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Chapter 1

Introduction

Grid Computing [29] has become a separate research field in the '90s and since then
it has been targeted by many projects all around the world. Several years ago users
and companies having computation and data intensive applications looked sceptical
at the forerunners of Grid solutions that promised less execution time and easy-to-use
application development environments by creating a new virtually unified high per-
formance system of interconnected computers from all around the world. Research
groups were forming around specific parts of Grid systems and different research ar-
eas emerged, because former techniques of distributed computing were not applicable
in Grid systems. Many user groups from various research fields (biology, chemistry,
physics, etc.) put their trust in Grids and today usage statistics and research results
show that they were undoubtedly right. Grid Computing has been in the spotlight,
several international projects have aimed to establish sustainable Grids (eg. Core-
GRID [95], EGEE [92], NextGRID [121], GEANT [97], KnowARC [104], EUAsiaGrid
[94] and OSG [127]).

Core Grid services are provided and implemented by a so-called Grid middleware
[33]. The first widespread middleware was the Globus Toolkit [30], which became a de
facto standard for Grid Computing around 2002. Since then several middleware solu-
tions have appeared, and the production Grids using these solutions formed separate
islands that represent borders for both researchers and user communities. A decade of
Grid development has established many national and international production Grids
based on different middleware solutions (eg. HunGrid [110], NGS [120], EGEE [92],
UNICORE [143], NorduGrid [122] and OSG [127]). As a result of the numerous
Grid projects and available production Grids, user support centers [142, 98, 146, 103]
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have been set up in order to ease application porting to Grid environments. In some
cases these applications are so large and complex that their executions require more
computing resources than a particular Grid can provide. Therefore similarly to the
World-Wide Web, the interconnection of these separate islands can result in a World-
Wide Grid in the future. Such an aggregated system could cope with the growing
number of users and computation-intensive applications.

Resource management in Grid systems is the research field most affected by user
demands. Though well-designed, evaluated and widely used resource managers (also
called as brokers) have been developed, new capabilities are required, such as interop-
erability and agreement support. The available resource managers have already been
surveyed by other research groups [52], but these publications do not detail capabili-
ties related to interoperability and do not separate operational roles (eg. scheduling,
brokering, management). This dissertation aims at providing a high-level brokering
solution to establish Grid Interoperability [70], which means the bridging of different
Grid infrastructures in order to allow users on one Grid to run computing jobs and
exchange data with users on other Grids. The current solutions of Grid resource man-
agement will not be able to fulfil the high demands of future generation Grid systems,
though several Grid resource brokers [2] have been developed supporting different Grid
systems. The main problem is that most of them cannot cross the borders of separate
Grid islands caused by different Grid middleware solutions, therefore they can mature
as slowly as middleware solutions evolve. These newly arisen problems need to be
treated by novel research approaches in order to aggregate the separated Grid islands
and manage them together, because currently used Grid middleware solutions do not
support real interoperation other then restricted bilateral ones.

Solving these problems is crucial for the next generation of Grids, which should
spread from the academic to the business world. The advance of Grids seems to fol-
low the way foreseen by the Next Generation Grids Expert Group, which has been
established by the European Commission. In their third report [61] they have pointed
out that Grid and web services are converging and envisaged hybrid services called as
SOKUs (Service Oriented Knowledge Utility), which enable more flexibility, adapt-
ability and advanced interfaces, therefore interoperability is evident and congenital
in these systems.

Following these expert guidelines and the latest requirements of Grid user groups,
I propose in this dissertation such a high-level Grid brokering solution that enables

Grid Interoperability by providing the highest number of brokering capabilities in a
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way that it does not require any changes to the underlying Grid middleware services.

1.1 Summary of research results

During the research presented in this dissertation my first goal was to elaborate a
classification of Grid resource brokers. At that time, the less than ten-year-old Grid
Computing had several resource management solutions named by different expres-
sions operating on different middleware addressing various user needs. During the
preparation of the first thesis I examined the widespread Grid resource brokers used
by different user communities, identified their key functionalities and properties, gath-
ered them into a taxonomy, and classified them in a survey using the elements of the
taxonomy. | analysed the connections and inner structures of the available Grid re-
source manager components, identified different operational roles and resolved their
contradictory naming acronyms and expressions by creating an anatomy of Grid re-
source managers. | formalized the identified brokering roles, and inserted them into
the Abstract State Machine (ASM) model of Grid systems [60]. I identified and de-
fined interoperability levels for Grid brokering solutions and expressed them in the
presented model that enables the classification of related brokering approaches. I

stated the following thesis based on these results:

Thesis 1. I designed a category framework of broker capabilities that
I used to create a general taxonomy of Grid brokers. I designed an
anatomy of Grid resource managers that I used to formalize Grid
brokering levels based on the ASM model of Grids [60].

Grid Interoperability [70] is a fundamental challenge of Grid Computing nowadays.
The presented broker taxonomy also points out the heterogeneity in most brokering
components and methods. The resource management anatomy revealed their simi-
larities and possible interactions that paved the way for introducing a meta-level in
Grid brokering to interoperate different Grid systems. Some of the surveyed brokers
are capable of low-level interoperation by accessing resources of different Grids. 1
showed how these approaches address multi-grid brokering by broker-extension and
multi-brokering from Grid portals. For a higher level of interoperability, a general
broker description language is needed in order to enable the unified management of
Grid brokers. The second thesis contains the elaboration of such language based on

a meta-data model, using the categories of the broker taxonomy.
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Thesis II. I designed a new, XML-based description language called
Broker Property Description Language (BPDL) that is able to de-
scribe any Grid resource broker that can be categorized in the tax-
onomy. A high-level brokering service can use this language for the

unified management of these brokers.

I named the novel approach that performs high-level brokering at the meta-level
of Grid resource management as meta-brokering. The next, third thesis includes
the description of the required components of a general meta-brokering architecture
(besides the broker description language) and a realization of the abstract architecture

in a meta-brokering service that does not require any modifications to the utilized
brokers and Grids.

Thesis III. I determined the general requirements of Grid meta-
brokering, and developed a general architecture based on these re-
quirements that introduces a higher abstraction layer for enabling
Grid Interoperability by the unified management of Grid brokers.
Based on this general architecture, I designed the necessary compo-
nents to build the Grid Meta-Broker Service (GMBS).

The components of the realized meta-brokering service perform user interactions,
monitoring of resource and Grid load, tracking broker performance and automatic bro-
ker selection. After publishing this meta-brokering approach, other research groups
have also realized the need for interoperable brokering and started to develop their
own solutions. I designed a classification of these solutions based on the interoper-
ability levels introduced in Thesis I. The final part of the research was to evaluate the
proposed meta-broker. The GridSim Toolkit [12] is a widely accepted and used Grid
simulator that can be easily tailored to analyse Grid brokering methods. The fourth
thesis presents a meta-brokering simulation architecture that extends GridSim, and
the performance evaluation of the implemented meta-broker in this environment by
using real world resource usage traces form the publicly available Parallel and Grid
Workloads Archive [129, 107].

Thesis IV. I developed a new simulation environment based on the
GridSim [12] simulator that is able to evaluate meta-brokering. I
performed the evaluation of GMBS in this environment with a per-

formance analysis using both real parallel and Grid workload traces.
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I proved the effectiveness of the interoperable meta-brokering service

with the evaluation.

The evaluation results showed that the interoperable meta-brokering solution of
GMBS was able to achieve an order of magnitude better performance in Grid applica-
tion execution compared to the general, non-interoperable Grid utilization simulated
by random broker selection.

Table 1.1 shows the connections between the theses and the publications:

Table 1.1: Theses and publications
‘ [P4] [P18] [P16] [P1] [P5] [P17] [P2] [P11] [P6H

ThesisI. o ° ° ° ° ° ° ° °
Thesis I1. ° °
Thesis III. ° ° °
Thesis IV. °

| [P7] [P3] [P8] [P10] [P14] [P19] [P12] [PY9] [P13] [P15]]

ThesisI. o °
Thesis II. ° ° ° °
Thesis III. o ° ° ° °
Thesis IV. o
1.2 Agenda

This section provides an outline of the dissertation to show where and how it validates

the claims made previously.

Chapter 1 contains the introductory part of the research performed including the
theses of the dissertation followed by an overview of the structure of the docu-

ment itself.

Chapter 2 and 3 describes the problem area starting with a motivation example
followed by a literature review and a deep investigation of Grid resource man-
agers. Based on the presented findings a formal model has also been developed
that serves as a basis for the comparison of related research approaches. The

contributions of Thesis I. are discussed in these chapters.
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Chapter 4 provides the novel solution in the area of Grid resource management for
the problem of Grid Interoperability. It also enumerates avenues of future work
for further development of the concept and its applications. The contributions

of Thesis II. and III. are discussed in this chapter.

Chapter 5 is where the experiments, the evaluation of the proposed novel meta-
brokering solution are fully described. This part includes the details of how the
empirical side of the research has been conducted. The contributions of Thesis

IV. are discussed in this chapter.
Chapter 6 contains a restatement of the claims and results of the dissertation.

Appendix A and B contain summaries of the dissertation in English and Hungar-

ian.

Appendix C contains additional technical information related to the broker descrip-

tion language and the implementation of GMBS introduced in Chapter 4.



Chapter 2

Problem statement

The EGEE project [92] has been initiated in Europe to target two well-defined ap-
plication areas: high energy physics and biomedicine. In high energy physics, very
large amounts of data are produced and analysed, therefore it has one of the key user
groups running applications on the EGEE infrastructure. Since then a wide range of
research areas has appeared including Earth Sciences, Astroparticle Physics, Com-
putational Chemistry, Drug Discovery, Hydrology and Cosmology. EGEE formed a
strategic alliance with the LHC Computing Grid (LCG) project [148] from the be-
ginning, in order to satisfy the computing needs of the Large Hadron Collider (LHC)
particle accelerator in CERN, which is one of the largest scientific instruments in
the world planned to provide 15 petabytes of data per year. Besides, four different
LHC experiments also use EGEE resources: ALICE (A Large Ion Collider Exper-
iment), ATLAS (A Toroidal LHC Apparatus), CMS (the Compact Muon Solenoid
Experiment) and LHCb (The Large Hadron Collider Beauty Experiment) [92].

The biomedical area has also joined the EGEE project in the beginning. It has
various applications for drug discovery, medical tomography, protein analysis, molec-
ular docking analysis and mass screening of molecular interactions [92]. As a result of
the numerous Grid projects and available production Grids mentioned in the intro-
duction, user support centers have been set up in order to ease application porting to
Grid environments. The TeraGrid Advanced User Support [142] (AUS) project serves
American research communities, while in Europe the Global Grid User Support [98]
(GGUS) portal and the Westminster Grid Application Support Service (W-GRASS)
[146] provide application porting services. In Hungary, the Grid Application Support
Centre [103] (GASuC) provides similar facilities.
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As a result of these user support teams, numerous applications have been gridified
that require enormous computational power. For example, one of the 1195 applica-
tions published in the myExperiment Project [119] that can be executed in EGEE
[92], the Success Abandonment Classification complex Taverna workflow by Andrea
Wiggins [140] contains 65 tasks shown in Figure 2.1. It retrieves data from FLOSS-
mole and from the Notre Dame SourceForge repository to compute project statistics
based on releases, downloads and project lifespan. These statistics are then used to

classify projects according to different comparison criteria.

release_count_threshdd

e
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Figure 2.1: A complex Taverna workflow

The UK ProSim project has a proteine molecule simulation workflow [134] for in
silico modelling of intermolecular recognition, which is critical for biological processes
in human cells including the function of antibodies in immune responses to invading
pathogens and xenotransplants. The application uses in silico modelling for deter-

mining how proteins interact with ligands and how to manipulate them to improve



or change their specificity. It integrates readily available software programs in an
optimised workflow to reproduce receptor-ligand complexes with a good degree of
accuracy. One single Lysozm molecule simulation of the application alone costs 170
CPU hours. The UK National Grid Service [120] (NGS) is used to decrease execution
times of these experiments.

The Savannah Experiment [135] application by A. Lynch examines the sensitivity
of the Australian monsoon to savannah fire. Each 21 year simulation takes about
6-12 weeks to execute on a single processor. The gridified workflow separates each
simulation into 252 monthly steps. In the project the first experiment was carried
out on 7 hosts of the PRAGMA Grid [131]. It contained 90 simulations running for
143 days. They plan to perform a second experiment involving TeraGrid [142] and
OSG [127].

The Phaser experiment [133] examined the Phaser molecular replacement (MR)
application by A. M. Buckle that uses a brute force approach to identify candiate
models for MR which involves exhaustive MR calculations using representative struc-
tures from a database. They used OSG [127], PRAGMA [131] and GIN-VO [125]
resources in order to demonstrate the need for interoperability. The experiment took
for two months executing around 71,000 jobs using 511,000 CPU hours.

Biomedical research is also a highly studied area in Hungary. For the request of
a researcher of the Biological Research Center (BRC) of the Hungarian Academy of
Sciences I have ported a biochemical application [47] to EGEE that also serves as a
motivating example for the research aims of this dissertation. This application gener-
ates 50 000 conformers of flexible molecules by unconstrained molecular dynamics at
high temperature to overcome conformational bias, then finishes each conformer by
simulated annealing and energy minimization to obtain reliable structures. The exe-
cution time of this application for one particular parameter-setup on a single machine
takes around one week, while I have managed to reduce it to one day by running the
gridified application in one of the Virtual Organizations (VO) of EGEE [47]. When
this application is used in production, at least one quantitative structure-activity re-
lationships (QSAR) study is executed, which needs 15-20 molecules as a minimum to
simulate. This implies that for a complex statistical study hundreds of such an ap-
plication need to be executed, which cannot be performed even within some months
time on a single Virtual Organization.

As we have seen, in several cases these applications are so large and complex that

the execution requires more computing resources than a particular Grid can provide.
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In order to produce results for similar complex applications within a time frame
acceptable for researchers, the different Virtual Organizations and separate Grids
need to be managed together, need to be aggregated. Such a virtually unified system

could cope with the growing number of users and computation-intensive applications.

2.1 The role of Grid brokering

Executing a user application in a Grid environment requires several prerequisites.
Users need to learn the interfaces of the Grid services and need to describe their
application prior to submissions. Production Grid systems may consist of hundreds
of thousands of resources (eg. 240,000 processor cores in EGI [93]), therefore it is
not an easy task to find out the actual state of the computing and storage resources
and select one for a user program. There was no question about automating resource
discovery and selection. Special resource managers, also called resource brokers are
meant to solve this problem [2]. As resource management is a key part of current
Grid middleware solutions, and most middleware developer groups and projects have
developed their own tools for resource brokering.

Job scheduling on a multiprocessor system has been studied for more than 30 years
and is known to be NP-complete [83]. Scheduling in Grid systems, which is one of the
tasks of Grid resource managers, become more complicated with multi-organizational
shared resources, therefore Grid scheduling is also NP-hard [35, 74]. In order to
achieve better scheduling the general approach is to use some form of heuristics, eg.
job run time estimates. On the other hand, the inaccuracy of these estimates is a
perennial problem mentioned in the job scheduling literature, and even if the users are
required to provide these values, there is not a substantial improvement in the overall
average accuracy [56]. In [69], Ramirez-Alcaraz et. al. have analyzed different Grid
allocation strategies depending on the type and amount of information they require,
and they found that the information about user run time estimate and local schedules
does not help to significantly improve the outcome of the allocation strategies. They
concluded that quite simple schedulers with minimal information requirements can
provide good performance. Practice seems to adapt to these findings, because too
complex, sophisticated scheduling algorithms are rarely used in Grid brokers, as we
will see in the next section.

To enhance the manageability of Grid resources and users, Virtual Organizations

(VO) were founded. This kind of grouping has also started an isolation process in
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Grid middleware development forming separate islands in the ocean of Grids. In-
teroperability among these islands plays an important role in current Grid research.
This chapter gives a classification of the present Grid resource brokers by their rele-
vant properties and functionalities. Identifying the key features and mapping them to
user needs can open a new way for enhancing interoperability among different Grids.
Although the same services are available in different middleware, they have been im-
plemented in different ways. This taxonomy gives an insight how these brokers are
built up and can be accessed, and helps researchers to have a better understanding

of the current trends of resource brokering.

2.2 Taxonomy of resource brokers

Regarding taxonomies in Grid Computing, two main papers have been published
about resource management systems [52] and workflow management systems [88]. As
a resource broker is usually part of the resource management system (RMS) of a Grid,
the first one is closer to my particular research area. That taxonomy introduces an
abstract model of resource management in different Grid Systems, then describes and
compares the existing architectures. While each RMS operates on one middleware,
resource brokers can be middleware-independent entities, therefore some of them
are able to access resources of different middleware. A more concrete distinction
and clarification of different resource manager components will be given in the next
chapter in Section 3.1. This taxonomy is needed to clarify the role and usage of
current resource brokers, and to gather and present also those ones that were out of the
scope of the RMS taxonomy. I further examine the interfaces and the implementation
details of these brokers to reveal their main capabilities and properties.

The aim of this taxonomy is to gather the recent Grid brokers used by different
Grid user communities, highlighting their main properties and examining the dif-
ferences and similarities regarding their architecture and operation. I classified the
revealed properties to 7 major categories and split into three groups. The following
subsections comment the categories of these groups.

The first group is middleware oriented (Middleware Support), the second explains
mainly the user application-related categories (Interface, Job Model, QoS and Data
Movement), finally the third deals with scheduling features (Information System Sup-
port and Scheduling Model). The simplest, typical user application in Grids is called

a job. A complex user application called a workflow can be built up by more in-
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terconnected jobs, where the interconnection represents data or control dependences
among the jobs. In this dissertation I assume that user applications are submitted to
the system (to the broker) in the form of jobs, or in case of workflows a higher level
service (eg. a workflow enactor or manager in [88]) submit the jobs of the workflow

to the system in a proper execution order.

