
Linear combinations of iid random
variables from the domain of

geometric partial attraction of a
semistable law

Outline of Ph.D. Theses
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Szegedi Tudományegyetem, Bolyai Intézet
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1. The generalized n-Paul paradox

This chapter is an extended version of [5]. The enumeration of equations,
theorems and corollaries is the same as in the theses, for easier reference.

Peter offers to let Paul toss a possibly biased coin until it lands heads
and pays him rk ducats if this happens on the kth toss, where r = 1/q
for q = 1 − p and p ∈ (0, 1) is the probability of ‘heads’ at each throw.
This is the generalized St. Petersburg(p) game, in which P{X = rk} =
qk−1p, k ∈ N, for Paul’s gain X. We assume that Peter plays exactly one
such game with each of n ≥ 2 players, Paul1, Paul2, . . . , Pauln, whose
independent individual winnings are X1, X2, . . . , Xn. The players may agree
to use a pooling strategy pn = (p1,n, p2,n, . . . , pn,n), before they play, where
p1,n, p2,n, . . . , pn,n ≥ 0 and

∑n
j=1 pj,n = 1. Under this strategy Paul1 receives

p1,nX1+p2,nX2+ · · ·+pn,nXn, Paul2 receives pn,nX1+p1,nX2+ · · ·+pn−1,nXn,
. . ., and Pauln receives p2,nX1 +p3,nX2 + · · ·+pn,nXn−1 +p1,nXn ducats. This
strategy is fair to every Paul in the sense that their winnings are equally
distributed and each receives the same added value equal to

Ap(pn) = E[ p1,nX1 + · · ·+ pn,nXn, X1]

=

∫ ∞

0

[
P{p1,nX1 + · · ·+ pn,nXn > x} −P{X1 > x}] dx,(1.1)

whenever the integral is defined. We call a strategy pn = (p1,n, . . . , pn,n) ad-
missible if each of its components is either zero or a nonnegative integer power
of q. The entropy of a pooling strategy is Hr(pn) =

∑n
j=1 pj,n logr 1/pj,n.

Theorem 1.1. For any p ∈ (0, 1) and n ∈ N, the added value Ap(pn) exists
as an improper Riemann integral if and only if pn is admissible, in which
case Ap(pn) = p

q
Hr(pn).

Csörgő and Simons [4] proved this theorem for the classical St. Peters-
burg(1/2) game, played with an unbiased coin. However, in that case they
proved the following stronger result: the independent St. Petersburg(1/2)
variables X1, . . . , Xn can be defined on a rich enough probability space that
carries, for each admissible strategy pn=(p1,n, . . . , pn,n), a St. Petersburg(1/2)
random variable Xpn

and a nonnegative random variable Ypn
such that Tpn

=
p1,nX1 + · · ·+ pn,nXn = Xpn

+ Ypn
almost surely. This implies the stochastic

inequality Tpn
≥D X1. Hence the integrand in A1/2(pn) is nonnegative and

thus A1/2(pn) is trivially finite as a Lebesgue integral. As the next result
shows, stochastic dominance is preserved for two players for an arbitrary
St. Petersburg parameter p ∈ (0, 1).
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Theorem 1.2. For any p ∈ (0, 1), if p2 = (qa, qb) is an admissible pooling
strategy for some a, b ∈ N, then Tp2

= qaX1 + qbX2 is stochastically larger
than X1.

Surprisingly, for n ≥ 3 gamblers stochastic dominance generally fails to
hold for admissible strategies.

Theorem 1.3. If p = (n − 1)/n, q = 1/n and n ≥ 3, then neither Sn =
X1 + · · ·+ Xn nor nX1 is stochastically larger than the other.

In view of Theorem 1.2 the integrand in (1.1) is nonnegative whenever p2

is admissible, so that the integral Ap(p2) described in Theorem 1.1 strength-
ens to that of a Lebesgue integral when n = 2. While the same conclusion
holds for n ≥ 3, Theorem 1.3 rules out so simple a line of reasoning.

Theorem 1.4. For every parameter p ∈ (0, 1) and every admissible strat-
egy pn = (p1,n, . . . , pn,n) the integral Ap(pn) in (1.1) is finite as a Lebesgue
integral.

Theorem 1.1 characterizes the pooling strategies that yield added values.
However, admissible strategies do not exist for all, in fact, for most param-
eters p ∈ (0, 1). If for p there exists an admissible strategy, then p is an
algebraic number, so the cardinality is at most countable. Nevertheless, it
can be shown that there are quite a lot admissible parameters.

