
DOCTORAL THESIS

ATTILA MARÓTI

1. Orders of permutation groups

Bounding the order of a primitive permutation group in terms of
its degree was a problem of 19-th century group theory. Apart from
some early results of Jordan probably the first successful estimate for
the orders of primitive groups not containing the alternating group is
due to Bochert [7] (see also [17] or [50]): if G is primitive and (Sn :
G) > 2, then (Sn : G) ≥ [1

2
(n + 1)]!. This bound is useful since

it is the sharpest available general estimate for very small degrees.
But it is far from best possible. Based on Wielandt’s method [51] of
bounding the orders of Sylow subgroups Praeger and Saxl [41] obtained
an exponential estimate, 4n, where n is the degree of the permutation
group. Their proof is elaborate. Using entirely different combinatorial
arguments, Babai [2] obtained an e4

√
n ln2 n estimate for uniprimitive

(primitive but not doubly transitive) groups. For the orders of doubly
transitive groups not containing the alternating group, Pyber obtained
an n32log2 n bound for n > 400 in [43] by an elementary argument (using
some ideas of [3]). Apart from O(log n) factors in the exponents, the
former two estimates are asymptotically sharp. To do better, one has
to use the Aschbacher-O’Nan-Scott theorem and the classification of
finite simple groups. An nc ln ln n type bound with “known” exceptions
has been found by Cameron [14], while an n9 log2 n estimate follows
from Liebeck [29]. In our dissertation we use the classification of finite
simple groups to set the sharpest upper bounds possible for the orders
of primitive permutation groups via a reasonably short argument. First
the following is proved.

Theorem 1.1. Let G be a primitive permutation group of degree n.
Then one of the following holds.
(i) G is a subgroup of Sm o Sr containing (Am)r, where the action of
Sm is on k-element subsets of {1, ..., m} and the wreath product has the
product action of degree n =

(
m
k

)r
;

(ii) G = M11, M12, M23 or M24 with their 4-transitive action;

(iii) |G| ≤ n ·∏[log2 n]−1
i=0 (n− 2i) < n1+[log2 n].

1



2 ATTILA MARÓTI

This is a sharp version of the above-mentioned result of Liebeck. The
theorem practically states that if G is a primitive group, which is not
uniprimitive of case (i), and is not 4-transitive, then the estimate in (iii)
holds. The bound in (iii) is best possible. There are infinitely many
3-transitive groups, in particular the affine groups, AGL(t, 2) acting
on 2t points and the symmetric group, S5 acting on 6 points for which
the estimate is exact. In fact, these are the only groups among groups
not of case (i) and (ii) for which equality holds. But there is one more
infinite sequence of groups displaying the sharpness of the bound. The
projective groups, PSL(t, 2) acting on the t > 2 dimensional projective

space have order 1
2
·(n + 1)·∏[log2 n]−1

i=0 (n+1−2i) < n·∏[log2 n]−1
i=0 (n−2i),

where n = 2t − 1.

An easy direct consequence is

Corollary 1.1. Let G be a primitive subgroup of Sn.

(i) If G is not 3-transitive, then |G| < n
√

n;

(ii) If G does not contain An, then |G| < 50 · n√n.

This is a sharp version of a result of Cameron [14]. The estimate
in (i) is asymptotically sharp for uniprimitive groups of case (i) of
Theorem 1.1 and is sharp for the automorphism group of the Fano-
plane. The estimate in (ii) is sharp for the biggest Mathieu group. For
an application of Corollary 1.1 to semigroup theory see [1]. Theorem
1.1 also leads to a sharp exponential bound.

Corollary 1.2. If G is a primitive subgroup of Sn not containing An,
then |G| < 3n. Moreover, if n > 24, then |G| < 2n.

This improves the Praeger-Saxl [41] theorem. The proof displays
M12 as the “largest” primitive group. M24 has order greater than 224,
which explains the requirement n > 24 in the latter statement. But
let us put this in a slightly different form with the use of the prime
number theorem.

Corollary 1.3. If G is a primitive subgroup of Sn not containing An,
then |G| is at most the product of all primes not greater than n, provided
that n > 24.

In [27] Kleidman and Wales published a list of primitive permutation
groups of order at least 2n−4. However their list is rather lengthy, and
it is not easy to use. Using our results above we will relax the bound to
2n−1 to give a shorter list of “large” primitive groups. These exceptional
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groups are referred to in [32]. (Note that the Kleidman-Wales list can
also be deduced by a similar argument.)

