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1. Introduction
1.1. ABLV type theorems. Stability theorems play an important part in the
theory of linear operator semigroups. Let A be a densely de�ned closed operator
on a complex Banach space X . The solutions of the well-posed abstract Cauchy
problems

(ACP)
{
u̇(t) = Au(t) (0 ≤ t),
u(0) = x,

form an operator semigoup (T (t))t≥0 on X (see [11]). The well-known Arendt�
Batty�Lyubich�V�u theorem [32] gives a su�cient spectral condition for the stability
of the operator semigroup. Let σ(A) and σp(A∗) stand for the spectrum of A and
the point spectrum of its adjoint A∗.
Theorem 1.1. (ABLV) Let (T (t))t≥0 be the C0-semigroup generated by A and
suppose that T (t)x is bounded for every x ∈ X . If σ(A) ∩ iR is countable and
σp(A∗) ∩ iR = ∅, then

lim
t→∞

‖T (t)x‖ = 0

for every x ∈ X .
Quite a few generalizations of the theorem are known for bounded and un-

bounded representations of suitable locally compact abelian semigroups ( [1], [2],
[5], [3], [19], [20]). First V�u [41] proved a weighted version of the ABLV Theorem.
Later, C.J.K. Batty and S. Yeates [3] gave a detailed study on the spectral theory
and stability of non-quasianalytic representations. In this thesis, we shall extend
Kérchy's method (which appears in papers [19], [20], applied to discrete abelian
semigroups) to topological semigroups; that is, we shall prove stability results for
unbounded representations that have a regular norm-function. The derived stabil-
ity results are strongly related to [3], but the main di�erences lie in the stability
properties and the norm-conditions of the semigroup. In addition, on the real
half line, we shall give a characterization of C0-semigroups whose norm-function is
topologically regular. We shall discuss these results in Sections 2 to 5. Di�erent
applications of regularity related to generalized Toeplitz operators and similarity
problems can be found in [23], [24] and [7], [8].

1.2. Katznelson�Tzafriri type theorems. Another type of stability result stu-
died in this thesis is the Katznelson�Tzafriri theorem (see [18]). Let A(T) denote
the set of continuous functions on the unit circle T whose Fourier coe�cients are
absolutely convergent, and let A+(T) be the set of functions in A(T) whose Fourier
coe�cients with negative indeces are vanishing. The algebra A(T) is a Banach
algebra with the norm ‖f‖ =

∑∞
n=−∞ |f̂(n)| (where f ∈ A(T) and {f̂(n)}∞n=1 are

the Fourier coe�cients of f). We say that an f ∈ A+(T) is of spectral synthesis
with respect to a closed set E ⊆ T if there exists a sequence of (fn)n ⊂ A(T) such
that each fn vanishes in a neighbourhood of E and limn→∞ ‖fn − f‖ = 0. The
Katznelson�Tzafriri theorem is the following.
Theorem 1.2. Let T be a power-bounded operator on the Banach space X , and let
f ∈ A+(T), which is of spectral synthesis with respect to σ(T ) ∩ T, the peripheral
spectrum of T. Then

lim
n→∞

‖Tnf(T )‖ = 0.
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We note that for Hilbert space contractions a richer functional calculus can be
de�ned due to von Neumann's inequality. It can be proved [13] that if f is an
element of the disk algebra A(D) (i.e. f is analytic on the open unit disk D and
it can be extended continuously to the closed unit disk) then f vanishes on the
peripheral spectrum of T if and only if limn→∞ ‖Tnf(T )‖ = 0. On the other hand,
contractions even admit a more general H∞ calculus on the unit disk, the so-called
Sz.Nagy�Foias calculus. Let T be a completely nonunitary contraction on a Hilbert
space and let f be a bounded holomorphic function on the unit disk. Then the
convergence limn→∞ ‖Tnf(T )‖ = 0 holds if limr→1 f(reiθ) = 0 for every eiθ in the
peripheral spectrum of T. However, an example shows that the converse implication
is not true (see [6]).

We will prove that the assumption made in the Katznelson�Tzafriri theorem can
be weakened in Hilbert spaces, and we will provide a complete characterization of
the convergence limn→∞ ‖TnQ‖ = 0 whenever Q commutes with T. This result
shall be presented in Section 6.

