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Chapter 1

Introduction

Permutation groups arguably form the oldest part of group theory. Their study dates

back to the early years of the nineteenth century and, indeed, for a long time groups

were always understood to be permutation groups. Although, of course, this is no

longer true, permutation groups continue to play an important role in modern group

theory through the ubiquity of group actions and the concrete representations which

permutation groups provide for abstract groups.

This thesis is built around three papers of the author; all three involving permuta-

tion groups. Chapter 3 considers a very old problem going back to Jordan and Bochert

of bounding the order of a primitive permutation group of degree n not containing the

alternating group An. This chapter is taken from [45]. Chapter 4 is an early version

of the paper [48]. Here we consider the problem of bounding the number of conjugacy

classes of a permutation group of degree n > 2. This problem is related to the so-

called k(GV )-problem of group theory and more distantly to Brauer’s k(B)-problem

of representation theory. The previous problem was solved recently, while the latter is

unsolved. The results in Chapter 4 will be used in [28] where we consider the so-called

non-coprime k(GV )-problem proposed by Guralnick and Tiep in 2004. Finally, Chap-

ter 5 deals with a more combinatorial problem of covering the symmetric groups by

proper subgroups. This material is taken directly from [47].
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Chapter 2 contains the preliminaries to this thesis. Not everything in Section 2.4

is used later in the text. For more background the reader can use [25] and [20].



Chapter 2

Preliminaries

2.1 Basic definitions

Let Ω be an arbitrary nonempty set; its elements are often called points. A bijection

of Ω onto itself is called a permutation of Ω. The set of all permutations of Ω forms a

group, under composition of mappings, called the symmetric group on Ω. This group is

denoted by Sym(Ω). If Ω = {1, 2, . . . , n} for some positive integer n, then Sym(Ω) is

abbreviated as Sn. A subgroup of the symmetric group (on Ω) is called a permutation

group (on Ω).

If G and H are permutation groups on Ω and ∆, respectively, then we say that G

is permutation equivalent to H if there is a bijection φ : Ω → ∆ and an isomorphism

ψ : G → H such that (ωg)φ = (ωφ)(gψ) for all g ∈ G, ω ∈ Ω.

Let G be any group and Ω be any nonempty set. Suppose we have a function from

Ω×G into Ω such that the image of a pair (α, x) is denoted by αx for every α ∈ Ω and

x ∈ G. We say that this function defines an action of G on Ω (or we say that G acts

on Ω) if the following two conditions hold.

(i) α1 = α for all α ∈ Ω;

(ii) (αx)y = αxy for all α ∈ Ω and all x, y ∈ G.

For example, if H is any subgroup of any group G, then G acts on the set of right
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cosets of H in G in a natural way.

When a group G acts on a set Ω, a typical point α is moved by elements of G to

various other points. The set of these images is called the orbit of α under G (or the

G-orbit containing α), and we denote it by αG = {αx | x ∈ G}. A kind of dual role

is played by the set of elements in G which fix a specified point α. This is called the

stabilizer of α in G and is denoted Gα = {x ∈ G | αx = α}. Suppose that G is a group

acting on a set Ω and that x, y ∈ G and α, β ∈ Ω. Then the following three statements

are true.

(i) Two orbits αG and βG are either equal (as sets) or disjoint, so the set of all

orbits is a partition of Ω into mutually disjoint subsets.

(ii) The stabilizer Gα is a subgroup of G and Gβ = x−1Gαx whenever β = αx.

Moreover, αx = αy if and only if Gαx = Gαy.

(iii) We have |αG| = |G : Gα| for all α ∈ Ω. In particular, if G is finite then

|αG||Gα| = |G|.
A group G acting on a set Ω is said to be transitive on Ω if it has only one orbit,

and so αG = Ω for all α ∈ Ω. Equivalently, G is transitive if for every pair of points

α, β ∈ Ω there exists x ∈ G such that αx = β. A group which is not transitive is

called intransitive. A group G acting transitively on a set Ω is said to act regularly if

Gα = {1} for each α ∈ Ω (equivalently, only the identity fixes any point). Similarly, a

permutation group G is called regular if it is transitive and only the identity fixes any

point.

2.2 Blocks and primitivity

In what follows we shall extend the action of G on Ω to subsets of Ω by defining

Γx = {γx | γ ∈ Γ} for each Γ ⊆ Ω. Let G be a group acting transitively on a set Ω.

A nonempty subset ∆ of Ω is called a block for G if for each x ∈ G either ∆x = ∆ or

∆x∩∆ = ∅. Every group acting transitively on Ω has Ω and the singletons {α} (α ∈ Ω)



as blocks. These two types of blocks are called trivial blocks. Any other block is called

nontrivial. The importance of blocks arises from the following observation. Suppose

that G acts transitively on Ω and that ∆ is a block for G. Put Σ = {∆x | x ∈ G}.
Then the sets in Σ form a partition of Ω and each element of Σ is a block for G. We

call Σ the system of blocks containing ∆. Now G acts on Σ in an obvious way, and

this new action may give useful information about G provided ∆ is not a trivial block.

Let G be a group acting transitively on a set Ω. We say that the group is primitive if

G has no nontrivial block on Ω. Otherwise G is called imprimitive. We may also talk

about primitive and imprimitive permutation groups.

Let G act on a set Ω. This action may be transitive or intransitive. If it is transitive,

then it can be primitive or imprimitive. We will mainly be interested in primitive

groups. Hence it is useful to mention the following fact. The transitive group G is

primitive if and only if the point stabilizer Gα is a maximal subgroup in G for all

α ∈ Ω.

2.3 The Aschbacher-O’Nan-Scott theorem

The so-called Aschbacher-O’Nan-Scott theorem gives a description of finite primitive

permutation groups (primitive permutation groups with finitely many elements). This

section closely follows the paper of Liebeck, Praeger, Saxl [41]. For more information

on individual groups the reader may use [20] as a reference.

A minimal normal subgroup of a nontrivial group X is a normal subgroup K 6= {1}
of X which does not contain properly any other nontrivial normal subgroup of X. For

example, a simple group itself is its only minimal normal subgroup, while an infinite

cyclic group has no minimal normal subgroup. The socle of a group X is the subgroup

generated by the set of all minimal normal subgroups of X. It is denoted by soc(X).

By convention, we put soc(X) = {1} if X has no minimal normal subgroup. Since the

set of all minimal normal subgroups of X is mapped into itself by every automorphism



of X, the socle soc(X) is a characteristic subgroup of X. Every nontrivial finite group

has at least one minimal normal subgroup so has a nontrivial socle.

For groups A and B we denote by A.B a (not necessarily split) extension of A and

B. The split extension of A by B is denoted by A : B.

In what follows, X will be a primitive permutation group on a finite set Ω of size n,

and α a point in Ω. Let B be the socle of X. The socle of a finite primitive permutation

group is the direct product of a simple group. So in this case, B ∼= T k for some simple

group T and some integer k ≥ 1. Consider the following types of permutation groups:

I, II, III(a), III(b), and III(c).

I. Affine groups. Here T = Zp for some prime p, and B is the unique minimal normal

subgroup of X and is regular on Ω of degree n = pk. The set Ω can be identified with

B = (Zp)
k so that X is a subgroup of the affine group AGL(k, p) with B the translation

group and Xα = X ∩GL(k, p) irreducible on B.

II. Almost simple groups. Here k = 1, T is a non-abelian simple group and T ≤
X ≤ Aut(T ). Also Tα 6= 1.

III. In this case B ∼= T k with k ≥ 2 and T a nonabelian simple group. We distinguish

three types.

III(a). Simple diagonal action. Define

W = {(a1, . . . , ak).π | ai ∈ Aut(T ), π ∈ Sk, ai ≡ aj mod Inn(T ) for all i and j},

where π ∈ Sk just permutes the components ai naturally. With the obvious multipli-

cation, W is a group with socle B ∼= T k, and W = B.(Out(T )×Sk), a (not necessarily

split) extension of B by Out(T )× Sk. We define an action of W on Ω by setting

Wα = {(a, . . . , a).π | a ∈ Aut(T ), π ∈ Sk}.

Thus Wα
∼= Aut(T )× Sk, Bα

∼= T and n = |T |k−1.



For 1 ≤ i ≤ k let Ti be the subgroup of B consisting of the k-tuples with 1 in all

but the i-th component, so that Ti
∼= T and B = T1 × . . .× Tk. Put T = {T1, . . . , Tk},

so that W acts on T . We say that the subgroup X of W is of type III(a) if B ≤ X

and, letting P be the permutation group XT , one of the following holds:

(i) P is primitive on T ,

(ii) k = 2 and P = 1.

We have Xα . Aut(T )× P , and X ≤ B.(Out(T )× P ). Moreover, in case (i) B is

the unique minimal normal subgroup of X, and in case (ii) X has two minimal normal

subgroups T1 and T2, both regular on Ω.

III(b). Product action. Let H be a primitive permutation group on a set Γ of type

II or III(a). For ` > 1, let W = H o S`, and take W to act on Ω = Γ` in its natural

product action. Then for γ ∈ Γ and α = (γ, . . . , γ) ∈ Ω we have Wα = Hγ o S`, and

n = |Γ|`. If K is the socle of H then the socle B of W is K`, and Bα = (Kγ)
` 6= 1.

Now W acts naturally on the ` factors in K`, and we say that the subgroup X of

W is of type III(b) if B ≤ X and X acts transitively on these ` factors.

Finally, one of the following holds.

(i) H is of type II, K ∼= T , k = ` and B is the unique minimal normal subgroup of

X,

(ii) H is of type III(a), K ∼= T k/` and X and H both have m minimal normal

subgroups, where m ≤ 2; if m = 2 then each of the two minimal normal subgroups of

X is regular on Ω.

III(c). Twisted wreath action. Here X is a twisted wreath product T twrφP , defined

as follows. Let P be a transitive permutation group on {1, . . . , k} and let Q be the

stabilizer P1. We suppose that there is a homomorphism φ : Q → Aut(T ) such that

Im(φ) contains Inn(T ). Define

B = {f : P → T | f(pq) = f(p)φ(q) for all p ∈ P, q ∈ Q}.



Then B is a group under pointwise multiplication, and B ∼= T k. Let P act on B by

f p(x) = f(px) for p, x ∈ P . We define X = T twrφP to be the semidirect product of

B by P with this action, and define an action of X on Ω by setting Xα = P . We then

have n = |T |k, and B is the unique minimal normal subgroup of X and acts regularly

on Ω.

We say that the group X is of type III(c) if it is primitive on Ω. (Note that

the primitivity of X in the above construction depends on some quite complicated

conditions on P which we do not investigate here.)

Theorem 2.3.1 (Aschbacher-O’Nan-Scott). Any finite primitive permutation group

is permutation equivalent to one of the types I, II, III(a), III(b), and III(c) described

above.



Chapter 3

On the orders of primitive

permutation groups

3.1 Introduction

Bounding the order of a primitive permutation group in terms of its degree was a

problem of 19-th century group theory. Apart from some early results of Jordan prob-

ably the first successful estimate for the orders of primitive groups not containing the

alternating group is due to Bochert [8] (see also [20] or [69]): if G is primitive and

(Sn : G) > 2, then (Sn : G) ≥ [1
2
(n + 1)]!. This bound will prove useful since it is

the sharpest available general estimate for very small degrees. But it is far from best

possible. Based on Wielandt’s method [70] of bounding the orders of Sylow subgroups

Praeger and Saxl [57] obtained an exponential estimate, 4n, where n is the degree of

the permutation group. Their proof is quite elaborate. Using entirely different combi-

natorial arguments, Babai [3] obtained an e4
√

n ln2 n estimate for uniprimitive (primitive

but not doubly transitive) groups. For the orders of doubly transitive groups not con-

taining the alternating group, Pyber obtained an n32log2 n bound for n > 400 in [60]

by an elementary argument (using some ideas of [4]). Apart from O(log n) factors in
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the exponents, the former two estimates are asymptotically sharp. To do better, one

has to use the Aschbacher-O’Nan-Scott theorem and the classification of finite simple

groups. An nc ln ln n type bound with “known” exceptions has been found by Cameron

[14], while an n9 log2 n estimate follows from Liebeck [39]. In this paper we use the

classification of finite simple groups to set the sharpest upper bounds possible for the

orders of primitive permutation groups via a reasonably short argument. First the

following is proved.

Theorem 3.1.1. Let G be a primitive permutation group of degree n. Then one of 1t11

the following holds.

(i) G is a subgroup of Sm oSr containing (Am)r, where the action of Sm is on k-element

subsets of {1, ...,m} and the wreath product has the product action of degree n =
(

m
k

)r
;

(ii) G = M11, M12, M23 or M24 with their 4-transitive action;

(iii) |G| ≤ n ·∏[log2 n]−1
i=0 (n− 2i) < n1+[log2 n].

This is a sharp version of the above-mentioned result of Liebeck. The theorem

practically states that if G is a primitive group, which is not uniprimitive of case (i),

and is not 4-transitive, then the estimate in (iii) holds. The bound in (iii) is best

possible. There are infinitely many 3-transitive groups, in particular the affine groups,

AGL(t, 2) acting on 2t points and the symmetric group, S5 acting on 6 points for which

the estimate is exact. In fact, these are the only groups among groups not of case (i)

and (ii) for which equality holds. But there is one more infinite sequence of groups

displaying the sharpness of the bound. The projective groups, PSL(t, 2) acting on the

t > 2 dimensional projective space have order 1
2
· (n + 1) · ∏[log2 n]−1

i=0 (n + 1 − 2i) <

n ·∏[log2 n]−1
i=0 (n− 2i), where n = 2t − 1.

An easy direct consequence is

Corollary 3.1.1. Let G be a primitive subgroup of Sn. 1c11

(i) If G is not 3-transitive, then |G| < n
√

n;



(ii) If G does not contain An, then |G| < 50 · n√n.

This is a sharp version of a result of Cameron [14]. The estimate in (i) is asymp-

totically sharp for uniprimitive groups of case (i) of Theorem 3.1.1 and is sharp for the

automorphism group of the Fano-plane. The estimate in (ii) is sharp for the biggest

Mathieu group. Theorem 3.1.1 also leads to a sharp exponential bound.

Corollary 3.1.2. If G is a primitive subgroup of Sn not containing An, then |G| < 3n. 1c12

Moreover, if n > 24, then |G| < 2n.

This improves the Praeger-Saxl [57] theorem. The proof will also display M12 as

the “largest” primitive group. M24 has order greater than 224, which explains the

requirement n > 24 in the latter statement. But let us put this in a slightly different

form with the use of the prime number theorem.

Corollary 3.1.3. If G is a primitive subgroup of Sn not containing An, then |G| is 1c13

at most the product of all primes not greater than n, provided that n > 24.

Kleidman and Wales published a list of primitive permutation groups of order at

least 2n−4 in [36]. However their list is rather lengthy, and it is not easy to use. Using

our results above we will relax the bound to 2n−1 to give a shorter list of “large”

primitive groups. These exceptional groups are referred to in [43]. (Note that the

Kleidman-Wales list can also be deduced by a similar argument.)

Corollary 3.1.4. Let G be a primitive permutation group of degree n not containing 1c14

An. If |G| > 2n−1, then G has degree at most 24, and is permutation isomorphic to one

of the following 24 groups with their natural permutation representation if not indicated

otherwise.

(i) AGL(t, q) with (t, q) = (1, 5), (3, 2), (2, 3), (4, 2); AΓL(1, 8) and 24 : A7;

(ii) PSL(t, q) with (t, q) = (2, 5), (3, 2), (2, 7), (2, 8), (3, 3), (4, 2); PGL(t, q) with

(t, q) = (2, 5), (2, 7), (2, 9); PΓL(2, 8) and PΓL(2, 9);



(iii) Mi with i = 10, 11, 12, 23, 24;

(iv) S6 with its primitive action on 10 points, and M11 with its action on 12 point.

From the above list, using an inductive argument, one can deduce the theorem of

Liebeck and Pyber [42] stating that a permutation group of degree n has at most 2n−1

conjugacy classes.

Another possible application of the previous result was suggested in [61] by Pyber.

Improving restrictions on the composition factors of permutation groups one can bound

their order. For example, Dixon [18] proved that a solvable permutation group of degree

n has order at most 24(n−1)/3, and Babai, Cameron, Pálfy [5] showed that a subgroup

of Sn that has no composition factors isomorphic to an alternating group of degree

greater than d(d ≥ 6) has order at most dn−1. Applying the former results Dixon’s

theorem may be generalized and Babai-Cameron-Pálfy’s estimate may be sharpened

as follows.

Corollary 3.1.5. Let G be a permutation group of degree n, and let d be an integer 1c15

not less than 4. If G has no composition factors isomorphic to an alternating group of

degree greater than d, then |G| ≤ d!(n−1)/(d−1).

This bound is best possible. If n is a power of d, then the iterated wreath product of

n/d copies of Sd has order precisely d!(n−1)/(d−1). The proof will show that the Mathieu

group, M12 is again of special importance.

For an application of this corollary see chapter 3 of the book by Lubotzky and

Segal [43], and for an alternative approach to dealing with nonabelian alternating

composition factors see the paper [34] by Holt and Walton.