Theorem 1.5. The set of admissible parameters is dense in (0, 1).

When a given number of our Pauls happen to have admissible strategies,
a natural question is: which is the best? In the latter rational case when
p = (m − 1)/m for some integer m ≥ 2, and so r = 1/q = m ≥ 2 is an
integer, the answer is given by the next result. In the theorem byc stands for
the lower integer part, dye for the upper integer part, and 〈y〉 is the fractional
part of y.

Theorem 1.6. If p = (r−1)/r and n = rblogr nc+(r−1)rn for some integers
r ≥ 2 and 0 ≤ rn ≤ rblogr nc − 1, then

Ap(pn) =
p

q
Hr(pn) ≤ p

q
logr n− δp(n) =: A∗

p,n

for every admissible strategy pn, where δp(u) = 1 + (r − 1)〈logr u〉 − r〈logr u〉,
u > 0. Moreover, the bound A∗

p,n is attainable by means of the admissible
strategy

p∗n = (p∗1,n, . . . , p∗n,n) = (rp∗n, . . . , rp∗n, p∗n, . . . , p∗n) with p∗n =
1

rdlogr ne ,
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where the number of p∗n s and rp∗n s are, respectively,

m1,p(n) =
rn− rdlogr ne

r − 1
and m2,p(n) =

rdlogr ne − n

r − 1
.

Apart from reorderings of the components of p∗n, the point of maximum is
unique.

Finally, we show a strategy generating branching algorithm, which has an
interesting property concerning stochastic domination. For any admissible
parameter p ∈ (0, 1), let (qa1 , qa2 , . . . , qan) and (qb1 , qb2 , . . . , qbm) be admissible
strategies for n and m Pauls for any n, m ≥ 2. Substituting qak+b1 + qak+b2 +
· · · + qak+bm = qak for qak , where k ∈ {1, . . . , n} is arbitrary, we obtain a
strategy (qd1 , qd2 , . . . , qdn+m−1) for n + m − 1 gamblers, where the sequence
d1 ≥ d2 ≥ · · · ≥ dn+m−1 is a nonincreasing rearrangement of the sequence
a1, . . . , ak−1, ak + b1, . . . , ak + bm, ak+1, . . . , an. We say that a strategy pn =
(p1,n, . . . , pn,n) is stochastically dominant if p1,nX1 + · · · + pn,nXn ≥D X1.
The last theorem states that the branching algorithm preserves stochastic
dominance. Choosing first n = m = 2, it may be used in conjunction with
Theorem 1.2 as a starting point.

Theorem 1.7. If the strategies (qa1 , qa2 , . . . , qan) and (qb1 , qb2 , . . . , qbm) are
both stochastically dominant, then the generated strategy (qd1, qd2, . . . , qdn+m−1)
is also stochastically dominant.

2. Merging asymptotic expansions for gener-

alized St. Petersburg games

The results of this chapter are from [2].
We further generalize the St. Petersburg game. Peter offers to let Paul

toss a possibly biased coin repeatedly until it lands heads and pays him rk/α

ducats if this happens on the k th toss, where r = 1/q for q = 1 − p, and
p ∈ (0, 1) is the probability of heads on each throw, while α ∈ (0, 2) is a
payoff parameter.

For the bias parameter p ∈ (0, 1), the payoff or tail parameter α ∈ (0, 2)
and a third parameter γ ∈ (q, 1], consider the infinitely divisible random
variable

(2.2) Wα,p
γ =

1

γ1/α

{ −∞∑
m=0

rm/α

[
Y p,γ

m − pγ

qrm

]
+

∞∑
m=1

rm/α Y p,γ
m

}
+ sα,p

γ ,
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where . . . , Y p,γ
−2 , Y p,γ

−1 , Y p,γ
0 , Y p,γ

1 , Y p,γ
2 , . . . are independent random variables

such that Y p,γ
m has the Poisson distribution with mean prγqm = pγ/(qrm),

and where sα,p
γ is constant. Let Gα,p,γ(x) = P{Wα,p

γ ≤ x} denote its distri-
bution and

(2.3) gα,p,γ(t) = E
(
eitW α,p

γ
)

=

∫ ∞

−∞
eitx dGα,p,γ(x) = eyα,p

γ (t), t ∈ R,

its characteristic function, where

yα,p
γ (t) = itsα,p

γ +
−∞∑

l=0

(
exp

{
itr

l
α

γ
1
α

}
− 1− itr

l
α

γ
1
α

)
pγ

qrl
+

∞∑

l=1

(
exp

{
itr

l
α

γ1α

}
−1

)
pγ

qrl
.