Many extensions of the Katznelson�Tzafriri were proved in the discrete case as
well as in the continuous one; see [5], [14], [17], [33], [34], [40] and [2], [9]. However,
we recall that all former extensions of the Katznelson�Tzafriri theorem are related
to bounded functional calculi of T or elements of the Banach algebra generated by
T.

2. Amenability on semigroups
Consider a locally compact, Hausdor� abelian group (G; +). Let S be a closed

subsemigroup of G with non-empty interior S◦ such that S−S = G and S∩(−S) =
{0}. By de�nition, for any s1, s2 ∈ S, s1 � s2 if s2 − s1 ∈ S. In this way we obtain
an inductive partial ordering on S. Let µ denote the restriction of the Haar measure
µ̃ on G to S. We shall use the notation L∞(S) for the Banach space of essentially
bounded, measurable functions with respect to µ on S. The translation of a function
f : S → C by s ∈ S is the mapping fs : S → C de�ned by fs(s′) := f(s+s′) (s′ ∈ S).

We say that a functional m in the dual space L∞(S)∗ is an invariant mean, if
• ‖m‖ = m(1) = 1,
• m(fs) = m(f) for every s ∈ S.

(Here 1 denotes the constant 1 function on S).
It can be shown that the set of the invariant means de�ned on S is non-empty.

This set shall be denoted by M(S). In general, a (not necessarily abelian) semi-
group or group is said to be amenable if there exists an invariant mean on it. A
su�cient and necessary condition of amenability can be given using (strong) Følner
nets.

De�nition 2.1. A net {Kλ}λ∈Λ of compact subsets of G with nonempty interior
is a strong Følner net if

(i) Kλ1 ⊆ Kλ2 whenever λ1 � λ2,
(ii) G =

⋃
K◦λ,

(iii) µ̃((x+Kλ) 4 Kλ)/µ̃(Kλ)→ 0 (as λ→∞) uniformly when x runs through
compact sets. (Here and in the following 4 stands for the symmetric dif-
ference.)

A net {Kλ}λ∈Λ of compact subsets of G with nonempty interior is called a Følner
net for G only if property (iii) holds.
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For example, if G = R then Kn := [−n, n] is a Følner sequence. By the cha-
racterization theorem of amenable groups ([36, Theorem 4.16]), a locally compact
group G is amenable if and only if there exists a strong Følner net for G. If G is
σ-compact, then we can always �nd a strong Følner sequence in G.

By means of the Markov�Kakutani �xed point theorem, one can prove in a simple
way that locally compact abelian (semi)groups are amenable; thus there exists a
Følner net on them. Shifting the elements of a net, the Følner net will lie in the
interior of S.

2.1. Topologically invariant means. In the thesis, we shall use also a special
subset of invariant means. Topologically invariant means were originally introduced
by A. Hulanicki for locally compact Hausdor� groups (see [36, page 9]). We shall
apply his concept to semigroups. First let G(S) denote the set of non-negative,
measurable functions g on S which satisfy the condition

∫
S
g(s) ds = 1. Next, for

any f ∈ L∞(S) and g ∈ G(S), let us consider a convolution f ∗ g ∈ L∞(S), de�ned
by (f ∗ g)(y) =

∫
S
f(s+ y)g(s) dµ(s).

De�nition 2.2. We say that a functional m ∈ L∞(S)∗ is a topologically invariant
mean if

• ‖m‖ = m(1) = 1,
• m(f ∗ g) = m(f) for every f ∈ L∞(S) and g ∈ G(S).

One can verify that the set of the topologically invariant meansMt(S) is non-
empty. A little reasoning shows that every topologically invariant mean m is a
(translation) invariant mean. Indeed, for any �xed f ∈ L∞(S) and y ∈ S, let us
choose a function g ∈ G(S) such that the support of g is included in y + S. We
have

m(f) = m(f ∗ g) = m

(∫

y+S

f( ·+ s)g(s) dµ(s)
)

= m(fy ∗ gy) = m(fy)

because gy is in G(S), soMt(S) ⊆M(S).
In the following example, we will give a construction which shows that the in-

clusionMt(S) ⊆ M(S) can be strict; that is, there exists an invariant mean that
is not topologically invariant.