3.2 Proof of Theorem 3.1.1.

Before starting the actual proof of the theorem, an easy observation has to be made

on the bound in (iii). It is strictly monotone in n, and

n[log2 n] < n ·
[log2 n]−1∏

i=0

(n− 2i) < n1+[log2 n]

holds. The former inequality follows from replacing every (n − 2i) in the product by

1
2
n, while the latter inequality is straightforward.

Theorem 3.1.1 is proved in four steps.

1. It may be assumed that G is almost simple. For if G is affine of prime power

degree n = pt for some prime p, then |G| ≤ |AGL(t, p)| = n · ∏[logp n]−1

i=0 (n − pi) ≤
n ·∏[log2 n]−1

i=0 (n− 2i). Note that the latter inequality holds even when p is replaced by

any prime power q, and n is replaced by qk. This observation is used in the second step

of the proof. If G is of diagonal type of degree n (n ≥ 60), then |G| < n3+ln ln n by [14],

and the right hand side is smaller than n[log2 n]. If G is of product type, then it is a

subgroup of some primitive permutation group of the form H o Sr, where r ≥ 2 and H

is primitive of diagonal type or is almost simple acting on a set of size t (t ≥ 5). In this

case the degree of G is n = tr. If H is an alternating group, Am (m ≥ 5) acting on k-

element subsets of {1, ..., m} and n =
(

m
k

)r
, then G is of case (i) of the theorem. If H is

a 4-transitive Mathieu group, then it is easily checked that |G| ≤ |H wr Sr| < n[log2 n].

Otherwise |G| ≤ |H wr Sr| < (t1+[log2 t])
r ·r! by assumption, and elementary calculations

show that the right hand side is less than n[log2 n]. Finally, if G is nonaffine of twisted

product type, then |G| ≤ |H|r · |Sr| ≤ n · log60 nlog60 n for some nonabelian simple group,

H and integer, r (r ≥ 2), where the degree of G is n = |H|r. The right hand side of

the former inequality is considerably smaller than n[log2 n] for n ≥ 602.

2. It may be assumed that G has an alternating or a projective nonabelian simple



socle. For if G has unitary socle U(t, q), where t ≥ 3, q a prime power, and (t, q) 6=
(3, 5), then G has minimal degree at least qt by [37], while |G| ≤ |AGL(t, q)|. If G

has symplectic socle PSp(2m, q), where m ≥ 2 and q > 2, then its minimal degree

is at least q2m−1 by [37], while |G| ≤ |AGL(2m − 1, q)|. If G has orthogonal socle

PΩ±ε(t, q), then its minimal degree is at least qt−2 by [37], while |G| ≤ |AGL(t− 2, q)|.
If U(3, 5) ≤ G ≤ Aut(U(3, 5)), then G has degree at least 50, while |G| < n[log2 n]

for n ≥ 50. If PSp(2m, 2) ≤ G ≤ Aut(PSp(2m, 2)), then G has minimal degree

2m−1(2m − 1) if m ≥ 3 by [37], else G has socle A6
∼= PSL(2, 9). In the previous

case it can be verified, that |G| ≤ 2m2 · ∏m
i=1(4

i − 1) ≤ n · ∏[log2 n]−1
i=0 (n − 2i), where

n ≥ 2m−1(2m − 1). This means that all nonprojective classical almost simple groups

satisfy (iii) of the theorem. Finally, let G have socle isomorphic to an exceptional group

of Lie-type or to a sporadic simple group. Furthermore, suppose that G is not of type

(ii) of the theorem. It will be shown that G is of case (iii). To show this, n can be

taken to be the minimal degree of a permutation representation of G. By [39] the order

of G is bounded above by n9. Since we have n9 ≤ n[log2 n] < n ·∏[log2 n]−1
i=0 (n − 2i) for

n ≥ 512, it can also be assumed that n ≤ 511. Now using the list in [19], it is easily

checked that G has order at most the relevant bound of (iii) of the theorem.

3. It may be assumed that G is a projective almost simple group. For if G has a

nonprojective nonabelian alternating socle, then Am ≤ G ≤ Sm for some m (m ≥ 7).

The one-point stabilizer of G in its primitive action on the set {1, ..., n} is primitive,

imprimitive, or intransitive as a subgroup of Sm. If it is intransitive, then G is of type

(i) of the theorem. If it is primitive, then |G| ≤ n4 ≤ n[log2 n] if n ≥ 16, by Bochert’s

lemma, else n = 15 and G ∼= A7. Easy calculation shows that this latter group is again

of case (iii) of the theorem, since |G| < 153. Finally, suppose that the point stabilizer

of G is imprimitive as a subgroup of Sm. Then there exist integers a and b both at

least 2, such that m = a · b and n = m!/(b!a · a!). Thus one can assume, that m ≥ 8.

The following lemma shows that these groups also have order at most the bound in



(iii).

Lemma 3.2.1. For integers a, b and m such that m ≥ 8; a, b ≥ 2 and m = a · b, the

inequality m! ≤ (m!/(b!a · a!))[log2(m!/(b!a·a!))] holds.

Proof. Since m! ≤ 2[(m+1)/2]2 holds for all m of the statement of the lemma, it is

sufficient to see m!/(b!a · a!) ≥ 2[(m+1)/2]. This inequality is proved below. Three

assumptions, A, B and C are made on the product decomposition of m. Through steps

A and B we show that it is enough to consider the case when a is the smallest prime

factor of m. Then in step C it is proved that only cases a = 1, 3 and 5 have to be dealt

with.

A. Suppose that b ≥ a. For if a > b, then m!/(a!b · b!) < m!/(b!a · a!), since

a!b−1 > b!a−1, which means that the right hand side of the inequality in question can

be decreased by interchanging a and b.

B. Suppose that a is the smallest prime divisor of m. This restriction can also be

drawn. For let m = a1b1 = a2b2 with a1, b1, a2, b2 ≥ 2 be two decompositions of m

satisfying the previous assumption. If a1 ≤ a2 and b1 ≥ b2, then

m!

b1!
a1 · a1!

≤ m!

b2!
a1 · (b2 + 1)a1 ... b1

a1 · a1!
≤ m!

b2!
a1 · a1! · b2

a1(b1−b2)
≤

≤ m!

b2!
a1 · a1! · (b2! · a2)

a1
b2
·(b1−b2)

≤ m!

b2!
a1 · a1! · (b2! · a2)(a2−a1)

≤

≤ m!

b2!
a1 · a1! · b2!

(a2−a1) · (a1 + 1) ... a2

≤ m!

b2!
a2 · a2!

follows. This means that a can be taken to be smallest possible. So a is indeed the

smallest prime divisor of m. (Assumption A is used in establishing the third inequality

of the derivation.)

Before making the third assumption, it is straightforward to see that m!/(b!a · a!) ≥
pπ(m)−π(b) holds, where π(x) denotes the number of primes not greater than x, and p is



the smallest prime greater than b. The estimate 0.92 < π(x) · ln x/x < 1.11 found in

[17] is also needed.

C. Suppose that a = 2, 3 or 5. For if a ≥ 7, then m = 49, 77 or m ≥ 91. If m = 49,

then m!/(b!a · a!) = 49!/(7!7 · 7!) > 11π(49)−π(7) > 1111 > 2[(m+1)/2]. If m = 77, then

m!/(b!a · a!) = 77!/(11!7 · 7!) > 13π(77)−π(11) > 1316 > 2[(m+1)/2]. Finally, if m ≥ 91,

then

m!

(b!a · a!)
≥ (m/7)π(m)−π(m/7) >

> (m/7)(0.92·m/ln m)−(1.11·(m/7)/ln (m/7)) > 2(m+1)/2 = 2[(m+1)/2]

follows from the above-mentioned estimate of [17].

If a = 2, then we have m!/(b!a · a!) = 1
2
· ( m

m/2

) ≥ ((m/2)+1)m/2

(m/2)!
≥

≥ ((m/2)+1)m/2

(((m/2)+1)/2)m/2 = 2[(m+1)/2] .

If a = 3, then m!/(b!a · a!) = m!/((m/3)!3 · 3!) ≥ 1
2
· ( m+1

(m+1)/2

) ≥ 2[(m+1)/2].

Finally, if a = 5, then m!/(b!a · a!) = m!/((m/5)!5 · 5!) ≥ 1
2
· ( m+1

(m+1)/2

) ≥ 2[(m+1)/2]

follows. The lemma is now proved.

4. If G has socle isomorphic to a projective group, then it is of case (iii) of Theorem

3.1.1 or it is of type (i) with r = k = 1. This is proved below.

Lemma 3.2.2. Let G be an almost simple primitive subgroup of Sn not containing An.

If G has a projective socle, then |G| ≤ n ·∏[log2 n]−1
i=0 (n− 2i).

Proof. Let G have socle isomorphic to PSL(t, q). The proof consists of three steps.

A. It may be assumed that G is acting on a set of size at least (qt − 1)/(q − 1).

For if (t, q) 6= (2, 5); (2, 7); (2, 9); (2, 11); (4, 2), then PSL(t, q) has minimal degree

(qt − 1)/(q − 1); else easy calculations show that G contains An, or it is of case (iii) of

Theorem 3.1.1.

B. It may be assumed that both t and q are greater than 2. For if q = 2, then G is

permutation equivalent to PSL(t, 2) acting on n = 2t−1 points, or it has degree n ≥ 2t.



In the previous case |PSL(t, 2)| ≤ 1
2
·(n+1)·∏[log2 n]−1

i=0 (n+1−2i) < n·∏[log2 n]−1
i=0 (n−2i)

follows, while in the latter one we have |PΓL(t, 2)| ≤ n[log2 n]. Now suppose that t = 2

and q > 2. n can be taken to be q + 1. If q is a prime we may suppose that q ≥ 11,

and so |G| ≤ q(q2 − 1) ≤ (q + 1)q(q − 1) = n(n− 1)(n− 2) ≤ n[log2 n] follows. If q = 4,

then G has socle isomorphic to PSL(2, 5). This case was already treated in step A. If

q ≥ 16 and it is not a prime, we have |G| < q
2
q(q2−1) ≤ (q+1)q(q−1)(q−3) ≤ n[log2 n].

Finally if q = 8 or 9 we have |G| ≤ n ·∏[log2 n]−1
i=0 (n− 2i).

C. Let t > 2 and q > 2. Suppose that n = (qt − 1)/(q − 1) > qt−1. Then it is

straightforward to see that |G| < qt2 . We also have n[log2 n] > q(t−1)2log2 q−(t−1). Now con-

sider the qt2 < q(t−1)2log2 q−(t−1) inequality. This is equivalent to (t2 + t− 1)/(t− 1)2 <

log2 q. If q ≥ 7, then the former inequality is always true. If q = 5, then it is true only

if t ≥ 4. If q = 4, then it only holds if t ≥ 5, and if q = 3, then it is only true if t ≥ 7.

It is checked that if (t, q) = (3, 4); (4, 4); (4, 3); (5, 3); (6, 3); (3, 5), then |G| < n[log2 n].

Finally, if (t, q) = (3, 3), then |G| < n ·∏[log2 n]−1
i=0 (n− 2i) follows.

3.3 Corollaries

Corollaries 3.1.1-3.1.4 are proved almost simultaneously in this section. First of all, it

is necessary to give an upper estimate for the orders of primitive groups of case (i) of

Theorem 3.1.1.

Lemma 3.3.1. Let G be a primitive group of degree n not of case (iii) of Theorem

3.1.1. If G is not 3-transitive, then |G| < n
√

n.

Proof. It may be assumed that G is of type (i) of Theorem 3.1.1 with m ≥ 7. If r = 1,

then k ≥ 2, and so |G| ≤ m! ≤ (
m
2

)q(m
2 ) ≤ (

m
k

)q(m
k) = n

√
n follows; else r ≥ 2, and we

have |G| ≤ m!r · r! < mr
√

mr ≤ (
m
k

)r
q

(m
k)

r

= n
√

n.



The 5-transitive Mathieu group, M12 is the largest primitive group in the following

sense.

Lemma 3.3.2. If G is a primitive subgroup of Sn not containing An, then |G| ≤ 1l32

|M12|
n
12 < 3n.

Proof. Let c be the constant |M12| 1
12 = 95040

1
12 ≈ 2.59911.... The |G| ≤ cn estimate

has to be proved. If n ≤ 9, then Bochert’s bound, while if n ≥ 10, then both n
√

n and

n1+[log2 n] are smaller than cn. The 4-transitive Mathieu groups are easily checked to

have order at most cn.

The classification of exponentially large primitive groups is essential in order to

complete the proofs of Corollaries 3.1.1 and 3.1.2. The proof of Corollary 3.1.4 is what

follows.

Proof. Let G be a primitive permutation group of degree n not containing An. If

|G| > 2n−1, then G is a 4-transitive Mathieu group or n is at most 22. For if n ≥ 23,

then n
√

n and n ·∏[log2 n]−1
i=0 (n − 2i) are smaller than 2n−1. From [19] it follows that a

primitive permutation group of degree at most 22 is affine, Mathieu or almost simple

with alternating or projective socle. It is checked that if such a group has order greater

than 2n−1, then it is permutation equivalent to one of the groups in the list. It is also

checked that all permutation groups in the list have order greater than 2n−1.

The next lemma finishes the proof of Corollaries 3.1.2 and 3.1.1 part (i).

Lemma 3.3.3. Let G be primitive of degree n not containing An. 1l33

(i) If |G| > 2n, then G is a 2-transitive group of degree at most 24;

(ii) If |G| ≥ n
√

n, then G is 3-transitive of degree at most 24.

Proof.



(i) If |G| > 2n, then G is permutation equivalent to one of the groups in the list of

Corollary 3.1.4. It is checked that only 2-transitive groups in the list have order at

least 2n. Moreover, |M24| > 224.

(ii) If |G| ≥ n
√

n, then G is permutation equivalent to one of the groups in the list of

Corollary 3.1.4. For if n ≤ 21, then 2n−1 < n
√

n; else n = 22 and G has socle isomorphic

to M22, so it does have order less than n
√

n. It is checked that only 3-transitive groups

in the list have order at least n
√

n. Moreover, |M24| > n
√

n.

Corollary 3.1.1 part (ii) follows from Lemma 3.3.3 part (ii).

For the proof of Corollary 3.1.3 notice that the product of all primes not greater

than n, is at least n0.5·(π(n)−π(
√

n)) > n(0.46·n−1.11·√n)/ ln n by [17]. This is greater than

n
√

n for n ≥ 200. For cases 24 < n < 200 it is checked by computer that
∏

p<n p > 2n−1

holds.

3.4 An application

Corollary 3.1.5 is proved now. We proceed by induction on n. If n ≤ d then the estimate

is straightforward. Let n > d. If G is primitive then |G| ≤ |M12|(n−1)/11 < d!(n−1)/(d−1).

(The former inequality follows from Lemma 3.3.2 for n ≥ 12, and holds also for 4 <

n < 12 by inspection.) If G is transitive with k-element blocks of imprimitivity then

|G| ≤ (d!(k−1)/(d−1))
n/k · d!(n/k−1)/(d−1) = d!(n−1)/(d−1)

follows by induction. Finally, if G is intransitive with an orbit of length k, then

|G| ≤ d!(k−1)/(d−1) · d!(n−k−1)/(d−1) < d!(n−1)/(d−1).



Chapter 4

On the number of conjugacy classes

of a permutation group

4.1 Introduction

We have talked about why it is more natural to count complex irreducible characters

than conjugacy classes for a finite group. However, sometimes it is indeed more natural

to work with conjugacy classes. Here is an example.

Nagao [53] proved that if G is a finite group and N is a normal subgroup, then the

number of irreducible characters of G is at most the number of irreducible characters of

N multiplied by the number of irreducible characters of the factor group, G/N . Later,

Gallagher [24] proved this fact using conjugacy classes. We believe that this proof is

more natural. If we denote the number of conjugacy classes of a finite group G by

k(G), then Nagao’s result translates to

Lemma 4.1.1 (Nagao, [53]). If G is a finite group and N a normal subgroup in G, l1

then k(G) ≤ k(N) · k(G/N).

This lemma is very important. It was first used in proving that for p-solvable

groups, Brauer’s k(B)-problem is equivalent to the k(GV )-problem, and most recently

20



it was used many times in proving the k(GV )-problem itself.

Here, we give another application of Lemma 4.1.1 of a (seemingly) different flavor.

Theorem 4.1.1 (Kovács, Robinson, [38]). If G is a permutation group of degree n, t2

then k(G) ≤ 5n−1.

The proof is inductive. First we prove the claim for primitive, then for imprimitive

and finally for intransitive groups. The induction starts by giving a universial upper

bound for the numbers of conjugacy classes for primitive groups, after which we apply

Lemma 4.1.1 in each step of the induction. The initial case is the most difficult one. In

the Kovács-Robinson proof the Praeger-Saxl [57] bound on the orders of primitive per-

mutation groups was used. This makes Theorem 4.1.1 independent of the Classification

Theorem of Finite Simple Groups (CTFSG).

However, if one wants to improve on the bound in Theorem 4.1.1, then CTFSG is

necessary. By a result of the previous chapter on the orders of primitive groups, one

can give a short proof for

Theorem 4.1.2 (Liebeck, Pyber, [42]). If G is a permutation group of degree n, then t3

k(G) ≤ 2n−1.