Corollary 1.4. Let G be a primitive permutation group of degree n
not containing An. If |G| > 2n−1, then G has degree at most 24, and
is permutation isomorphic to one of the following 24 groups with their
natural permutation representation if not indicated otherwise.

(i) AGL(t, q) with (t, q) = (1, 5), (3, 2), (2, 3), (4, 2); AΓL(1, 8) and
24 : A7;

(ii) PSL(t, q) with (t, q) = (2, 5), (3, 2), (2, 7), (2, 8), (3, 3), (4, 2);
PGL(t, q) with (t, q) = (2, 5), (2, 7), (2, 9); PΓL(2, 8) and PΓL(2, 9);

(iii) Mi with i = 10, 11, 12, 23, 24;

(iv) S6 with its primitive action on 10 points, and M11 with its action
on 12 point.

From the above list, using an inductive argument, one can deduce the
theorem of Liebeck and Pyber [30] stating that a permutation group
of degree n has at most 2n−1 conjugacy classes.

Another possible application of the previous result was suggested in
[44] by Pyber. Improving restrictions on the composition factors of
permutation groups one can bound their order. For example, Dixon
[16] proved that a solvable permutation group of degree n has order
at most 24(n−1)/3, and Babai, Cameron, Pálfy [4] showed that a sub-
group of Sn that has no composition factors isomorphic to an alter-
nating group of degree greater than d(d ≥ 6) has order at most dn−1.
Applying the former results Dixon’s theorem may be generalized and
Babai-Cameron-Pálfy’s estimate may be sharpened as follows.

Corollary 1.5. Let G be a permutation group of degree n, and let d be
an integer not less than 4. If G has no composition factor isomorphic to
an alternating group of degree greater than d, then |G| ≤ d!(n−1)/(d−1).

This bound is best possible. If n is a power of d, then the iterated
wreath product of n/d copies of Sd has order precisely d!(n−1)/(d−1). The
proof shows that the Mathieu group, M12 is again of special importance.

For an application of this corollary see chapter 3 of the book by
Lubotzky and Segal [32], and for an alternative approach to dealing
with nonabelian alternating composition factors see the paper [25] by
Holt and Walton.
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2. Counting conjugacy classes

In many cases it is more natural to count complex irreducible char-
acters than conjugacy classes for a finite group. However, sometimes
it is indeed more natural to work with conjugacy classes. Here is an
example.

Nagao [38] proved that if G is a finite group and N is a normal
subgroup, then the number of irreducible characters of G is at most
the number of irreducible characters of N multiplied by the number of
irreducible characters of the factor group, G/N . Later, Gallagher [20]
proved this fact using conjugacy classes. We believe that this proof is
more natural. If we denote the number of conjugacy classes of a finite
group G by k(G), then Nagao’s result translates to

Lemma 2.1 (Nagao, [38]). If G is a finite group and N a normal
subgroup in G, then k(G) ≤ k(N) · k(G/N).

This lemma is very important. It was first used in proving that for
p-solvable groups, Brauer’s k(B)-problem is equivalent to the k(GV )-
problem, and most recently it was used many times in proving the
k(GV )-problem itself.

Here, we give another application of Lemma 2.1 of a (seemingly)
different flavor.

Theorem 2.1 (Kovács, Robinson, [28]). If G is a permutation group
of degree n, then k(G) ≤ 5n−1.

The proof is inductive. First we prove the claim for primitive, then
for imprimitive and finally for intransitive groups. The induction starts
by giving a universal upper bound for the numbers of conjugacy classes
for primitive groups, after which we apply Lemma 2.1 in each step of
the induction. The initial case is the most difficult one. In the Kovács-
Robinson proof the Praeger-Saxl [41] bound on the orders of primitive
permutation groups was used. This makes Theorem 2.1 independent
of the Classification Theorem of Finite Simple Groups (CTFSG).

However, if one wants to improve on the bound in Theorem 2.1, then
CTFSG is necessary. By a result of the previous chapter on the orders
of primitive groups, one can give a short proof for

Theorem 2.2 (Liebeck, Pyber, [30]). If G is a permutation group of
degree n, then k(G) ≤ 2n−1.
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Originally, Theorem 2.2 was proved by estimating the numbers of
conjugacy classes of simple groups via existing recurrence relations for
these numbers. (Indeed, Kovács and Robinson had verified a relevant
reduction to almost simple groups.) Recently, the Liebeck-Pyber bound
for simple groups (of Lie-type) was (and is being) improved by Fulman
and Guralnick in [19] and in a paper in preparation. In our dissertation
we make no use of these improvements in proving

Theorem 2.3. Any permutation group of degree n > 2 has at most
3(n−1)/2 conjugacy classes.