Let r1, r2, . . . be an enumeration of the non-negative rational numbers. With
Ω =

⋃∞
n=1(rn−2−n, rn+2−n), let f0 be the characteristic function of Ω∩R+. Since

f0 ∈ L∞(R+) ∩ L1(R+), we get that m(f0) = 0 for every m ∈ Mt(R+). However,
the following holds true [28, Proposition 2].
Proposition 2.3. There exists an invariant meanm on L∞(R+) such thatm(f0) =
1.

Generally, for a large class of groups it is known that Mt(G) 6= M(G). More
precisely, if G is a non-compact, non-discrete and locally compact group which is
amenable, the sets Mt(G) and M(G) are distinct. For details, the reader should
see [36, p. 277] and [15], [37], [38].

We will use a description of the set Mt(S) in the dual space L∞(S)∗. The
counterpart of the result for groups is due to C. Chou [36, p. 138]. For any
compact set K ⊆ S of positive measure, we can introduce the mean ϕK on L∞(S),
de�ned by ϕK(f) := 1

|K|
∫
K
f(s)ds. Then the next result can be proved in a similar

way to the group case [28, Theorem 3, Remark].
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Theorem 2.4. The set Mt(S) is the weak-∗ closure of the convex hull of the set
of all weak-∗ cluster points of the sequences

{ϕKn+sn}n∈N ({sn}n ∈ SN),

where {Kn}n is an arbitrarily given �xed Følner sequence in S◦.
2.2. Types of convergence in semigroups. Our intention is to prove stability
results and discuss the asymptotic properties of operator semigroups. In most
cases we shall use weaker notions of the usual convergence of orbits, which requires
di�erent types of means. We shall see that these concepts can be described using
integral means.

With � we obtain an inductive partial ordering on S, hence S is a directed set.
We say that a function f : S → C tends to 0 at in�nity if for every ε > 0 there
exists an s0 ∈ S such that |f(s)| < ε whenever s0 � s. Applying invariant means,
we can de�ne (strong) almost convergence on semigroups, which is a weaker form
of the previous concept of convergence.
De�nition 2.5. A function f ∈ L∞(S) is called almost convergent if the set
{m(f) : m ∈M(S)} is a singleton. We shall use the notation a-limf = c whenever
m(f) = c for all m ∈M(S).

De�nition 2.6. We say that a function f ∈ L∞(S) almost converges in the strong
sense to c ∈ C if a-lim|f − c| = 0.

Now we will introduce a slightly weaker notion of almost convergence. The
concept is similar to the previous one, but here we use the set Mt(S) instead of
M(S).

De�nition 2.7. A function f ∈ L∞(S) is said to be topologically almost convergent
if the set {m(f) : m ∈Mt(S)} is a singleton. We shall use the notation at-limf = c
whenever m(f) = c for all m ∈ Mt(S). We say that an f ∈ L∞(S) topologically
almost converges in the strong sense to c ∈ C if at-lim |f − c| = 0.

The following statement provides us with a clear and simple picture about this
type of convergence. We note that its counterpart in `∞(Z+) is the classical charac-
terization of almost convergent sequences due to Lorentz [30].
Proposition 2.8. [28, Proposition 4, Remark] An f ∈ L∞(S) is topologically
almost convergent to c if and only if

lim
n→∞

1
|Kn|

∫

Kn

fy(s) ds = c

uniformly with respect to y ∈ S, where {Kn}n is an arbitrarily chosen Følner
sequence.

It is worth mentioning here that if f is an almost convergent function then the
above integral condition always holds.
Corollary 2.9. [25, Proposition 7] If f ∈ L∞(S) is almost convergent with a-lim
f = c and {Kn}n is a Følner sequence on S, then

lim
n→∞

1
|Kn|

∫

Kn

fy(s) ds = c

uniformly with respect to y ∈ S.
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We should add that the converse of the corollary is not true in general due to
Proposition 2.3.

After these preliminaries, we can turn to the study of representations having a
regular norm-function.