2.2.1 Grid Middleware

The first main category — shown in Figure 2.2 — shows the underlying infrastructures
of the overviewed brokers. They usually rely on one of these middleware solutions
[99, 100, 25, 77] and use their functions to discover resources and submit user jobs.
We can distinguish between service-based and non-service-based ones. Generally this
property determines the architecture of the broker. It can be stated that the most
widespread middleware is the Globus Toolkit, since LCG-2 is built upon Globus

services and the NorduGrid ARC also uses and extends some of them.

— Globus Toolkit 2
— Globus Toolkit 3
— LCG-2

— NorduGrid ARC

—— Unicore
—— Middleware Support — —— Other

— Non-Service-based —

Grid Resource
Brokers
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—— Service-based —

—— Globus Toolkit 4

Figure 2.2: Categories of the Taxonomy: Grid Middleware group

2.2.2 Job handling

This group contains mainly user and job related properties and can be seen in Figure
2.3. The first thing the user faces is the interface of the broker. Early solutions pro-
vided only command-line access, while APIs are important for higher level utilization
and management by other applications. Some brokers even have Graphical User In-

terfaces (GUI) to ease user interaction. Service-based brokers offer service access (eg.
Web-Service interface of VIOLA MetaScheduling Service (MS) [87] and eNanos [71]),
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which is an advanced method and needed by the latest developments. This function

can enhance interoperability and provide platform-independent access.
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Figure 2.3: Categories of the Taxonomy: Job handling group

The job model of the broker is also important for users and applications. These
properties tell how to describe a user job and which types a broker can handle. There
are several non-XML language descriptions, but the latest developments follow the
XML syntax. It would be reasonable for the brokers to accept and use XML job
descriptions, even if they access middleware solutions supporting different languages
(99,92, 25, 77]. In this case they would need to translate the request, but this approach
leads to better interoperability. The rest of the properties in this subcategory shows
what type of jobs can be submitted to a specific broker: only sequential or parallel;
in the second case co-allocation and advance reservation are handled or not. Brokers
can support other special job-handling functionalities such as parameter study and
interactive jobs.

Fulfilling user requirements is a critical task of the broker. Related properties are
gathered into the Quality of Service group. Accounting is used for the administra-
tion of the users and tracking their Grid utilization, and billing serves Grid economy.
Agreements are used to guarantee some level of service during brokering. User re-
quirements can contain special requests, which are crucial for the job or application.
On the other hand resource providers would protect sites from being flooded by user

jobs. In order to find a balance and fulfil requirements these policies appear in the
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agreements, which are taken into account in scheduling decisions. Various solutions
can be developed to create such service level agreements, but this functionality is
still an open issue. Basically two types are used: the WS-Agreement [89, 87] and
the USLA [21]. The third part of QoS is fault tolerance. The dynamic nature of
Grids lowers the number of successful job submissions. To ensure a higher level of
quality, brokers should be fault tolerant. Rescheduling and replication are the basic
functionalities, and checkpointing can provide a more reliable brokering, though this
is rarely supported, yet. Rescheduling can be event-driven or periodic, and usually
choosing a different resource makes sense, retry on the same resource is only a waste
of time.

Most of the brokers provide automatic centralized data movement for input and
output file staging. User-directed utilization can also be supported, when the user

copies files to storage elements and tells the broker to use them.

2.2.3 Scheduling

The third group gathers properties related to resource information, discovery and
scheduling. The properties of this group are shown on Figure 2.4. Several resource
brokers use the information system of the underlying middleware. In this case the
relevant information from the brokers’ view is the data store and query. The two
main subcategories are the directory-based and service-based implementations. These
properties tell us how the brokers access resource data and what kind of information
they can use for resource mapping — since this is determined by the information
system of the middleware. Some brokers use additional information about the Grid
gathered by an information system of their own. Examining historical data (resource
availability, job failures, etc.) is one of these approaches. The other type of gathering
relies on special agents, which provide information about specific elements of the Grid.

Matchmaking is the major task of Grid brokers. The scheduling properties can
qualify brokers and determine the goodness of their decisions. In smaller scope of
resources like Virtual Organizations (VO), usually a centralized scheduler component
is used to make decisions. In decentralized schedulers the matchmaking process can
be split up and queues can be utilized for job requests, or more components can
collaborate to utilize a wider range of resources. The first solution is rather used
in hierarchical and the second in peer-to-peer architectural models. The decision

making can be static or dynamic. When a user fixes a resource for its job, or the
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Figure 2.4: Categories of the Taxonomy: Scheduling group

scheduler component of the broker uses only static historical information, we are
talking about static matchmaking. In a dynamic decision the broker has an up-to-
date information about the resources and makes a just-in-time matching, or uses up
some additional prediction-based information. For example, Lorincz et. al. monitor
previous runtime information to determine the behavior of the job and use these
additional data in scheduling [58]. The schedulers can take into account specific
policies that affect decision making. These methods usually favor the users, but the
provider expectations or the balanced state of the Grid can also be observed. User
policies can tell the broker to submit the job to a resource that completes the request
in the shortest time or for the less cost possible. An example for the time-based user
policy is the VIOLA MS [87], which uses a first fit reservation policy that tries to place
the job at its requested time, otherwise it schedules the job for the earliest possible
time after the one requested. Reliable resource selection can also be an interesting
point of view, where less error can occur, or a secure one that ensures the safety of the
job. Providers may expect from the broker to utilize more or less a specific resource,
or gain as much as they could from the resource utilization. An alternative method

is to serve the user requests as to keep the balance of the load on the Grid.
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2.3 Survey of resource brokers

The properties of the taxonomy were gathered from 16 Grid brokers. Table 2.1
shows the examined brokers, and gives a short description of their architecture and
operation. The columns corresponding to the groups of categories were described in
Section 2.2. This survey displays the main properties of the brokers. It indicates how
the categories of the taxonomy are implemented and used in different solutions.

From the survey and the taxonomy we can clearly identify which properties are
used rarely and which ones are highly supported. Regarding the whole taxonomy
I can state that the Globus Toolkit is used by most of the brokers, therefore the
RSL language is still the most widespread. The command-line interface is usual, and
most of the brokers use a central scheduling architecture with just-in-time match-
making optimized for minimal completion time. Rescheduling is widely used for fault
tolerance.

On the contrary, the JSDL [113], which is a uniform standardized language, is
rarely supported, yet. APIs, co-allocation, advance reservation and interactive job
support should be provided by more brokers. A decentralized architecture could be
a better solution in several cases, and local information systems should be built to
gather more dynamic data and perform prediction-based matchmaking. As Grids are
heading towards the markets, provider-oriented policies should be more supported,
and economy-based scheduling need to be considered. This solution requires QoS,
so agreements must be supported by future brokers. To enhance reliability, check-
pointing and job migration should be targeted by future developments. Finally the
most important thing to do is to provide all these broker properties to the users,
making available more brokering services, more middleware functionalities and more
resources in a transparent way. Interoperability is the key to achieve this vision.

The presented taxonomy helps in identifying and categorizing the most important
properties of Grid resource brokers in various Grid environments. I revealed the
interfaces and relevant functionalities of the currently used brokers, which can enhance
better resource utilization and future development. With the presented survey users
and scientists can have a better understanding of the operation and utilization of the
current brokers. Developers should target issues that are missing or rarely used in
these solutions, but there is a definite need for them — to achieve this, the properties

of the taxonomy give the guidelines.
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Table 2.1: Survey of Grid brokers
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2.4 The problem of Grid Interoperability

Before discussing the proposed solution of this dissertation, I need to clarify the
targeted problem area. My interpretation of Grid Interoperability will be given at
the end of this section, but before I do that I review the existing definitions that
have been stated so far starting from the very general ones. The Oxford Advanced

Learner’s Dictionary [128] defines the word ”interoperable” as:

“interoperable — (technical) (of computer systems or programs) able to

exchange information”
Wikipedia [147] defines ”interoperability” as:

" Interoperability is a property of a product or system, whose interfaces are
completely understood, to work with other products or systems, present or

future, without any restricted access or implementation.”
The definition of the IEEE Glossary [39] for "interoperability” is as follows:

"The ability of two or more systems or components to exchange informa-

tion and to use the information that has been exchanged.”

Finally, in the Information Technology Vocabulary [111] we can found that interop-
erability is:

"The capability to communicate, execute programs, or transfer data among
various functional units in a manner that requires the user to have little

or no knowledge of the unique characteristics of those units.”

Summarizing these definitions I can conclude that an interoperable system should
have a commonly accepted interface in order to exchange information and should be
able to work together with other systems. Now focusing on the particular research
field of Grid Computing, let me gather the definitions from related research papers.

Riedel et. al. have published the view of the Grid Interoperation Now (GIN)
Community Group [125] of OGF [124] on Grid interoperation in [70]. They noticed
that more world-wide domain-specific Grid infrastructures have emerged orthogonal
to national Grid initiatives, and the technology used in these Grids is typically not
interoperable with each other. They differentiate between Grid interoperation and

interoperability. Their definitions are as follows:
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" Interoperation is what needs to be done to get production Grids to work
together as a fast short-term achievement using as much existing technolo-

gies as available today.”

" Interoperability is the native ability of Grids and Grid technologies to
interact directly via common open standards in the future, which is a rather

long-term achievement.”

To facilitate interoperation, different translators and adapters should be provided to
unify common-purpose components of various Grids. According to [70], GIN ad-
dresses interoperation in five specific areas: (i) authorization and integrity manage-
ment, (ii) data management and movement, (iii) job description and submission,
(iv) information services and (v) cross-grid operations on multiple Grid infrastruc-
tures. For example the GIN-INFO area of GIN plans to unify monitoring information
into a common database (GIN-BDII), or regarding data management the GIN-DATA
area targets interoperation of data transfers among different Grids. The GIN-JOBS
area deals with job submission interfaces and proposed JSDL [113] for a unified job
description and OGSA-BES [96] for a generic submission interface. Besides these
definitions, the GIN guidelines do not include any attempt to provide a common allo-
cation protocol or brokering solutions of resources between production Grid projects
and infrastructures. They say this is beyond the scope of the GIN efforts [125] and
resource allocation decisions are left to negotiations between projects or the individ-
ual Grid infrastructures. As a summary, they try to develop short-term solutions
to support interoperation, but they also keep in mind that these solutions should
be revised and standardized to reach interoperability in the long term (once future
middleware releases incorporate these standards).

Field in [28] argues that a common interface could solve interoperation among
different Grids, but reaching agreement on which interface to use and implementing
the selected one by all parties will take time. Since common standards for Grid
Interoperability are still being defined and only a few have been widely accepted, they
also think that adapters, translators and gateways are needed. Adapters are used to
bridge incompatible interfaces, and translators are used to convert information to a
format other systems can understand. To use them some parts of the middleware may
have to be modified, but generally they can use their own interfaces. Their usage may
also indicate the areas where standardization is needed. A gateway is a service that

is independent from the middleware and bridges different Grid infrastructures. It
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can be used without the modification of the middleware, but it may become a single
point of failure or a scalability bottleneck. He says Grid interoperation is a bilateral
activity between two Grid infrastructures, what he exemplifies with the interoperation
activity of EGEE and OSG. Finally he states that even with technical interoperability
assured, a truly federated Grid will bring additional operational challenges, since Grid
infrastructures still evolve.

The KnowARC project [104] has published a survey of 9 Grid middleware solutions
[114], in which they identified so-called minimal pre-conditions for Grid Interoperabil-

ity. Their definition for interoperability is:

"The subject of Grid interoperation and interoperability is the bridging of
Grid infrastructures, allowing users on one Grid to run computing jobs

and exchange data with users on other Grids.”

In this document the authors referred four models (LISI, LCIM, LCI and SOSI) that
classify the degree of interoperability among systems or components into interoper-
ability levels, and use the levels of Information Systems Interoperability (LISI) that
defines five stages from isolated to enterprise levels. This model rather classifies so-
lutions according to their operational layers: a low-level solution that acts at the
Resource layer of Grids (eg. cluster manager) falls into level 2 of LISI, while a high-
level solution that acts at the Application layer of Grids (eg. workflow enactor) falls
into level 4, which is the highest. I believe that a solution acting at lower layers of
Grid systems (or the middleware stack) may have higher degree of interoperability
then a solution operating at the highest layer of Grid systems. Since my research
focuses on resource management in Grids I will use a different classification scheme
in Section 3.4 of the next chapter, in order to compare the degree of interoperability
of related solutions. The survey concludes that loose and tight integration can be
used to create interoperability among different Grid middleware solutions. In a tight
integration they should share common interfaces (this corresponds to the long-term
solutions envisioned by GIN), while in a loose integration gateways should be devel-
oped (which matches the short-term goals of GIN). I propose solutions for this latest,
loose Grid integration in the next chapter.

I mostly agree with the definitions and views stated above, which together repre-
sent the problem of Grid Interoperability. 1 also think that Grid Interoperability will
be fully achieved in the long-term based on standards, and walking on this path short-

term solutions will provide interoperation among different Grids. Nevertheless I do
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not want to make a clear distinction between the terms interoperability and interop-
eration, since solutions performing interoperation are created to serve (the final goal
of) interoperability. Out of the five specific areas GIN addresses for interoperation,
I neglect authorization and data management in a sense that I let them handled by
third-party tools (eg. certificate management of portals). Keeping this in mind, first
I summarize the current short-term solutions in the next Section, then in Chapter
3 I further examine the resource management area of Grids to find a more suitable
place to establish interoperability, and in Chapter 4 I present my high-level broker-
ing solution for Grid Interoperability that manages to interoperate different Grids by

providing the highest variety of brokering capabilities to the user communities.

2.5 Multi-grid brokering approaches for interop-

eration

To cope with the highly dynamic nature of Grids, end-users typically access Grid
resources through resource management systems or Grid portals that serve as both
application developer and executor environments. Unfortunately, these tools are typ-
ically tightly coupled to one specific Grid environment and do not provide multi-grid
support. Even if a tool is connected to multiple Grids, applications that utilize ser-
vices from these Grids simultaneously are not supported. There have been several
attempts to make existing production Grids and Grid services interoperable, but none
of them have succeeded to establish a permanent, interoperable Grid environment.
Grid Interoperability can be targeted at different layers of Grid systems (see
Figure 2.5). At the lowest, Network and Resource layers (where networking tools, op-
erating systems and cluster managers can be found) we can find the highest variety
of hardware and software (even under the same Grid middleware solutions), therefore
there is no reason to address these layers. The layer of Grid middleware seems to be
a better choice. Though there are still many services to be modified, the UniGrids
[144] project has developed a solution at this layer, but it operates only between
Unicore and Globus Grids [99]. The highest, the Application layer lies between the
users and the middleware. At this stage we can develop or redesign high level mid-
dleware tools to create reliable and easily manageable connections among different
systems: portals and other application development and executor environments be-

long here. In this dissertation I target the third and fourth layers. Before I introduce
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a high-level brokering solution to enable Grid Interoperability, I discuss two instant
approaches that enhance Grid interoperation: broker extension and multi-brokering
from portals. Though these approaches can establish interoperation among different
Grids, there are certain disadvantages that should be eliminated by a sustainable and

easily maintainable solution.

Mp\ication layg,.

Grid middleware Iayg,.

Resource layg,.

Figure 2.5: The architecture of Grid systems.

2.5.1 Multi-grid extension of GTbroker

The most obvious way to provide interoperability among different Grid systems is
to extend the existing and widely used Grid resource management systems (or re-
source brokers) with multiple Grid middleware support. This approach has several
advantages and disadvantages: probably this modification would favour the users
most, since they would not need to change their customs, submission methods or
job descriptions. But from the other point of view, it requires lots of efforts by the
developers to interface new middleware services, so it is definitely a time consuming
solution. Furthermore the more systems a broker supports, the more ponderous and
unmanageable it becomes. In Section 2.3 we have seen from the taxonomy that such
an extension can contribute to Grid Interoperability. As a short-term, but instant so-
lution, I demonstrate how this multi-grid brokering can be achieved by describing the
extension of GTbroker (also considered in the taxonomy) to EGEE Grids [92], which
tool has been developed on top of the Globus Toolkit 2 [99], the first widespread and
stable Grid middleware.
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GTbroker uses an extended RSL (Resource Specification Language [99]) file that
should contain the user requirements and job properties. We can use additional
attributes (included as comments in the RSL) for specifying the target VO (voname)
and the location of the input and output files (jobpath). Users can influence resource
selection by specifying minimum disk space requirement (mindisk) and a resubmission
deadline (skip) that forces job cancel and resubmission, when a job is still pending
on a resource after the specified time period. The default scheduling policy computes
ranks for available resources according to their queue lengths, and the resource with
the highest rank is selected. In addition four predefined scheduling policies can be
used (sched): resource ranking by CPU speed, disk space or memory size, and the
fourth is random resource selection (from a predefined number of resources with the
highest ranks). The matchmaking process of the broker uses both static and dynamic
information: regarding information systems, the MDS contains static properties of
the appropriate Grid resources; to gain dynamic information, GTbroker asks the local
schedulers for present availability and the load of each node in the selected cluster.
In this way the broker can determine the actual load, right before submitting the job
to the selected resource. This additional piece of information makes the broker able
to react to dynamic changes, and to avoid choosing an overloaded cluster. With this
method, it automatically finds the resources with the highest availability, therefore
the submitted jobs can run as early as possible. Fault tolerance is supported by
resubmissions. Should a job fail or be pending for too long on a resource (this time
interval can be set in the broker), the broker cancels and resubmits it to another high
priority one. The actual states of the jobs are tracked by the broker, therefore it is

possible to cancel and resubmit jobs.