Originally, Theorem 4.1.2 was proved by estimating the numbers of conjugacy

classes of simple groups via existing recurrence relations for these numbers. (Indeed,

Kovács and Robinson had verified a relevant reduction to almost simple groups.) Re-

cently, the Liebeck-Pyber bound for simple groups (of Lie-type) was (and is being)

improved by Fulman and Guralnick in [23] and in a paper in preparation. In this

thesis we make no use of these improvements in proving

Theorem 4.1.3. Any permutation group of degree n > 2 has at most 3(n−1)/2 conju- t3.5

gacy classes.



4.2 Linear groups

In this section we give upper bounds for the number of conjugacy classes of a linear

group. The first of these is crucial for us in dealing with primitive permutation groups.

A subgroup of the general linear group, GL(n, q) is called completely reducible if it

acts completely reducibly on the natural n-dimensional module over the field GF (q).

Our first result is the following.

Theorem 4.2.1. If G is a completely reducible subgroup of GL(n, q), then k(G) ≤ q5n. t5

Proof. Let G be a completely reducible subgroup of GL(n, q) acting on V , an n-

dimensional vector space over GF (q) where q is a fixed prime power. We show

k(G) ≤ q5n by induction on n.

This is true for n = 1 since G is then cyclic of order at most q − 1.

Suppose now that n > 1, and that the claim holds for all integers less than n.

First of all, we may assume that G is irreducible. For if G is not, then the GF (q)G-

module V is a direct sum of two non-trivial submodules, say V1 and V2, of dimensions

1 ≤ m < n and n −m, respectively. Let the kernel of the action of G on the vector

space V1 be B. Since B/G, by Clifford’s theorem, we see that B is completely reducible

on V and also on V2. By induction, we have k(G/B) ≤ q5n and k(B) ≤ q5·(n−m), hence

we get

k(G) ≤ k(B) · k(G/B) ≤ q5n

by Lemma 4.1.1.

The vector space V admits an m-space decomposition V = V1 ⊕ . . . ⊕ Vt for some

1 ≤ m ≤ n and t ≥ 1 with respect to the irreducible group G. (Each vector space,

Vi (for 1 ≤ i ≤ t) has dimension m, and V is an imprimitive irreducible G-module if

t > 1.) Choose t to be as large as possible. If t = n and m = 1, then we have

k(G) ≤ k(B) · k(G/B) ≤ qn · 2n−1 ≤ q5n



by Lemma 4.1.1 and by Theorem 4.1.2 where B denotes the kernel of the action of G

on the set of subspaces {V1, . . . , Vt}.
Let t < n and m ≥ 2. For each 1 ≤ i ≤ t, the set stabilizer, Gi of the vector space

{0}⊕ . . .⊕ Vi⊕ . . .⊕{0} in G may be considered as a group acting irreducibly on the

vector space Vi. (Note that the Gi’s are conjugate subgroups in G each of index t.) By

the maximality of t, the Vi’s do not admit non-trivial direct sum decompositions (that

is, decompositions with at least two summands) with respect to the Gi’s. However, they

could admit tensor product decompositions. For each 1 ≤ i ≤ t, let Vi
∼= Wi1⊗. . .⊗Wir

be a tensor product decomposition with respect to Gi so that r ≥ 1 is as large as possible

and that dim(Wij) = n0 > 1 for all 1 ≤ j ≤ r. (Note that the Wij’s are not subspaces

of V nor of any of the Vi’s.)

From now on, B denotes the maximal normal subgroup of G which preserves each

vector space Wij of the decomposition

V = (Wi1 ⊗ . . .⊗W1r)⊕ . . .⊕ (Wt1 ⊗ . . .⊗Wtr).

Notice that G/B may be viewed as a permutation group of degree tr, and that B is

considered to be a subgroup of

H = (H11 ◦ . . . ◦H1r)× . . .× (Ht1 ◦ . . . ◦Htr)

where the Hij’s are isomorphic groups with irreducible representations on the Wij’s.

Moreover, for each projection πij of H to the component Hij, we have πij(B) = Hij.

Also, notice that by our construction (by the maximality of t and r), the Wij’s do not

admit non-trivial direct sum nor non-trivial tensor product decompositions (that is,

decompositions with at least two factors) with respect to the Hij’s.

We now need a theorem of Liebeck.

Theorem 4.2.2 (Liebeck, [40]). Let G0 be a simple classical group with natural t4



projective module V of dimension n over GF (q), and let G be a group such that

G0 / G ≤ Aut(G0). If H is any maximal subgroup of G, then one of the following

holds:

(i) H is a known group (and H ∩G0 has well-described (projective) action on V );

(ii) |H| < q3n.

The known groups in (i) are groups of the following general types: stabilizers of

subspaces, or of sets of subspaces of V ; stabilizers of decompositions V = V1⊗ . . .⊗Vr;

normalizers of classical groups over subfields or extension fields of GF (q); or Ac or Sc

in a representation of smallest degree over GF (q) (n ∈ {c−1, c−2}). These subgroups

are described in more detail in paragraphs 3 and 4 of [40], or in the book [37].

Let F (B) be the Fitting subgroup of B. Notice that B/F (B) can be considered as

a factor group of a subgroup of PGL(n, q). Hence we can use Theorem 4.2.2 repeatedly

to describe the group B/F (B). We see that there are four possibilities for B/F (B).

These are the following.

• B/F (B) is solvable;

• B/F (B) has a minimal normal subgroup, M/F (B) isomorphic to a direct product

of 1 ≤ ` ≤ tr copies of a non-abelian finite simple classical group, T of dimension

x over the field of y elements so that |B/M | ≤ |Out(T )|`;

• B/F (B) is a factor group of a permutation group of degree at most (n0 + 2)rt ≤
n + 2rt ≤ 2n;

• |B/F (B)| ≤ q3n.

(Note that if K is a subgroup of T tr where T is as above, so that K projects

naturally onto each direct factor of T tr, then K = T ` for some 1 ≤ ` ≤ tr. This

explains the structure of the groups M/F (B) and hence of the groups B/F (B) of the

second type above.)



Next we state two rather crude bounds for |Out(T )| where T is a finite simple

classical group.

Lemma 4.2.1. Let T be a finite simple classical group as above. If T 6= PSL(x, y), yx1

then we have

|Out(T )| ≤ y2.5x

6x/2
.

If T = PSL(x, y), then

|Out(T )| ≤ y2x

(y − 1)
.

Proof. The exact values for |Out(T )| are found on page 170 of [37]. We use those. If

T = PSL(x, y), then we have

|Out(T )| ≤ 2 · y2 ≤ y2x−1 <
y2x

(y − 1)
.

So from now on, suppose that T 6= PSL(x, y).

If y = 2, then

|Out(T )| ≤ 6 <
22.5x

6x/2

unless x = 2 in which case T is not simple.

Let y = 3. In this case we have

|Out(T )| ≤ 24 <
32.5x

6x/2

for all x ≥ 2.

Finally, if y ≥ 4, then we see that

|Out(T )| ≤ 6 · (y + 1) · (y − 1) < 6 · y2 <
y2.5x

6x/2

for all x ≥ 2.



At this point and once in a later section we need an elementary result from [24]

and a theorem from [42].

Lemma 4.2.2 (Gallagher, [24]). If G is a finite group and H is a subgroup of G, then yx2

k(H)/(G : H) ≤ k(G) ≤ (G : H) · k(H),

where (G : H) denotes the index of H in G.

Theorem 4.2.3 (Liebeck, Pyber, [42]). Let G be a finite simple group of Lie type yx3

over GF (q). If ` = rk(G), then

k(G) ≤ (6q)`.

We are now in the position to prove the following.

Lemma 4.2.3. If B/F (B) is a group of any of the four types above, then we have yx4

k(B/F (B)) ≤ q3n.

Proof. This is trivial in the fourth case. Also, if B/F (B) is solvable, then so is B.

Since B is a normal subgroup in G, it is completely reducible, hence we have |B| ≤
q3n by the Pálfy-Wolf theorem [59], [71]. This proves the lemma in the first case.

By Theorem 4.1.2, the number of conjugacy classes and so the number of complex

irreducible characters of a finite permutation group, K of degree at most 2n is at most

22n < q3n, hence any factor group of K has at most q3n conjugacy classes. This gives

the result in the third case.

Suppose that B/F (B) and T are of the second type above. By Lemma 4.1.1, we

have

k(B/F (B)) ≤ k(M/F (B)) · k(B/M) ≤ k(T )tr · |Out(T )|tr.

If T 6= PSL(x, y), then by Theorem 4.2.3 and by Lemma 4.2.1, we have

k(B/F (B)) ≤ y3xtr ≤ q3n0tr ≤ q3n.



Let T = PSL(x, y). In this case we may apply Lemma 4.2.2 to the estimate k(GL(x, y)) <

yx of Lemma 5.9 (ii) of [46] to conclude that k(T ) < yx · (y − 1). Hence by Lemma

4.2.1, we again get that

k(B/F (B)) ≤ q3n.

This completes the proof of the lemma.

Now F (B) is a nilpotent characteristic subgroup of B, hence it is normal in G.

Since G is irreducible, F (B) is a completely reducible nilpotent group by Clifford’s

theorem. By Theorem 1.6 (a) of [71], we conclude that k(F (B)) ≤ |F (B)| ≤ q1.6n.

From this and by Lemma 4.2.3 we have that

k(B) ≤ k(B/F (B)) · k(F (B)) ≤ q4.6n.

If 1 < n0 ≤ 4, then |B| ≤ q4n, and hence by Theorem 4.1.2, we have

k(G) ≤ k(B) · k(G/B) ≤ q4n · 2tr ≤ q4.5n < q5n.

Otherwise, if n0 ≥ 5, then again by Theorem 4.1.2, we get

k(G) ≤ k(B) · k(G/B) ≤ q4.6n · 2tr ≤ q4.8n < q5n.

This completes the proof of Theorem 4.2.1.

This sharpens Corollary 5 of [42] which was used (see [42]) to extend a result of

Arregi and Vera-Lopez [2]. By Theorem 4.2.1 we may sharpen a little on Corollary 6

of [42] as follows.

Theorem 4.2.4. Any subgroup of GL(n, q) has at most q(2n2+31n)/6(n− 1)! · 2n−1 con-

jugacy classes.



Proof. (Liebeck, Pyber, [42]) If G is any subgroup of GL(n, q) (q = pf ), then G/Op(G)

may be viewed as a completely reducible linear group acting on the direct sum of the

composition factors of the natural module for G. By Theorem 4.2.1, k(G/Op(G)) ≤ q5n

holds. By a result of Arregi and Vera-Lopez [2], any p-subgroup of GL(n, q) has at

most q(2n2+n)/6(n− 1)! · 2n−1 conjugacy classes. Hence, by Lemma 4.1.1, we get

k(G) ≤ k(Op(G)) · k(G/Op(G)) ≤ q(2n2+31n)/6(n− 1)! · 2n−1

as required.

4.3 Primitive permutation groups

In this section we prove some upper bounds for the number of conjugacy classes of a

normal subgroup of a primitive permutation group. Our main result is Theorem 4.3.3.

This result is necessary to deduce our general k(G) ≤ 3(n−1)/2 bound for arbitrary

permutation groups G of degree n > 2.

We note here that this section is not entirely self-contained. The actual lower bound

we use for the partition function, p(n) is deduced only in Chapter 3. However, this

should not cause much inconvenience for the reader, since we provide some supporting

evidence and explanation at that point.

Let us start by reminding the reader what a primitive permutation group is. There

are two equivalent definitions both of which we make use of. Usually, we think of

a primitive permutation group as a transitive group having no non-trivial block of

imprimitivity. This is equivalent to saying that any one-point stabilizer of the transitive

group is maximal. For example, a 2-transitive group is always primitive.

As for 2-transitive groups, the structure of primitive permutation groups is de-

scribed via their minimal normal subgroups. The ultimate structure theorem is the

so-called O’Nan-Scott-Aschbacher theorem. It is complicated to state and we do not



need it in its full glory.

The group, S generated by all minimal normal subgroups of the primitive group, G

is called the socle of G. This is a characteristic subgroup of G isomorphic to a direct

power of, say r copies of a simple group, L. Since each nontrivial normal subgroup of

a primitive group is transitive, S is also transitive.

If L is abelian, then S is an (elementary) abelian group and is the unique minimal

normal subgroup of G. In fact, S acts regularly on the underlying set. It is not hard to

see that in this case G/S (or a one-point stabilizer of G) may be viewed as an irreducible

subgroup of GL(r, p) where |L| = p. Hence, for all nontrivial normal subgroups, N

of G, the factor group N/S can be viewed as a completely reducible subgroup of

GL(r, p). (This is why we needed to deal with completely reducible groups in the

previous section.) Primitive permutation groups with an (elementary) abelian regular

socle are called affine.

If L is not abelian, then the situation is much more complicated. The group, G can

be almost simple if r = 1, or it can be of simple diagonal type, of product type or of

twisted wreath type if r > 1 holds. By an almost simple primitive group, G with socle,

L we mean a primitive permutation group containing L and contained in Aut(L). We

need not explain what the other types of primitive permutation groups are.

On the bottom of page 553 of [42] it is noted that whenever L is a non-alternating,

non-abelian finite simple group, then the number of conjugacy classes, k(L) of L sat-

isfies k(L) ≤ P (L)4 where P (L) denotes the minimal degree of a faithful permutation

representation for L. Using Theorem 1 of [42] and the bounds for the minimal degrees

P (L) listed in the proof of Proposition 1.9 of [42] and in [16], it is easy to improve on

this estimate.

Lemma 4.3.1. If L is a non-alternating, non-abelian finite simple group, then we l2

have k(L) ≤ P (L)3.6 where P (L) denotes the minimal degree of a faithful permutation

representation for L.



To obtain information on the number of conjugacy classes of an almost simple group,

we need another technical lemma, this time on the orders of the outer automorphism

groups of simple groups. A weak version of Lemma 8.6 of [29] is the following.

Lemma 4.3.2 (Guralnick, Pyber, [29]). If L is a non-abelian finite simple group, then l3

|Out(L)| ≤ P (L)0.82 where P (L) denotes the minimal degree of a faithful permutation

representation for L.

We also need Lemma 2.13 from [42]. For a group G we denote the smallest degree

of a faithful transitive permutation representation of G by P t(G).

Lemma 4.3.3 (Liebeck, Pyber, [42]). If S1, . . . , Sr are non-abelian simple groups, l4

then

P t(S1 × . . .× Sr) ≥
r∏

i=1

P t(Si).

The following is a strong version of Lemma 2.14 of [42].

Lemma 4.3.4. Let N 6= {1} be a normal subgroup of a primitive permutation group l5

G of degree n. Suppose that G has a non-abelian socle. Then there exists a minimal

normal subgroup M of G contained in N and a normal subgroup K of N containing

M , so that |K/M | ≤ n0.82 and that N/K has an embedding into Sr with r ≤ log5n.

Proof. Let M be a minimal normal subgroup of G contained in N . By the Aschbacher-

O’Nan-Scott theorem, we know that M is a direct power of a non-abelian simple group,

say M = Lr. We also know that M is transitive. By Lemma 4.3.3, we have P t(L)
r ≤ n.

It follows that r ≤ log5n. Now N acts on the direct factors of M by conjugation. The

kernel K of this action has an embedding into Aut(L)r, and N/K ≤ Sr. Finally, by

Lemma 4.3.2, we have |Out(L)| ≤ (P t(L))
0.82

. This gives us

|K/M | ≤ |Out(L)|r ≤ (P t(L))
0.82r ≤ n0.82.



Now we are in the position to give a polynomial bound for the number of conjugacy

classes of a certain primitive permutation group.

Theorem 4.3.1. Let G be a primitive subgroup of Sn, and let N be a normal subgroup t6

of G. If the socle of G is isomorphic to a direct power of A6, or is not a direct product

of non-abelian alternating groups, then k(N) ≤ n6.

Proof. Let G be a primitive permutation group of degree n with socle isomorphic to a

direct power of L where L is a simple group. Let N be a normal subgroup of G different

from {1}. Suppose that L is isomorphic to A6, or is non-abelian and non-alternating.

By Lemma 4.3.4, we know that there exists a minimal normal subgroup M ∼= Lr of G

contained in N and a normal subgroup K of N containing M , so that |K/M | ≤ n0.82

and that N/K has an embedding into Sr with r ≤ log5n. By Lemma 4.1.1, Lemma

4.3.4 and Theorem 4.1.2, we have k(N/M) ≤ k(K/M) · k(N/K) ≤ n0.82 · 2r−1 ≤ n1.32.

By Lemma 4.3.1 and by inspection for the case L = A6, it follows that if L is isomorphic

to A6, or is non-abelian and non-alternating, then by Lemma 4.1.1 and by Lemma 4.3.3

we have k(N) ≤ k(N/M) · k(M) ≤ n1.32 · n3.6 < n5. Hence we reduced the proof of the

theorem to the case where the primitive permutation group G is of affine type, that

is, if it has an abelian socle S. In this case N contains S, and N/S may be considered

as a completely reducible subgroup of GL(m, p) where p is a prime and pm = n. By

Lemma 4.1.1 and Theorem 4.2.1 we get k(N) ≤ k(N/S) · k(S) ≤ p5m · n = n6, which

completes the proof of the theorem.

This sharpens part (ii) of Corollary 2.15 of [42].

But what happens if the socle of a primitive group is a direct product of isomorphic

copies of a non-abelian alternating group of degree different from 6? Well, the number

of conjugacy classes of the symmetric group Sn is equal to the number of partitions,

p(n) of the integer n. Let us try to think along this line.