3. Representations with regular norm-function
Let X be a complex Banach space, and let L(X ) stand for the algebra of bounded

linear operators acting on X . A semigroup homomorphism ρ : S → L(X ) is said to
be a representation if it is continuous in the strong operator topology; that is,

• ρ(0) = I,
• ρ(s+ t) = ρ(s)ρ(t) for any s, t ∈ S,
• the orbit ρx : S → X , s 7→ ρ(s)x is continuous for every x ∈ X .

3.1. Limit functional and regularity. Before de�ning regularity, �rst we will
introduce the gauge function and the limit functional, then provide a summary of
their basic properties. We say that the function p : S → (0,∞) is a gauge function if
it is measurable and, for every s ∈ S, ps/p ∈ L∞(S) almost converges in the strong
sense to a positive number cp(s). The function cp is called the limit functional of
the gauge function p.

Next we will present an important property of the limit functional, which seems
to be crucial for deriving certain results later on.

Lemma 3.1. [25, Lemma 9] Let p be a gauge function with p(s) ≥ 1 for s ∈ S.
Then cp(s) ≥ 1 for every s ∈ S.

We recall that the non-zero, complex-valued continuous homomorphisms of S
are said to be the characters of S. We shall use the notation S] for the set of
characters of S.

Corollary 3.2. [25, Corollary 10] Let χ ∈ S] be such that cp ≤ |χ| ≤ p. Then
|χ| = cp.

In the following we shall assume that p is bounded on compact sets and that
p ≥ 1 for any gauge p.

We say that the representation ρ : S → L(X ) is of regular norm behaviour with
respect to the gauge function p or has a p-regular norm-function if ‖ρ(s)‖ ≤ p(s)
holds for every s ∈ S, and a-lims‖ρ(s)‖/p(s) = 0 is not true.

The key properties of the limit functional are stated in the following two theo-
rems.

Theorem 3.3. [25, Theorem 13] Let p be a gauge function on S and let us assume
that there exists a representation ρ : S → L(X ) with a p-regular norm-function.
Then the limit functional cp of p is a positive character of S.

Theorem 3.4. [25, Theorem 14] If the representation ρ : S → L(X ) has a regular
norm-behaviour with respect to the gauge functions p and q, then

cp = cq.

The above theorem will lead to the following de�nition. The function cρ := cp
is called the limit functional of the representation ρ with p-regular norm-function.
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The limit functional and the spectral radius function are related. Similar to
discrete semigroups (see [20]), one can prove that the inequality

cρ(s) ≤ r(ρ(s)), s ∈ S,
holds for the representation ρ with regular norm-function, where r(ρ(s)) denotes
the spectral radius of ρ(s). However, it was shown earlier in [19] that for S = Z+

the limit functional cρ(n) is really equal to r(ρ(n)) (n ∈ Z+). Now we can state the
analogous result concerning C0-semigroups [25, Proposition 16].
Proposition 3.5. If the representation T : R+ → L(X ) has a regular norm-behaviour
(with respect to a gauge function p), then cT (s) = r(T (s)) (s ∈ R+) holds.

Note here that the spectral radius function and the limit functional can be dif-
ferent (see [25, Example 17]).
3.2. Spectra of representations. We recall that Cc(S) stands for the set of con-
tinuous functions with compact support in S. The Fourier transform of a function
f ∈ Cc(S) with respect to the representation ρ : S → L(X ) is given by

f̂(ρ) :=
∫

S

f(s)ρ(s) dµ(s).

The integral exists pointwise: f̂(ρ)x =
∫
S
f(s)ρ(s)x dµ(s) (x ∈ X ) in the Bochner

sense (see e.g. [16, Chapter 7.5]). It is also clear that f̂(ρ) ∈ L(X ). We can
similarly de�ne f̂(χ) when χ ∈ S], since the characters of S are one-dimensional
representations.

We shall de�ne the spectrum for unbounded representations related to Lyubich's
δ-spectrum [31] and Kérchy's algebraic and balanced spectra [20].
De�nition 3.6. The algebraic spectrum of the representation ρ is

σa(ρ) :=
{
χ ∈ S] : |f̂(χ)| ≤ ‖f̂(ρ)‖ for all f ∈ Cc(S)

}
.