In order to extend a Grid resource broker to support other types of Grid mid-
dleware, first we need to learn how to interact with the new system. Brokers need
to gather resource information, move files, perform job submissions, track job states
and retrieve output files. Most of these activities need interaction with different mid-
dleware services. Security issues such as authentication and authorization could be
a challenging problem. In our case all the related Grid systems use GSI certificates,
where different proxies can be used for these Grids and they can be treated as other
input files. Establishing interoperability in user authorization among different Grid
solutions would need high efforts (a specific OGF [124] workgroup is dealing with this
topic). Different authorization methods are used in specific Grid middleware (eg. in
EGEE and Unicore), furthermore unifying user databases of different Grids/VOs is
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not straightforward at all (eg. confidential data handling). Regarding licenses and
source code protection, another paper describes a solution called GEMLCA [18] for
executing legacy code applications as Grid services. Figure 2.6 shows, how broker-
extension can contribute to Grid Interoperability. In the middle we can see the
GTbroker, which can be connected to any Globus-based Grid. Generally users sub-
mit jobs through its command line interface, which requires the same input data as
an ordinary Globus submission (RSL, job and input files). T depicted four Grids, on
which the broker was successfully utilized. The Austrian Grid was used for develop-
ment and preliminary testing. The UK National Grid Service was also used mainly
for development purposes. Its Information System contained both MDS2 and BDII
attributes, therefore some modifications have been done in the broker. In the follow-
ing I describe the necessary steps to be taken to extend a broker with interoperable

capabilities.

NGS (GT2)
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Figure 2.6: GTbroker extension to support Grid Interoperability.
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GTbroker has been redesigned to support the LCG-2 (EGEE) middleware, by
modifying the information query to be able to gather all data from the information
system and handling special attributes in the RSL to enable job submission to EGEE
VOs (these VO names have to be specified in general queries and submissions). Since
the file movement, job description and job state tracking can also be done through
similar Globus services in LCG-2 Grids, I did not modify these parts (nevertheless
for an entirely different middleware I should have done it). As a final step of the
extension process, I analysed and compared the performance of GTbroker to the
LCG-2 Broker (i.e. Workload Management System (WMS) [92]), while they were
operated on the same testbeds, under the same load, at the same time. Both brokers
mainly rely on the Information System (BDII) of the Grid on which they are utilized.
GTbroker orders the resources found in a VO by defining a rank to each of them.
The following metrics are used within this calculation: the number of available CPUs
in the resource, the maximum number of jobs that can be run on the resource, the
number of jobs actually running on the resource, the estimated response time of the

resource, and the node count for MPI jobs.

With these metrics the hosts can be ordered in a way that the ones having the best
resources for the actual job get higher priority than the others. The LCG-2 WMS
also makes decisions by a calculated rank. The default is the estimated response
time, and only production state resources are chosen. Furthermore a specific rank
can be defined by the user in a JDL [92] description, which is the job specification
language in EGEE Grids. In case of data-intensive applications, it tries to find a
close host: it takes into account the distance of the physical files on the Storage
Elements to the actual Computing Element. I carried out the broker evaluation on
EGEE VOs to compare GTbroker and the LCG-2 WMS. I wanted to measure the
performance of these brokers and to get some more information on their behaviours,
and to demonstrate that GTbroker also performs well on the LCG-2 middleware.
The tests contained several phases with different job types. I used the VOCE [145]
and SEEGRID [139] production Grids for job submissions. In SEEGRID jobs could
be submitted to 18 clusters having 2 to 32 nodes (overall around 130). Regarding
VOCE jobs could reach 10 clusters having 2 to 125 nodes (overall around 290). I have
used special scripts to utilize the brokers during the whole job life-cycle (multiple

submissions, status checking, log retrieving).

For the evaluation I have split the tests into three phases (Table 2.2). In the first
phase I submitted 20 jobs to VOCE with short running times and output staging.
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Table 2.2: Comparison evaluations between GTbroker and LCG-2 WMS.

Comparison evaluation Average run Number of

on production Grids time of jobs failed jobs
VOCE 20 short jobs nggrgfgiero?)loigw LC((;,E; Elzelfero 16
VOCE 201008 06 | 10y b 124355 | LCG broker: 0
VOCE 20100 MPLiobs | 115" 03310 | LCG.2 broker: 4
SEEGRID 20100 065 | 1,015 o 03738 | LOC-2 broker: 4
SEEGRID 20 long MPLiobs | 106,y cher! 401 | LOG-2 broe: 3
SEEGRID 60 long jobs nggrgfgieroéﬂgglw LccégO ﬁl;elfero 15

With GTbroker I measured 1-2 minutes total run time of all the jobs (makespan),
while the jobs with LCG2 broker run for several minutes and most of the jobs failed. I
also submitted MPI jobs to VOCE with short running times that run on 5 nodes with
job and output staging. GTbroker achieved 3-5 minutes total run time, while with
the LCG-2 broker 6 jobs run for 2-10 minutes, the rest took 40-70 minutes or failed
to finish. I found that the LCG2 broker picked resources that actually responded
after a longer time. In the second phase I also submitted 20 jobs at a time with
both brokers to the same VO, but the run time of the jobs took about 10 minutes
plus job input and output staging. During one of the experiments most of the VOCE
resources were unreliable and only GT'broker made successful submissions with several
resubmissions. The total run time of this test took 20-30 minutes, while all the jobs
failed with LCG-2 broker and some with GTbroker. Next time I experienced less
unreliability but also a heavy load. At this time the average was 30 minutes with
GTbroker and 90 minutes with LCG-2 WMS. The SEEGRID VO seemed much more
reliable. With the same jobs both brokers achieved 35 minutes average, but some jobs
have failed with LCG2 broker. Then I submitted 20 MPI jobs to SEEGRID with 10
minutes subjobs/tasks running on 5 nodes. At this time jobs with both brokers had
to wait for clusters with more free nodes so the total run time average was 7.5 hours
for GTbroker and 8.5 hours for LCG2 broker, but 9 jobs were failed again with LCG2
broker. I have repeated this measurement, when there was less load on SEEGRID.
I measured 40 minutes average with GTbroker and 4.5 hours with LCG-2 broker,
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but some jobs were failed for each broker. Finally in the third phase I submitted
60 jobs running for about 10 minutes plus job and output staging to SEEGRID. I
started 20 jobs at a time repeated two times after 5 minutes. GTbroker achieved
16 minutes average total run time, while LCG2 broker 18 minutes average with 15
failed or non-responding jobs. I repeated this test several times and measured similar
results.

As a summary I can state that sometimes the LCG2 broker makes a random
pick and selects slowly responding or even non-responding resources. Resubmissions
with the LCG-2 broker were most of the time unsuccessful; therefore it is not as
reliable as GTbroker. On the contrary, GTbroker made reliable resubmissions and
the hidden non-responding or draining resources could have been skipped. For jobs
with short running time it produced better results, for larger jobs their performances
were about the same. Though it has an eager matchmaking, the user can modify the
resource selection with the extended RSL attributes (mentioned at the beginning of
this subsection). On fairness I remark that both brokers were running concurrently
on the related VOs, therefore they were competing for the same resources during the
evaluation.

The results demonstrate that existing resource management systems can be ex-
tended to use other middleware systems, but in this way developers need to redesign
these brokers to support services of the additional middleware. If we take a closer
look and examine the existing resource brokers, we find that they also have similar
and different properties that may satisfy different user requirements. For example,
some of them support co-allocation of parallel jobs, while others provide special fault-
tolerant features. When users require most of these features, they still need to use
more brokers. Next I exemplify, how multi-brokering can be done with the help of

portals.

2.5.2 Multi-grid brokering from portals

To exploit the advantages of using various Grids at the same time, we need to utilize
more brokers. In this situation we need to learn various job specification languages
and broker capabilities. Currently there are several Grid tools available as Grid user
interfaces that try to hide the details of low level middleware utilization by providing
transparent, uniform access. Grid portals provide a convenient environment for Grid

utilization. In this section I show how such a portal can utilize various resource
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brokers to access resources of different Grids by providing interoperability among
these Grids. There are general purpose and specialized portals for supporting specific
applications. For example, the Conflet (CONFigurable portLET) framework [66] can
be used to create specific portlets to user applications in portals. In Figure 2.7, we can
see how multi-brokering can be achieved in portals. In this kind of Grid utilization
we do not expect from Grid brokers to support more than one middleware, but to do

their best on their initial middleware.

The P-GRADE Portal [46] is a workflow-oriented Grid portal with the main goal to
support all stages of Grid workflow development and execution processes. It enables
the graphical design of workflows created from various types of executable components
(sequential, MPI [78] or PVM [80] jobs), executing these workflows in Globus-based
computational Grids relying on user credentials, and finally, analysing the monitored
trace-data by the built-in visualization facilities. This portal provides the following
functions: defining Grid environments, creation and modification of workflow applica-
tions, managing Grid certificates, controlling the execution of workflow applications
on Grid resources and monitoring and visualizing the progress of workflows and their

component jobs.

The P-GRADE Portal is interfacing several Grid brokers to reach the resources of
different Grids in an automated way. As workflow managers schedule the actual job
submissions in portals, they should be set to utilize brokers. In this portal Condor
DAGMan [82] is responsible for workflow execution. Although it itself cannot invoke
Grid services, it supports customized Grid service invocations by its pre/scheduler/-
post script concept [82]. One pre and one post script can be attached to every node
(job) of a DAGMan workflow. DAGMan guarantees that it first executes the pre
script, then the scheduler script and finally the post script when it reaches a work-
flow node. Consequently, the Portal Server automatically generates appropriate pre,
scheduler and post scripts for every workflow node when the workflow is saved on
the server. These scripts can handle GridF'TP transfers and submit jobs to GRAM
clients of the connected Grids. These scripts are used in the same way in both single-
and multi-grid configurations (multi-grid means jobs are set to different Grids, and
setting a job to a Grid means that among the node properties some Grid or its broker
is selected from a drop-down list), however the contents of these portal scripts de-
pend on the actual Grid (different Grids have different commands). In general, when
DAGMan processes a node (job) in a workflow that is set to a broker, first it invokes

the pre script that prepares the broker utilization (e.g. copy remote input files), the
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scheduler script submits the job to the broker, and the post script tracks job states
until the execution is finished. The broker provides information about the actual job

status and the post script notifies the portal about the status changes.

Currently the portal can utilize GTbroker for Globus 2, 3 [99] and LCG-2 Grids
[92], the WMS of the LCG-2/gLite middleware and the broker of NorduGrid mid-
dleware [122]. The jobs of the workflow that require EGEE services can run on an
EGEE type of Grid [92]; jobs that require only Globus services can be mapped to
resources handled by GTbroker, and finally the NorduGrid Broker can be utilized
to run jobs on resources of the NorduGrid ARC. Different Resource Brokers usually
require different user job descriptions. In the Workflow Editor of the portal the users
can choose a broker for each job of the defined workflow. According to this setting
a Language Editor pops up, where the user can edit the attributes through the GUI
fields. This Editor generates an RSL, JDL or an xRSL [122] file from these job re-
quirements, depending on the middleware of the target Grid. The scheduler script of
DAGMan invokes the brokers with these descriptions. In case of Globus-based Grids
the file movements are also handled by GTbroker, so the scheduler script only needs
to activate and run an instance of GTbroker. In case of EGEE WMS and NorduGrid
broker, there are special commands for tracking job states and retrieving the output
and log files, therefore the scheduler script needs to call these services, too. In case
of remote files only the EGEE brokers use a so-called ”close to file” policy: it means
they try to place the job to a resource, which is the nearest to the location of its
remote input files. Since most of these brokers do not handle remote file transfers,
the portal workflow manager solves this problem again based on DAGMan services.
DAGMan submits a wrapper script as the executable, carrying all the job files and
descriptions. After this script is started on the selected computing resource, it han-
dles the remote input file transfers and — after the real job execution — the remote
output file transfers between the storage elements and the actual computing element.
With this solution all kinds of file transfers can be carried out during broker utiliza-
tion. This solution was described in detail for supporting MPI applications in [27].
The portal has a certificate manager portlet, which is responsible for managing X.509
certificates. Users can upload certificates into MyProxy servers and download GSI

proxies that are handled automatically by the workflow manager (proxies are mapped
to VOs).
Figure 2.7 shows how multiple broker utilization is carried out in the P-GRADE

Portal. In this way a workflow can be brokered over several Grids based on different



2.5. Multi-grid brokering approaches for interoperation 31

P-GRADE NGS GT2
g\ —> Portal o P
User = > E
,_ N Manchester
EGEE: VOCE / i " /'
SEEGRID .
Sl ‘ﬁ“ SwissGrid
T g ‘E w P,
i )
L S

. \ f Lausanne
e, \ / /

] a: o »8 & a8
e | &S MzE
— )
EGEE WMS GThroker NorduGrid broker

Figure 2.7: Multiple-broker utilization in the P-GRADE Portal.

underlying Grid technologies and still providing the most beneficial utilization of the
available resources. A workflow, depicted in the figure, is a directed acyclic graph
that connects sequential or parallel programs into an interoperating set of jobs. The
nodes of such a graph are batch jobs, while the arc connections define data relations
among these jobs. Arcs define the execution order of the jobs and the input/output
dependencies that must be resolved by the workflow manager during execution. After
a user has defined a workflow and has set the jobs to brokers, the execution can be
started. The three jobs in the middle of the workflow do not depend on each other,
therefore they can be started simultaneously. Since they are set to different VOs and
brokers, multi-brokering is performed: the first job is submitted to an EGEE VO
through the WMS, the second through GTbroker to NGS and the third through the
NorduGrid broker to the Swiss Grid.

The usage of Grid portals performing multiple-broker utilization contributes to
solve the Grid Interoperability issue. Furthermore this interoperable workflow execu-
tion means higher performance and provides shorter makespan most of the time. Let
us imagine a simple scenario, when we set all jobs of a workflow to one middleware
(that usually means we submit the jobs to the same broker), and set a similar work-
flow to utilize more middleware systems as shown in Figure 2.7. It is easy to see that

the second workflow instance can access more computing power. The more load the
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middleware of this first workflow has, the more time the second workflow can save
(even if it also uses the same middleware for most of the jobs). More information
on interoperability at workflow level with the P-GRADE portal can be seen in [45].
The contribution representing the multi-grid brokering from the P-GRADE Portal is
a joint result. My own contribution includes the porting of GTbroker into the portal
and the scenario that describes multi-brokering.

Even though these instant, short-term approaches can establish interoperation
among different Grids, there are certain disadvantages that should be eliminated.
Extending an existing broker with support for more and more Grids can result in
a much-too-robust system, and most broker components would need modifications.
Interfacing brokers to portals for additional Grid support does not need the redesign
of the brokers, but still some portal components have to be modified. Though current
portals provide a transparent access to various Grid services, an additional disadvan-
tage of this approach is that users need to know broker capabilities, and manually
select from the available brokers. Users could learn the capabilities of the utilized bro-
kers, but they are lacking dynamic information, such as successful submission rate,
background resource load of the brokers, reliability of the brokers and so on. A deeper
investigation of Grid resource management is needed in order to find a place, where
a sustainable, well-designed, high-level brokering service could be created eliminating

these problems.

2.6 Summary

In this chapter I introduced Grid brokering by presenting a survey that gathers the
relevant tools currently available in the literature for user communities to access re-
sources of different Service Grid systems. I analyzed these brokers and developed
a taxonomy that categorizes broker properties. I gathered definitions for Grid In-
teroperability that together with the taxonomy represent the problem area of this
dissertation. I also demonstrated how multi-grid brokering can be achieved by bro-
kers and portals as a short-term interoperable solution. The results of this chapter
belong to thesis I, and were published in paper [P1], [P2], [P4], [P5], [P11]. In the
next chapter I make a closer connection between brokering and interoperability and

present an informal and formal model for interoperable Grid brokering.



Chapter

Analysing and modeling Grid brokering

In order to solve interoperability with Grid resource management, we need to have a
deeper insight to this area. In the previous section I have introduced Grid brokering
and established a Grid resource brokering taxonomy to determine what properties
brokers possess and what functionalities are desired for certain tasks. The presented
survey shows that the currently available Grid resource management tools are built
on different middleware components supporting different properties and named with
a bunch of acronyms — even the ones having similar purposes. This plethora of ap-
proaches formed the domain of Grid resource management into a grey box with blurry
boundaries where neither the users nor the researchers can clearly see how these tools
are related and what their relevant properties are. Until the definitions and interre-
lations are clarified, further development and interoperability cannot be facilitated.
Therefore, in the next section I analyse the resource management layer and give infor-
mal definitions of brokering entities revealed by a Grid resource management anatomy.
Further on I will investigate how brokering methods of Grid resource management
can be formalized and what essential functionalities related to interoperability can be

separated based on a formal model.

3.1 The anatomy of Grid resource management

Taking a closer look on current Grid resource managers and research directions we are
facing confusing contradictory definitions and references. When searching and com-
paring related works we meet meta-schedulers, local and global schedulers, brokers,

resource allocation managers and some other related expressions. In this section I
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gather and classify these expressions used in the area of Grid Resource Management
regardless of the different types of Grids they might be connected to, or used in. I
refer to these definitions further on in this dissertation by naming specific compo-
nents, building blocks of these solutions. Similarly to the pioneer work preformed by
I. Foster et. al. [33] to map the relevant actors of Grid systems, I have created the
anatomy of Grid resource management. As a result of my analysis, we can see my
view on the architecture of a Grid system focusing on resource utilization in Figure
3.1. All the abbreviations used in this figure denote collections (groups) of simi-
lar components or services. The arrows denote possible connections between these
groups of components, and not all these components are needed for successful job
submissions: some users prefer to use portals for application development and execu-
tion, and others may access lower-level resource managers directly. In the following I
introduce these groups by gathering the generally used acronyms and expressions for
components having similar roles and utilization scopes.

R — resource: In general it means a physical machine, where user programs
are executed. We can distinguish between three types regarding their utilization:
Computing Element (CE), where the user program (also task or job) execution takes
place, Storage Element (SE), where user data is stored, and Instrument Element (IE)
as defined in the domain of remote instrumentation. Remote Instruments (RI or IE
as Instrument Element [34]) are various tools to access, process, produce or consume
data usually by physicists, chemists, biologists or other researchers. As a higher level
abstraction of these components, Web Services (WS) or Grid Services (GS) could also
be regarded as resources, since they similarly produce output for a given user input.