First we prove a lemma.



Lemma 4.3.5. For any integers r ≥ 2 and m ≥ 5, we have yx5

p(m)r · 2r−1 < p(mr).

Proof. Let r = 2. By [26], we may and do suppose that m ≥ 13. To prove the

inequality for r = 2, it is sufficient to give

p(m) · p(m + 6) + p(m) · p(m + 2) > 2 · p(m)2

number of different partitions of m2.

Let Π1 be the set of all partitions of m2 of the following form. Take any partition,

π1 of m and multiply each part by m − 3. Then combine this new partition with an

arbitrary partition, π′1 of m + 6 together with two parts of lengths m− 3 each. There

are p(m) choices for π1 and p(m + 6) choices for π′1. Hence |Π1| ≤ p(m) · p(m + 6). We

claim that |Π1| ≥ p(m) · p(m + 6). Suppose that π ∈ Π1. We must show that there is

a unique partition, π1 of m and a unique partition, π′1 of m + 6 so that π is obtained

by the above construction from π1 and π′1. Since m ≥ 13, any partition of m − 6 can

contain at most one part of length divisible by m− 3, possibly a part equal to m− 3.

Hence π′1 is uniquely defined; it consists of all parts of π not divisible by m−3 possibly

together with a part of length m− 3. The partition, π1 is uniquely defined as well. It

consists of all parts of π divisible by m−3 except two or possibly three parts of lengths

m− 3 each. This completes the proof of our claim. We get |Π1| = p(m) · p(m + 6).

Now let Π2 be the set of all partitions of m2 of the following form. Take any

partition, π2 of m and multiply each part by m− 2. Then combine this new partition

with an arbitrary partition, π′2 of m + 2 together with a part of length m − 2. There

are p(m) choices for π2 and p(m + 2) choices for π′2. Hence |Π2| ≤ p(m) · p(m + 2). We

claim that |Π2| ≥ p(m) · p(m + 2). Suppose that π ∈ Π2. We must show that there is

a unique partition, π2 of m and a unique partition, π′2 of m + 2 so that π is obtained



by the above construction from π2 and π′2. Since m ≥ 13, the partition, π′2 is uniquely

defined; it consists of all parts of π not divisible by m−2 possibly together with a part

of length m− 2. The partition, π2 is uniquely defined too. It consists of all parts of π

divisible by m− 2 except one or possibly two parts of lengths m− 2 each. This proves

our claim, and we get |Π2| = p(m) · p(m + 2).

Since m − 2 and m − 3 are relatively prime, it is easy to see that Π1 ∩ Π2 = ∅.
Hence |Π1 ∪ Π2| = p(m) · p(m + 6) + p(m) · p(m + 2), and this proves the lemma for

r = 2.

Now let r ≥ 3. It is sufficient to show

2 · p(m) · p(mr−1) < p(mr).

Let Π be the set of all partitions of mr of the following form. Take any partition

of mr−1 and multiply each part by m− 1. Combine this with a partition of m. Hence

we get a partition π of mr−1 · (m− 1) + m. Combine π either with a part of length 2m

together with mr−2 − 3 number of parts each of lengths m, or with two parts each of

length 2m and mr−2 − 5 number of parts each of lengths m. By a similar argument as

above, it is possible to show that |Π| = 2 · p(m) · p(mr−1). Since the partition (mr) is

not in Π, we have 2 · p(m) · p(mr−1) < p(mr).

The proof of the lemma is now complete.

Theorem 4.3.2. Let m ≥ 5, or m ≥ 2 and r = 1. If (Am)r ≤ G ≤ Sm wr Sr, then t7

k(G) ≤ p(mr), with equality if and only if r = 1 and G = Sm, or r = 1, m = 3 and

G = A3.

Proof. Put n := mr. Let r = 1. In this case, we may and do suppose that G = An. The

conjugacy classes of Sn can be naturally associated with the partitions of n. We will

now associate the conjugacy classes of An with some partitions of n. If the conjugacy

class of Sn associated with the partition π is a unique conjugacy class in An, then



associate this class with π. Otherwise, if the conjugacy class of Sn associated with π is

the union of at least two conjugacy classes of An, then it must be the union of precisely

two and π must be a partition of n with pairwise different odd parts. In this case

associate one conjugacy class of An with π, and associate the other with the partition

of n obtained from π by replacing the (unique) greatest odd part k by the parts 1 and

k − 1. It is easy to see that this map is an injection from the set of conjugacy classes

of An to the set of partitions of n. If n is even or n > 3 is odd, then no conjugacy class

of An is associated with the partition π = (n) or π = (n − 3, 3), respectively. Finally,

the statement of the theorem is true for n = 2 and n = 3. We conclude that the result

is true for t = 1.

Now let r ≥ 2 and m ≥ 5. Then by Lemma 4.1.1 and by Theorem 4.1.2, we can

write k(G) ≤ p(m)r · 2r−1. Finally, an application of Lemma 4.3.5 finishes the proof of

the theorem.

Notice that so far we nearly proved the following. If N 6= {1} is a normal subgroup

of a primitive group G of degree n with socle isomorphic to (Am)r where Am is a

non-abelian alternating group different from A6, then k(N) ≤ p(n) with equality if

and only if N = Sn. By Lemma 4.3.4, the Aschbacher-O’Nan-Scott theorem and by

Theorem 4.3.2, there exists a normal subgroup K of N so that k(K) ≤ p(m)r and that

N/K has an embedding into Sr. Now, by Lemma 4.1.1 and by Theorem 4.1.2, we see

that k(N) ≤ k(K) · k(N/K) ≤ p(m)r · 2r−1. From this and by Lemma 4.3.5, we have

k(N) < p(mr) unless r = 1. In case r = 1, Theorem 4.3.2 gives k(N) ≤ p(m). Finally,

mr ≤ n follows from Lemma 4.3.3 and hence we get k(N) ≤ p(n), since the partition

function is strictly increasing.

We are now in the position to state the main result of this section.

Theorem 4.3.3. Let G be a primitive subgroup of Sn, and let N be a normal subgroup t8

of G. Then k(N) ≤ p(n), where p(n) denotes the number of partitions of the integer

n, with equality if and only if N = Sn or if n = 3 and N = A3.



Proof. By the remark after Theorem 4.3.2, we may (and do) assume that N 6= {1} is

a normal subgroup of a primitive group G of degree n with socle S = Lr where L is

isomorphic to A6 or is abelian or a non-alternating simple group.

By Theorem 4.3.1 we have k(N) ≤ n6.

Later, in Theorem 3.4.2, we give the lower bound e2.5
√

n/13n < p(n) for the partition

function holding for all positive integers n. We use this to complete the proof of the

claim.

It is easy to check that n6 < e2.5
√

n/13n < p(n) for n ≥ 284. Moreover, by the

computer package [26] it is easily checked that n6 < p(n) holds for 252 ≤ n ≤ 284,

while n6 > p(n) for n < 252. So in order to establish the claim, we may (and do)

suppose that n < 252. Now [26] contains a list of all primitive permutation groups

G of degree less than 252 (up to permutation isomorphism) where L is isomorphic

to A6 or is abelian or a non-alternating simple group. From this list it is not too

difficult to deduce the list of all normal subgroups, N . It is checked that we always

have k(N) < p(n) unless N = S6 if n = 6, or if N = A3 when n = 3.

This sharpens part (i) of Corollary 2.15 of [42].

It is important for the reader to believe the proof of Theorem 4.3.3. For sufficiently

large n there is no problem (this is part (i) of Corollary 2.15 of [42]) if one compares the

asymptotic formula of p(n) with the bound in part (iii) of Theorem 3.1.1. The concern

is with the case when n is small. Currently, through work of Fulman and Guralnick

[23], Guralnick and the author are working on improving the bounds in Lemma 4.3.1

and Theorem 4.2.1. It is possible that ‘almost all’ almost simple groups of degree n

have at most n + 3 conjugacy classes. Moreover, it is conjectured that a completely

reducible subgroup of GL(n, q) has at most qn conjugacy classes. If one could prove

these, then we could sharpen the k(N) ≤ n6 bound in Theorem 4.3.1 to something like

k(N) ≤ 2n. This would give a much more elegant proof for Theorem 4.3.3.



4.4 The general bound

In this section we prove Theorem 4.1.3.

We start with a couple of rather technical lemmas.

The first one helps us to start the induction in proving Theorem 4.1.3.

Lemma 4.4.1. If G is a subgroup of Sn with n ≤ 12, then k(G) ≤ 5n/4. l6

Proof. Use induction on n. If G is intransitive and has an orbit ∆ of length k < n, then

by induction and by Lemma 4.1.1, we have k(G) ≤ k(G/K)·k(K) ≤ 5k/4·5(n−k)/4 = 5n/4

where K is the kernel of the action of G on ∆. For transitive groups this can easily

be read off from the library of transitive permutation groups of the computer package

[26].

Note that the bound in Lemma 4.4.1 is sharp for direct products of ` isomorphic

copies of either S4 or D8 acting naturally on n = 4` letters.

We also need to give an upper estimate for the number of partitions of the integer

n. Explicit upper bounds appear in [21] and [68] for example, but we prefer a much

weaker estimate in a different form.

Lemma 4.4.2. For n > 12 we have p(n) < c · (3/2)n where c = (2 · √3)
− 1

2 . l7

Proof. For n ≥ 50 we have p(n) ≤ eπ
√

2n/3 by [21], and the right hand side is smaller

than c · (3/2)n. For 12 < n < 50 the statement is checked easily.

Another technical lemma we need is

Lemma 4.4.3. If G ≤ Sn is primitive with 7 ≤ n ≤ 12 and N is a normal subgroup l8

of G of order prime to 7, then k(N) ≤ 2(n−1)/2.

Proof. This is checked easily by [26].

In certain cases in proving our general bound (for small degrees) Lemma 4.1.1 is

not sufficient. We need a more careful estimate. The following result is taken from

page 447 of [38].



Lemma 4.4.4 (Kovács, Robinson, [38]). Let N be a normal subgroup of an arbitrary l9

finite group G. If every subgroup of G/N has at most t conjugacy classes, then k(G) ≤
t ·#{G -conjugacy classes of N}.

We now begin the proof of Theorem 4.1.3.

Choose a counterexample G with n minimal. We may suppose that G is transitive.

For if G was intransitive with an orbit ∆ of length k < n, then by assumption we would

have k(G) ≤ k(G/K)·k(K) ≤ 3(k−1)/2 ·3(n−k−1)/2 < 3(n−1)/2 where K is the kernel of the

action of G on ∆. Moreover, we may also assume that G has no blocks of imprimitivity

of size greater than 2 and less than n/2. For if G had a block ∆ of size 2 < k < n/2,

then we would have k(G) ≤ k(G/B)·k(B) ≤ 3((n/k)−1)/2 ·(3(k−1)/2)
(n/k)

= 3(n−1)/2 where

B is the kernel of the action of G on the blocks of imprimitivity associated to ∆.

Let H be the point stabilizer of the transitive group G. By the observations above

and by Theorem 1.5.A of [20] we have four possibilities to consider for subgroups of G

containing H. These were also given in [38], so for simplicity, from now on we use the

notations of that paper.

(i) H max G.

(ii) H max K max G for some subgroup K of G with (G : K) = 2.

(iii) H max K max G for some subgroup K of G with (K : H) = 2.

(iv) H max K max L max G for some subgroups K, L of G with (K : H) = (G :

L) = 2.

By Lemma 4.4.1, we may suppose that n ≥ 13.

Case (i). By Theorem 4.3.3 and Lemma 4.4.2, we have k(G) ≤ p(n) < c · (3/2)n ≤
3(n−1)/2.

Case (ii). Let (K : H) = a. We may suppose that a ≥ 7 (since n ≥ 13). Let C =

coreK(H). For any x in G\K we have C∩Cx = {1G}, as coreG(H) is trivial. Now K/C



and K/Cx are both isomorphic to primitive permutation groups of degree a, and CCx

is normal in K, so by Theorem 4.3.3, we have k(K/C) ≤ p(a) and k(CCx/Cx) ≤ p(a).

Hence k(K) ≤ k(K/C) · k(C/C ∩ Cx) ≤ p(a)2. Now k(G) ≤ 2 · k(K) ≤ 2 · p(a)2. But

we are assuming that k(G) > 3(2a−1)/2, so we have 2 · p(a)2 > 3(2a−1)/2. This is checked

to be false for 7 ≤ a ≤ 12. Else if a > 12, we get c · (3/2)a > 3(2a−1)/2 by Lemma 4.4.2,

which is also a contradiction.

Case (iii). Let (G : K) = a and C = coreG(K). Then C is an elementary abelian

2-group of order at most 2a, and G/C is isomorphic to a primitive permutation group

of degree a. Suppose first that a > 12. By Lemma 4.4.2 and by our assumption,

we have c · (3/2)a · 2a > p(a) · 2a ≥ k(G) > 3(2a−1)/2, which is a contradiction. By

Lemma 4.4.1 and by the above argument, we may assume that 7 ≤ a ≤ 12. If the

primitive group G/C of degree a has order not divisible by 7, then by Lemma 4.4.3,

we have k(G/C) ≤ 2(a−1)/2. Hence we get 2(3a−1)/2 ≥ k(G) > 3(2a−1)/2, which is also

a contradiction. So we may suppose that G/C has an element of order 7. By Lemma

4.4.1, every subgroup of G/C has at most 5a/4 conjugacy classes, so by Lemma 4.4.4

we get k(G) ≤ ((2a − 2 · 2a−7)/7 + 2 · 2a−7) · 5a/4. By assumption we have 3(2a−1)/2 <

((2a − 2 · 2a−7)/7 + 2 · 2a−7) · 5a/4, which is also false.

Case (iv). Let (L : K) = a. Let C = coreL(H) and D = coreL(K). For any x in

G \ L we have C ∩ Cx = {1G}. Then L/D is isomorphic to a primitive permutation

group of degree a, and D/C is an elementary abelian 2-group of order at most 2a. By

Theorem 4.3.3, k(L/D) ≤ p(a), so that k(L/C) ≤ 2a · p(a). Now set M = CCx. Then

k(MDx/Dx) ≤ p(a) by Theorem 4.3.3, so k(M/M ∩ Dx) ≤ p(a). Hence k(M/Cx) ≤
k(M/M ∩Dx) · k(M ∩Dx/Cx) ≤ 2a · p(a), so that k(C) ≤ 2a · p(a), k(L) ≤ 22a · p(a)2,

and k(G) ≤ 2 · 4a · p(a)2. Suppose first that a > 12. By Lemma 4.4.2 and by our

assumption, we have 3(4a−1)/2 < 2 · 22a · c2 · (3/2)2a, which is false. By Lemma 4.4.1

and by the previous argument, we may suppose that 4 ≤ a ≤ 12. First, let a ≥ 7.

If L/D does not contain Aa, then we have k(L/C) ≤ 2a · 2(a−1)/2 by Lemma 4.4.3.



Moreover, k(MDx/Dx) ≤ 2(a−1)/2, so k(C) = k(M/Cx) ≤ 2(3a−1)/2. This means that

k(L) ≤ 23a−1, and so k(G) ≤ 8a. By assumption we have 8a > 3(4a−1)/2, which

is a contradiction. Else if the primitive group L/D of degree a contains Aa, then

k(L/C) ≤ ((2a − 2 · 2a−7)/7 + 2 · 2a−7) · 5a/4 by Lemma 4.4.4. So this way we get

k(G) ≤ 2ap(a) · ((2a − 2 · 2a−7)/7 + 2 · 2a−7) · 5a/4 which is checked to be smaller than

3(4a−1)/2. (Applying the inequality p(a) ≤ 2(a+1)/2 suffices to show this.) This is a

contradiction. Let a = 4. Now L/D is a primitive group of order divisible by 3,

so by Lemma 4.4.4 we get k(L/C) ≤ ((24 − 4)/3 + 4) · 5 = 40. Similarly, we get

k(C) = k(M/Cx) ≤ 40. This sums up to k(G) ≤ 2 · k(L) ≤ 3200, which is again a

contradiction. Let a = 5. By Lemma 4.4.4, we get k(L/C) ≤ ((25 − 2)/5 + 2) · 7 = 56.

Similarly k(M/Cx) ≤ 56. This means that k(G) ≤ 2 ·562 = 6272, which yields another

contradiction. Finally, let a = 6. All primitive groups of degree 6 contain a 5-cycle, so

by Lemma 4.4.4, we can put k(L/C) ≤ ((26 − 4)/5 + 4) · 11 = 176. Similarly we see

that k(M/Cx) ≤ 176. So we have k(G) ≤ 2 · 1762, which is a contradiction.

4.5 Groups with no composition factor of order 2

To improve on the 3(n−1)/2 general bound, the next step would probably be to show

that k(G) ≤ 5(n−1)/3 holds for all permutation groups G of degree n > 3. This would

be sharp in case G = D8 or G = S4 when n = 4. A careful modification of the proof of

Theorem 4.1.3 makes it possible to attain the 5(n−1)/3 bound but only for permutation

groups with no composition factor isomorphic to C3 provided that k(H) ≤ 5n/4 holds

for n ≤ 31 whenever H is a (transitive) group of degree n. If we allow G to possess

composition factors isomorphic to C3, then we have more cases to consider which are

not discussed by the proof of Theorem 4.1.3.