This theorem was used in [21].

3. Covering the symmetric groups with proper subgroups

Let G be a group that is a set-theoretic union of finitely many proper
subgroups. Cohn [15] defined the function σ(G) to be the least integer
m such that G is the union of m of its proper subgroups. (A result
of Neumann [39] states that if G is the union of m proper subgroups
where m is finite and small as possible, then the intersection of these
subgroups is a subgroup of finite index in G. Hence in investigating σ
we may assume that G is finite.) It is an easy exercise that σ(G) can
never be 2; it is at least 3. Groups that are the union of three proper
subgroups, as C2×C2 is for example, are investigated in the papers [46],
[22], and [12]. Moreover, σ(G) can be 4, 5, and 6 too, as the examples,
C3×C3, A4, and C5×C5 show. However, Tomkinson [49] proved that
there is no group G with σ(G) = 7. Cohn [15] showed that for any
prime power pa there exists a solvable group G with σ(G) = pa + 1. In
fact, Tomkinson [49] established that σ(G)−1 is always a prime power
for solvable groups G. He also pointed out that it would be of interest
to investigate σ for families of simple groups. Indeed, the situation for
nonsolvable groups seems to be totally different. Bryce, Fedri, Serena
[13] investigated certain nonsolvable 2-by-2 matrix groups over finite
fields, ((P )G(S)L(2, q)) and obtained the formula 1

2
q(q + 1) for even

prime powers q ≥ 4, and the formula 1
2
q(q+1)+1 for odd prime powers

q ≥ 5. Moreover, Lucido [33] found that σ(Sz(q)) = 1
2
q2(q2 + 1) where

q = 22m+1. There are partial results due to Bryce and Serena for
determining σ((P )G(S)L(n, q)).

The following is established.

Theorem 3.1. Let n > 3, and let Sn and An be the symmetric and the
alternating group respectively on n letters.
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(1) We have σ(Sn) = 2n−1 if n is odd unless n = 9, and σ(Sn) ≤ 2n−2

if n is even.

(2) If n 6= 7, 9, then σ(An) ≥ 2n−2 with equality if and only if n is even
but not divisible by 4.

In our dissertation we prove more than what is stated in Theorem
3.1. We will obtain exact or asymptotic formulas in all (infinite) cases
(possibly) except for σ(Ap) where p is a prime of the form (qk−1)/(q−1)
where q is a prime power and k is a positive integer.

For the groups S9, S12, A7, and A9 we only prove 172 ≤ σ(S9) ≤ 256,
σ(S12) ≤ 761, σ(A7) ≤ 31, and σ(A9) ≥ 80. Notice that the numbers
761 and 31 are primes not of the form q + 1 where q is a prime power.
We prove that σ(G) can indeed be such a prime.

Proposition 3.1. For the smallest Mathieu group we have σ(M11) =
23.

This result was also proved (independently) by Holmes in [23]. In
her paper many interesting results are found about sporadic simple
groups. It is proved that σ(M22) = 771, σ(M23) = 41079, σ(O′N) =
36450855, σ(Ly) = 112845655268156, 5165 ≤ σ(J1) ≤ 5415, and that
24541 ≤ σ(McL) ≤ 24553.

At this point we note that Tomkinson [49] conjectured that σ(G)
can never be 11 nor 13.

The commuting graph Γ of a group G is as follows. Let the vertices of
Γ be the elements of G and two vertices g, h of Γ are joined by an edge
if and only if g and h commute as elements of G. (The commuting
graph is used to measure how abelian the group is. See [18], and
[45].) Several people have studied α(G), the maximal cardinality of an
empty subgraph of Γ and β(G), the minimal cardinality of a covering
of the vertices of Γ by complete subgraphs. (See the papers [18], [37],
and [42].) Brown investigated the relationship between the numbers
αn = α(Sn) and βn = β(Sn). In [10] it is shown that these numbers
are surprisingly close to each other, though for n ≥ 15, they are never
equal [11].