LRMS — local resource management system, scheduler, local scheduler,
local resource manager, sub-scheduler: These tools are usually cluster or queue
managers that were taken from high-performance and distributed computing, and
now generally used in Grid Systems. The widely used examples are PBS, SGE and
LSF [26].

RAM - resource access manager: This is usually a component of a Grid
middleware that accesses the resource directly and handles the arriving Grid jobs. It
provides an interface for the middleware to the resource. An example is GRAM in
the Globus Toolkit [99].

RMS — Grid resource management system, global scheduler, meta-
scheduler, resource broker, Grid scheduler, orchestrator: They usually in-

teract with one or more components of a Grid middleware. An RMS can be an
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Figure 3.1: Grid resource managers and their connections

internal middleware service, or an external tool that uses other middleware compo-
nents or services. Its role is similar to the role of LRMS — this is the reason why they
can be confused sometimes. While the LRMS usually schedules user tasks within
a Grid resource (e.g. a cluster) among free processors, the RMS schedules jobs at
the Grid middleware layer by selecting a resource (R) that best matches the require-
ments of the user jobs. (Nevertheless the selected resource can also be a cluster with
an LRMS.) Therefore an LRMS is generally called a scheduler, and the RMS is a
meta-scheduler. The other listed expressions for RMS basically mean tools used for
the same purpose (i.e. selecting an R for a job). Some of them only slightly differ,

some of them support different middleware solutions, job types, agreements or various
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quality of services. The taxonomy (in Section 2.2) introduces these properties and
the differences among the currently used brokers belonging to this group.

MB — meta-broker, inter-domain broker, intergrid gateway: Meta-broker-
ing is a novel approach that introduces another level above current Grid resource
managers in order to facilitate inter-Grid load balancing. I target this part of the
resource management layer in order to solve interoperability problems. This approach
is introduced and discussed in detail in Section 4.1 of the next chapter. The Grid
meta-broker can be placed on top of the resource brokers, it uses meta-data to decide
where to send a user’s job. Another approach for meta-brokering was introduced
in [40] and [72], in which similar broker instances communicate with each other in
a peer-to-peer fashion and exchange jobs, when the locally managed domains are
saturated.

WFMS — workflow management system, workflow enactor, workflow
manager, workflow scheduler: The role of this component is to execute complex
user applications called as workflows. Its core component is a workflow scheduler,
which is responsible for submitting the jobs in the workflow in a way that the execution
of the whole workflow will be the cheapest regarding some cost function (time, budget,
etc.). Workflow enactors or managers [88] can be regarded as complex systems having
more components (which I do not detail here). These workflow enactors are usually
connected to one or more RMSs that take care of the actual job scheduling. The
workflow management system can also be connected to more middleware services.
This tool may incorporate resource-related information into its scheduling (not only
workflow properties), in this case it is better to access the resources directly and
neglect the usage of other Grid resource managers. I mention this category only for
the sake of completeness, and do not detail it further in this dissertation.

Portal — Grid portal, problem solving environment: This tool provides
a high-level user friendly environment for accessing Grid services. Members of this
group generally use graphical user interfaces to define jobs, create workflows, submit
them and track their states. They are usually connected to, or incorporate some
WFMS or RMS to manage Grid resources. More information on Grid portals can be
found in [46].

Further on in this dissertation I focus on two groups of this architecture: the
RMS and the MB. As a second view of the anatomy, Figure 3.2 is used to reveal
some small differences among the used expressions within these groups. In general

a meta-scheduler is focusing more on job scheduling (executing an algorithm), a re-
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source broker incorporates more services such as job handling and job state tracking,
while a resource management system takes care of the whole job management process
with job accounting and other related services. A meta-scheduler and a broker can
communicate with and use other services of the middleware to be able to manage
the whole job’s life-cycle. In this sense scheduling is an atomic process, brokering

incorporates scheduling, and resource management includes brokering.

3.2 An extended formal model for Grids

In the previous anatomy I have shown informally how resource management is carried
out by various tools from the Resource layer up to the Application layer of Grid
systems. The aim of this section is to establish a formal, semantic model for Grid
resource management using Abstract State Machines (ASM) based on the anatomy.
In order to formalize the different brokering levels shown in the anatomy in Section 3.1,
I refer and extend the formal definition of Grid Computing published by Zs. Németh,
and V. Sunderam in 2003 [60]. That time there had been several definitions for Grid
Computing without the ability of making a clear distinction between Grids and other
distributed systems. This work concluded that Grids cannot be defined purely by
their properties, rather their runtime semantics make the real difference. Based on the
analysis, a formal definition was given for Grid Computing revealing its essential and
characteristic functionalities. The aim and methodology of my contribution regarding
Grid brokering is similar: establishing a formal, semantic model for Grid resource
management using Abstract State Machines (ASM) that clarifies the relations of
different brokering approaches. I extend the formal model for Grids by classifying
brokering components into three categories and defining three agents for resource
management at different levels of the Grid middleware.

First I give a brief introduction of the formal Abstract State Machine (ASM)
method. ASM represents a mathematically well founded framework for system design
and analysis [6]. It is able not just to model a working mechanism precisely but also
to reveal the highly abstract nature of a system, therefore it can easily be tailored
to the required level of abstraction. Logician structures applied in ASMs offer an
expressive, flexible and complete way of state description. The basic sets and the
functions interpreted on them can be freely chosen to the required level of complexity
and precision.

In ASM, a signature (or vocabulary) is a finite set of function names, each of fixed
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arity. Furthermore, it also contains the symbols true, false, undef,= and the usual
boolean operators. A state A of signature T is a non-empty set X together with
interpretations of function names in Y on X. X is called the superuniverse of A. An
r-ary function name is interpreted as a function from X" to X, a basic function of A.
A O-ary function name is interpreted as an element of X [108]. A location of A (can
be seen like the address of a memory cell) is a pair [ = (f, a), where f is a function
name of arity r in vocabulary T and a is an r-tuple of elements of X. The element
f(a) is the content of location [. An update is a pair a = (I, b), where [ is a location
and b is an element of X. Firing a at state A means putting b into the location [
while other locations remain intact. The resulting state is the sequel of A. It means
that the interpretation of a function f at argument a has been modified resulting in
a new state. ASMs are defined as a set of rules. An update rule f(a) := b causes
an update ((f, a), b), i.e. hence the interpretation of function f on argument a will
result b. It must be emphasized that both a and b are evaluated in A. The nullary
Sel f function allows an agent to identify itself among other agents. It is interpreted
differently by different agents (that is why it is not a member of the vocabulary.) An
agent a interprets Self as a while an other agent cannot interpret it as a. The Sel f

function cannot be the subject of updates. A conditional rule R is of form

if ¢

then R,
else

Ry
endif

To fire R the guard ¢ must be examined first and whenever it is true Ry, otherwise
Ry must be fired. A block of rules is a rule and can be fired simultaneously if they
are mutually consistent. Some applications may require additional space during their
run, therefore the reserve of a state is the (infinite) source where new elements can

be imported from by the following construct

extend U by vq,...,v, with
R

endextend
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meaning that new elements are imported from the reserve and they are assigned
to universe U and then rule R is fired [108].

The basic sequential ASM model can be extended in various ways like non-
deterministic sequential models with the choice construct, first-order guard expres-
sions, one-agent parallel and multi-agent distributed models. A distributed ASM [6]
consists of a finite set of single-agent programs II, called modules, a signature T,
which includes each Fun(Il,)-{Self}, i.e. it contains all the function names of each
module but not the nullary Self function, and a collection of initial states.

As it can be seen, ASM states are represented as (modified) logician’s structures,
i.e. basic sets (universes) with functions interpreted on them. Structures are modified
in ASM to enable state transitions for modeling dynamic systems. Applying a step of
ASM M to state (structure) A will produce another state A’ on the same set of func-
tion names. If the function names and arities are fixed, the only way of transforming
a structure is to change the value of some functions for some arguments. There-
fore, the most general structure transformation (ASM rule) is a guarded destructive
assignment to functions at given arguments [6].

Refinement [6] is defined as a procedure where abstract and more concrete ASMs
are related according to the hierarchical system design. At higher levels of abstraction
implementation details have less importance whereas they become dominant as the
level of abstraction is lowered giving rise to practical issues. Its goal is to find a
controlled transition among design levels.

I am not aware of any other works that investigate formal models specifically
for Grid resource manager components. Bratosin et al. proposed a reference model
for Grid architectures based on coloured Petri nets in [8]. Though they provide a
definition for job scheduling, they do not detail brokering steps and mechanisms at
different levels. Altenhofen et al. investigated Service Oriented Architectures in [3],
more specifically service discovery, mediation and composition. These components
have some similar functionalities but this work is more focused on a unified, higher
level service framework, and do not explore resource manager components. Borger
et al. proposed an ASM model for workflows in [7]. The work presents workflow
interpretations and transitions, which are related to this model, but they stay at
the Application layer and do not deal with brokering at job level whereas my model
targets the middleware below the Application layer.

Before I define the model, I present the ASM for Grids defined in [60] with some

modifications. Figure 3.3 shows the important elements of the initial model. The
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ASM universes of the model are depicted on the left of the figure, and on the right a
graphical representation of the connections of some elements of these universes and
the most relevant functions governing process execution are shown. In this model user
applications consist of one or more processes (denoted by p in the figure), while Grids
consist of several nodes (n) having one or more resources (r). During the execution
of the user application first an agent maps the actual process of the application to a
resource in the Grid, then the process is installed on the node of the resource as a
task (¢), which starts to use the resource. When all the processes of the application

finished using their resources, the application is finished.

Universes Elements and Functions
EHER e
APPLICATION T
PROCESS 4] [p,) [pa] [y [pd
NODE
TASK
PRESOURCE

Figure 3.3: Basic elements of the initial ASM model for Grids.

I extend this formal model by introducing Grid brokering at different levels. 1
reuse the initial model of Grid systems introduced in [60] in a slightly modified form
here. The modification is indicated by introducing more practical issues related to
realization; by aligning the model to the terminology and naming conventions of
Grid brokering; and finally by experiences in Grid Computing since the paper was
published. These modifications do not invalidate or alter the content and conclusion

of the initial model just add more relevant details. The modifications are shown in
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Figure 3.4, in which I emphasise that a user application consists of jobs (j) that can
have one or more processes (p). A Grid consists of hosts (h) that have one or more

resources (r).
In the following subsections I define the basic elements of my extended formal

model based on ASM: the universes, the signature and the rules.

Universes Elements and Functions

USER

JOB
PROCESS

HOST
TASK

PRESOURCE

Figure 3.4: The modified ASM model for Grids.

3.2.1 Universes and signature

To define this formal framework, first I need to examine real service Grid systems.
Certain objects of the physical reality are modeled as elements of universes and re-
lationships between real objects are represented as functions and relations. In Grid
systems users (universe USER) define their applications in the form of jobs (universe
JOB), which is the most typical computing paradigm for Grids, hence I restrict my
model to this case. A job consists of one or more processes (universe PROCESS).

The installed instances of processes are called tasks (universe TASK), which can
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be run on different hosts (universe HOST'). Hosts are the building blocks of Grid
systems, and typically a job is mapped, then sent to a host for execution. A host
may have several nodes (e.g. when a host is a cluster), and nodes have certain
resources that processes require to run. Since nodes are usually invisible (and un-
manageable) for higher level tools, therefore I neglect them in this model. In this way
one or more physical resources (universe PRESOURCE) belong to a host, which
also determines the physical location (universe LOCATION) of the resources. The
processes of jobs require some of these resources to run. Users should select a host
according to these resource requirements, which are called as abstract resources (uni-
verse ARESOURCE). Information on the physical resources of the hosts can be
gathered by querying the information system of a Grid.

Once a job is submitted to a host, it is mapped to physical resources during ex-
ecution. While a resource is busy, the mapped process is in waiting state. When
the resource becomes free, the process starts using it and enters running state. Pro-
cess termination implies a done state in case of successful run, and a failed state in
case of an error. In general, Grid authorization allows users to log in to some hosts
and validates user privileges to use some resources of some hosts [32]. The requested
(abstract) and the physical resources have certain attributes (universe ATTR). Com-
patibility between an abstract and a physical resource means the physical resource
can satisfy the process requirement. According to this informal description, the fol-

lowing functions are used in the model:

job: PROCESS — JOB

user, globaluser, localuser: JOB — USER
submitted: JOB x HOST — {true, false}
procRequest: PROCESS x ARESOURCE — {true, false}
uses: PROCESS x PRESOURCE — {true, false}
mapped: PROCESS — LOCATION

belongsTo: PRESOURCE x HOST — {true, false}
installed: TASK x LOCATION — {true, false}
attr: {ARESOURCE, PRESOURCE} — ATTR
location: PRESOURCE — LOCATION

handler: PRESOURCE — PROCESS

type: PRESOURCE — ATTR

compatible: ATTR x ATTR — {true, false}
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canLogin: USER x HOST — {true, false}

canUse: USER x PRESOURCE — {true, false}

jobState: JOB — {submitted, waiting, running, done, failed}
procState: PROCESS — {waiting, running}

event: TASK — {start, abort, terminate}

mappedHost: JOB — HOST

mappedResource: PROCESS x ARESOURCE — PRESOURCE

3.2.2 Initial state

I assume that k& processes belong to a job of a user. The job and its processes have
some requirements, and no process and job is mapped to any resource or host. There-
fore the states of the jobs and processes are undefined. In the following I define the

initial state of my model:

Ip1,pa, ..., o € PROCESS : job(p;) # undef,1 <i <k

Vpi, 1 <i<k:user(p;)) =uecUSER

Vpi, 1 <i<k:3Jar € ARESOURCE : procRequest(p;, ar) = true
Vpi, 1 <i<k:3dpr € PRESOURCE : uses(p;,pr) = false

V7 : mappedHost(j) = undef

Vpi, 1 <1 < k: task(p;) = undef

Vpi, 1 <i <k : mapped(p;) = undef

V7 : jobState(j) = undef

Vpi, 1 <1 < k: procState(p;) = undef

Yue USER,Ipri,pra,...,prm € PRESOURCE

canUse(u, pr;) = true,1 <i<m

After I have defined the universes and the signature, in the following I give the
rules of my model that constitute a module, i.e. a program that is executed by each
agent in the model. The model presented here is a distributed multi-agent ASM
where agents are jobs, i.e. elements from the JOB universe. The working behaviour
of the brokering model is depicted from the perspective of the jobs, hence the self
function is represented as j and means the identity of a job, i.e. it can identify itself

among other agents. It is interpreted differently by different agents.
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3.2.3 Rule 1: Resource selection

According to Figure 3.4, when the job is sent to a host, the required resources need
to be selected that are used by the processes of the job. During job execution, a task
of each process is installed to the location of the required and selected resource. The
precondition of resource selection is that the process of the job should be able to use
the mapped resource. In case of the process can directly access the physical resource
(rq) the execution (resource usage) is automatically started, otherwise a local han-
dler process should provide the execution platform (i.e. the additional software or
service). If this handler process does not exist, it should be started before execution.
The agent responsible for resource mapping needs to ensure that the chosen resource

fulfils the abstract resource requirement of the process. Here is the formal definition:

let h = mappedHost(j)
let job(p) = j
let pr = mappedResource(p, ar)
if (3ar € ARESOURCE ):
procRequest(p, ar) = true & pr # undef & canUse(user(p), pr) = true
then if type(pr) = ry
then mapped(p) := location(pr)
installed(task(p), location(pr)) := true
else if ( —=3p’ € PROCESS ): handler(pr) = p/
extend PROCESS by p/
with mapped(p’) := location(pr)
installed(task(p’), location(pr)) := true
handler(pr) :=p/
do forall ar € ARESOURCFE
procRequest(p’, ar) := false
enddo
endextend
endif
procRequest(p, ar) := false
uses(p, pr) := true
endif
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Hresourcc_mapping

if ( dar € ARESOURCE,dp € PROCESS,3h € HOST ):
job(p) = j & mappedResource(p, ar) = undef &
procRequest(p, ar) = true & h = mappedHost ()
then choose pr in PRESOURCE
satisfying compatible(attr(ar), attr(pr)) & belongsTo(pr, h) = true
mappedresource(p, ar) := pr

endchoose
endif

Here, I note that though generally a job runs on a host (if it is a parallel job of
communicating processes, it runs on a number of resources of this host in parallel),
some middleware tools may enable co-allocation of parallel processes on nodes of
different hosts. I do not deal with this situation, since it is rarely used and supported,
but further refinement of this model could represent such cases.