The balanced spectrum is de�ned by
σb(ρ) := σa(ρ) ∩ S]b,

where S]b := { χ ∈ S] : χ(s) 6= 0 for all s ∈ S}.
The spectrum of ρ with regular norm-function is

σ(ρ) := {χ ∈ σa(ρ) : |χ| ≤ cρ},
where cρ denotes the limit functional of ρ.

The existence of the limit functional makes it possible for us to de�ne the pe-
ripheral spectrum.
De�nition 3.7. The peripheral spectrum of the representation ρ : S → L(X ) with
regular norm-function is de�ned by

σper(ρ) := { χ ∈ σ(ρ) : |χ(s)| = cρ(s) for all s ∈ S }.
Equipping the set S] with the compact-open topology, the above spectra form a

locally compact, Hausdor� space [25, Proposition 22].
Finally, the point spectrum will be de�ned. Let the point spectrum of the repre-

sentation ρ : S → L(X ) be the set
σp(ρ) :=

{
χ ∈ S] : there exists 0 6= x ∈ X with ρ(s)x = χ(s)x for all s ∈ S} .
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The adjoint ρ∗(s) := ρ(s)∗ (s ∈ S) of ρ is not necessarily strongly continu-
ous, hence the spectrum of ρ∗ cannot be de�ned in general. However, there is no
di�culty with de�ning σp(ρ∗) in an analogous way to σp(ρ).

One of our results is connected to the balanced spectrum [25, Proposition 19].
Proposition 3.8. If ρ : S → L(X ) is a representation with regular norm-function,
then σb(ρ) ⊆ σ(ρ).

If S = Zn+ or Rn+, then it can be easily checked that every character of S is
non-vanishing; thus σa(ρ), σb(ρ) coincide and they are equal to σ(ρ) when ρ has a
regular norm-function.

3.3. Description of spectra. (a) Let T be a bounded, linear operator on X . We
shall denote the representation induced by T by ρT : Z+ → L(X ). Then it can be
shown that σa(ρT ) = σb(ρT ) = σ̂(T ), where σ̂(T ) denotes the polynomially convex
hull of σ(T ), the spectrum of T [35, Theorem 2.10.3].

(b) A geometrically similar result can be proved for the representations of R+;
that is, for C0-semigroups [28, Proposition 5 and Corollary 6]. Let T : R+ → L(X )
be a C0-semigroup having the generator A, and let ρ∞(A) be the component of
C \ σ(A) which contains the half-plane {z ∈ C : Re z > ω0(T )}, where ω0(T ) :=
limt→∞(log ‖T (t)‖)/t.
Theorem 3.9. Using the above notations, we have

σa(T ) = σb(T ) = C \ ρ∞(A).

(c) Let us assume that the representation ρ : S → L(X ) is bounded: α :=
sup{‖ρ(s)‖ : s ∈ S} <∞. If ‖ρ(s0)‖ < 1 holds for some s0 ∈ S, then the inequalities
‖ρ(ns0 + s)‖ ≤ ‖ρ(s0)‖nα (n ∈ N) tell us that lims ‖ρ(s)‖ = 0, i.e. ρ is uniformly
stable.

Assuming that ‖ρ(s)‖ ≥ 1 is true for every s ∈ S, we can readily prove that ρ is of
regular norm behaviour with respect to the gauge function p(s) := α (s ∈ S). The
limit functional cρ of ρ is clearly the constant 1 function. Thus σper(ρ) coincides
with the unitary spectrum σu(ρ) := {χ ∈ σ(ρ) : |χ| = 1} of ρ and it can be easily
veri�ed that σa(ρ) = σ(ρ) is also true.

Taking into account the fact that Cc(S) forms a dense subset of L1(S), we
conclude that if |f̂(χ)| ≤ ‖f̂(ρ)‖ holds for every f ∈ Cc(S) then it does so for every
f ∈ L1(S) too. Thus σ(ρ) coincides with the spectrum introduced by Batty and V�u
for bounded representations in [5]. We recall that this concept is an adaptation of
the �nite L-spectrum and the Arveson spectrum, de�ned for group representations,
to the semigroup setting (see [31] and [10]).