Next we restrict our attention to some of these additional cases and make a step

in developing the method to deal with groups having C3 as a composition factor. To

keep the argument reasonably short, we restrict the structure of G (by excluding C2



from the set of composition factors of G) but in exchange we prove a sharper bound

than the proposed k(G) ≤ 5(n−1)/3.

Theorem 4.5.1. If G is a subgroup of Sn with no composition factor isomorphic to t4.5

C2, then k(G) ≤ (5/3)n.

We start with the following

Lemma 4.5.1. If G is a transitive permutation group of degree n with 5 ≤ n ≤ 9 l10

such that no composition factor of G is isomorphic to C2, then k(G) ≤ k(An).

Proof. This is easily checked by [26].

To prove Theorem 4.5.1, it is sufficient to see that if G is a permutation group of

degree n > 4 with no composition factor isomorphic to C2, then k(G) ≤ (5/3)n−1.

Let G be a counterexample to the previous statement with n minimal. As in the

beginning of the previous section, we may assume that G is transitive. Let ∆ be a

block of imprimitivity for G, and let B be the kernel of the action of G on the system

of blocks associated with ∆. Again, by the argument at the beginning of the previous

section, we may suppose that |∆| = 1, 2, 3, 4, n/4, n/3, n/2 or n. Now |∆| cannot be

2 or 4, since in this case the normal subgroup B is solvable of even order. Moreover,

|∆| can not be n/4 or n/2 since in this case the factor group G/B is solvable of even

order.

By these observations and by Theorem 1.5.A of [20], we have four possibilities to

consider for proper subgroups K, L of G strictly containing the point-stabilizer H.

These are the following.

(i) H max G.

(ii) H max K max G for some subgroup K of G with (G : K) = 3.

(iii) H max K max G for some subgroup K of G with (K : H) = 3.



(iv) H max K max L max G for some subgroups K, L of G with (K : H) = (G :

L) = 3.

By Lemma 4.4.1, we may suppose that n ≥ 13.

Case (i). By Theorem 4.3.3 and by Lemma 4.4.2, we have k(G) ≤ p(n) < c·(3/2)n ≤
(5/3)n−1 which is a contradiction.

Case (ii). Observe that K is normal in G. Let (K : H) = a, and let C = coreK(H).

For any x in G\K we have C∩Cx∩Cx2
= {1G}, as coreG(H) is trivial. Now K/Cx and

K/Cx2
are both isomorphic to primitive permutation groups of degree a, and both CCx

and (Cx ∩ C)Cx2
are normal in K, so by Theorem 4.3.3, we have k(K/Cx) ≤ p(a),

k(CCx/Cx) ≤ p(a) and p(a) ≥ k((Cx ∩ C)Cx2
/Cx2

) = k(Cx ∩ C). Hence k(K) ≤
k(K/C)·k(C) ≤ k(K/C)·k(C/Cx∩C)·k(Cx∩C) ≤ k(K/C)·k(CCx/Cx)·k(Cx∩C) ≤
p(a)3. Now k(G) ≤ 3 · k(K) ≤ 3 · p(a)3 = 3 · p(n/3)3. By Lemma 4.4.2 we have

k(G) ≤ 3c3 · (3/2)n < (5/3)n−1 for n > 36. So we must have 15 ≤ n ≤ 36. It is

checked by [26] that in this case we again have k(G) ≤ 3 · p(n/3)3 < (5/3)n−1. This is

a contradiction.

Case (iii). Let (G : K) = a, and let C = coreG(K). Since C has no composition

factor isomorphic to C2, we have k(C) ≤ |C| ≤ 3n/3. On the other hand, G/C is

isomorphic to a primitive permutation group of degree a, so we have k(G/C) ≤ p(a)

by Theorem 4.3.3. This yields k(G) ≤ k(C) ·k(G/C) ≤ 3n/3 ·p(n/3). By Lemma 4.4.2,

we have k(G) ≤ 3n/3 · c · (3/2)n/3 < (5/3)n−1 for n > 36. So we must have 15 ≤ n ≤ 36.

For n = 30, 33 and 36 it is checked by [26] that k(G) ≤ 3n/3 ·p(n/3) < (5/3)n−1. Finally

since G/C is a primitive permutation group with no composition factor isomorphic to

C2, by Lemma 4.5.1 we can definitely replace p(a) by k(Aa) in the above estimate for

5 ≤ a ≤ 9. Hence k(G) ≤ 3n/3 · k(An/3) < (5/3)n−1 for 15 ≤ n ≤ 27. This is a

contradiction.

Case (iv). Observe that L is normal in G. Let (L : K) = a. Moreover let

C = coreL(H) and D = coreL(K). For any x in G \ L we have C ∩ Cx ∩ Cx2
= {1G},



as coreG(H) is trivial. Now L/D is isomorphic to a primitive group of degree a.

Since D/C has no composition factor isomorphic to C2, it is an elementary abelian

3-group of order at most 3a. So from these, we have k(L/C) ≤ k(L/D) · k(D/C) ≤
3a · p(a). Let M = CCx. Since MDx is normal in L, by Theorem 4.3.3 we have p(a) ≥
k(MDx/Dx) = k(M/M ∩Dx). This yields k(C/Cx∩C) = k(M/Cx) ≤ k(M/M ∩Dx) ·
k(M ∩ Dx/Cx) ≤ p(a) · 3a. We next bound k(Cx ∩ C). Since (Cx ∩ C)Dx2

/Dx2
is a

normal subgroup of the primitive group Lx2
/Dx2

of degree a, by Theorem 4.3.3 we see

that k(Cx ∩ C/Dx2 ∩ Cx ∩ C) = k((Cx ∩ C)Dx2
/Dx2

) ≤ p(a). Since Dx2 ∩ Cx ∩ C is

isomorphic to a subgroup of Dx2
/Cx2

, it has order at most 3a. So we have k(Cx∩C) ≤
k(C ∩ Cx/Dx2 ∩ Cx ∩ C) · k(Dx2 ∩ Cx ∩ C) ≤ p(a) · 3a. Putting our results together

we get k(G) ≤ 3 · k(L) ≤ 3 · k(L/C) · k(C) ≤ 3a+1 · p(a) · k(C) ≤ 3a+1 · p(a) ·
k(C/Cx ∩C) · k(Cx ∩C) ≤ 33a+1 · p(a)3 = 3 · 3n/3 · p(n/9)3. By Lemma 4.4.2, we have

k(G) ≤ 3 · 3n/3 · p(n/9)3 < 3 · 3n/3 · c3 · (3/2)n/3 < (5/3)n−1 for n > 108. For n = 90,

99 and 108, it is checked by [26] that k(G) ≤ 3 · 3n/3 · p(n/9)3 < (5/3)n−1. For n = 45,

54, 63, 72 and 81, notice that by Lemma 4.5.1, we can write k(G) ≤ 3 · 3n/3 · k(An/9),

which is checked to be smaller than (5/3)n−1. Now n 6= 18 or 36, because a 6= 2 or 4,

since G does not have a composition factor isomorphic to C2. So we must have n = 27.

Let ∆ be the orbit of K which contains the point stabilized by H. Let B be the base

group of the system of imprimitivity associated to ∆. Then B is an elementary abelian

3-group, and G/B is a transitive group of degree 9. Since G/B has no composition

factor isomorphic to C2, by Lemma 4.5.1, we get k(G/B) ≤ k(A9) = 18. Hence

k(G) ≤ k(B) · k(G/B) ≤ 39 · 18 < (5/3)26. This is the final contradiction.

This completes the proof of Theorem 4.5.1.

4.6 Nilpotent groups

The other extreme (and possibly hardest) case to consider in finding the best possible

general estimate for k(G) is when the permutation group is a 2-group. The example of



D8 o Cn/4 for n a power of 2 of [42] shows that a general upper bound for k(G) of the

form cn should satisfy c ≥ 51/4 = 1.495.... We prove the following

Theorem 4.6.1. If G is a nilpotent subgroup of Sn, then k(G) ≤ 1.52n. t5.5

Proof. Let G be a counterexample with n minimal. We may suppose that G is

transitive. For if G is intransitive with an orbit ∆ of length k < n, then k(G) ≤
k(G/K) · k(K) ≤ 1.52k · 1.52n−k where K is the kernel of the action of G on the set ∆.

We may suppose that G is a p-group by Theorem 1 on page 30 of [?]. For otherwise,

we may consider G as a subgroup of SΩ where |Ω| = n = p1
k1 ...pt

kt with t ≥ 2 and pi
ki

distinct prime powers. (Note that |G| and n have the same set of prime divisors.) We

may take Ω = X1×X2× ...×Xt where |Xi| = pi
ki for all 1 ≤ i ≤ t such that the Sylow

pi-subgroup of G acts transitively on Xi for all 1 ≤ i ≤ t. Now by the assumption on

the minimality of n, we get k(G) ≤ 1.52
Pt

i=1 pi
ki ≤ 1.52n.

The following lemma shows that G can be taken to be a 2-group.

Lemma 4.6.1. If G is a p-group of Sn with p > 2, then k(G) ≤ 5n/4.

Proof. We may and do assume that p = 3. For if p > 3, then k(G) ≤ |G| ≤ 5(n−1)/4.

We claim that if G is a 3-subgroup of Sn where n ≤ 27, then k(G) ≤ 1.45n. By

the argument at the beginning of this section we may suppose that G is transitive.

Let n = 3t. If t = 1, then k(G) ≤ 3 < 1.453. If t = 2, then by [26] we see that

k(G) ≤ 17 < 1.459. Let t = 3. A Sylow 3-subgroup of S27 has order 313 and has 1683

conjugacy classes, by [56]. So if G has order greater than 310 (and at most 313), then by

Lemma 4.2.2, we get k(G) ≤ 9 · 1683 < 1.4527. Let |G| ≤ 310. Since Z(G) is an abelian

permutation group of degree 27, we have |Z(G)| ≤ 33. Moreover, any conjugacy class

of G not contained in Z(G) has order at least 3. From this we get

k(G) ≤ 33 + ((310 − 33)/3) < 1.4527,

which proves our claim. To finish the proof of the lemma, it is sufficient to show that if



G is a transitive 3-subgroup of Sn where n = 3t, then k(G) ≤ 5n/4. Let us prove this by

induction on t. This is true for t ≤ 3. Let t > 3 and let ∆ be a block of imprimitivity

for G of size 27. Let the base group of the system of imprimitivity associated to ∆ be

B. Then, by Lemma 4.1.1 and by our inductive hypothesis, we get

k(G) ≤ k(B) · k(G/B) ≤ 1.45n · 5n/108 ≤ 5n/4.

So, let G be a transitive 2-group of degree n = 2k. If k ≤ 4, then k(G) ≤
k(Syl2(Sn)) ≤ 5n/4 < 1.52n by the [26] library of transitive permutation groups.

Let k = 5. Take a block ∆0 of order 16. This block induces a system of imprim-

itivity Σ. Let the kernel of the action of G on Σ be K, and let the kernel of the

action of K on ∆0 be K0. Now K0 is faithful on the set Ω \ ∆0 with orbits of

size at most 16, so we have k(K0) ≤ 54. Furthermore, K/K0 is faithful and tran-

sitive on a set of size 16, so k(K/K0) ≤ k(Syl2(S16)) = 230. This means that

k(G) ≤ 2 · 54 · 230 = 287500 < 58 < 1.52n. Let k = 6. Take a block ∆0 of order

32. Let Σ be the system of imprimitivity induced by this block, and let the kernel of

the action of G on Σ be K. Now let the kernel of the action of K on ∆0 be K0. The

group K0 is faithful on the set Ω \ ∆0 with orbits of size at most 32. By the results

obtained in case k = 5, we get k(G) ≤ 2 · k(K/K0) · k(K0) ≤ 2 · 287500 · 58 < 1.51n.

Finally, let k ≥ 7. Again take a block ∆0 of order 64. Let the induced system of im-

primitivity be Σ, and let the kernel of the action of G on Σ be K. Since K has orbits of

length at most 64, we have k(K) ≤ 1.51n. Furthermore, we have k(G/K) ≤ 1.52n/64 by

induction. This gives k(G) ≤ 1.51n · 1.52n/64 < 1.52n, which is the final contradiction.

The proof of Theorem 4.6.1 is now complete.

Note that the bound in Theorem 4.6.1 is ‘close’ to best possible. The direct product

of ` isomorphic copies of D8 acting naturally on n = 4` letters has precisely 5n/4



conjugacy classes.

The above proof uses the fact that if G is a transitive 2-group of degree n, then

k(G) ≤ k(Syl2(Sn)) ≤ p(n) provided that n ≤ 16. However, the D8 o Cn/4 example in

[42] and the asymptotic estimate for the number of conjugacy classes of the symmetric

2-group of [56] shows that this is definitely not the case for all 2-powers, n. Little

computer search suggests that the group D8oE(8) has the maximal number of conjugacy

classes among transitive 2-groups of degree 32 where E(8) is the elementary abelian

2-group in its regular action. So we ask the following.

Question 4.6.1. Let G be a transitive 2-group of degree 2t with the property that k(G)

is maximal among all transitive 2-groups of degree 2t. Then, is it true that we have

one of the following?

(i) If t ≤ 4, then G is a Sylow subgroup of S2t and k(G) ≤ p(n).

(ii) If t ≥ 5, then G is permutation isomorphic to the permutation group D8 o E(2t−2)

where E(2t−2) is the elementary abelian 2-group of order 2t−2 with its regular action,

and k(G) > p(n).

Finally, we note that it is very likely that k(G) ≤ 5n/4 should be the best possible

estimate even for arbitrary subgroups G of Sn. However, we believe that a proof for

this conjecture is out of reach at the time of writing.



Chapter 5

Covering the symmetric groups

with proper subgroups

5.1 Introduction

Let G be a group that is a set-theoretic union of finitely many proper subgroups. Cohn

[15] defined the function σ(G) to be the least integer m such that G is the union of

m of its proper subgroups. (A result of Neumann [54] states that if G is the union of

m proper subgroups where m is finite and small as possible, then the intersection of

these subgroups is a subgroup of finite index in G. Hence in investigating σ we may

assume that G is finite.) It is an easy exercise that σ(G) can never be 2; it is at least

3. Groups that are the union of three proper subgroups, as C2 × C2 is for example,

are investigated in the papers [64], [31], and [12]. Moreover, σ(G) can be 4, 5, and

6 too, as the examples, C3 × C3, A4, and C5 × C5 show. However, Tomkinson [67]

proved that there is no group G with σ(G) = 7. Cohn [15] showed that for any prime

power pa there exists a solvable group G with σ(G) = pa + 1. In fact, Tomkinson

[67] established that σ(G)− 1 is always a prime power for solvable groups G. He also

pointed out that it would be of interest to investigate σ for families of simple groups.
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Indeed, the situation for nonsolvable groups seems to be totally different. Bryce, Fedri,

Serena [13] investigated certain nonsolvable 2-by-2 matrix groups over finite fields,

((P )G(S)L(2, q)) and obtained the formula 1
2
q(q +1) for even prime powers q ≥ 4, and

the formula 1
2
q(q + 1) + 1 for odd prime powers q ≥ 5. Moreover, Lucido [44] found

that σ(Sz(q)) = 1
2
q2(q2 + 1) where q = 22m+1. There are partial results due to Bryce

and Serena for determining σ((P )G(S)L(n, q)).

In this paper the following is established.

Theorem 5.1.1. Let n > 3, and let Sn and An be the symmetric and the alternating t11

group respectively on n letters.

(1) We have σ(Sn) = 2n−1 if n is odd unless n = 9, and σ(Sn) ≤ 2n−2 if n is even.

(2) If n 6= 7, 9, then σ(An) ≥ 2n−2 with equality if and only if n is even but not divisible

by 4.

In the following sections we will prove more than what is stated in Theorem 5.1.1.

We will obtain exact or asymptotic formulas in all (infinite) cases (possibly) except for

σ(Ap) where p is a prime of the form (qk − 1)/(q − 1) where q is a prime power and k

is a positive integer.

For the groups S9, S12, A7, and A9 we only prove 172 ≤ σ(S9) ≤ 256, σ(S12) ≤ 761,

σ(A7) ≤ 31, and σ(A9) ≥ 80. Notice that the numbers 761 and 31 are primes not of

the form q + 1 where q is a prime power. We prove that σ(G) can indeed be such a

prime.

Proposition 5.1.1. For the smallest Mathieu group we have σ(M11) = 23. prop11

This result was also proved (independently) by Holmes in [32]. In her paper many

interesting results are found about sporadic simple groups. It is proved that σ(M22) =

771, σ(M23) = 41079, σ(O′N) = 36450855, σ(Ly) = 112845655268156, 5165 ≤ σ(J1) ≤
5415, and that 24541 ≤ σ(McL) ≤ 24553.



At this point we note that Tomkinson [67] conjectured that σ(G) can never be 11

nor 13.

In Section 6 we investigate the relationship between some of the known infinite

series of σ.

The commuting graph Γ of a group G is as follows. Let the vertices of Γ be the

elements of G and two vertices g, h of Γ are joined by an edge if and only if g and

h commute as elements of G. (The commuting graph is used to measure how abelian

the group is. See [22], and [62].) Several people have studied α(G), the maximal

cardinality of an empty subgraph of Γ and β(G), the minimal cardinality of a covering

of the vertices of Γ by complete subgraphs. (See the papers [22], [52], and [58].) Brown

investigated the relationship between the numbers αn = α(Sn) and βn = β(Sn). In [10]

it is shown that these numbers are surprisingly close to each other, though for n ≥ 15,

they are never equal [11].