Before job execution it is necessary to authenticate users. In Service Grids users
are authenticated by proxies of Grid certificates [32]. A local process is responsible
for validating these proxies by mapping global users to local ones having the same
privileges. The related formalism of user mapping is similar to the one presented in
[60]:

Huser_mapping

let pr = mappedresource(p, ar)
if (Jar € ARESOURCE,Jp € PROCESS ):
procRequest(p, ar) = true & pr # undef & canUse(user(p), pr) = true
then if type(pr) =r4 | (3p’ € PROCESS) : handler(pr) = p/
then choose u in USER
satisfying canLogin(u, location(pr))
usermapping(globaluser(p), pr) = u
endchoose
else if ( 3p' € PROCESS ): handler(pr) =p/
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then usermapping(globaluser(p), pr) := localuser(handler(pr))
endif
endif

3.2.4 Rule 2: State transition

In this subsection I define, how job states are evolving during execution:

if ( 3h € HOST ): submitted(j, h) = true
then jobState(j) := submitted
endif
if (3p € PROCESS ): job(p) = j & mapped(p) # undef
then procState(p) := waiting
jobState(7) := waiting
endif
if (3pr € PRESOURCE,dp € PROCESS ): job(p) = j & uses(p, pr) = true
then procState(p) := running
jobState(j) := running
endif
if (dp € PROCESS, 3t € TASK,3pr € PRESOURCE,3h € HOST ):
uses(p, pr) = true & belongsTo(pr, h) = true
& installed(t, h) = true & event(t) = abort
then jobState(j) := failed
PROCESS(p) := false
endif

Though in general, process spawning could cause additional resource requests for
job execution in a host, I do not detail this in my model, and keep it as abstract as
possible, since at the level of Grid brokering process communications and spawning
are invisible. In order to handle these situations, I assume that resource requests of
spawned processes are known a priori. State transitions related to job termination

are formalized in Rule 3.
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3.2.5 Rule 3: Termination

Job execution is terminated under the following conditions:

if (3p € PROCESS ):
job(p) = j & procState(p) = running & event(task(p)) = terminate
then PROCESS(p) := false
endif
if (3Ip1,...,pm € PROCESS ): job(p;) = j & jobState(j) = failed, 1 <i<m
then PROCESS (p;) := false
endif
if (—3p € PROCESS ): job(p) = j & jobState(j) = running
then jobState(j) := done
endif

3.3 ASM model for Grid brokering

Now that we have the revised formal model for Grids, in this section I focus on
middleware components responsible for brokering in Grids. In this ASM model these
components are represented by agents. First I recall the related parts of the informal
anatomy introduced in Section 3.1 then show how these resource manager components
can appear as agents in the formal model described above. Furthermore I emphasize
how these brokering components contribute to Grid Interoperability, i.e. how they
may support transparent job submissions to different, separated Grids.

At the lowest level of Grid resource management we can find local resource man-
agers (LRMS) that were taken from high-performance and distributed computing,
and now generally used in Grid Systems. This local resource management is formal-
ized in Rule 1 of this model. Without additional brokering components users need to
choose from the available hosts manually relying on mostly static information. One
level above, Grid resource managers (RMS), also called Grid brokers, are needed to
automate host selection. With the help of Grid brokers, host selection is automated,
but users are still bounded to separate Grids (i.e. Grid systems that are complete
systems on their own but closed to any form of interoperability between each other,

either by technology, compatibility, administrative or other restrictions) managed by
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their own brokers. Nevertheless users have the ability to select manually, which bro-
ker and Grid they would like to use (even static information on broker properties are
available in form of manuals or taxonomies). In order to achieve better interoperabil-
ity broker selection should also be automated. Therefore we need a novel approach
called meta-brokering, which introduces another layer above current Grid brokers in
order to facilitate inter-Grid load balancing and interoperable brokering.

A typical Grid usage scenario for a job execution that requires the following steps:

1. The user defines its application as jobs, also stating the requirements of its

execution.

2. The user requirements of the job is examined by the meta-broker, and mapped
to the properties of the available brokers. A proper broker, that is able to

submit the job, is selected for submission.

3. The selected broker examines the resource requirements of the job and matches
them to the physical resources of the available hosts. A host having all the

required resources is selected for execution.

4. The agent on the selected host (the local resource manager) maps the resource

requirements of the job to the available physical resources during execution.

In the following subsections I define two more rules to model the informal descrip-
tion and discussion above. We need additional universes and functions to describe

brokering functionalities in this model.

3.3.1 Rule 4: Host selection for Grid brokering

Brokers (universe BROK ER) are responsible for host selection, therefore hosts are
managed by brokers, which can have different properties (universe PRORERTY)
that users may require for job execution. A user should select a broker for its job
according to these requirements (universe REQUIREM ENT). Furthermore I place
universe ARESOURCE as a subset of universe REQUIREMENT!, since the ele-
ments of both sets represent user requirements, and universe PRESOURCE can be
a subset of universe PRORFERTY , because physical resources can be regarded as

host properties. The following functions are added to the model:
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request: JOB x REQUIREMENT — {true, false}
submitted: JOB x {HOST, BROKFER} — {true, false}
manages: BROKER x HOST — {true, false}

have: BROKER x PRORERTY — {true, false}

attr: {REQUIREMENT, PRORERTY} — ATTR

I extend the initial state by:
Vj:3dr € REQUIREMENT : request(j,r) = true

I extend Rule 2 with the following state changes:

if (3b € BROKER ): submitted(j, b) = true
then jobState(j) := submitted

endif

if (3h € HOST ): submitted(j, h) = true
then jobState(j) := waiting

endif

Once a broker is selected by the user, it should find an execution host. The pre-
condition of this host selection process is that the user of the job should be able to
use the required resources of the selected host. The broker agent responsible for host
mapping needs to ensure that the chosen host has all the resources requested by the
processes of the job. This additional component responsible for Grid brokering is
highlighted in Figure 3.5. In the following I state the formal definition for Rule 4 that

performs host selection:

h = mappedHost(j)
if ( dary,...,ar, € ARESOURCE,3pry,...,pr, € PRESOURCE ):
request(j, ar;) = true & h # undef
& canUse(user(j), pry) = true, belongsTo(prg, h) = true,1 < ik <m
then submitted(j, h) := true
endif
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Figure 3.5: Grid brokering in the ASM model.

1_Ihost _mapping

if (35 € JOB,3ary,...,ar, € ARESOURCE, 3pry,...,pr,m € PRESOURCE ):
mappedHost(j) = undef & request(j, ar;) = true,1 <i<m
then choose h in HOST
satisfying compatible(attr(ar;), attr(pry))
where belongsTo(prg, h) = true,1 < i,k <m
mappedhost(j) :=h
endchoose
endif
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Figure 3.6: Meta-brokering in the ASM model.

3.3.2 Rule 5: Broker selection

At the highest level of Grid resource management a broker needs to be selected au-
tomatically for a user job. An important precondition of the selection process is that
such a broker needs to be selected that manages hosts with resources that the user
of the job can use. Furthermore the agent responsible for broker selection, the meta-
broker (universe M ETABROK ER) needs to ensure that the chosen broker has all
the properties required by the user’s job. Therefore users need to characterize their
job requirements in a certain job description language, which should include both the
required broker properties and abstract resources of the processes of the job. This
additional Grid middleware component is highlighted in Figure 3.6. The following

function is added to the model:

mappedBroker: JOB — BROKFER

I extend the initial state by:
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V7 : mappedBroker(j) = undef

The formal definition of the meta-broker is as follows:

let b = mappedBroker(5)
if (3r € REQUIREMENT, 3pr € PRESOURCE,3h € HOST ):
request(j, r) = true & b # undef & canUse(user(j), pr) = true,
belongsTo(pr, h) = true, manages(b, h) = true
then submitted(j, b) := true
endif

Hbrokor-mapping

if (3r,...,rm € REQUIREMENT,3py,...,pm € PROPERTY,3j € JOB,
Ib € BROKER ):
mappedBroker(j) = undef & Vi : request(j, r;) = true
& Vi : have(b, p;) = true, 1 <i<m
then choose b in BROKER
satisfying compatible(attr(r;), attr(p;)), 1 <i <m
endif

Finally I have to mention that jobs can be interconnected in order to form a
complex Grid application called a workflow. The execution of a workflow requires a
coordinating tool called workflow enactor that schedules the interdependent jobs for
executions. I refrain from formalizing workflow management and incorporate it into
this model, since the central entities of this model are jobs, and therefore I assume
that Grid applications are submitted into the system in the form of jobs.

A state transition diagram that shows the connections and graphically represents
state evolving defined by Rule 2 and 3 together with the additional states of Rule 4
and 5 can be seen in Figure 3.7. The prerequisites of state changes are denoted by
initials of the corresponding elements of the model (eg. j — b means the job is sent
to a broker).
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Figure 3.7: State transitions in the ASM model.

As a summary, I have shown that Grid brokering takes place at three levels, and
the following operations need to be performed: broker mapping, host mapping and
resource mapping. Later on I will show how practical examples of these components
can be described by this formal ASM model with the help of ASM refinement. I
will use this model to show how certain functions — kept abstract in Rule 4 and 5

presented earlier — are transformed to reveal implementation details.

3.3.3 Refining the ASM model to formalize the matchmaking
of GTbroker

In the following I present the refinement of the host mapping (Rule 4) of the ASM

model for Grid brokering introduced in Section 3.3.1.
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H/

host_mapping

if (35 € JOB,dary,...,ar, € ARESOURCE,3policy € REQUIREMENT,
Ipry,...,prm € PRESOURCE,3hy,...,hy € HOST,3ry,...,r, € REAL ):
mappedhost(j) = undef & request(j, policy) = true,
request(g, ar;) =true,1 <i<n<m
then do forall k£ (1 <k <t)
i, = countRank(policy, hy)
if (=34 ): attr(ar;) < attr(pr;)
& belongsTo(pr;, hy) =true,1 <i<n,1 <[ <m

then r, .= 0
enddo
choose 7,4, in (71,...,7;)

satisfying 7,00 > 1%, 1 < k,max <t
mappedhost(j) := Amaz
endchoose
endif

This refinement also reveals the meaning of the compatible function. In case of
GTbroker (discussed in Section 2.5.1), the attributes of resource requirements denote
the amount of resource capacity (e.g. memory size or processor speed) needed by
the processes of the job for execution. This means, if the available physical resource
has equal or greater capacity than requested, the process can run. The host selection
method can be influenced by users using the special policy requirement. The value of
its attribute tells the additional countRank: REQUIREMENT x HOST — REAL
function how to compute the rank for the available hosts (e.g. higher priority can
be given to hosts with faster processors). Finally, the host with the highest rank is

selected for execution.

3.4 Interoperability levels for Grid brokering

In Section 2.4 we have seen that there are different interpretation models for inter-

operability in general in the literature, but these models cannot be applied to my
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particularly focused area of Grid resource managers. To denote and differentiate
the quality and degree of interoperability different solutions provide, I rely on the
application requirements users pose on the execution environment. To satisfy these
requirements, brokers need to find those resources that are able to execute the user
jobs and need to provide special services (or capabilities). Hosts of different Grids
may have different resources specialized for specific user application needs, and dif-
ferent brokers are specialized in different job execution policies and services (see the
taxonomy and survey in Section 2.2 and 2.3). In order to categorize different Grid

Interoperability solutions, I define the following interoperability levels:

No interoperability When a broker can access resources and services of only one

particular Grid.

Low-level interoperability When a broker (or more inter-connected or centrally

managed brokers) can reach resources of more, different Grids.

High-level interoperability When more inter-connected or centrally managed het-

erogeneous brokers can reach resources and different services of more, different
Grids.

Using the previously defined ASM model for Grid brokering, I give a formal def-
inition for these interoperability levels. In the model I have defined so far, I used
the assumption that a broker manages hosts of only one Grid. In this case the type
or identifier of a Grid could be expressed as a property of a broker. I also used the
assumption that users can use a broker if they can access hosts managed by that
broker (thus belonging to the same Grid). In order to express interoperability levels
in my model, I extend it with a new set containing different Grids (universe GRID)

that serve as host providers, therefore the following function is added to the model:
provides: GRID x HOST — {true, false}

I extend the initial state by:

Vh; € HOST,1 < i<k :3g € GRID : provides(g, h;) = true

As a simple definition I can state that Grid Interoperability means providing ac-

cess to hosts of different Grids. Since most brokers are coupled to one Grid, therefore
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it is able to provide access only to its hosts. This statement leads us to the O-level

no interoperability, which is formalized as follows. For a given b € BROK ER:

Vh; € HOST, 1 <i<k:3dlg€e GRID :
manages(b, h;) = true & provides(g, h;) = true

The low-level interoperability means that a broker is able to provide access to hosts

of more, different Grids:

Vg € GRID, 1 <1 <k:3dhe HOST :
provides(g;, h) = true & manages(b, h) = true

In this case, if k£ = 1 for a broker b it means it has no interoperability, and if k£ > 1
it has a 2-level interoperability. Furthermore the higher the value of k is, the more
interoperable the broker is.

In order to denote higher degree of interoperability, a more refined definition of
Grid Interoperability is needed. Besides providing access to more Grids and therefore
to a higher number of hosts, the other goal of interoperability is to provide support for
more user requirements by utilizing (brokering) services of different Grids. This leads
us to the definition of the high-level interoperability, in which we take into account
the number of user requirements that a broker b and its managed hosts and resources

may satisfy:

Vri € REQUIREMENT,1 <i<n: 3g € GRID,1<1<q,
Jdh € HOST,dpr € PRESOURCE :

manages(b, h) = true & provides(g;, h) = true &

belongsTo(pr, h) = true & compatible(attr(r;), attr(pr)) = true

This expression tells us that a broker b is able to satisfy k user requirements by sub-
mitting the user job to a physical resource of a Grid that supports these requirements.
Besides abstract resource requirements, user jobs usually need to use special broker
services called broker properties (examples can be found in the broker taxonomy in
2.2). In order to determine the number of properties (or capabilities) a broker has we

need the following expression:
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Vrij € REQUIREMENT,1 <j<m:3dpe PROPERTY :
have(b, p) = true & compatible(attr(r;), attr(p)) = true

If all 7; and r; are pairwise disjunct elements of universe REQUIREMENT, k+m
gives the total number of disjunct user requirements a broker b can satisfy. For a
given meta-broker mb € M ETABROK ER this number is the sum of the satisfiable
disjunct requirements of all brokers it utilizes. As a result those meta-brokering
solutions fall into this category that support different broker properties/services. The
higher the degree of interoperability of a solution the higher the number of disjunct

user requirements (k + m) it is able to satisfy.

A graphical representation of the introduced interoperability levels can be seen
in Figure 3.8. G represent different Grids, and b; denote brokers having different

capabilities.

High-level
interoperability

Low-level
interoperability

No interoperability

O

Figure 3.8: Interoperability levels.
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3.5 Summary

In this chapter I investigated Grid resource manager components both informally
and formally by developing an anatomy and an ASM model for Grid brokering. I
highlighted how interoperation appears in this model and defined interoperability
levels that will be used later to classify related solutions. The results of this chapter
belong to thesis I, and were published in papers [P16], [P18] and [P19].
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Chapter 4

High-level brokering solution for

establishing Grid Interoperability

4.1 A general architecture for meta-brokering

In Section 2.4 we have seen that the Grid Interoperability problem can be tackled
in short term by developing gateways that serve as entry services of Grids. Such a
service should be built by using the latest standards and new technologies and trends.
Regarding new technologies, the Next Generation Grids (NGG) Expert Group has
identified a convergence between Grid and web services [61]. IT companies are de-
veloping and adapting their services to utility services, in which agent technologies,
semantics, heuristics and self-awareness play a more important role taking into ac-
count the latest end-user requirements. They call these utility services Service Ori-
ented Knowledge Utilities (SOKUs), which will become the building blocks of future
Grids. This convergence of Grid services brings other technologies closer, and Grid
development takes over new ideas and solutions from related research fields. Since
this evolution takes much time to transform the whole system and there is a high
demand for establishing Grid Interoperability, I have been looking for a solution that
requires minimal or no modifications at all to the middleware, and still incorporates
new technologies having the ability to become a SOKU in future Grids. In this sec-
tion I introduce a novel scheduling philosophy called meta-brokering that creates a
meta-level above current resource management solutions by using these technologies
and open standards. Following this way, I have developed a method to make data

about resource managers available for cooperated, automatic processing in the form
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of meta-data. I provide language schemas to store and share this meta-data, and
to be processed by various scheduling policies. First I examine the requirements of
this meta-brokering approach, then present a general solution that can be realized in

different Grid environments.

Interoperability problems appeared in several parts of Grid middleware, including
resource management. Since most of the middleware components rely on or are in
connection with resource managers, it is crucial to establish interoperation among
different Grid resource managers. The lack of standards is a problem that cannot
be solved in shorter period of time, but there is a definite need for standardization
to tackle the interoperability problem. The proper solution for interoperability is
to design a system, in which all components know how to communicate with each
other. Protocols need to be established and utilized by all components. However,
when protocols are diverse by themselves, the classical approach to this problem is to
create a superior instance, a kind of mediator in a sense, which has the task to provide
an interface between the individual components. This approach is taken in my case
to create a new layer in Grid resource management called meta-brokering (denoted
by MB in Section 3.1). The role of this layer is to utilize the existing, widely used and
reliable resource brokers and to manage them transparently. Since most of the users
have certificates to access more Grids (or Virtual Organizations (VOs)), they are
facing a new problem: which Grid/VO, which broker should I choose for my specific
application? Just like users needed resource brokers to choose proper resources within
a Grid, now they need a meta-brokering service to decide, which broker (or Grid/VO)

is the best for them and also to hide the differences of utilizing them.

Figure 3.1 in Section 3.1 shows the relevant actors in Grid resource management;
we need to examine this anatomy of Grid resource management in order to find the
right solution. Below the RMS level standardization could be one solution, since
this lower layer is part of the core of every middleware system, therefore all of them
would need to be redesigned to support a common standard. A good candidate for
this solution is virtualization, which has already attracted several researchers and a
new research area was born called Cloud Computing [14]. Above the RMS level each
component could actually help enhancing interoperability. Starting from the user in-
terface, the diversity in job description languages represents the first problem: though
the Job Submission Description Language (JSDL) [113] is a standardized language,
only few systems have adopted it, yet. Starting from the highest level, Grid portals

are the first candidates for solving the Grid Interoperability problem. Some of them
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have already achieved some level of interoperability [45], but for the final solution,
the support for all the job description languages, interfacing all resources, RAMs,
RMSs, WFMSs and related middleware services should be done, which cannot be
performed with the current approaches. They need the help of some new component
that takes up some of these duties. One solution could be a general WFMS that sup-
ports all the workflow description formats [106], interfaces the RMSs or RAMs and
can be integrated to every portal. This seems to be an achievable solution, since only
some services need to be supported, but still many descriptions have to be learned,
and adapting such a WFMS would also need high efforts from the portal developers.
This argument has led to the design of a new meta-brokering service. It is high-level
enough to hide and manage the RMSs, and low-level enough to be integrated into
portals and WFMSs.