(d) Let ρ : S → L(X ) be a representation of regular norm-behaviour. Since
cρ ∈ S]b, the representation ρ̃ := c−1

ρ ρ : S → L(X ) is also of regular norm-behaviour
and cρ̃ = 1. Obviously every χ ∈ σper(ρ̃) can be uniquely extended to a character
χ̃ of the extension group G. We conclude that σper(ρ̃) may be identi�ed with the
unitary spectrum Spu(ρ̃) introduced in [3], namely σper(ρ̃) = {χ̃|S : χ̃ ∈ Spu(ρ̃)}.
Therefore σper(ρ) = {cρ(χ̃|S) : χ̃ ∈ Spu(ρ̃)} is true.

4. The stability theorem
4.1. Regularity and isometric representations. One important part of the
proof of the stability theorem is that we can associate an isometric representation
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with the original one. The statement is well known for bounded representations
and we can extend the result under the regularity condition [25, Theorem 23].
Theorem 4.1. For any representation ρ : S → L(X ) with p-regular norm-function,
there exists an isometric representation ψ : S → L(Y) on a Banach space Y and a
contractive transformation Q ∈ L(X ,Y) such that:

(i) kerQ = {x ∈ X : a- lims ‖ρ(s)x‖/p(s) = 0}, and ran Q is dense in Y;
(ii) Qρ(s) = cρ(s) ψ(s)Q holds for every s ∈ S;
(iii) for every operator C ∈ {ρ(S)}′, there exists a unique operator D ∈ {ψ(S)}′

such that QC = DQ; furthermore, the mapping γ : {ρ(S)}′ 7→ {ψ(S)}′, C 7→
D is a contractive algebra-homomorphism;

(iv) σ(ρ) ⊇ cρσ(ψ), σper(ρ) ⊇ cρσper(ψ), σp(ρ∗) ⊇ cρσp(ψ∗).

4.2. The stability theorem. The next statement, the generalization of the Arendt�
Batty�Lyubich�V�u theorem for representations that have a regular norm-function
[25, Theorem 25], is one of the main results of our thesis.
Theorem 4.2. Let ρ : S → L(X ) be a representation with a p-regular norm-
function. If σper(ρ) is countable and σp(ρ∗) ∩ {χ ∈ S] : |χ| = cρ} is empty,
then

a- lim
s

‖ρ(s)x‖
p(s)

= 0

holds for all x ∈ X .
Applying Corollary 2.9 we obtain the following [25, Corollary 26].

Corollary 4.3. Let ρ : S → L(X ) be a representation with a p-regular norm-
function. If σper(ρ) is countable and σp(ρ∗) ∩ {χ ∈ S] : |χ| = cρ} is empty,
then

lim
i→∞

1
µ(Ki)

∫

Ki

‖ρ(s)x‖
p(s)

dµ(s) = 0

is true for all x ∈ X , where {Ki}i is any Følner sequence.
The previous result is a generalization of the stability result [5, Theorem 4.2]

concerning bounded representations. The spectral conditions of Theorem 4.2 are
essentially the same as those in the main result Theorem 3.2 of [3]. The di�erences
lie in the norm-condition on ρ and in the nature of convergence of orbits.
4.3. Representations and topological regularity. Here it is important to no-
tice that we use the set of invariant means to de�ne regularity, but the previous
results remain valid if we just apply the set of topologically invariant means. (In
fact, the main ingredients like the limit functional and the associated isometric rep-
resentation can be introduced in a similar way withMt(S) instead ofM(S).) For
discrete semigroups these two concepts are the same because the classes of these
means coincide in the discrete case. In the next section we will present a detailed
study on the second alternative on the real half-line, introducing C0-semigroups
with a topologically regular norm-function.

5. C0-semigroups and topological regularity
Topological regularity is de�ned in the following way. We say that p : R+ →

[1,∞) is a topological gauge function if (i) it is measurable, (ii) for every s ∈ R+,
ps/p ∈ L∞(R+) topologically almost converges in the strong sense to a positive
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real number cp(s), and (iii) the functions p and ψ(s) = supt∈R+
ps(t)/p(t) are

locally bounded (i.e. bounded on compact sets). The function cp is called the limit
functional of the gauge function p. The set of topological gauge functions shall be
denoted by Pt. In the following, a representation of R+ is called a C0-semigroup.