The form of the exponent of the characteristic function immediately implies
that for every p ∈ (0, 1) and γ ∈ (q, 1] the infinitely divisible distribution
of Wα,p

γ is semistable with exponent α. It follows that Gα,p,γ(·) is infinitely
many times differentiable.

Consider a sequence of pooling strategies {pn = (p1,n, . . . , pn,n)}∞n=1, and
assume that pn = max{p1,n, . . . , pn,n} → 0. Our first interest in this chapter
is the asymptotic distribution of

(2.8) Sα,p
pn

=
n∑

k=1

p
1/α
k,n Xk − p

q
Hα,p(pn),

a particular type of linear combinations when α 6= 1, where Hα,p(pn) is a

constant depending on the strategy. Even though p
1/α
1,n , . . . , p

1/α
n,n sum to one,

and hence form a strategy only for α = 1, it is a major technical step to come
up with a merging approximation in terms of the distribution functions of
the semistable random variables

(2.9) Wα,p
pn

=

{ ∑n
k=1 p

1/α
k,n W α,p

1,k , if α 6= 1,
∑n

k=1 pk,nW 1,p
1,k − p

q
H1,p(pn), if α = 1,

where the random variables Wα,p
1,1 ,W α,p

1,2 , . . . , W α,p
1,n are independent copies

of W α,p
1 , given by substituting γ = 1 in (2.2). The characteristic and

the distribution functions will be denoted by gα,p,pn
(t) = E(eitW α,p

pn ) and
Gα,p,pn

(x) = P{Wα,p
pn

≤ x} respectively. It is easy to see that Wα,p
pn

is in-
deed a semistable random variable with exponent α for an arbitrary strategy
pn.

Fix any strategy pn = (p1,n, . . . , pn,n), and consider the position param-
eters γk,n = 1/(pk,nr

dlogr 1/pk,ne) ∈ (q, 1] for each component k = 1, 2, . . . , n
for which pk,n > 0. Roughly speaking γk,n ∈ (q, 1] determines the position
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of pk,n between two consecutive powers of r. Recalling formula (2.3) for the
ingredients and the notation gα,p,pn

(t) = E(eitW α,p
pn ) at (2.9), for t ∈ R we

introduce the complex-valued function gα,p
pn

(t), defined for α 6= 1 as

gα,p
pn

(t) = gα,p,pn
(t)

[
1 − 1

2

n∑

k=1

p2
k,n

[
yα,p

γk,n
(t)

]2
+ itsα,p

1

n∑

k=1

p
1+ 1

α
k,n yα,p

γk,n
(t)

+
t2

2

{
(sα,p

1 )2 +
p

q − q2/α

} n∑

k=1

p
2
α
k,n

]
,

where the constant sα,p
1 = p/(q − q1/α) is from (2.2), and for α = 1 as

g1,p
pn

(t) = g1,p,pn
(t)

[
1 − 1

2

n∑

k=1

p2
k,n

[
y1,p

γk,n
(t)

]2 − it
p

q

n∑

k=1

p2
k,n y1,p

γk,n
(t) logr

1

pk,n

+
t2

2

{
p2

q2

n∑

k=1

p2
k,n log2

r

1

pk,n

+
1

q

n∑

k=1

p2
k,n

}]
.

Consider finally the function Gα,p
pn

(·) on R that has Fourier – Stieltjes trans-
form gα,p

pn
(t), that is,

(2.15) gα,p
pn

(t) =

∫ ∞

−∞
eitx dGα,p

pn
(x), t ∈ R.

The main result for the merging approximation of the distribution func-
tion of Sα,p

pn
from (2.8) is the following

Theorem 2.1. For any sequence of strategies {pn = (p1,n, . . . , pn,n)}n∈N,

sup
x∈R

∣∣∣P
{
Sα,p

pn
≤ x

}−Gα,p
pn

(x)
∣∣∣ =





O
(
p 2

n

)
, if 0 < α < 1/2,

O
(
p 1/α

n

)
, if 1/2 ≤ α < 3/2;

O
(
p (4−2α)/α

n

)
, if 3/2 ≤ α < 2,

where pn = max{p1,n, . . . , pn,n}.