As an application of Theorem 3.1, we prove that if we add ‘more’
edges to the commuting graph of the symmetric group, then the cor-
responding numbers will be equal in infinitely many cases. Let G be a
group. Define a graph Γ′ on the elements of G with the property that
two group elements are joined by an edge if and only if they generate a
proper subgroup of G. Similarly as for the commuting graph, we may



DOCTORAL THESIS 7

define α′(G) and β′(G) for our new graph, Γ′. Put α′n = α′(Sn) and
β′n = β′(Sn). The theorem can now be stated.

Theorem 3.2. There is a subset S of density 1 in the set of all primes
so that α′n = β′n holds for all n ∈ S.

The equality α′n = β′n is valid for very small values of n also. Does
it hold for all n?

We note that the problem of covering groups by subgroups has found
interest for many years. The first reference the author is aware of is the
1926 work of Scorza [46]. Probably Neumann [39], [40] was the first
to study the number of (abelian) subgroups needed to cover a (not
necessarily finite) group G in relation to the index of the center of G.
For a survey of this area see [47]. On the other hand, for an extensive
account of work in (packing and) covering groups with (isomorphic)
subgroups (or of subgroups of a specified order) the reader is referred
to [26].

4. Sets of elements that pairwise generate a linear group

Let G be a finite group that can be generated by two elements. We
define µ(G) to be the largest positive integer m so that there exists a
subset X in G of order m with the property that any distinct pair of
elements of X generates G. Let n be a positive integer, q a prime power,
and V the n-dimensional vector space over the field of q elements. Let
[x] denote the integer part of the real number x. We have

Theorem 4.1. Let G be any of the groups (P )GL(n, q), (P )SL(n, q).
Let b be the smallest prime factor of n, and let N(b) be the number of
proper subspaces of V of dimensions not divisible by b. If n ≥ 12, then

µ(G) =
1

b

n−1∏
i=1
b-i

(qn − qi) + [N(b)/2].

Let Sn be the symmetric group on n letters. In the previous chapter it
was stated that the set of prime numbers n for which µ(Sn) = σ(Sn) =
2n−1 has density 1 in the set of all primes. In a beautiful paper, this
result was considerably extended by Blackburn [6] who showed that if
n is a sufficiently large odd integer, then µ(Sn) = σ(Sn) = 2n−1, and
that if n is a sufficiently large integer congruent to 2 modulo 4, then
µ(An) = σ(An) = 2n−2 for the alternating group An. In the same paper
Blackburn asked what the relationship between the numbers σ(G) and
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µ(G) is when G is a finite simple group. For example, is it true that
σ(G)/µ(G) → 1 as |G| → ∞? An affirmative answer to this question
in the special case when G is a projective special linear group is given
in Section 6 of [9]. In many cases we can say more.

Theorem 4.2. Let G be any of the groups (P )GL(n, q), (P )SL(n, q).
Let b be the smallest prime factor of n, let

[
n
k

]
q

be the number of k-

dimensional subspaces of the n-dimensional vector space V , and let
N(b) be the number of proper subspaces of V of dimensions not divisible
by b. Suppose that n ≥ 12. Then if n 6≡ 2 (mod 4), or if n ≡ 2
(mod 4), q odd and G = (P )SL(n, q), then

σ(G) = µ(G) =
1

b

n−1∏
i=1
b-i

(qn − qi) + [N(b)/2].

Otherwise σ(G) 6= µ(G) and

σ(G) =
1

2

n−1∏
i=1
2-i

(qn − qi) +

(n/2)−1∑

k=1
2-k

[n

k

]
q
+

qn/2

qn/2 + 1

[
n

n/2

]

q

+ ε

where ε = 0 if q is even and ε = 1 if q is odd.

Theorem 4.2 extends earlier results of Bryce, Fedri, Serena [13]. Also,
the formulae for σ(G) for the groups (P )GL(3, q), (P )SL(3, q) was
kindly communicated to one of us by Serena [48].

A couple of remarks need to be made.

A quick corollary to the solution of Dixon’s conjecture, stated by
Liebeck and Shalev in [31] (see Corollary 1.7), is that there exists a
universal constant c so that µ(G) ≥ c · n for any finite simple group G
where n denotes the minimal index of a proper subgroup in G.

A group is said to have spread at least k if, for any non-identity
x1, . . . , xk ∈ G, there is some y ∈ G such that G = 〈xi, y〉 whenever
1 ≤ i ≤ k. The number s(G) denotes the largest integer k so that
G has spread at least k. There are many papers on spread, see, for
example, Breuer, Guralnick, Kantor [8]. It is easy to see that for any
non-cyclic finite group G that can be generated by two elements, the
inequality s(G) < µ(G) holds.
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