As an application of Theorem 5.1.1, we prove that if we add ‘more’ edges to the

commuting graph of the symmetric group, then the corresponding numbers will be

equal in infinitely many cases. Let G be a group. Define a graph Γ′ on the elements

of G with the property that two group elements are joined by an edge if and only if

they generate a proper subgroup of G. Similarly as for the commuting graph, we may

define α′(G) and β′(G) for our new graph, Γ′. Put α′n = α′(Sn) and β′n = β′(Sn). The

theorem can now be stated.

Theorem 5.1.2. There is a subset S of density 1 in the set of all primes, so that t12

α′n = β′n holds for all n ∈ S.

The equality α′n = β′n is valid for very small values of n also. Does it hold for all n?

We note that the problem of covering groups by subgroups has found interest for

many years. The first reference the author is aware of is the 1926 work of Scorza [64].

Probably Neumann [54], [55] was the first to study the number of (abelian) subgroups

needed to cover a (not necessarily finite) group G in relation to the index of the center



of G. For a survey of this area see [65]. On the other hand, for an extensive account of

work in (packing and) covering groups with (isomorphic) subgroups (or of subgroups

of a specified order) the reader is referred to [35].

5.2 Preliminaries

Let G be Sn or An, the symmetric or the alternating group on n letters. Let Π be a

set of permutations of G. Define σ(Π) to be the least integer m such that Π is the

subset of the set-theoretic union of m proper subgroups of G. It is straightforward that

σ(Π) ≤ σ(G). We will say that a set H = {H1, . . . , Hm} of m proper subgroups of G

is definitely unbeatable on Π if Π ⊆ ⋃m
i=1 Hi; if Π ∩ Hi ∩ Hj = ∅ for all i 6= j; and if

|S ∩ Π| ≤ |Hi ∩ Π| holds whenever 1 ≤ i ≤ m and when S 6∈ H is a proper subgroup

of G. If H is definitely unbeatable on Π, then |H| = σ(Π) ≤ σ(G).

We will call a permutation an (i, n− i)-cycle if it is a product of two disjoint cycles

one of length i and one of length n− i, and will call a permutation an (i, j, n− i− j)-

cycle if it is a product of three disjoint cycles one of length i, one of length j, and one

of length n− i− j.

We will use the list of primitive permutation groups of [19] and the result of the

chapter before the previous one stating that a primitive permutation group of degree n

not containing An has order at most en. Sometimes the computer package [26] is also

used for computations in symmetric and alternating groups of small degree.

5.3 Symmetric groups

First, let us consider the case where the degree of the symmetric group is odd.

Theorem 5.3.1. If n > 1 is odd, then σ(Sn) = 2n−1 unless n = 9. t31

Proof. The set-theoretic union of An and all maximal intransitive subgroups of Sn is



Sn. This gives

σ(Sn) ≤ 1 +
1

2
·

n−1∑
i=1

(
n

i

)
= 1 +

1

2
(2n − 2) = 2n−1.

The upper bound is known to be exact for n = 3 and n = 5 from [15], so assume that

n ≥ 7. Now let Π be the set of all permutations of Sn, which are the products of at

most two disjoint cycles. It is sufficient to prove σ(Π) ≥ 2n−1.

For n ≥ 11 the latter inequality is the direct consequence of the fact that the set

consisting of An and of all maximal intransitive subgroups of Sn is definitely unbeatable

on Π. This is proved in two steps.

Claim 5.3.1. Let H1 and H2 be An or a maximal intransitive subgroup of Sn. If

H1 6= H2, then Π ∩H1 ∩H2 = ∅.

Proof. Indeed, An ∩ Π is the set of all n-cycles, while S∆ × Sn\∆ ∩ Π is the set of all

permutations of the form π = δ · δ with δ a |∆|-cycle from S∆ and δ a |n \ ∆|-cycle

from Sn\∆, where n denotes the set of n letters on which Sn acts and where ∆ is a

nontrivial proper subset of n.

Claim 5.3.2. Suppose that n ≥ 11 is odd. Let H be An or a maximal intransitive

subgroup of Sn, and let S be any subgroup of Sn different from An and different from

any maximal intransitive subgroup. Then |S ∩ Π| ≤ |H ∩ Π|.

Proof. It can be assumed that S is maximal in Sn. First let n ≥ 17. If S is primitive,

then |S∩Π| ≤ |S| ≤ en follows from the chapter before the previous one, while we have

en ≤ ((n− 1)/2)! · ((n− 3)/2)! ≤ |H ∩ Π|. If S is imprimitive, then |S ∩ Π| ≤ |S| ≤
(n/p)!p · p! ≤ ((n− 1)/2)! · ((n− 3)/2)! ≤ |H ∩Π| holds, where p is the smallest prime

divisor of n. If n = 11 or 13, then S is primitive and |S| < ((n− 1)/2)! · ((n− 3)/2)!

is checked easily by [19] or the chapter before the previous one. If n = 15, then by

[19], S is conjugate to a maximal imprimitive group with five blocks of imprimitivity,



to a maximal imprimitive group with three blocks of imprimitivity, or to S6 acting

on the set of distinct pairs of points. In the first and the third case we have |S| ≤
3!5 · 5! < 6! · 7! ≤ |H ∩ Π|. Let S be a maximal imprimitive subgroup of S15 with

three blocks of imprimitivity. Now in S ∩ Π the number of 15-, (5, 10)-, (3, 12), and

(6, 9)-cycles are (5!3 · 3!)/15, 72 · 5!2/5, 5!3/2, and 5!3/3, respectively. All together we

get |S ∩ Π| = 2338560 < 6! · 7!.

The remaining cases, n = 7, 9, are dealt separately.

Let n = 7. We have σ(Π) ≤ 64. We will show that σ(Π) ≥ 64. Let L be a

set of σ(S7) maximal subgroups of S7 covering S7. Since there is exactly one maximal

subgroup (an intransitive one) containing a given (3, 4)- or a given (2, 5)-cycle, all
(
7
3

)
+

(
7
2

)
= 56 maximal intransitive groups which do not stabilize any point are contained

in L. The group A7 is also contained in L. For if it would not, then the subset of

all 7-cycles of Π (having 6! elements) could only be covered by 5! maximal primitive

groups each conjugate to AGL(1, 7). So we would get σ(Π) ≥ 56+5!, which contradicts

σ(Π) ≤ 64. We claim that L contains all 7 one-point stabilizers as well, hence σ(Π) ≥
56 + 1 + 7 = 64 would follow. To see this, consider the (1, 6)-cycles of Π. A maximal

subgroup of S7 containing such permutations is either a stabilizer of a point, or is

conjugate to the primitive affine group, AGL(1, 7). Suppose that L does not contain

the stabilizer of the point α. Then the 6-cycles of Sn\{α} are covered with at least 60

primitive affine groups, which gives the contradiction σ(Π) ≥ 56 + 60.

Let n = 9. We have σ(Π) ≤ 256. Partition Π into three sets. Let Π1 be the set of

(4, 5)-cycles of S9, let Π2 be the set of (3, 6)-cycles of S9, and let Π3 = Π \ (Π1 ∪ Π2).

We will show that σ(Π) ≥ σ(Π1 ∪ Π3) = 172. There is no subgroup intersecting

both Π1 and Π3, so we have σ(Π1 ∪ Π3) = σ(Π1) + σ(Π3). Since there is exactly one

maximal subgroup - a group conjugate to S4 × S5 - containing a given (4, 5)-cycle,

we have σ(Π1) = 126. Now the set H of subgroups A9 with all maximal intransitive

subgroups of S9 isomorphic to S1 × S8 or S2 × S7 is definitely unbeatable on Π3, since



these subgroups cover Π3 in a disjoint way, and |S ∩ Π3| ≤ 6! ≤ |H ∩ Π3| holds for all

subgroups S /∈ H, H ∈ H of S9.

If n > 2 is even, then σ(Sn) is asymptotically equal to the index of the largest

transitive subgroup of Sn, that is to 1
2

(
n

n/2

)
. However, we prove more than that.

Theorem 5.3.2. If n > 2 is even, then σ(Sn) ∼ 1
2

(
n

n/2

)
. More precisely, for any ε > 0 t32

there exists N such that if n > N , then

1

2

(
n

n/2

)
+ (

1

2
− ε)

[n/3]∑
i=0

(
n

i

)
< σ(Sn) ≤ 1

2

(
n

n/2

)
+

[n/3]∑
i=0

(
n

i

)
.

Note that the term
∑[n/3]

i=0

(
n
i

)
is considerably smaller than 1

2

(
n

n/2

)
for large values

of n.

Proof. The set-theoretic union of all maximal imprimitive subgroups conjugate to

Sn/2wrS2, all maximal intransitive subgroups conjugate to some Si × Sn−i with i ≤
[n/3], and An is Sn. This gives

σ(Sn) ≤ 1

2

(
n

n/2

)
+

[n/3]∑
i=0

(
n

i

)
.

Let Π0 be the set of all n-cycles of Sn. For each (n− 2)/4 < i < [n/3] with i odd, let

Πi be the set of all (i, i + 1, n− 2i− 1)-cycles of Sn. Moreover, let H0 be the set of all

maximal imprimitive subgroups of Sn conjugate to Sn/2wrS2. For each i > 0 with Πi

defined above, let Hi be the set of all maximal intransitive subgroups of Sn conjugate

to Si × Sn−i. The following two claims are to show that if n is sufficiently large, then

H0 is definitely unbeatable on Π0, and for each i > 0 the set Hi is definitely unbeatable

on Πi.

Claim 5.3.3. With the notations above we have the following. c33

(i) Π0 ⊆
⋃

H∈H0
H;



(ii) Πi ⊆
⋃

H∈Hi
H for all i > 0;

(iii) If H1, H2 ∈ H0 and H1 6= H2 then Π0 ∩H1 ∩H2 = ∅;

(iv) For all i if H1, H2 ∈ Hi and H1 6= H2, then Πi ∩H1 ∩H2 = ∅.

Proof. All statements are checked easily.

Claim 5.3.4. Let n ≥ 14 and let S be a maximal subgroup of Sn. Then c34

(i) |S ∩ Π0| < |H ∩ Π0| for all S /∈ H0, H ∈ H0;

(ii) |S ∩ Πi| < |H ∩ Πi| for all i and all S /∈ Hi, H ∈ Hi.

Proof.

(i) If S is primitive, then

|S ∩ Π0| ≤ |S| < en <
(n/2)!2 · 2

n
= |H ∩ Π0|

follows. If S is imprimitive, then

|S ∩ Π0| ≤ |S| ≤ (n/d)!d · d! <
(n/2)!2 · 2

n
= |H ∩ Π0|,

where d is the smallest divisor of n greater than 2. If S is intransitive, then S∩Π0 = ∅.

(ii) Fix an index i. If S is primitive, then

|S ∩ Πi| ≤ |S| < en <
([n/3]− 2)! · (n− [n/3] + 1)!

[n/3] · (n− 2[n/3] + 1)
≤ |H ∩ Πi|

follows. If S is imprimitive, then

|S ∩ Πi| ≤ |S| < (n/d)!d · d! <
([n/3]− 2)! · (n− [n/3] + 1)!

[n/3] · (n− 2[n/3] + 1)
≤ |H ∩ Πi|,



where d is the smallest divisor of n greater than 2. Let S be intransitive. If S is

contained in a group conjugate to Si+1 × Sn−i−1, then

|S ∩ Πi|
|H ∩ Πi| =

(i + 1)! · (n− i− 1)!

i! · (n− i)!
< 1.

If S is contained in a group conjugate to Sn−2i−1 × S2i+1, then

|S ∩ Πi|
|H ∩ Πi| =

(n− 2i− 1)! · (2i + 1)!

i! · (n− i)!
=

(
n
i

)
(

n
2i+1

) < 1.

Finally, if S is contained neither in a group conjugate to Si+1 × Sn−i−1, nor in a group

conjugate to Sn−2i−1 × S2i+1, then S ∩ Πi = ∅.

Now let Π = Π0 ∪
⋃

i Πi. Let H be a set of σ(Π) maximal subgroups of Sn covering

Π.

Claim 5.3.5. With the notations above, we have H = H0 ∪
⋃

iHi whenever n ≥ 14. c35

Proof. Let H′ be the set of all intransitive groups in H together with all maximal

imprimitive subgroups of H conjugate to Sn/2wrS2. For each S ∈ H′, there exists a

unique j such that S ∩ Πj 6= ∅. Moreover, for all i and all S ∈ H′, Hi ∈ Hi, we have

|S∩Πi| ≤ |Hi∩Πi|. This means that the union of all subgroups in H′ does not contain

at least

(|H0 ∪
⋃
i

Hi| − |H′|) ·min{(n/2)!2 · 2
n

,
([n/3]− 2)! · (n− [n/3] + 1)!

[n/3] · (n− 2[n/3] + 1)
}

elements of Π. If this expression is 0, then by Claims 5.3.3 and 5.3.4 we are finished.

Otherwise, these elements can be covered by at most |H0 ∪
⋃

iHi| − |H′| transitive

groups neither of which is conjugate to Sn/2wrS2. But this is impossible since

max{en, (n/d)!d · d!} < min{(n/2)!2 · 2
n

,
([n/3]− 2)! · (n− [n/3] + 1)!

[n/3] · (n− 2[n/3] + 1)
},



where d is the smallest divisor of n with d greater than 2.

The following claim nearly finishes the proof of the theorem.

Claim 5.3.6. If n ≥ 14, then

1

2

(
n

n/2

)
+

∑

(n−2)/4<i<[n/3]

i odd

(
n

i

)
= σ(Π) < σ(Sn) ≤ 1

2

(
n

n/2

)
+

[n/3]∑
i=0

(
n

i

)
.

Proof. The first equality is a consequence of Claim 5.3.5. σ(Π) < σ(Sn) follows from

the fact that σ(Π) 6= σ(Sn), since the union of all subgroups of H0 ∪
⋃

iHi does not

contain all even permutations. The upper bound was already established.

Finally, we need to show that for any fixed 0 < ε < 1/2, there exists an integer N ,

so that

(
1

2
− ε)

[n/3]∑
i=0

(
n

i

)
<

∑

(n−2)/4<i<[n/3]

i odd

(
n

i

)

holds whenever n > N . Indeed, for a fixed real number 0 < ε < 1/2, a suitable N is

an integer with the property that whenever n > N , then both

∑

(n−2)/4<i<[n/3]

(
n

i

)
≤ (2 + 2ε)

∑

(n−2)/4<i<[n/3]

i odd

(
n

i

)

and
∑

0≤i≤(n−2)/4

(
n

i

)
≤ 2ε

∑

(n−2)/4<i<[n/3]

i odd

(
n

i

)

hold.

By Theorems 5.3.1 and 5.3.2, to complete the proof of part (1) of Theorem 5.1.1,



we only need to show σ(Sn) ≤ 2n−2 for 4 ≤ n ≤ 12 and n even, since if n ≥ 14 we have

1

2

(
n

n/2

)
+

[n/3]∑
i=0

(
n

i

)
< 2n−2.

If n = 4, then σ(S4) ≤ 4, since S4 is the union of A4 and the three Sylow 2-subgroups

of S4. For n = 6, we have σ(S6) ≤ 16, since S6 is the union of all imprimitive

subgroups conjugate to S3wrS2 and all intransitive subgroups conjugate to S1 × S5.

If n = 8, then S8 is the union of all imprimitive subgroups conjugate to S4wrS2, all

intransitive subgroups conjugate to S2 × S6 and A8, hence σ(S8) ≤ 64. For n = 10

we have σ(S10) ≤ 256, since S10 is the union of all imprimitive subgroups conjugate to

S5wrS2, all intransitive subgroups conjugate to S1 × S9 and all intransitive subgroups

conjugate to S3 × S7. Finally, σ(S12) ≤ 761, since S12 may be written as the union of

all imprimitive subgroups conjugate to S6wrS2, all intransitive subgroups conjugate to

S1 × S11, S2 × S10, or S3 × S9, and A12.

5.4 Alternating groups

Theorem 5.4.1. Let n > 2 be even. If n is not divisible by 4, then σ(An) = 2n−2.

While if n is divisible by 4, then

(
(3n/4)− 1

(n/4)− 1

)
≤ σ(An)− 2n−2 ≤ 1

2

(
n

n/2

)
,

that is σ(An) ∼ 2n−2.

Proof. The set-theoretic union of all maximal imprimitive subgroups of An conjugate

to (Sn/2wrS2) ∩ An, and all maximal intransitive subgroups of An conjugate to some



(Si × Sn−i) ∩ An with 1 ≤ i ≤ (n/2)− 1 odd is An. This gives

σ(An) ≤ 1

2

(
n

n/2

)
+

(n/2)−1∑
i=1
i odd

(
n

i

)
.

The right-hand-side of the former inequality is equal to 2n−2 if n is not divisible by 4,

and is 1
2

(
n

n/2

)
+ 2n−2 if n is divisible by 4.