Application level

(JDLH Scheduling HSDL} [CDLJ\

+[Agreements‘ LGJI HSMJ[Accounting}

| Monitoring | PredictionJ

Grid Middleware
‘ Addressing and Notification level

A A A

A4 A4

Resource Resource Resource
Broker Broker Broker

Figure 4.1: General meta-brokering architecture

Now that I have pointed out the place where a new abstraction layer responsible for
establishing interoperability could be created, I continue with the requirements of this
solution that fills the gap among the different components in resource management.
Figure 4.1 is intended to show all the components and tools needed by a general

Meta-Broker. In the following I describe these components by introducing the main
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requirements of this higher level brokering service:

JDL — Job Description Language: Since the goal of a meta-brokering service
is to offer a uniform way to access various Grids, a unified description format is
needed to specify all the user requirements. JSDL [113] proposed by OGF is a good
candidate.

CDL — Capability Description Language: Each broker has a different set
of functionalities, they can be specialized in different application types. In order to
store and track these properties, it is required to use a CDL. It should be general
enough to include all the service capabilities (interfaces, job submission, monitoring
and agreements).

SDL — Scheduling Description Language: Besides CDL and JDL the schedul-
ing requirements and policies also need to be stored separately. The users can express
their needs by extending the JDL with SDL, and the scheduling policies and methods
of the brokers can be stored in this format.

Scheduling: This component performs the scheduling (matchmaking) of incom-
ing user requests. A proper Grid broker (which implies a domain, VO or execution
environment) needs to be selected for a user job taking into account the available
scheduling policies.

GJI — Global Job Identifiers: It is important to have unique mapping of user
jobs to different Grids. An implementation can be a single job ID provider for the
meta-brokering system or simply using each broker system as a prefix for the assigned
Grid job ID.

SM — Security Management: The role of this component is to provide secure
access to the interconnected domains. For example, different user certificates, proxies
may be accepted in different VOs and Grids. In order to provide a transparent way
for users, these various proxies also need to be handled by meta-brokers.

Accounting Mechanism: The GJI and SM can be a part of a global accounting
component. The role of this mechanism is to manage user access by pre-defined
policies. Though Grid economy is still in a pre-mature state, in the future the meta-
brokering service should also serve business Grids or clouds.

Agreements Mechanism: This component is in connection with the Accounting
mechanism. Service Level Agreements (SLA) are planned to be used in future Grids,
though investigating SLA usage in Grids has already been started [65]. The role of
this part is to negotiate user requirements, which can also affect scheduling policies.

When agreements will be generally accepted and used, this mechanism should be
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extended to do negotiations with higher and lower levels.

Monitoring Mechanism: Reliable operation requires global monitoring, in
terms of the inter-connected brokers, reachable domain, Grid resources, load and local
component functionalities. Self-awareness and fault tolerance need to be provided by
the system itself, which needs extensive monitoring.

Prediction Mechanism: This component is in connection with the Monitor-
ing and Scheduling mechanisms. It is necessary to perform calculations of broker
availability, service utilization and user request load to cope with the highly dynamic
nature of Grids.

Addressing and Notification Mechanism: This component is responsible for
accessing the inter-connected resource brokers, and managing communication includ-
ing local events and external job state notifications.

The goal of the presented meta-brokering approach is to establish a connection be-
tween individual Grids (domains or Virtual Organizations) by managing their brokers.
The general meta-brokering architecture (Figure 4.1) is middleware-independent,
therefore implementations of this framework can solve the Grid Interoperability prob-
lem and it can be easily interfaced by application level tools, such as portals or
workflow managers. The next section discusses how such an implementation can be
realized in a service called Grid Meta-Brokering Service (GMBS).

Resource
—" Broker

] . \_ / s
ob properties (JSDL) bz

Resource
Broker

Broker properties (BPDL)

Figure 4.2: Description languages for meta-brokering.
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4.2 Grid Meta-Brokering Service for high-level re-

source management

Figure 4.2 depicts the necessary description documents need to be used in order to
facilitate meta-brokering. Heterogeneity appeared not only in the fabric layer of Grids,
but also in the middleware. Even components and services of the same middleware
may support different ways for accessing them. After a point this variety slows down

Grid development, and makes the system unmanageable.

Table 4.1: A subset of special job description language attributes.

RSL zRSL JDL JSDL
(GTbroker) (NorduGrid) (EGEE)
* — * —
éosr;}ie)d—ran— ((ioiilljke;d—ran— FuzzyRank=true; extension
rank=other.GlueHost-
ProcessorClockSpeed /
(*sched=CPU/ | (*sched=CPU/ | GlueHostMain- :
Memory/Disk*) | Memory/Disk*) | MemoryRAMSize/ extension
GlueSAState-
AvailableSpace;
Requirements: (Glue- | (resources)
HostMainMemo- (jsdl:Individual-
(*minMe- (memory=int) ryRAMSize<int); DiskSpace)
mory=int*), ( diSk:iIi[t; | anyMatch(other.stor- | (jsdl:Individual-
(*mindisk=int™*) age.CloseSEs, Physical-
target.GlueSAState- | Memory)
AvailableSpace>int); | (/resources )
(*skiptime=int™*) | (*skiptime=int*)| /*skiptime=int*/ extension
geesf(:lllei(tiuhng by (rerun=max.5) | RetryCount=max.10; | extension

Languages are one of the most important factors of communication. Different
resource management systems use different resource specification descriptions like
RSL, JDL, etc.
kinds of job-related requirements and data. The OGF [124] has already started to

take several steps towards interoperability by defining standards, and developed a

These documents need to be written by the users to specify all

resource specification language standard called JSDL [113] — this should be used to
overcome the above mentioned difficulties (with possible extensions). As the JSDL is

also general enough to describe jobs of different Grids, I have chosen this to be the job
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description format of my meta-brokering solution. Nevertheless there are special job
attributes denoting special job handling, various scheduling and data management
features that cannot be expressed in JSDL. Since one of the goals of meta-brokering
is to support all these brokering capabilities, I gathered these special attributes of
the different job description documents, and specified a JSDL extension — depicted in
Figure 4.3 — that I also proposed to the Grid Scheduling Architecture research group
of OGF [124] for standardization as an SDL. During the translation of these special
requirements to languages that are not able to express them, the missing attributes
are included as comments in order to keep the translations consistent. Some examples

on the mapping among these attributes are shown in Table 4.1.

I [ attributes
|
|

| tsti-metabroker:Scheduling_Type
| [ sttributes

|

|

B |
|

; |

ll-metabroker:Policy |

Scheduling [H—

| jsdl-metabrokenos_Type

[ attributes —@3"‘ :

F-a

Figure 4.3: Main fields of the preliminary JSDL extension.

Besides describing user jobs, we also need to describe resource brokers in order to
differentiate and manage them. These brokers have various features for supporting
different user needs. These needs should be expressed in the user’s JSDL, and iden-
tified by the Meta-Broker for each corresponding broker. Therefore I proposed an
extendible Broker Property Description Language (BPDL) — similar to the purpose

of JSDL —, to express metadata about brokers. This description language is discussed
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in the following subsection.

4.2.1 Data Model for describing broker capabilities

For describing Grid Resource Broker capabilities, 1 introduce an extensible meta-
data model. This model can be taken as an extension of the general scheduling
model presented in [67]. Beside their resource and job model, there is a need for a
model describing broker characteristics in order to compare, interoperate and manage
different resource brokers, schedulers. I use the same notations for building up the

model.

<brokerID, description>

/

<Basicproperties, description> <Specialproperties, description>

<Interfaces, description> =Selnesluling, ‘deserpiion™

. - < ipti
<Middlewares, description> AgresTEns, Restrpnd

<Monitoring, description> %1208, deserphonss

v <Performance, description>
<Jobtypes, description>
<Faulttolerance, description>

Figure 4.4: Structure of the data model for resource broker capabilities.

The metadata to be stored regarding resource brokers are expressed through
<attribute,value> pairs — I denote with P the set of all possible such pairs. A
broker denoted by B C P is modeled as a pair:

<brokerID,description>,

where brokerID is a unique identifier, and description C P is a set of attribute/value
pairs, which contains metadata of basic and special properties. Figure 4.4 shows the
tree of pairs in P, which defines the whole model.

In order to present a usage scenario for matchmaking, I define a function over this

model with the following structure:

e u: T x B"— B, where 7 is a set of tasks [67] (here: jobs) and B is a set of

brokers.
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For t € T, by, ... ,b, € B, n>0:

o u(t, (by, by, b3)) = by means that for a job denoted by ¢ matched with brokers
denoted by by, by and b3 the matchmaking function returns by, which is the
fittest broker for the job. That means the returned broker can most efficiently
execute the job. (Note that by can be a special element, which is an empty

description. This is the return value, when no broker fits the job requirements.)

In the scenario shown in the following section a JSDL of the job is denoted by t,
and a BPDL of a broker by b;.

4.2.2 The implemented data model: Broker Property De-

scription Language

Based on the data model introduced in the previous section I have created an XML-
based language called BPDL (Broker Property Description Language). The common
subset of the individual broker properties are the basic properties: the supported
middleware, job types, certificates, interfaces and monitoring issues. There are also
special ones, such as remote file handling, fault tolerant features, agreement support,
QoS support, performance metrics and various scheduling policies. The union of these
properties forms a complete broker description document that can be filled out and
regularly updated for each utilized resource broker — the graphical representation of
this document can be seen in Figure 4.5. The special any##other type describes
a mechanism that can be used to extend the schema with custom elements and at-
tributes. The fields of the BPDL are closely related to the categories of the broker
taxonomy presented in Section 2.2 of Chapter 2. This ensures that all the widespread
brokers can be described with this language, therefore they can be managed by so-
lutions using BPDL. Notice that this language can also be used for peer-to-peer
communication and identification in a decentralized architecture. In particular, the
agreements are another mechanism typically used in this kind of architectures to
broaden a domain or as a communication mechanism during the negotiation process.

In BPDL, the common subset of the individual broker properties is stored here:

e BrokerID: It contains a unique identifier of a resource broker.

e Interface: This field provides meta-data about the accessibility and notification
methods of the broker.
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Figure 4.5: The schema of the Broker Property Description Language.
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Figure 4.6: The schema of the Broker Property Description Language 2.0.
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Figure 4.7: The schema of the Meta-Broker Scheduling Description Language.
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e Monitoring: This field used for specifying self, job or resource monitoring mech-

anisms of the broker.

e Security: It provides data about job and user authentication methods, such as

MyProxy server connections.
The most important attributes storing static information are the followings:

e Middleware: It shows, in which kind of middleware, Grid or VO the broker can

operate, which Information Services it uses.
e JobType: It specifies the type of jobs that the broker can handle.

e RemoteFileAccess: This field shows the protocols used for transferring files.

The dynamic information is updated by the GMBS during utilization. This data is
intended to provide up-to-date performance and availability information for schedul-

ing. The following field is used for this purpose:

e PerformanceMetrics: It stores historical data on previous job submissions, which
can be used to determine reliability of broker properties. The Prediction at-
tribute can be used to store predicted data about broker availability and relia-
bility.

After I realized that the OGF standardization process may take several years
to come up with a commonly accepted SDL, I decided to revise and modify BPDL
by gathering the scheduling-related attributes to a revised JSDL extension called
MBSDL (Meta-Broker Scheduling Description Language). The structure of the new
BPDL — that I call BPDL 2.0 —, remains nearly the same, I have only clarified some
attributes, added missing ones and separated the scheduling-related ones to MBSDL.
Therefore the MBSDL language can be used to extend BPDL with scheduling-related
attributes. The graphical representation of BPDL 2.0 can be seen in Figure 4.6, and
the same of MBSDL in Figure 4.7. The full schema of these XML documents can
be seen in the appendix in Chapter C. Since JSDL is also lacking these attributes,
MBSDL can also be used by other brokers or resource manager tools as a JSDL

extension. Its schema contains three fields:
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e Constraints: In this field we can specify terms that are necessary to be fulfilled
during scheduling. It includes middleware, remote file access and job type
constraints, as well as processing time and budget cost requirements. Finally

there is an opportunity to specify customized ones.

e QoS (Quality of Service) requirements: Here one can specify agreements, job
priorities, advance reservations, email notification or access controls. Fault tol-

erant features can also be selected to affect the schedule.

e Policy: In this field we can choose from various scheduling policies, or we can
define customized ones. E.g. the LRMSPolicy is used to describe local scheduler

capabilities.

The union of these properties forms a complete broker description document that
can be filled in and regularly updated for each utilized resource broker. These two
kinds of data formats are used by GMBS (Figure 4.2): JSDL is used by the users
to specify jobs and the BPDL by administrators to specify brokers — both parties
can use MBSDL to extend their descriptions. To advance standardization processes
in this topic I keep on negotiating with the GSA-RG (Grid Scheduling Architecture
Research-Group) of OGF [124] in order to create a common Scheduling Description
Language. Once it is done, I will use that instead of MBSDL.

4.2.3 Description of the components of GMBS

Figure 4.8 introduces the derived architecture (from the general architecture shown
in Figure 4.1) of the meta-broker I propose to solve Grid Interoperability at the
resource management layer of Grids. This figure can be compared to the general
meta-brokering architecture, and it gives an insight which abstract components are
realized in this solution. Figure 4.9 (a refined version of Figure 4.8) introduces the
final architecture of the Grid Meta-Broker Service (GMBS) that enables the users to
access resources of different Grids through their own brokers. In this way, this higher
level tool matches resource brokers to user requests. The system is implemented as a
web-service that is independent from middleware-specific components. The provided
services can be reached through web interfaces defined by WSDL. A UML class dia-
gram representing the main components of GMBS can be seen in Figure C.1 of the
appendix in Chapter C. In the following I describe the role of its components and

their interaction.
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Figure 4.8: Realization of the general architecture.

When I first presented this novel Grid meta-brokering approach in 2006 [P3], there
were not any other related solutions. Later this approach has matured and I created
the first prototype and published more detailed papers about this meta-brokering
solution. Meanwhile other research groups have also realized the need for the meta-
brokering approach and started to develop their own solutions, which appeared in the
literature, and contained citations to my publications. A summary and classification

of these related works are given in Section 4.3.

The Translator component of GMBS is responsible for transforming the resource
specification defined by the user (in JSDL and MBSDL) to the language of the ap-
propriate resource broker that the meta-broker selects to use for a given job. From all
the various job specification formats a subset of basic job attributes can be chosen,
which can be denoted relatively in the same way in each document (these attributes
also exist in JSDL). The translation of these parts is almost trivial. The rest of the
job attributes describe special job handling, various scheduling features and remote
storage access. Generally these cases can hardly be matched among the different
systems, because only few of them support the same solutions (some examples are

shown in Table 4.1), even the same functionality can be expressed in different ways
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in different languages.

The Information Collector (IC) component stores the data of the reachable bro-
kers and historical data of the previous submissions. This information shows whether
the chosen broker is available, or how reliable its services are. During broker utiliza-
tion the successful submissions and failures are tracked, and regarding these events
a rank is modified for each special attribute in the BPDL of the appropriate broker
(these attributes were listed above). In this way, the BPDL documents represent and
store the dynamic states of the brokers. All data is stored in XML, and advanced
XML-serialization techniques are used by the IC. The load of the resources utilized by
the brokers is also taken into account to help the Matchmaker to select the proper en-
vironment for the actual job. When a large number of jobs with similar requirements
are sent to the Meta-Broker, the so-called best effort matchmaking (choosing the less
loaded one) may flood a broker and its utilized resources: that is the main reason,
why load balancing is an important issue. In order to cope with this problem, there
is an IS Agent service reporting to the Information Collector, which regularly checks
the load of the Grids of each connected resource broker, and store this data. This tool
is implemented as a separate web-service connected to the Information Systems of
the Grids of the utilized brokers (the IS acronym denotes this role). On the contrary
to the work performed by GIN-INFO [125], where contents of different information
schemas are translated, the IS Agent creates and aggregated database of minimal
attributes from these schemas, which is regularly updated. This approach require
no modification or additional components for the utilized production Grids (unlike
the GIN top-level-DBII approach [125]). With the additional information provided
by this agent the matchmaking process can adapt to the load of the utilized Grids.
Finally, the actual state (load, configurations) of the GMBS is also stored here, and
it can also be queried by users. The continuous monitoring of Grid load and broker

performances makes this Grid service self-adaptive.

Since the agreement handling and SLA usage are not mature enough in current
Grids [65], the Accounting mechanism of the general architecture stated in Section
4.1 is not implemented in the GMBS, yet. Furthermore I think that SLA negotiation
can be complex enough to be managed by a separate service that would cooperate
with GMBS in agreement negotiation processes. On the other hand, the MBSDL
language provides a similar solution: it is possible to denote in the QoS requirements
and Policy fields some special requirements that are forwarded by the GMBS to the
selected broker (that supports such requirements). Then it will be the task of the
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Figure 4.9: Grid Meta-Broker Service

MatchMaker

invoked broker to ensure the QoS requirement during the actual resource selection.
The Security and Accounting mechanisms are not implemented in the GMBS, either.
The security solution applied in this service is the same as described in [45] for the
multi-grid P-GRADE portal and hence I do not give more details here on the security

issues. There are two scenarios how to use GMBS:

Scenario 1: Figure 4.10 depicts a sequence diagram for job submissions through
the GMBS. When the users or portals prefer to invoke and track the brokers them-
selves, the Invoker component of the Service is not used. In this case only the JSDL
document of a job needs to be provided for the GMBS. First the Core (MBService)
calls the Parser to get the job details then turns to the MatchMaker component to
match the required services to the properties of the brokers stored in the Information
Collector. When the fittest broker is found, it contacts the Translator. After the
Translator has converted the JSDL to the job description language of the matched
broker, it responds with the name of the broker and its job description (or with a mes-
sage that none of the registered brokers is able to fulfil the specified job requirements).
In this case security issues are handled by the user or the portal (just like ordinary job
submissions). Finally, the output of the submission (e.g. execution time, success/-
failed status, etc.) needs to be provided to the GMBS (to let the Core modify the
broker property ranks). Here I note that according to this scenario description, the
GMBS only knows about jobs submitted to the Grids through its interface, therefore
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it does not have a global view of all the reachable Grids. Nevertheless it is prepared
for this uncertainty, and it relies more on the reported historical job submission re-
sults. In the simulation environment (to be discussed in 5.1.2) I use real workloads,
which submissions are done directly to the brokers without the use of the GMBS.
These jobs increase the load of the simulated Grids and appear in the information
system of the simulation environment (just like in real Grids), which is tracked by the
GMBS, and the load information is used during matchmaking. Scenario 1 is useful
for systems that already have reliable connections to resource brokers and would like
to use the meta-brokering service for broker selection and inter-Grid load balancing.
Currently these issues are not taken into account in Grid portals. Even multi-grid
access is rarely supported, where the users have to choose from a list of resource bro-
kers. Furthermore this utilization can be achieved with minimal adaptation efforts

and requires fewer data transfers.

st g enit :MBService :Parser :MatchMaker slmnCal leerenr

submitJSDLL) [ |
parse ()

! signalJobResult () —

Figure 4.10: Sequence diagram of the GMBS utilization.