For the uniform strategy p¦n = (1/n, . . . , 1/n) our theorem reduces to
Proposition in [1], where a correction term was missed. That the inclusion
of that term would be a desirable adjustment in [1], at least for α 6= 1, was
noticed by Pap [8]. Hence for any strategy pn the definition of Gα,p

pn
(·) in

(2.15) is a suitable generalization of the desired full form Gα,p
p¦n (·).

As noted between (2.8) and (2.9), the sum of the weights p
1/α
1,n , . . . , p

1/α
n,n in

Sα,p
pn

adds to unity only if α = 1, so for α 6= 1 they cannot represent a pooling
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strategy. However with a transformation we can easily rewrite Theorem 2.1
in an equivalent, more natural form.

For admissible strategies all pk,n nonzero members of pn is an integer
power of q, thus the corresponding γk,n = 1. Using the definition of gα,p

pn
,

we see that in the admissible case there exists a proper limiting distribution,
and moreover we have real asymptotic expansions attached to this asymp-
totic distribution. Concentrating on the dominant terms in Theorem 2.1, we
obtain the following

Corollary 2.2. For any sequence {pn = (p1,n, . . . , pn,n)}n∈N of admissible
strategies, for α ∈ (0, 1),

sup
x∈R

∣∣∣∣∣P
{
Sα,p

pn
≤ x

}−
[
Gα,p,1(x) − G

(0,2)
α,p,1(x)

1

2

n∑

k=1

p2
k,n

]∣∣∣∣∣

=

{
O(p 2

n), if 0 < α ≤ 1/2,

O(p 1/α
n ), if 1/2 < α < 1;

for α = 1,

sup
x∈R

∣∣∣∣∣P
{
S1,p

pn
≤ x

}−
[

G1,p,1(x) + G
(1,1)
1,p,1(x)

p

q

n∑

k=1

p2
k,n logr

1

pk,n

− G
(2,0)
1,p,1(x)

p2

2q2

n∑

k=1

p2
k,n log2

r

1

pk,n

]∣∣∣∣∣ = O(pn);

and for α ∈ (1, 2),

sup
x∈R

∣∣∣∣∣P
{
Sα,p

pn
≤ x

}−
[
Gα,p,1(x)−G

(2,0)
α,p,1(x)

{
p2

(q − q1/α)2
+

p

q − q2/α

}
1

2

n∑

k=1

p
2/α
k,n

]∣∣∣∣∣

=

{
O(p 1/α

n ), if 1 < α ≤ 3/2,

O(p (4−2α)/α
n ), if 3/2 < α < 2.
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3. Merging of linear combinations to semi-

stable laws

This chapter is based on the paper [6].
Consider the semistable random variable W (ψα

1 , ψα
2 , 0), that has charac-

teristic function

E(eitW (ψα
1 ,ψα

2 ,0)) = exp

{
− σ2

2
t2 +

∫ ∞

0

βt(ψ
α
1 (u)) du +

∫ ∞

0

βt(−ψα
2 (u)) du

}
,

where βt(x) = eitx − 1− itx
1+x2 and

(3.3) ψα
j (s) = −Mj(s)

s1/α
, s > 0, j = 1, 2,

where M1 and M2 are non-negative, right-continuous functions on (0,∞),
either identically zero or bounded away from both zero and infinity, such
that at least one of them is not identically zero, the functions ψα

j (·) are non-
decreasing and the multiplicative periodicity property Mj(cs) = Mj(s) holds
for all s > 0, for some constant c > 1, j = 1, 2. Megyesi [7] showed that
every semistable distribution up to a constant can be represented in this
way. We also introduce V (ψα

1 , ψα
2 , 0) = W (ψα

1 , ψα
2 , 0) + θ(ψα

1 )− θ(ψα
2 ), where

θ(ψ) is a constant, and for its distribution function we put Gψα
1 ,ψα

2 ,0(x) =
P{V (ψα

1 , ψα
2 , 0) ≤ x}.

Let the distribution function F be in the domain of geometric partial
attraction of the semistable law Gψα

1 ,ψα
2 ,0, and let X1, X2, . . . be independent

random variables with the common distribution function F (·). We consider
a sequence of strategies {pn} that satisfies the asymptotic negligibility condi-
tion pn = max{pj,n : j = 1, 2, . . . , n} → 0. Our main interest in this chapter
is the asymptotic distribution of the random variable

(3.8) Sα,pn
=

n∑
j=1

p
1/α
j,n

l(pj,n)
Xj −

n∑
j=1

p
1/α
j,n

l(pj,n)

∫ 1−pj,n

pj,n

Q(s) ds,

where the slowly varying function l(·) is from the representation of the quan-
tile function Q corresponding to F .