First suppose that n is not divisible by 4. We have σ(An) ≤ 2n−2. It is proved below

that this estimate is exact. The upper bound is known to be exact for n = 6 by [13],

so assume that n ≥ 10. Now let Π be the set of all permutations of An which are the

product of exactly two disjoint cycles of odd lengths. We will show that the set H of all

maximal imprimitive subgroups of An conjugate to (Sn/2wrS2) ∩An, and all maximal

intransitive subgroups of An conjugate to some (Si×Sn−i)∩An with 1 ≤ i ≤ (n/2)−1

odd is definitely unbeatable on Π if n ≥ 10, that is σ(Π) ≥ 2n−2 for n ≥ 10 and not

divisible by 4.

Claim 5.4.1. Let H be as above. If n ≥ 10 is not divisible by 4, then

(i) Π ⊆ ⋃
H∈H H;

(ii) If H1, H2 ∈ H and H1 6= H2, then Π ∩H1 ∩H2 = ∅;

(iii) |S ∩ Π| ≤ |H ∩ Π| for all S /∈ H, H ∈ H.

Proof.

(i) This was established above.

(ii) This is checked easily.

(iii) First suppose that n ≥ 14. Let H ∼= (Sk ×Sn−k)∩An for some k, and let d be the

smallest divisor of n greater than 2. If S is transitive, then

|S ∩ Π| ≤ |S| ≤ max{en,
(n/d)!d · d!

2
} ≤ (k − 1)! · (n− k − 1)! = |H ∩ Π|



holds. If S is intransitive, then it is either a subgroup of a subgroup in H, or S∩Π = ∅.
Now let n = 10. For any maximal subgroup S /∈ H, the set S ∩ Π is either empty,

or it contains only (5, 5)-cycles. In the latter case, S is either permutation isomorphic

to (S2wrS5) ∩ A10, or is a proper primitive subgroup of A10. There are 96 Sylow 5-

subgroups in (S2wrS5)∩A10, and there are at most 36 Sylow 5-subgroups (all of order

5) in a proper primitive subgroup of A10, hence |S ∩Π| ≤ 384. On the other hand, we

have |H ∩ Π| ≥ 576 whenever H ∈ H.

Now let n be divisible by 4. We have σ(An) ≤ 2n−2 + 1
2

(
n

n/2

)
. It is proved below

that

2n−2 +

(
(3n/4)− 1

(n/4)− 1

)
≤ σ(An).

This bound is certainly sharp for n = 4, since σ(A4) = 5 by [15]. So assume that

n ≥ 8. Let Π1 be the set of all permutations of An which are the product of exactly

two disjoint cycles of odd lengths. Moreover, let Σ be an arbitrary subset of (n/4) + 1

letters, and let Π2 be the set of all permutations of An which are the product of exactly

two disjoint cycles of equal lengths with one cycle moving all letters of Σ. Finally,

let Π = Π1 ∪ Π2. We will show that the set H of all maximal imprimitive subgroups

of An conjugate to (Sn/2wrS2) ∩ An and intersecting Π nontrivially, and all maximal

intransitive subgroups of An conjugate to some (Si × Sn−i) ∩ An with 1 ≤ i ≤ n
2
− 1

odd is definitely unbeatable on Π if n is divisible by 4 and greater than 12. That is

σ(Π) ≥ 2n−2 +
(
(3n/4)−1
(n/4)−1

)
for n divisible by 4 and greater than 12.

Claim 5.4.2. If n is divisible by 4, then

(i) Π ⊆ ⋃
H∈H H;

(ii) If H1, H2 ∈ H and H1 6= H2, then Π ∩H1 ∩H2 = ∅;

(iii) If n ≥ 16, then |S ∩ Π| ≤ |H ∩ Π| for all S /∈ H, H ∈ H.

Proof.



(i) This was established above.

(ii) This is checked easily.

(iii) If n ≥ 14, then the argument of the proof of Claim 5.3.4 may be applied.

Let n = 8. Any (3, 5)-cycle is contained in only one maximal subgroup, in a group

permutation isomorphic to (S3×S5)∩A8. So if L is a set of σ(A8) maximal subgroups

covering A8, then L must contain all 56 maximal subgroups permutation isomorphic

to (S3 × S5) ∩ A8. Now consider a given (1, 7)-cycle. This is contained in either a

maximal affine permutation group, or in a one-point stabilizer of A8. It is checked

easily that if L does not contain all of the 15 maximal affine permutation groups,

then the (1, 7)-cycles can only be covered with all one-point stabilizers. Conversely,

it can also be checked that if L does not contain all the one-point stabilizers, then

it must contain all 15 maximal affine subgroups. In the latter case we have σ(A8) ≥
56+15 > 69, where 69 is the lower bound for n = 8. For the first case, consider a given

(2, 6)-cycle. This is contained in either a maximal imprimitive group with two or four

blocks of imprimitivity, or in a maximal intransitive group permutation isomorphic to

(S2 × S6) ∩ A8. It can be checked easily that in all of these groups the number of

(2, 6)-cycles is at most 192, while the number of (2, 6)-cycles in A8 is exactly 3360.

This implies that σ(A8) ≥ 56 + 8 + 17 > 69.

Finally, let n = 12. We have to show that σ(A12) ≥ 1052. For i = 1, 3, and 5, let Πi

be the set of all (i, 12−i)-cycles (of A12), and let Li be the set of all maximal intransitive

subgroups of A12 permutation isomorphic to (Si × S12−i) ∩ A12. It is easy to see that

Li is definitely unbeatable on Πi for each i. (Note that a proper primitive subgroup

of A12 contains no (3, 9)- or (5, 7)-cycle, and has order at most 95040.) Moreover,

all maximal subgroups of A12 intersect at most one of the sets Πi. This means that

σ(Π) =
(
12
1

)
+

(
12
3

)
+

(
12
5

)
= 1024 where Π = Π1 ∪ Π2 ∪ Π3. Now let L be a set of

σ(A12) maximal subgroups covering A12. Since no maximal subgroup different from

the subgroups in L5 intersects Π5, we have L5 ⊆ L. We may suppose that L1 ⊆



L. For if L does not contain k > 0 subgroups of L1, then Π is covered by at least

1024 − k + (10! · k)/95040 > 1052 subgroups. We may also assume that L3 ⊆ L. For

suppose that L does not contain a subgroup H of L3. Then H ∩ Π3 is covered by

subgroups permutation isomorphic to (S4wrS3)∩A12 or (S3wrS4)∩A12. Since such a

group can cover at most 288 permutations of H∩Π3, a covering of H∩Π3 must contain

at least (2! · 8!)/288 = 280 subgroups. Hence |L| ≥ 1024 − (
12
3

)
+ 280 > 1052. So we

may suppose that all maximal subgroups permutation isomorphic to (Si×S12−i)∩A12

are contained in L for i = 1, 3, and 5. Suppose that A12 acts on the set {1, . . . , 12}.
Let ∆ be the set of all (6, 6)-cycles of A12 such that the letters 1, 2, 3, and 4 are in

the same 6-cycle. The set ∆ is the disjoint union of the subgroups of a certain set, K
consisting of

(
8
2

)
maximal subgroups each permutation isomorphic to (S6wrS2) ∩ A12.

We will show that K is definitely unbeatable on ∆. Indeed, any element of K covers

14400 permutations of ∆, while an imprimitive maximal subgroup of A12 cannot cover

more, a primitive group not isomorphic to M12 has order less than 14400, and finally,

the number of (6, 6)-cycles contained by the primitive group M12 is only 7920. Since

no subgroup in Li intersects ∆ nontrivially when i = 1, 3, or 5, we readily see that

L ≥ 1024 +
(
8
2

)
= 1052.

Now we turn to the case when n is odd. The possibilities of n being prime and

n = 9 are treated separately.

Theorem 5.4.2. If n > 9 is odd and not a prime, then t42

h ≤ σ(An) ≤ h +

[n/3]∑
i=1

(
n

i

)

where h denotes the index of the largest transitive proper subgroup of An. In particular,

σ(An) ∼ h and σ(An) > 2n−2.

Proof. Let d be the smallest prime divisor of n, and let L be the set of all maximal

imprimitive subgroups of An conjugate to (Sn/dwrSd) ∩ An. Notice that |L| = h. All



subgroups permutation isomorphic to (SiwrSn−i)∩An for some 1 ≤ i ≤ [n/3] together

with all subgroups of L cover An. This yields the upper bound for σ(An). To verify

the lower bound, it is sufficient to show that L is definitely unbeatable on the set Π of

all n-cycles of An. It is easy to see that the subgroups of L cover Π disjointly with each

group covering exactly h/n different n-cycles. If S is an imprimitive maximal subgroup

of An of index k intersecting Π nontrivially, then |S ∩ Π| ≤ k/n ≤ h/n. Finally, if S

is a proper primitive subgroup of An, then |S| ≤ en < h/n follows for n ≥ 21, and we

have |S| < h/n for n = 15. (Note that intransitive groups intersect Π trivially.)

Theorem 5.4.3. Let n > 3 be a prime. If n is not equal to 7, then σ(An) > 2n−2, and

σ(A7) ≤ 31.

Proof. First let n > 11. The alternating group, An contains (n−2)! Sylow n-subgroups,

while a proper transitive subgroup, H of An contains at most |H|/n. Hence the set

of n-cycles of An cannot be covered by less than n!/(|G| · (n − 1)) subgroups where

G is a proper transitive group of An of largest possible order. It is sufficient to show

that 2n−2 < n!/(|G| · (n− 1)), that is |G| < n!/((n− 1) · 2n−2). Since n is prime, G is

primitive. For n > 17, we have |G| < en < n!/((n − 1) · 2n−2), while if n = 13, then

|G| ≤ 5616 < 13!/(12 · 211) holds. Now let n = 11. Then the number of 11-subgroups

contained by A11 is 9!, while a proper primitive subgroup contains at most 144. Hence

a covering of A11 has at least 9!/144 > 29 elements. Let n = 7. We will show that A7

can be covered by at most 31 subgroups. Suppose that A7 acts on the set Ω of size

7. Let α ∈ Ω. Let L be the set of all subgroups conjugate to a copy of PSL(3, 2),

all intransitive subgroups conjugate to (S2 × S5) ∩A7 satisfying the property that the

2-element orbit does not contain α, and the stabilizer of α in A7. Notice that |L| = 31,

and that the subgroups of L cover all permutations of the group A7. Finally, if n = 5,

then σ(A5) = 10 by [15].

Theorem 5.4.4. If p > 23 is a prime not of the form (qk − 1)/(q − 1) where q is a



prime power and k is an integer, then

(p− 2)! ≤ σ(Ap) ≤ (p− 2)! +

[p/3]∑
i=1

(
p

i

)
.

Proof. By [27], there are only two conjugacy classes of maximal transitive subgroups of

Ap. Both conjugacy classes consist of subgroups isomorphic to the unique subgroup of

AGL(1, p) of index 2. Let this set, the set of all maximal transitive subgroups of Ap be

denoted by L. Since L is definitely unbeatable on the set of p-cycles and |L| = (n−2)!,

the lower bound for σ(Ap) follows. The upper bound is a consequence of the proof of

Theorem 5.4.2.

Later, in Lemma 5.7.1, we will show that there are infinitely many primes of this

kind, so (p− 2)! is actually an asymptotic estimate for σ(Ap) for such primes, p.

Now let n = 9. Among all transitive subgroups of A9, the primitive group PΓL(2, 8)

contains the most 9-cycles; it contains exactly 3024. Since the number of 9-cycles in

A9 is 8!, at least 8!/3024 = 80 subgroups are needed to cover all 9-cycles. This gives

σ(A9) ≥ 80.

5.5 A Mathieu group

In this section we prove Proposition 5.1.1. We first show that σ(M11) ≤ 23.

Claim 5.5.1. The Mathieu group, M11 is the set-theoretic union of all 11 one-point c51

stabilizers of its action on 11 letters and of all 12 one-point stabilizers of its action on

12 letters. In particular, σ(M11) ≤ 23.

Proof. By [16], the permutation character of the action of M11 on 11 letters is 1M11 +χ2,

and the permutation character of the action of M11 on 12 letters is 1M11 + χ5 where

χ2, χ5 are the irreducible characters of M11 indicated in the character table of M11



found in [16]. The character table also shows that for arbitrary g ∈ M11 we cannot

have (1M11 + χ2)(g) = 0 and (1M11 + χ5)(g) = 0.

To prove σ(M11) ≥ 23 it is enough to consider only maximal subgroups whose union

is M11.

Claim 5.5.2. c52

(i) The only maximal subgroups of M11 containing an element of order 11 are the

one-point stabilizers of M11 on 12 letters.

(ii) Moreover, let L be a set of maximal subgroups whose union is M11. Then L
contains all the one-point stabilizers of M11 of its action on 12 letters. In particular,

σ(M11) ≥ 12.

Proof.

(i) Let G be a maximal subgroup of M11 ≤ S11 containing a permutation of order

11. Then G is transitive and so primitive. A primitive permutation group of degree

11 contained in M11 is either a one-point stabilizer of M11 of its action on 12 letters,

or is affine of order 55. Assume that G ≤ M11 is affine of order 55 generated by the

elements g1 and g2 of order 5 and 11, respectively. Represent M11 on 12 points. Now

G ≤ M11 ≤ S12 must be intransitive, since 12 - 55. This can only be if g1 and g2 fixes

the same point. Thus G is contained in a one-point stabilizer of M11 ≤ S12.

(ii) Represent M11 on 12 letters. For any letter α, there exists a permutation g of M11

of order 11 fixing α. By (i), the only maximal subgroup of M11 containing g is the

one-point stabilizer of α.

We recall the following fact from [16].

Claim 5.5.3. A maximal subgroup of M11 different from a one-point stabilizer of M11 c53

of its action on 11 letters and different from a one-point stabilizer of M11 of its action

on 12 letters has order at most 144.



By the character table of M11 in [16], we see that the set Π of group elements g

satisfying (1M11 +χ2)(g) = 1 and (1M11 +χ5)(g) = 0 is exactly the set of 1980 elements

of order 8 in M11. By Claim 5.5.3, the set of 11 copies of M10 is definitely unbeatable

on Π. This, together with Claim 5.5.2, implies σ(M11) ≥ 23. By Claim 5.5.1, we now

obtain σ(M11) = 23 which proves Proposition 5.1.1.

5.6 On some infinite series of σ

We start with a theorem which was conjectured by Ramanujan in 1913 and was con-

firmed by Nagell [53] in 1960.

Theorem 5.6.1 (Nagell, [53]). The only solutions to the Diophantine equation x2+7 = t61

2n are (n, x) = (3, 1), (4, 3), (5, 5), (7, 11) and (15, 181).

This is used to prove

Theorem 5.6.2. Any positive integer is a member of at most one of the following

infinite series.

(1) A = {2n}∞n=5;

(2) Bp = {1
2
pn(pn + 1) + 1}∞n=1 where p is an odd prime;

(3) C = {1
2
2n(2n + 1)}∞n=2.

Proof. Suppose that 2n = 1
2
pk(pk + 1) + 1 where n ≥ 5, k ≥ 1 and p is an odd prime.

After multiplying both sides of the equation by 8, we obtain 2n+3 = (2pk + 1)
2
+7. By

Theorem 5.6.1, we get a contradiction. Suppose that 2n = 2k−1(2k + 1) where n ≥ 5

and k ≥ 2. Notice that the right-hand-side of this equation is divisible by an odd

prime, while the left-hand-side is not. Finally, no positive integer is an element of both

Bp and C for any odd prime p, since the function 1
2
x(x+1) is strictly increasing on the

set of positive integers by a difference of at least 2 whenever x > 2.



5.7 An application

We will show that α′n = β′n for n a prime greater than 23 and not of the form (qk −
1)/(q − 1) where q is a prime power and k is an integer. But before we do this, we

prove

Lemma 5.7.1. The set of primes not of the form (qk − 1)/(q− 1) where q is a prime l71

power and k is an integer has density 1 in the set of all primes.

Proof. The Prime Number Theorem states that there are asymptotically x/ ln x primes

less than x. Now let us count the primes less than x which are of the form (qk−1)/(q−1)

for some prime power q and some positive integer k. If k = 2, then q has to be a power

of 2, and so there are at most log2 x such primes. For each k ≥ 3, there are at most

√
x such primes. Since k cannot exceed log2 x, there are at most (

√
x + 1) log2 x such

primes in total. We conclude that the sequence

x/ ln x− (
√

x + 1) log2 x

x/ ln x

tends to 1 as x goes to infinity.

Now we turn to the proof of Theorem 5.1.2. Let p be a prime greater than 23 and

satisfying the condition of Lemma 5.7.1. By part (1) of Theorem 5.1.1, we see that

2p−1 = σ(Sp) ≥ β′p ≥ α′p. Hence it is sufficient to show that 2p−1 ≤ α′p. Suppose that Sp

is acting naturally on a set Ω of size p. For each 1 < i ≤ (p−1)/2 and each subset of Ω

of size i, say ∆, choose an (i, p− i)-cycle of Sp such that all elements of ∆ are moved by

the cycle of length i. Let the set of all permutations so obtained be Π0. Now choose an

arbitrary n-cycle, say g. This permutation is contained in a unique copy of AGL(1, p),

say in G. Since any (1, p− 1)-cycle is contained in at most ϕ(p− 1) · p(p− 1) distinct

copies of AGL(1, p) where ϕ(p−1) denotes the Euler function of the integer p−1, and

since (p− 2)!− 1 > ϕ(p− 1) · p2(p− 1), it follows that for each ω ∈ Ω we may choose



a (1, p − 1)-cycle, gω fixing ω and not contained in G such that if ω 6= ω′ are distinct

elements of Ω, then there is no subgroup of Sp isomorphic to AGL(1, p) containing both

gω and gω′ . Now let Π be the set consisting of all elements of Π0 together with g and

all gω with ω ∈ Ω. Notice that |Π| = 2p−1. Now it is easy to see that any two distinct

permutations of Π generate a transitive subgroup of Sp contained neither in Ap nor in

any conjugate of AGL(1, p). So by [27], it follows that any two distinct elements of Π

generate Sp. Hence we have 2p−1 ≤ α′p, which completes the proof of Theorem 5.1.2.