Scenario 2: When the actual job submission to the resource brokers is also done
by the GMBS, the Invoker components are used to contact the brokers. The Invokers
are broker-specific components: they communicate with the interconnected brokers,

invoking them with job requests and collecting the results. In this case data handling
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is also an important task of this component. In this case the user has to upload
the job, Grid certificate proxies and input files along with the JSDL to the GMBS,
and the Matchmaker component tries to find a proper broker for the request. If it
could not find a broker that was able to fulfil the user requirements, the request is
discarded, otherwise the JSDL is translated to the language of the selected broker. In
the JSDL extension the middleware constraint fields can be used to specify certificate
proxy names for Grids/VOs. This information is used by the Invokers to select the
valid certificate proxy from the uploaded files for the actual job submission. Then the
responsible Invoker takes care of transferring the necessary files to the selected Grid
environment. After job submission, it stages back the output files and upgrades the
historical data stored in the Information Collector with the log of the utilized broker.
The Core component of the service is responsible for managing the communication
(information and data exchange) among the other components. The communication
to the outer world is also done by this part through its web-service interface. Generally
the following operations can be done through this interface (see Table 4.2): adding a
new broker with BPDL, querying the available brokers and the name of the tracked
Grids/VOs (by IS Agents), adding new Information Systems to be tracked (by IS
Agents), submitting jobs (with JSDL) and signaling submitted job results.

Table 4.2: Web Service interface methods of the GMBS.

WS operations Description
Adding a new broker to the system
addBroker with its BPDL description
Adding a new VO or Grid to the system
addvo with its IS interface data
submitJSDL Submitting a job with its JSDL
description
. Notifying the MB of the result
signalJobResult of the submission
get BrokerNames Querying the utilized brokers
Querying the performance rank of
getBrokerPerf a utilized broker
Querying the connected Grids or
get VONames VOs (behind the brokers)
Querying the actual load of
getVOLoad a connected Grid or VO

Figure 4.11 shows the differences between these two scenarios. In the first case
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(which corresponds to scenario 1 described above), a lightweight version of the GMBS
is used, so the service can focus on scheduling and let the operator parties do the
broker invocation. In the second case (scenario 2), the Invokers contact the brokers

and take care of data movements.

Figure 4.11: GMBS usage scenarios.

The previously introduced languages are used for matching the user requests to
the description of the interconnected brokers: which is the role of the MatchMaker
component. The scheduling strategy of GMBS is a non-queue-based one. It examines
every user request in the same order of arrival in the system, which reflects the notion
of fairness which is generally accepted by most users. Regarding broker selection, the
used strategy is similar to the Condor matchmaking approach [82] that has been
widely used in Grid resource management. The matchmaking process of GMBS also
takes into account user interests and systems performance. The JSDL contains the
user request (this supposed to be an exact specification of the user’s job) including the
special attributes defined in MBSDL, while the interconnected brokers are described
by their BPDL documents. The matchmaking process consists of the following steps
to find the fittest broker:

e The Matchmaker compares the JSDL of the actual job to the BPDL of the
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registered resource brokers. First the job requirement attributes are matched
against the broker properties stored in their BPDLs: this selection determines a
group of brokers that are able to submit the job (denoted by GOODBROKERS
in Listings 4.1). This phase consists of two steps: first the brokers are filtered
by all the requirements stated in the JSDL. If no brokers could fulfil the request,
another filtering process is started with minimal requirements (those ones are
kept, which are real necessary for job execution). If the available brokers still

could not accept the job, it is rejected.

e In the second phase the previous submissions of the brokers and the load of the
underlying Grids are taken into account. The pseudo code of the matchmaking
functions of this phase is shown in Listings 4.1. The MatchMaker component
counts a rank for each of the remaining brokers (by getBrokerPerf). This rank
is calculated from the job completion rate (counted with getFinishedJobs and
getFailedJobs) that is updated in the PerformanceMetrics field of the BPDL for
each broker. The list of the remaining brokers is compared according to these
ranks. Finally the first broker having the highest performance value is selected
for submission, unless the background Grid load (queried by getVOLoad) of the
second one is at least 20 percent less (this load is regularly updated by the IS

Agent). In this later case the second best performing broker is selected.

This is the default scheduling used by GMBS. Different threshold values for load
balancing among the candidate brokers may be used for better scheduling perfor-
mance. More sophisticated scheduling algorithms with various fuzzy functions can
be found in joint publications [P13, 19, 20]. We can see from the description of the
matchmaking process that the GMBS does not use predicted data, but relies on its
measured historical performance results of the brokers to cope with uncertainty. In
the next section we will see simulation measurements for the makespan of groups of
jobs. One may wonder if this makespan could be estimated, or the makespan of some
individual jobs could be predicted and this information could be used for a more
efficient scheduling. Unfortunately in Grids it is really hard (almost impossible) to
estimate the finish time of a job. For such an estimation, we would need the exact
running time of the jobs to be submitted, the number of the jobs, the exact waiting
time of the submitted job on the selected resource at the time of submission (this
is the running time of the queued jobs) including the response time of the resource

manager, and the exact time of the input/output file transfers. Most of the time the
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Listing 4.1: Pseudo code of the matchmaking of GMBS

FUNCTION: selectBestBroker

IN: GOODBROKERS = by,...,b,, candidate brokers
OUT: BESTBROKER, the matched broker

BEGIN :

BESTBROKER = GOODBROKERS,
SNDBROKER = GOODBROKERS,
FOR i =2 TO GOODBROKERS.size() {
IF (getBrokerPerf(BESTBROKER) <
getBrokerPerf(GOODBROKERS;)) {
SNDBROKER = BESTBROKER
BESTBROKER = GOODBROKERS,
}
}
/* choose the second best performing if
at least 20 percent less loaded x/
IF (getVOLoad (BESTBROKER) > getVOLoad (SNDBROKERA20) {
BESTBROKER = SNDBROKER

}
RETURN: BESTBROKER

FUNCTION: getBrokerPerf

IN: BROKER, a broker

OUT: PERFVAL, the performance value of the broker
BEGIN :

PERFVAL = (getFinishedJobs (BROKER)+1) /
(getFailedJobs (BROKER)*3)+1)

RETURN: PERFVAL
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underlying Grid middleware does not provide enough information on its related com-
ponents or services (local managers), and even the users cannot give exact estimations

on the run time of their own jobs [56].

4.2.4 Refining the ASM model to formalize the matchmaking
of GMBS

In the following I present the refinement of the broker mapping (Rule 5) of the ASM
model for Grid brokering introduced in Section 3.2 of Chapter 3.

H/

broker_mapping

if (3r1,....7m € REQUIREMENT,3p1, ..., p. € PROPERTY,
dj € JOB,3by,...,bp € BROKER,Jvy,...,v; € REAL ):
mappedbroker(j) = undef & Vt : request(j, ry) = true,1 <t <m,
& Vi : have(bg, p;) = true,1 <i<n,1 <k<I
then do forall £ (1 <k <)
vy := getBrokerPerf(by,)
if (—3t,i): attr(ry) = attr(p;) & have(by, p;) = true,1 <t <m,1<i<n

then v, := 0
enddo
choose vy, in (v1,...,0;)

satisfying va; > Vg, 1 < k,max <1
mappedbroker(7) := by
endchoose
endif

This refinement also details how the compatible function is implemented. In case of
the Grid Meta-broker Service, the attributes of the broker properties are certain key-
words. The users have to use the same keywords in their requirement specifications,
therefore compatibility means exact string matching. The refined agent also uses an
additional function getBrokerPerf: BROKER — REAL, which returns a real num-
ber denoting the dynamic performance of the appropriate broker. The higher this

value is the better the broker performs.



84 High-level brokering solution for establishing Grid Interoperability

In the next section I summarize the related works, and the next chapter continues

with the performance analysis of GMBS.

4.3 Related Grid Interoperability efforts in Grid

resource management

Several research groups have noticed that current Grid resource management tools
will not be able to fulfil the high demands of future generation Grid systems, and
have started to look for solutions to enhance interoperability. In the previous chapters
I have introduced and formalized Grid brokering and the problem of Grid Interop-
erability. Though I propose interoperability solution at the resource management
layer of Grid systems, I mention that there are interoperation efforts at lower and
higher layers, too. For example, the Generic Grid-Grid Bridge (3G Bridge) [42] is a
generic implementation for a low-level gateway service that allows the execution of
jobs within different Grid middleware using Grid plugins that implement interfaces
job submission entry points of different Grids. Regarding upper layers, a solution for
Grid Interoperability at workflow level is presented in [45], which provides a way to
execute the components of a workflow simultaneously in several Grids.

I differentiate three directions to tackle the problem of Grid Interoperability in

Grid resource management:

1. the first approach is to extend existing brokers with multiple Grid middleware

support,
2. the second direction uses portals to interface different brokers,

3. the third category represents higher level brokering approaches including inter-
broker communication and meta-brokering, which introduces another level above

current brokering solutions.

4.3.1 Related Grid Interoperability efforts with multiple Grid

middleware support

The idea of this approach is to extend existing resource brokers with multiple Grid

middleware support. We have already seen in the Grid broker taxonomy in Section 2.2
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that some brokers are designed or have been extended to support services of different

Grids. The following ones fall into this category:

e The Gridbus Grid Service Broker [86] is designed for computational and data-
Grid applications. Although it supports all Globus middleware, and it provides
an interface to be implemented for other middleware support (experimentally
done for UNICORE [143] and Nordugrid [122]), it is mainly used in Globus
Grids. In their latest publication [13] they also identified the burden of middle-
ware support extensions and proposed a peer-to-peer resource discovery service

to create a Grid-Federation network.

e Gridway [38] has been developed in a Globus incubation project, therefore it

supports all Globus versions. Lately it has been extended to interface more
middleware [105] (namely gLite, NorduGrid and OSG [127]).

e The JSS [24] is a decentralized resource broker that is able to utilize both GT4
[99] and NorduGrid resources, and they plan to interface EGEE.

e GTbroker has been designed for Globus Grids, later extended to support EGEE
Grids. This broker will be introduced and further discussed in Section 2.5.1.

As we can see, some groups have started to extend their solutions, but the adoption
of all services of other middleware systems could not be fully done in any of these
attempts. These tools use different job descriptions and do not communicate with
each other: putting an end to this separation process would need high efforts by all

parties, therefore I need to look for different approaches.

4.3.2 Related Grid Interoperability efforts by portals

The second approach means providing a higher level tool that supports different
middleware services, including job submission, brokering or storage access. Related
solutions of this approach are Grid portals. The widespread and well known ones are
Pegasus [76], GridFlow [16], K-Wf [62] Grid portal and Single Point of Access (SPA)
portal of the HPC-Europa Project [109]. Though the first three examples provide
high-level access to Grid services, they usually operate only on one middleware.

The HPC-Europa project aimed at building a Grid portal that provides a uni-

form and intuitive user interface to access and use resources from different domains,
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so-called centers. Since most of the HPC centers have already deployed their own
site-specific HPC and Grid infrastructure, it is an important requirement for them
to keep the autonomy of these centers by allowing them to use their middleware and
local policies. There are five different systems that provide job submission and ba-
sic monitoring functionality in the HPC-Europa infrastructure: eNANOS [71], GRIA
middleware [101], Grid Resource Management System (GRMS) [53], Job Schedul-
ing Hierarchically (JOSH) [112] and UNICORE [143]. The Single Point of Access
(SPA) effort of HPC-Europa provides two sets of interfaces to application users. The
first one is a generic interface set that can be used by all users for most of their
batch applications. These uniform interfaces are used to access the most relevant
Grid functionalities, which have been identified by analysing the requirements of the
centers. These key functionalities are: job submission, job monitoring, resource infor-
mation access, accounting, authorization, and data management. The second, more
application-specific set of interfaces, allow users to manage more complex applications
by building portlets. Using these interfaces the accompanying resource managers can
build a plugin-based component. These interface methods need to be used by all
brokers, providing the same abstract functionality; therefore during an integration
the broker would also have to be modified. From the end-user perspective, a uniform
Graphical User Interface is provided that is common for all systems deployed in the
HPC-Europa infrastructure. When a user wants to submit a job, the user is required
to choose the center to which the job has to be submitted and to specify its require-
ments. There is no global scheduling, the brokering is done by the user manually. To
help this selection, the system can provide a description of the capabilities of the site-
specific plug-ins. In this way the user gets an XML-based description of the methods
the appropriate plug-in supports, and a description of the data structures to be used

for invocation (e.g., job description).

My proposed multi-grid brokering solution is provided by the P-GRADE Portal
[46], which is a Grid portal, with the main goal to support all stages of multi-grid
workflow development and execution processes in various production Grids. It enables
graphical design of workflows created from various types of executable components
(sequential and parallel), executing these workflows in Globus-based computational
Grids relying on user credentials, and finally, analysing the monitored trace-data by
the built-in visualization facilities. The following functionalities are supported: defin-
ing Grid environments, creation and modification of workflow applications, managing

Grid certificates, controlling the execution of workflow applications on Grid resources
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and monitoring and visualizing the progress of workflows and their component jobs.
The portal is interfaced to different brokers to access different VOs and Grids, such
as LCG-2, gLite WMS [92], GTbroker and the NorduGrid broker [122]. During
the workflow development process, the user can choose one from the interconnected
production Grids. Furthermore resource managers or specific resources can also be
selected afterwards. This manual selection need to be done by the user (just like in
the previous HPC-Europa approach). To help the users, this portal provides GUI for
resource information and a specific workflow for VO-usability test.

In both of these interoperable portal approaches users can submit jobs to different
domains in a transparent way. Though this provides some level of interoperability, the
users still need to be aware of the capabilities of the available resource managers, and
they need to gather or track resource information themselves. In order to automate

these tasks higher level approaches are needed, which are discussed next.

4.3.3 Related Grid Interoperability efforts with higher level

Grid resource management

Meta-brokering means a higher level solution that schedules user jobs among various
Grid brokers/domains. One of these meta-brokering approaches aims at enabling
communication among existing resource brokers. The GSA-RG of OGF [124] works
on a project for enabling Grid scheduler interaction. They try to define common
protocol and interface among schedulers enabling inter-Grid usage. Though a common
interface for inter-broker communication would enhance interoperation of different
Grids, it usually takes a long time to standardize such protocols. To achieve this,
they use standard tools (JSDL [113], OGSA [123], WS-Agreement [89], and propose
an SDL (Scheduling Description Language) to extend the currently available job
description language. Lately researchers of this group were paying more attention
to agreements, and examined how to use WS-Agreement to make negotiations and
perform interaction [75].

Other groups have started to develop their own protocols for inter-broker com-
munication. One of these groups is the Latin American Grid initiative (LA Grid
[72, 116]), which is a multifaceted international academic and industry partner-
ship between major institutions in the United States, Mexico, Argentina, Spain and
other locations around the world. The LA Grid main research areas are transpar-

ent Grid access, autonomic resource management and job flow management. The
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meta-scheduling project in LA Grid aims to support Grid applications with resources
located and managed in different domains. They define broker instances with a set of
functional modules: connection management, resource management, job management
and notification management. These modules implement protocols used in LA Grid
through web services. A broker instance interacts with existent brokers within the
resource domain. Fach broker instance collects resource information from its neigh-
bours and saves the information in its resource repository. The resource information
is distributed in the Grid and each instance will have a view of all resources. The
resource information is in aggregated forms to save storage space and communication
bandwidth. A job request can be submitted to any known broker instance using web
services. When a job request arrives, the broker matches the job to a domain with
the appropriate set of resources. The matching algorithm is influenced by multiple
factors; an important one is the location of resources such that the preference will be
given to the local domain in which the job is submitted. If the matched resources
are outside of the domain, the job is routed to a broker instance in another domain.
From that point this additional broker instance is responsible for dispatching the job
again, if needed, and reporting the job states back to the instance where the job was

originally submitted.
The Koala Grid scheduler [115] was designed to work on DAS-2 interacting with

Globus [99] middleware services with the main features of data and processor co-
allocation, and it has been extended to support DAS-3 and Grid’5000. To inter-
connect different Grids, they have also decided to use inter-broker communication.
Their policy is to use a remote Grid only if the local one is saturated. They use
a so-called delegated matchmaking (DMM) [40], where Koala instances delegate re-
source information in a peer-2-peer manner. The LA Grid approach is similar, but
they share aggregated resource data, while DMM uses a ranking of domains by their
resources. For preliminary test they have built a simulator that behaves similarly as
the previously mentioned Grids. The simulations results show that their architecture

accommodates equally well for low and high system loads.