De�nition 5.1. The C0-semigroup T : R+ → L(X ) has regular norm behaviour
with respect to the topological gauge function p or has a p-regular norm-function if
(i) ‖T (s)‖ ≤ p(s) holds for every s ∈ R+, and (ii) at-lims‖T (s)‖/p(s) = 0 does not
hold.

Operators with regular norm-sequences were characterized by L. Kérchy and V.
Müller in [26]. Following the discrete case, let us introduce the regularity constant
κT for a C0-semigroup T if r(T (s)) > 0 for some (and then for all) s ∈ R+. Then

κT := inf
n∈N

sup
s∈R+

[(
1
n

∫ s+n

s

r(T (t))−1‖T (t)‖ dt
)(

sup
s≤y≤s+n

r(T (y))−1‖T (y)‖
)−1

]
.

Clearly, we have 0 ≤ κT ≤ 1. The regularity constant makes it possible for us to
give a description of a semigroup whose norm-function exhibits a regular behaviour.

The next result is proved in [28, Theorem 8].

Theorem 5.2. Let T : R+ → L(X ) be a C0-semigroup. Then the following condi-
tions are equivalent:

(i) T has a p-regular norm-function with a topological gauge function p ∈ Pt,
(ii) T has a p-regular norm-function with a continuous gauge p ∈ Pt,
(iii) ‖T (s)‖ ≥ 1 for every s ∈ R+ and κT > 0.

6. A Katznelson�Tzafriri type theorem in Hilbert spaces
The Katznelson�Tzafriri theorem is an operator-theoretic result which is related

to the ABLV theorem. (To learn more about the connection, the reader is asked
to consult [13].) When S = Z+, we can present an extension of the result in the
Hilbert space setting.

Let I be the identity operator on X . If f ∈ A+(T) and T is power-bounded
operator, then a bounded functional calculus naturally arises which can be de�ned
by f(T ) :=

∑∞
k=0 f̂(k)T k ∈ L(X ), where f(λ) =

∑∞
k=0 f̂(k)λk and

∑∞
k=0 |f̂(k)| <

∞.
Our starting point is an observation which leads us to introduce the ergodic

condition in our generalization [29, Lemma 2.2].

Lemma 6.1. Let T be a power-bounded operator on a complex Banach space X
and let f ∈ A+(T). Then, for every λ ∈ T, we have

lim
n→∞

1
n

∥∥∥∥∥
n−1∑

k=0

λ−kT k (f(T )− f(λ)I)

∥∥∥∥∥ = 0.

The uniform ergodic theorem tells us that 1
n

∑n−1
k=0 T

k tends to zero in norm if
and only if 1 is in the resolvent set of T (cf. [27, Theorem 2.7]). With this result,
a simple corollary of the above lemma is straightforward [29, Corollary 2.3].
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Corollary 6.2. Let T be a power-bounded operator on a Banach space X and
f ∈ A+(T). Then, for each λ ∈ σ(T ) ∩ T,

f(λ) = 0 if and only if lim
n→∞

1
n

∥∥∥∥∥
n−1∑

k=0

λ−kT kf(T )

∥∥∥∥∥ = 0.

Our main result will now be presented [29, Theorem 2.1].
Theorem 6.3. Let T be a power-bounded operator on a Hilbert space H. If Q ∈
L(H) and TQ = QT, then the following statements are equivalent:

(i) lim
n→∞

1
n

∥∥∥∥∥
n−1∑

k=0

λ−kT kQ

∥∥∥∥∥ = 0 for every λ ∈ σ(T ) ∩ T,

(ii) limn→∞ ‖TnQ‖ = 0.
Moreover, if Q = f(T ) for some f ∈ A+(T), then (i) and (ii) are equivalent to

(iii) f(λ) = 0 for every λ ∈ σ(T ) ∩ T.
The proof partly follows V�u's method ([39], [40]); that is, we �rst verify conver-

gence in the strong operator topology by reducing the problem to isometries. After
that we can complete the proof using some aspects of an ultrapower approach.

It is an open problem whether one can prove a similar statement for C0-semigroups
or more general representations. It is also an open question whether the statement
remains valid in more general spaces; for instance, in Lp-spaces (1 < p <∞) or in
superre�exive Banach spaces.
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