Chapter 6

Summary

In Chapter 3 we considered the problem of bounding the order of a primitive permu-

tation group of degree n so that the group does not contain the alternating group of

degree n. In our estimates we used the Aschbacher-O’Nan-Scott theorem together with

the classification theorem for finite simple groups. We found that “almost all” primitive

permutation groups of degree n have order at most n ·∏[log2 n]−1
i=0 (n − 2i) < n1+[log2 n],

or have socle isomorphic to a direct power of some alternating group. The Mathieu

groups in their 4-transitive action, M11, M12, M23 and M24 are the four exceptions.

As a corollary the sharp version of a theorem of Praeger and Saxl was established,

where M12 turned out to be the “largest” primitive group. In particular, we found

that if G is a primitive permutation group of degree n not containing the alternating

group of degree n, then |G| is at most |M12|n/12. For an application a bound on the

orders of permutation groups without large alternating composition factors was given.

In particular, we found that if G is a permutation group of degree n, and d is an integer

not less than 4, then |G| ≤ d!(n−1)/(d−1) whenever G is a group with no composition

factor isomorphic to an alternating group of degree greater than d. This sharpened

a lemma of Babai, Cameron, Pálfy and generalized a theorem of Dixon. Let G be a

primitive subgroup of Sn. We established the inequality |G| ≤ 50 · n√n for groups G

not containing An. This result was applied by J. Araújo, L. Folgado, and J. D. Mitchell
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[1] in classifying certain subsemigroups of the semigroup Self(n) of all mappings from

an n-element set to itself.

For a finite group G, let k(G) denote the number of conjugacy classes of G. This

is also the number of complex irreducible characters of the group G. This invariant

is interesting both in group theoretic and representation theoretic points of view. Let

V be a finite dimensional FG-module where F is a field of prime order over which

the vector space V is defined. The module V (with its additive structure) can be

considered as a finite group. We can also consider the semidirect product GV . The

so-called k(GV )-problem is the following. If G has order co-prime to the order of

F , then k(GV ) ≤ |V |. Bounding the number of conjugacy classes of a permutation

group is important in this context. In Chapter 4 we proved that if G is a finite

permutation group of degree n > 2, then k(G) ≤ 3(n−1)/2. This is an extension of a

theorem of Kovács and Robinson and in turn of Riese and Schmid. More distantly

but still related to the k(GV )-problem, the following is also true. If N is a normal

subgroup of a completely reducible subgroup of GL(n, q), then k(N) ≤ q5n. (Here we

note that a normal subgroup of a completely reducible subgroup is again completely

reducible.) Similarly, if N is a normal subgroup of a primitive subgroup of Sn, then we

found that k(N) ≤ p(n) where p(n) is the number of partitions of n. These improve

results of Liebeck and Pyber. We proved two more results in Chapter 4 that are worth

mentioning here. These are the following. If G is a subgroup of Sn with no composition

factor isomorphic to C2, then k(G) ≤ (5/3)n. If G is a nilpotent subgroup of Sn, then

k(G) ≤ 1.52n. The main result of Chapter 4 (involving the bound (
√

3)
n−1

) was used

in a paper by Guralnick and Robinson [30] on the commuting probability of a finite

group. These results will also be used in a joint paper of the author and Guralnick [28]

on the non–coprime k(GV )-problem which is to give an upper bound for k(GV ) where

V and G are as in the hypotheses of the k(GV )-problem with the exception that |F |
and |G| need not be co-prime but G is completely reducible on V .



Let G be a group that is a set-theoretic union of finitely many proper subgroups.

Cohn defined σ(G) to be the least integer m such that G is the union of m proper

subgroups. Tomkinson showed that σ(G) can never be 7, and that it is always of

the form q + 1 (q a prime power) for solvable groups G. In Chapter 5 we gave exact

or asymptotic formulas for σ(Sn) where Sn is the symmetric group of degree n. In

particular, we showed that σ(Sn) = 2n−1 if n is odd unless possibly if n = 9. When n

is even the situation is more complicated. In this case we established the fact that for

any ε > 0 there exists an integer N so that if n is an integer larger than N , then

1

2

(
n

n/2

)
+ (

1

2
− ε)

[n/3]∑
i=0

(
n

i

)
< σ(Sn) ≤ 1

2

(
n

n/2

)
+

[n/3]∑
i=0

(
n

i

)
.

We also investigated the subgroup coverings of the alternating groups. In this case

the n even case seemed easier to deal with. We proved that if n > 2 is even, then

σ(An) = 2n−2 if n is not divisible by 4, while if n is divisible by 4, then

(
(3n/4)− 1

(n/4)− 1

)
σ(An)− 2n−2 ≤ 1

2

(
n

n/2

)
.

If n > 9 is odd and not a prime, then

h ≤ σ(An) ≤ h +

[n/3]∑
i=1

(
n

i

)
,

where h denotes the index of the largest transitive proper subgroup of An. Finally, if

n is prime and larger than 7, then we only showed that σ(An) > 2n−2. In Chapter 5

we essentially started the investigation of the function µ. Let G be a 2-generated finite

group. Let µ(G) be the largest integer m so that there exists a subset X of G of order

m such that any distinct pair of elements of X generates G. In Chapter 5 we showed

that for “most” primes n we have σ(Sn) = µ(Sn). In a beautiful paper Blackburn [7]

proved that σ(Sn) = µ(Sn) for almost all odd integers n. In the same paper Blackburn



asked whether is it true that the quotients σ(G)/µ(G) tend to 1 as |G| tends to infinity

for any infinite sequence of finite simple groups. The paper [9] is the first step in this

direction. We proved two theorems. Let n be a positive integer, q a prime power and

V the n-dimensional vector space over the field of q elements. Let G be any of the

groups (P )GL(n, q), (P )SL(n, q). Let b be the smallest prime factor of n, and let N(b)

be the number of proper subspaces of V of dimensions not divisible by b. If n ≥ 12,

then

µ(G) =
1

b

n−1∏
i=1
b-i

(qn − qi) + [N(b)/2].

Secondly, let G be any of the groups (P )GL(n, q), (P )SL(n, q). Let b be the small-

est prime factor of n, let
(

n
k

)
q

be the number of k-dimensional subspaces of the n-

dimensional vector space V , and let N(b) be the number of proper subspaces of V of

dimensions not divisible by b. Suppose that n ≥ 12. Then if n 6≡ 2 (mod 4), or if

n ≡ 2 (mod 4), q odd and G = (P )SL(n, q), then

σ(G) = µ(G) =
1

b

n−1∏
i=1
b-i

(qn − qi) + [N(b)/2].

Otherwise σ(G) 6= µ(G) and

σ(G) =
1

2

n−1∏
i=1
2-i

(qn − qi) +

(n/2)−1∑

k=1
2-k

(
n

k

)

q

+
qn/2

qn/2 + 1

(
n

n/2

)

q

+ ε

where ε = 0 if q is even and ε = 1 if q is odd.



Chapter 7

Összefoglaló

A 3. fejezetben az olyan n-ed fokú primit́ıv permutáció csoportok elemszámait becsüljük,

amelyek nem tartalmazzák az n-ed fokú alternáló csoportot. A becsléseinkben az

Aschbacher-O’Nan-Scott és a véges egyszerű csoportok klasszifikációs tételeit használtuk

fel. “Majdnem minden” n-ed fokú primit́ıv permutáció csoport rendje legfeljebb n ·
∏[log2 n]−1

i=0 (n− 2i) < n1+[log2 n], vagy olyan talppal rendelkezik, amely izomorf valamely

alternáló csoport direkt hatványával. A négy, 4-tranzit́ıv Mathieu csoport, M11, M12,

M23 és M24 az egyedüli kivételek. Következményként a Praeger-Saxl tétel egy erősebb

verzióját mondtuk ki, ahol az M12 csoport “lett” a legnagyobb elemszámú kivétel.

Egészen pontosan azt bizonýıtottuk, hogy ha G egy n-ed fokú primit́ıv permutáció

csoport, amely nem tartalmazza az n-ed fokú alternáló csoportot, akkor |G| legfel-

jebb |M12|n/12. Alkalmazásként egy korlátot adtunk az olyan permutáció csopor-

tok rendjeire, amelyek nem tartalmaztak nagy fokú alternáló csoportot mint kom-

poźıciófaktort. Pontosabban azt igazoltuk, hogy ha G egy n-ed fokú permutáció cso-

port, d egy olyan egész szám, amely 4-nél nem kisebb, akkor |G| ≤ d!(n−1)/(d−1) ha

G-nek nincsen d-nél nagyobb fokú alternáló kompoźıció faktora. Ez a tétel Babai,

Cameron, Pálfy egy lemmáját erőśıtette és Dixon egy tételét általánośıtotta. Legyen G

egy primit́ıv részcsoportja Sn-nek, amely nem tartalmazza An-et. Ekkor a következő

egyenlőtlenséget igazoltuk. |G| ≤ 50 · n√n. Ezt az eredményt J. Araújo, L. Folgado,
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és J. D. Mitchell [1] felhasználták a Self(n) félcsoport bizonyos részfélcsoportjainak

klasszifikációjára.

Egy véges G csoport esetén jelölje k(G) a G csoport konjugáltsági osztályainak

számát. Ez a szám egyenlő a csoport komplex karaktereinek számával is. Egy csoport

ezen invariánsa érdekes mind csoportelméleti, mind reprezentáció elméleti szemszögből.

Legyen V egy F test feletti véges dimenziós vektor tér. Legyen F egy pŕımtest. Ha

G egy véges csoport, akkor V -t tekinthetjük egy FG-modulusnak bizonyos feltételek

teljesülése esetén. V , mint modulus tekinthető addit́ıv csoportnak is, amelyen G hat.

Így definiálhatjuk a GV szemidirekt szorzatot. A k(GV ) probléma a következő. Ha |F |
nem osztja |G|-t, akkor k(GV ) ≤ |V |. Egy tetszőleges permutáció csoport konjugáltsági

osztályainak a számának megbecslése ebből a szempontból különösen is érdekes. A 4.

fejezetben bizonýıtottuk, hogy ha G egy n-ed fokú permutáció csoport és n > 2, akkor

k(G) ≤ 3(n−1)/2. Ez Kovács és Robinson, valamint Riese és Schmid egy tételeinek kiter-

jesztése. A következő álĺıtás szintén igaz. Ha N egy normális részcsoportja a GL(n, q)

egy teljesen reducibilis részcsoportjának, akkor k(N) ≤ q5n. (Itt megjegyezzük, hogy

egy teljesen reducibilis csoport normális részcsoportja is teljesen reducibilis.) Ha-

sonlóképpen, ha N az Sn egy primit́ıv részcsoportjának normális részcsoportja, akkor

k(N) ≤ p(n), ahol p(n) az n szám összes part́ıciójának száma. Ez Liebeck és Py-

ber egy eredményét jav́ıtotja. Két másik emĺıtésre méltó tételt bizonýıtottunk be a

4. fejezetben. Ezek a következők. Ha G az Sn egy olyan részcsoportja, amelynek

nincsen C2-vel izomorf kompoźıciófaktora, akkor k(G) ≤ (5/3)n. Ha G egy nilpotens

részcsoportja Sn-nek, akkor k(G) ≤ 1.52n. A 4. fejezet fő eredményét, amely a (
√

3)
n−1

korlátot foglalta magába, Guralnick és Robinson [30] alkalmazta a felcserélhetőségi

valósźınűségről szóló cikkükben. Ezen ḱıvül ezt az eredményt a szerző egy, a Guralnick-

kal közös cikkében fogja alkalmazni, amely a nem relat́ıv pŕım k(GV ) problémáról szól,

amely egészen pontosan az, mint az eredeti k(GV ) problema azzal a kulonbseggel, hogy

|F | oszthatja |G|-t, viszont G-nek teljesen reducibilisnek kell lennie V -n.



Legyen G egy olyan csoport, amely véges sok valódi részcsoportjának halmazelméleti

uniójaként áll elő. Cohn σ(G)-vel jelölte azt a legkisebb m pozit́ıv egész számot, ame-

lyre az igaz, hogy G előáll m darab valódi részcsoport uniójaként. Tomkinson azt

bizonýıtotta, hogy nincs olyan G csoport, amelyre σ(G) = 7, valamint azt, hogy σ(G)

mindig q + 1 alakú ahol q pŕımhatvány, ha G feloldható. Az 5. fejezetben pontos vagy

aszimptotikus formulakat adunk σ(Sn)-re, ahol Sn az n-ed fokú szimmetrikus csoportot

jelöli. Pontosabban, beláttuk, hogy σ(Sn) = 2n−1 ha n páratlan és 9-től különböző. Ha

n páros, akkor a helyzet sokkal komplikáltabb. Ebben az esetben azt bizonýıtottuk,

hogy bármely pozit́ıv ε-ra létezik egy olyan N szám, hogy ha n egy olyan pozit́ıv szám,

amely nagyobb, mint N , akkor

1

2

(
n

n/2

)
+ (

1

2
− ε)

[n/3]∑
i=0

(
n

i

)
< σ(Sn) ≤ 1

2

(
n

n/2

)
+

[n/3]∑
i=0

(
n

i

)

teljesül. Az alternaló csoportok részcsoportokkal való lefedésének kérdését is vizsgáltuk.

Ebben az esetben a páros n esete könnyebbnek bizonyult. Beláttuk, hogy ha n páros és

2-nél nagyobb, akkor σ(An) = 2n−2 ha n 4-gyel nem osztható, de ha n osztható 4-gyel,

akkor (
(3n/4)− 1

(n/4)− 1

)
σ(An)− 2n−2 ≤ 1

2

(
n

n/2

)
.

Ha n paratlan, 9-nel nagyobb, es nem prim, akkor

h ≤ σ(An) ≤ h +

[n/3]∑
i=1

(
n

i

)
,

ahol h jelöli az An legnagyobb valódi tranzit́ıv részcsoportjának rendjét. Végül, ha

n pŕım és 7-nél nagyobb, akkor csak azt bizonýıtottuk (ilyen általánosságban), hogy

σ(An) > 2n−2. Lényegében az 5. fejezetben kezdtük el a µ függvény vizsgálatát. Legyen

G egy két elemmel generálható véges csoport. Legyen µ(G) a legnagyobb olyan m szám,

amelyre létezik olyan X részhalmaza G-nek, amelynek rendje m és amelyre igaz az,



hogy bármely két egymastól különböző eleme generálja G-t. Az 5. fejezetben beláttuk,

hogy “a legtöbb” n pŕımre σ(Sn) = µ(Sn). Egy nagyon szép cikkben Blackburn [7]

bebizonýıtotta, hogy σ(Sn) = µ(Sn) majdnem minden páratlan n-re. Ugyanebben a

cikkben Blackburn megkérdezte, hogy vajon igaz-e az, hogy bármely, véges egyszerű

G csoportokból álló végtelen sorozat esetén a σ(G)/µ(G) hányadosok 1-hez tartanak,

ha a G csoportok |G| rendjei a végtelenbe tartanak. A [9] cikk az elso lépés ennek a

kérdésnek a megválaszolásához. Két tételt bizonýıtottunk ebben a cikkben. Legyen n

egy pozit́ıv egész szám, q egy pŕımhatvány, és V egy n dimenziós vektortér a q-elemű

test felett. Legyen G a (P )GL(n, q), (P )SL(n, q) csoportok bármelyike. Legyen b az n

szám legkisebb pŕım osztója, és legyen N(b) a V b-vel nem osztható dimenziójú valódi

altereinek a száma. Ha n ≥ 12, akkor

µ(G) =
1

b

n−1∏
i=1
b-i

(qn − qi) + [N(b)/2].

A második tétel pedig a következő. Legyen G a (P )GL(n, q), (P )SL(n, q) csoportok

bármelyike. Legyen b az n szám legkisebb pŕım osztója, és legyen
(

n
k

)
q

a V vektortér

k-dimenziós altereinek a száma. Legyen N(b) az, ami az előbb. Legyen n ≥ 12. Ekkor

ha n 6≡ 2 (mod 4), vagy ha n ≡ 2 (mod 4), q páratlan és G = (P )SL(n, q), akkor

σ(G) = µ(G) =
1

b

n−1∏
i=1
b-i

(qn − qi) + [N(b)/2].

Ellenkező esetben, σ(G) 6= µ(G) és

σ(G) =
1

2

n−1∏
i=1
2-i

(qn − qi) +

(n/2)−1∑

k=1
2-k

(
n

k

)

q

+
qn/2

qn/2 + 1

(
n

n/2

)

q

+ ε

ahol ε = 0 ha q páros és ε = 1 ha q páratlan.
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