For λ > 0, define λψ(s) = ψ(s/λ) and put ψα,λ
j (s) = λ−1/α

λψ
α
j (s) =

−Mj(s/λ)s−1/α, s > 0, where the functions Mj are from (3.3), j = 1, 2.
Introduce

(3.9) Vα,λ(M1,M2) = V (ψα,λ
1 , ψα,λ

2 , 0) and E(eitVα,λ(M1,M2)) = eyα,λ(t), t ∈ R,
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and notice the identity Vα,λ(M1,M2) = λ−1/α V (λψ
α
1 , λψ

α
2 , 0). For simplicity

put γj,n = γ1/pj,n
if pj,n > 0, j = 1, . . . , n, where γx is a similar positional

parameter, as in the previous chapter. The merging semistable approxima-
tion to the distribution functions of Sα,pn

in (3.8) is given in the following
main result by the distribution functions Gα,pn

(x) = P{Vα,pn
≤ x}, x ∈ R,

of random variables Vα,pn
that have characteristic functions

(3.11) E
(
eitVα,pn

)
=

∫ ∞

−∞
eitx dGα,pn

(x) = exp

{
n∑

j=1

pj,n yα,γj,n
(t)

}
, t ∈ R,

where yα,γj,n
(·) is the exponent function in the characteristic function of Vα,γj,n

in (3.9).

Theorem 3.1. For any sequence {pn}∞n=1 of strategies such that pn → 0,

sup
x∈R

∣∣P{
Sα,pn

≤ x
}−Gα,pn

(x)
∣∣ → 0.

It follows from the formula (3.11) that for the uniform strategies p¦n =
(1/n, 1/n, . . . , 1/n) the distributional equality Vα,pn

D
= Vα,γn(M1,M2) holds,

and hence Theorem 3.1 reduces to the most important special case of full
sums in Theorem 2 in [3].

As noted before, there is real pooling of winnings only if α = 1 and l(·) ≡ 1
when the sum of the coefficients in (3.8) is 1. However, by a transformation,
similarly as in the St. Petersburg case, we obtain a version of Theorem 3.1
that is satisfactory in this respect.

Now we show that for special sequences {pn} the merge in Theorem 3.1
reduces to ordinary limit theorems. We call a sequence {pn}∞n=1 of strategies
balanced if

lim inf
n→∞

min{pj,n : j = 1, 2, . . . , n}
max{pj,n : j = 1, 2, . . . , n} > 0.

Roughly speaking this condition means that each component is important.
Classical theory says that if a limiting distribution exists for the uniform

strategies p¦n = (1/n, 1/n, . . . , 1/n), it must be stable. As an essence of
semistability, the following corollary claims that semistable limiting distri-
butions can be achieved by such balanced strategies that practically consist
of only two different components.

Corollary 3.1. For an arbitrary κ ∈ (c−1, 1] there exists a balanced sequence
{pn}∞n=1 of strategies such that Sα,pn

D−→ Vα,κ(M1,M2), where the random
variable Vα,κ(M1,M2) is defined in (3.9). Moreover, for each n ∈ {2, 3, . . .}
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the strategy pn = (p1,n, p2,n, . . . , pn,n) can be constructed in such a way that
there are at most two different values among its first n− 1 components.

For the proof of these results we need to work out the general theory of
merge. We say that the random variables Xn and Yn, or their distribution
functions Fn and Gn, merge together if L(Fn, Gn) → 0, where L(·, ·) stands
for the Lévy-metric.

Theorem 3.3. If {Gn}∞n=1 is stochastically compact, then L(Fn, Gn) → 0
if and only if φn(t) − ψn(t) → 0 for every t ∈ R, where φn and ψn are the
corresponding characteristic functions.

The next theorem is the basic tool in the proof of Theorem 3.1. It says
that if Gn is absolutely continuous for all n ∈ N and the corresponding density
functions are uniformly bounded, then even uniform convergence holds under
the same conditions.

Theorem 3.4. Assume that {Gn}∞n=1 is stochastically compact and there
is a constant K > 0 such that supn∈N supx∈R |G ′

n(x)| ≤ K. Then Fn(x) −
Gn(x) → 0 at every x ∈ R if and only if φn(t) − ψn(t) → 0 at every t ∈
R. Moreover, if this holds, then in fact the convergence is uniform, so that
supx∈R |Fn(x)−Gn(x)| → 0.

References
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