közti alternálások száma az emĺıtett két intervallu-
mon nagy hatással van a kapott alsó korlátra. Ez a szám minden eddigi
párośıtásnál, amelyet a bizonýıtásokban használtunk, konstanssal van felülről
korlátozva. Erdős esetében ez a konstans nulla. A [23] cikkben és a mi
megközeĺıtésünkben [17] egy, mivel a szerkesztett párośıtások legfeljebb egy
alternálást tartalmaznak. Ha olyan párośıtást adunk, amelyben konstans az
alternálások száma, akkor a nýılvánvaló n-es korlátot nem tudjuk több, mint
konstanssal meghaladni. Tehát, arra a következtetésre jutottunk, hogy sok
alternálást kell beiktatni, és körültekintően kell megválasztani a fenti két
intervallumot ahhoz, hogy nagy szeparált párośıtást kapjunk.

Ha a következő sejtés igazolást nyer, akkor ez az alternáló utakra vonatkozó
sejtést is bebizonýıtja. Elképzelhető, hogy 4

3
n +O(

√
n) is teljesül alább.

Sejtés. Minden konvex helyzetű, 2n elemű, kiegyensúlyozott sźınezésű
ponthalmazon van 4

3
n + o(n) méretű szeparált párośıtás.

A kis diszkrepanciájú sźınezések érdekes eredménnyel szolgáltak, és reményt
adtak a probléma mélyebb megértésére. Ha a diszkrepancia kettő vagy
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három, beláttam, hogy legalább 4
3
n pont van a maximális szeparált párośıtás-

ban [25]. Habár az igazság 2n-hez sokkal közelebb lehet, az alkalmazott
módszerekkel ezt nem könnyű felfedni. Intervallumok egy szembeálĺıtása
adja ezt az eredményt, amely egy jobb párośıtó algoritmussal jav́ıtható lenne.
A rákövetkező kis diszkrepanciák esete sem tűnik nehéznek, de a jelenlegi
módszerekkel eléggé terjedelmes.

A harmadik fejezetben egy speciális nem konvex helyzetű kiegyensúlyozott
sźınezésű, 2n elemű ponthalmazt vizsgálunk meg. A pontok egy kettős ı́ven
helyezkednek el, amely egy konvex és egy konkáv ı́vből tevődik össze. Mind
a konvex, mind a konkáv ı́vet elképzelhetjük úgy, mint egy-egy egymásnak
háttal fekvő félkört. Úgy helyezzük őket a śıkba, hogy egyikük által meghatá-
rozott tetszőleges egyenes sem metszi a másik ı́vet. Beláttuk [7], ha mindkét
ı́v magába foglalja a pontok legalább egyötödét, akkor létezik metszésmentes,
alternáló Hamilton út a ponthalmazon. Viszont ha az egyik ı́v a pontok
legfeljebb ≈ 1/29-ét tartalmazza, akkor nincs ilyen út.

Nem egyértelmű, hogy a konvexitás milyen szerepet játszik a kérdésben.
Az előbbi eredmény azt sugallja, hogy a konvex helyzet lehet egy extremális
eset. Az általános helyzetet illetően nem sok minden ismert. Néhány cikk
pontok speciális elhelyezkedésével foglalkozik [1, 18, 19]. Tudjuk, hogy ha egy
egyenes választja el a sźınosztályokat, akkor van metszésmentes, alternáló
Hamilton út [1]. Együtt a felező egyenesek létével az előbbi eredményből
következik, hogy pontok tetszőleges helyzetére a śıkon legalább n pont van
a leghosszabb metszésmentes, alternáló úton. Nem ismert nem triviális alsó
korlát az általános esetre vonatkozóan, amı́g a legjobb ismert felső korlátot
a konvex helyzet adja.

A negyedik fejezetben megvizsgáltuk a következő két játékos által játszott
kombinatorikus játékot. Alice és Bob tetszőleges nagyságú körcikkekre fel-
szeletelt pizzát oszt. A játékosok váltják egymást, és minden lépésben egy
szeletet vesz el a soron lévő. Az első lépés Alice-szé, amikor ő bármelyik
szeletet elveheti. Minden más lépésben csak olyan szelet vehető el, amely-
nek van elvett szomszédja. Beláttuk, hogy Alice-nak mindig van stratégiája
megszerezni a pizza 4/9-ét [9]. Karakterizáltuk, mennyit nyerhet a szeletek
száma alapján. Megadtunk egy algoritmust, amely O(n) időben kiszámı́tja
Alice stratégiáját a pizza n szeletre való adott felszeletelésekor [9]. Megkülön-
böztettünk kétféle lépést. Csúszásznak neveztük, ha a játékos az előző lépés-
ben elvett szelet melletti szeletet választotta. Egyébként pedig ugrásnak.
Meghatároztuk, Alice mennyit nyerhet el legfeljebb, ha az ugrásai számát
korlátozzuk. Léırtuk a minimális pizza szeleteléseket (szeletek számára és
a szeletek súlyainak számára vonatkozóan), amikor Bobnak van stratégiája
a pizza 5/9-ét elnyerni. Adtunk egy kvadratikus dinamikus algoritmust,
amely tárol egy optimális lépést a soron lévő játékos számára a játék minden

83



lehetséges poźıciójára [9].
További (a tézisben nem szereplő) kérdések vizsgálhatók. Az előbbi

probléma általánośıtható, amelyet tekinthetük a következő módon. Adott
egy összefüggőG gráf nemnegat́ıv, a pontjaihoz rendelt súlyokkal. A játékosok
váltakozva vesznek el egy-egy pontot G-ből lépésenként. Az első lépés Alice-
szé. A pontokat a következő szabályok egyike vagy együttese alapján kell
elvenni: (T) az elvett pontok által fesźıtett részgráf összefüggő az egész játék
során, (R) a nem elvett pontok által fesźıtett részgráf összefüggő az egész
játék során. Ezen kutatás folytatásában megmutattuk [8], hogy a (T) és (R)
szabályok mindhárom kombinációjára, minden ε > 0-ra és minden k ≥ 1-re
létezik k-összefüggő G gráf, ahol Bobnak van stratégiája (1−ε)-szeresét elny-
erni a pontok együttes súlyának. Ez ellentétben áll az eredeti Pizza játékkal
a körön.

Szintén túlmutat a tézis keretein a kérdéskör bonyolultságelméleti vonat-
kozása. További kutatásainkban igazoltuk, hogy annak eldöntése, hogy Alice-
nek van-e nyerő stratégiája (vagyis stratégiája az össz súlymennyiség több,
mint felének megszerzésére) PSPACE-teljes, ha (R) szabály vagy (T) és (R)
együttesen van megkövetelve. A játék két további változatát is vizsgáltuk.
Kanonikus TR játék: az első játékos, aki megszegi a (T) és (R) szabályok
valamelyikét, vesźıt. Misere TR játék: az első játékos, aki nem tud a
(T) és (R) szabályoknak megfelelően lépni, nyer. Bebizonýıtottuk [8], hogy
PSPACE-teljes annak eldöntése, hogy kinek van nyerő stratégiája a kano-
nikus TR játékban és a misere TR játékban.

Számos nyitott kérdés marad ezen a területen. Nem sikerült meghatároz-
nunk, milyen bonyolultságú annak eldöntése, hogy kinek van nyerő stratégiája
a T játékban. Érdekes lenne megválaszolni azt a kérdést, milyen bonyolultsá-
gú annak eldöntése, hogy kinek van nyerő stratégiája az R és a T játékban,
ha az input G gráf fa.
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