Gridway [105] has also broadened its support for multiple Grids. They introduce
a Scheduling Architectures Taxonomy (SAT) [55] where they describe a Multiple
Grid Infrastructure. It consists of different categories, we are interested in the Multi-
ple Meta-Scheduler Layers, where Gridway instances can communicate and interact
through Grid gateways (these instances are called GridGateways). These instances

can access resources belonging to different administrative domains (Grids/VOs). The
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basic idea is to pass user requests to another domain, when the current is overloaded —
this approach follows the same idea as the previously introduced Koala DMM. Grid-
way is also based on Globus, and has been extended for GT4 [99] and gLite [100].
They further developed this idea and in their latest work they demonstrate interop-
eration with Gridway on federation of Grids [85] (namely on TeraGrid, EGEE and
OSG).

The InterGrid approach [4], which promotes interlinking of Grid systems through
peering agreements to enable inter-Grid resource sharing is similar to the idea of
the federation of Grids. This approach has an economical view, where business ap-
plication support and sustainability are primal goals. In this architecture, so-called
IntraGrid Resource Managers (IRM) would play the role of Resource Brokers. The
InterGrid Gateway (IGG) would be responsible of making agreements with other
Grids through their IRMs. Their main tasks are to manage peering agreements and
discover and allocate resources from different domains. The disadvantages are also
similar: all IRMs should use the same protocol, therefore existing brokers should be

redesigned to participate in this system.

Comparing the previous approaches, I can state that all of them use a new method
to expand current Grid resource management boundaries. Meta-brokering appears
in a sense that different domains are being examined as a whole, but they rather
delegate resource information among domains, broker instances or gateways through
their own, implementation-dependent interfaces. Usually the local domain has pref-
erence, and when a job is passed to somewhere else, the result should be transferred
back to the initial point. Regarding multi-grid usage, the existing Grids are very
strict and conservative in the sense that they are wvery reluctant to introduce any
modification that is coming from research or from other Grid initiatives. Hence these
solutions aiming at inter-connecting the existing brokers through common interfaces
require a long standardization procedure before it will be accepted and adapted by
the various Grid communities. The idea of a Grid federation based on GridWay is
the most advanced solution, its only disadvantage that it fails to unify different user
communities relying on brokers offering special services we have seen in the taxonomy
(eg. co-allocation, checkpointing and so on).

On the other hand the advantage of my proposed meta-brokering concept is that
it supports highest number of broker capabilities possible, and it does not require any
modification of the existing Grid resource managers, since it utilizes and delegates

broker information by reaching them through their current interfaces. An important
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characteristics of Grid Interoperability is to support all the special user requirements

that are available (see the taxonomy categories in Section 2.2).

4.3.4 Classification of related works

Now we have the comparative descriptions of the related works and approaches, I
continue with the formal classification based on the ASM model introduced in Section
3.3 of Chapter 3.

As we have seen above, four solutions fall into the Broker extension group. Grid-
bus is able to submit jobs to Globus, UNICORE and Nordugrid — let us denote these
Grids by g,u,n € GRID respectively. Gridway can be used in Globus, glLite, Nor-
dugrid and OSG - similarly denoted by g,l,n,0 € GRID. JSS can utilize Globus
and Nordugrid resources ( g,n € GRID ), while GTbroker can use Globus, LCG-2
and glite resources ( g,e,l € GRID ). Therefore the following statement holds for
the brokers (denoted by b,ume € BROKER ) in this group:

She, gy ht, i, hoy b € HOST
provides(g, hy) = true &
manages( bgridpus, hg) = true & manages( bgridgway, hy) = true &

manages( bysg, hy) = true & manages( barproker, Ry) = true

provides(n, h,) = true & manages( bgridpus, hn) = true &

manages( bGridway, n) = true & manages( bygs, hy) = true

provides(l, h;) = true &

manages( bgridway, M) = true & manages( bgroroker, i) = true
provides(u, h,) = true & manages( bgrigpus, i) = true
provides(o, h,) = true & manages( bgridway, o) = true
provides(e, h.) = true & manages( barproker, he) = true

The SPA of HPC-Europa and the P-GRADE portal fall into the multi-brokering
group. SPA can utilize eNanos, GRMS and JOSH, so the following statement holds
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for it:

Vr; € REQUIREMENT 1 <i¢<k:3dhe HOST,dpr € PRESOURCE :
belongsTo(pr, h) = true & compatible(attr(r;), attr(pr)) = true &

( manages( benanos, 1) = true OR manages( bgrus, h) = true OR
manages( bjosu, h) = true )

and

Vr; € REQUIREMENT,1 < j <m:3p € PROPERTY :
compatible(attr(r;), attr(p)) = true &

( have( benanos, p) = true OR have( bgrus, p) = true OR

have( bjosy,p) = true )

The P-GRADE portal manages GTbroker, the Nordugrid broker and WMS of
EGEE, therefore it is true that:

Vri € REQUIREMENT,1 <[l <n:3dhe HOST,dpr € PRESOURCE :
belongsTo(pr, h) = true & compatible(attr(r;), attr(pr)) = true &

( manages( barbroker, B) = true OR manages( byordugria; 1) = true OR
manages( by s, h) = true )

and

Vr, € REQUIREMENT,1 < q <t:3pe PROPERTY :
compatible(attr(r,), attr(p)) = true &

( have( barbroker, ) = true OR have( byordaugrid, p) = true OR

have( by s, p) = true )

As a result the SPA of HPC-Europa may satisfy k4 m user requirements by three
brokers, and the P-GRADE portal may satisfy n + ¢ requirements by three other
brokers. But users need to select manually the proper broker for all the jobs to be
executed.

Regarding solutions in the third, Meta-brokering group, the first four solutions
use the same broker instances in a peer-to-peer meta-brokering environment, there-

fore they can only provide their own broker properties:

Vr; € REQUIREMENT,1 <i<k:3he€ HOST,3pr € PRESOURCE :
belongsTo(pr, h) = true & compatible(attr(r;), attr(pr)) = true &
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manages( bpa, h) = true

and

Vr;j € REQUIREMENT,1 < j<m:3p¢c PROPERTY :
compatible(attr(r;), attr(p)) = true & have( bpa,p) = true

The same holds for bxoara, bintercria and bgridwayFederation- While in case of GMBS
the following statement holds for all b, managed by GMBS:

Vri € REQUIREMENT,1 <l <n:3dhe€ HOST,3pr € PRESOURCE :
manages(b,, h) = true & belongsTo(pr, h) = true &

compatible(attr(r;), attr(pr)) = true

and

Vr, € REQUIREMENT,1 < q <t:3pe PROPERTY :
compatible(attr(r,), attr(p)) = true & have( b,,p) = true

Since GMBS can utilize all brokers that can be described by BPDL (at least the 16
brokers of the taxonomy) and therefore it represents all their properties, it is true that
m << t, so it can provide the highest level of Grid Interoperability with automatic
broker selection.

The classification of the previously introduced solutions according to the formal
statements given above can bee seen in Table 4.3. A bullet in the appropriate column
means that the actual solution is able to provide the level of interoperability the
column denotes. ”"M” means manual and ”A” means automatic selection from the

available Grids (or brokers) for a user request.

4.4 Outlook of GMBS

Even though GMBS has reached a maturity state in its present form that it is able to
solve the problem of Grid Interoperability, development does not stop here. There are
several ongoing collaborations that work on extensions of GMBS in order to prepare
it to cope with future challenges.

Since currently user communities are tightly coupled to brokers or Grid portals,
the best way to use GMBS is a matchmaking service for Grid portals. Together with
my colleagues we are currently working on interfacing GMBS with the P-GRADE
Portal [46] and the WS-PGRADE portal [43]. Recent Grid usage trends show that
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Table 4.3: Classification of Grid Interoperability solutions.
Low-level ‘ High-level
Solution interoperability
M ‘ A ‘ M ‘ A

Broker extension

Gridbus °
Gridway °
GTbroker °
JSS °

Multi-brokering
HPC-Europa ° ° °
P-GRADE Portal | e ° °

Meta-brokering

LA Grid °
Koala DMM ° °
InterGrid ° °
Gridway Federation | e °
GMBS ° ° ° °

new or growing user communities set up a new portal to serve the community instead
of joining portals of other user communities (see the growing number of portal instal-
lations [132] in case of the P-GRADE portal). Till this trend continues, all portals will
have their own GMBS instance that will be able to serve their users. This means that
the centralized architecture of GMBS will not become a bottleneck for job submissions
in the portal. Nevertheless we cannot say that such a situation will not ever appear
in the future. To target this scalability issue, we have already started a collaboration
with the Technical University of Delft for investigating load sharing with multiple
meta-broker instances connected to a peer-to-peer network [49]. This solution will
avoid possible future bottlenecks and will be capable of serving thousands of users

accessing a single GMBS instance.

In an other collaboration we have investigated the scheduling part of the GMBS
matchmaking process, and designed a Decision Maker component in [P13] as an
extension of the MatchMaker component of GMBS. The first part of the matchmaking
remained unchanged: the list of the available brokers is filtered according to the
requirements of the actual job read from its job description. Then the list of the
remaining brokers along with their performance data and background load are sent

to the Decision Maker in order to determine the fittest broker for the actual job. The
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Decision Maker uses a random number generator, which generates pseudo-random
numbers. We also developed a unique random number generator, which generates
random numbers with a given distribution, which we called a generator function. To
improve the scheduling performance of the Meta-Broker we need to send the job to
the broker that best fits the requirements and executes the job without failures with
the shortest execution time. Every broker has three properties that the algorithm
can rely on: the successful counter, the failure counter and the load counter. We
have developed four different kinds of decision algorithms using these counters and
shown that the scheduling process of GMBS can be improved with the Decision Maker
component. Later on in [19, 20] we have developed an additional algorithm based on
a weighted fitness function that uses the Pliant System, which also brought additional

performance gain.

In this dissertation I particularly focused on Service Grids. Desktop Grids are
commonly known as volunteer computing systems, because they often rely upon the
general public to donate compute resources or spare cycles. Unlike Service Grids,
which are based on complex architectures, volunteer computing has a simple archi-
tecture and has demonstrated the ability to integrate dispersed, heterogeneous com-
puting resources with ease, successfully scavenging cycles from tens of thousands of
idle desktop computers. These two kinds of Grid systems have been completely sepa-
rated, hence there has not been a mechanism to exploit their individual advantageous
features in a unified environment. However, with the objective to support new scien-
tific communities who need extremely large numbers of resources, the solution could
be to interconnect these two kinds of Grid systems into an integrated Service Grid
— Desktop Grid (SG-DG) infrastructure. User communities have gathered around
various Grid systems (including Service and Desktop Grids) forming separate islands
that represent borders they cannot cross. As these communities are growing and
demanding more and more computational power, uniting these islands draws more
attention in Grid research and development. An approach to extend GMBS to Desk-
top Grids is given in [48]. In this paper we investigated with my colleagues, how to
use the 3G Bridge service [84] acting as a Service Grid broker that can be managed
by GMBS.

Cloud Computing [14] is a novel infrastructure that focuses on commercial resource
provision and virtualization. Grids already provide solutions for executing complex
user tasks, but they are still lacking non-functional guarantees. The newly emerging

demands of Grid users and researchers call for expanding current execution models
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with business-oriented utilization and support for special services. These demands
could be fulfilled in Grids by using the novel virtualization technologies developed
for Clouds. Looking beyond Grids, in the near future such complex applications will
appear that require the simultaneous utilization of Grid, Web and Cloud services.
To target this problem area, we have started a collaboration with the Technical Uni-
versity of Vienna to develop a unified service architecture called SLA-based Resource
Virtualization (SSV) that builds on three main areas: agreement negotiation, broker-
ing and service deployment using virtualization. The brokering functionalities of this
architecture is provided by GMBS. The basic requirements of this architecture, the
corresponding components and their interactions have been published in [P15] and
[50].

4.5 Summary

In this chapter I introduced a general architecture for meta-brokering and described
the development of the Grid Meta-Broker Service. I gathered the related approaches
in the literature that have appeared up to now, and classified all the available inter-
operable solutions. This classification shows that GMBS provides the highest level
of Grid Interoperability. Finally I gave an outlook where GMBS continues to evolve,
and how it will serve as a general gateway for heterogeneous distributed environments
beyond Grids in the future. The results of this chapter belong to theses II and III,
and were published in papers [P3], [P6], [P7], [P8], [P9], [P10], [P12], [P14], [P13],
[P15], [P17], and [P19].



96

High-level brokering solution for establishing Grid Interoperability




Chapter

The evaluation of Grid meta-brokering

5.1 Evaluation of GMBS

5.1.1 Evaluation methodology

In Section 4.3.3 of Chapter 4 we have seen how the meta-brokering service proposed
in this dissertation and the related solutions address Grid Interoperability, and we ar-
gued that GMBS provides the highest level of interoperability by satisfying most user
requirements with automatic broker selection. Therefore the evaluation methodology
addressed in this section targets the speedup of scientific Grid applications measured
by using the proposed interoperable GMBS meta-brokering service, compared to the
usual, non-interoperable case. As I mentioned in the introduction of this dissertation,
various production Grids have been set up all around the world attracting separate
user communities. As a result, in this general, non-interoperable Grid utilization dif-
ferent users submit their jobs to different production Grids they belong to. In the
following experiments I use random distribution of user jobs in order to simulate this
non-interoperable utilization.

In order to address universality, I use real user application execution traces as
background workload gathered both in parallel and production Grid environments,
published in publicly available archives [129, 107]. Since these traces contain various
jobs of hundreds of users, a general job execution time cannot be determined. There-
fore, I decided to rely on my own experiences of application gridification in selecting
the reference Grid application for the simulations. In the beginning of Chapter 2 I

also discussed that user support teams have been established in order to help applica-
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tion gridification. I have been involved in the work of the Grid Application Support
Centre [103], and learned how the decomposition of the original application should
be selected in order to reduce the overall makespan of its jobs. According to these ex-
periences, in the evaluation I examine how meta-brokering may speed up application
executions decomposed to jobs running around 10 minutes.

Although I have gathered 16 brokers surveyed in the taxonomy in Section 2.2 of
Chapter 2, not all of them are used in current production Grids by large number
of users. Taking into account the major service Grids around the world, their ag-
gregated access through meta-brokering to establish Grid Interoperability could be
achieved with the integrated management of around 10 brokers. Since the usage of
Service Level Agreements [65] is still rarely supported in production Grids, scientific
applications use only some special requirements. They are expected to increase in the
near future, but the current non-interoperable Grid systems hinders using complex
requirements (which would reduce the number of suitable resources). According to
these current practical usage conditions, in the following subsections I evaluate the
performance of meta-brokering in simulated Grid environments managed by 6 to 14
brokers having various properties. Each broker has an own simulated Grid with 16

to 48 nodes loaded by real workload traces.

5.1.2 Grid meta-brokering simulation architecture

Regarding general purpose Grid simulations, two main solutions have been developed:
SimGrid [57], GridSim [12]. For simulating Grid scheduling, additional tools have
been developed: GangSim [22], GSSIM [54], OptorSim [5] and Alvio [36]. GangSim is
specialized in SLA-based resource sharing simulations. GSSIM is based on GridSim
and it can be used to evaluate various scheduling algorithms for Grid brokers. Optor-
Sim is designed to test dynamic replication strategies used in optimising the efficiency
of data movements in Grids. Finally Alvio provides a framework for evaluating the
performance of different Grid scheduling policies. Most of these tools do not support
evaluating higher level, meta-brokering algorithms in their current forms. Only an
extension of the Alvio simulator deals with built-in meta-brokering policies, but it
rather focuses on job forwarding among brokers in a peer-to-peer fashion.

In order to evaluate my proposed meta-brokering service, I have designed a gen-
eral meta-brokering simulation environment, in which all the related Grid resource

management entities can be simulated and coordinated. Since SimGrid simulates
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various distributed computing platforms, it covers a wider application area, less spe-
cialized in Grid systems and has less impact in Grid research. On the other hand,
the GridSim toolkit is a fully extendible, widely used and accepted Grid simulation
tool — these are the main reasons why I have chosen this toolkit for my simulations.
It can be used for evaluating VO-based resource allocation, workflow scheduling, and
dynamic resource provisioning techniques in global Grids [12]. It supports modeling
and simulation of heterogeneous Grid resources, users, applications, brokers and local
schedulers in a Grid Computing environment. It provides primitives for the creation
of jobs (called gridlets), mapping of these jobs to resources, and their management,
therefore resource brokers can be simulated to study scheduling algorithms. It pro-
vides a multilayered design architecture based on SimJava [37], a general purpose
discrete-event simulation package implemented in Java. All components in GridSim

communicate with each other through message passing operations defined by Sim-

Java.
B - 3] ] . GridSim |
B GM-B | 1Bl S Simulator ﬂ  extension |
§ Broker ﬁ Broker _ﬂ
Grids load M M M
Resource E‘ Resource ﬂ Resource ﬂ
Workload || Workload | ... |Workload GridSim

Figure 5.1: Meta-brokering simulation environment.

The general meta-brokering simulation architecture can be seen in Figure 5.1. On
the right-bottom part we can see the GridSim components used for the simulated
Grid systems. Resources can be defined with different Grid-types. Resources consist
of more machines, to which workloads can be set. As an extension of GridSim classes,

I have developed the Broker and Simulator entities in order to enable the simulation
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of meta-brokering. On top of this simulated Grid infrastructure we can use the Broker
entities for setting up brokers with various scheduling policies, while the Simulator
component is responsible for parametrizing and executing each experiment. Before
the GMBS is used in the simulation, it has to be configured with BPDL descriptions,
and the job requests need to be submitted in JSDL.

Brokers are extended GridUser entities:

they can be connected to one or more resources;

e different properties can be set to these brokers (agreement handling, co-allocation,

advance reservation, etc.);
e some properties can be marked as unreliable;

e various scheduling policies can be defined (pre-defined ones: rd — random
resource selection, fepu — resources having more free CPUs or less waiting jobs

are selected, nfailed — resources having less machine failures are selected);
e generally resubmission is used, when a job fails due to resource failure;

e finally they report to the IS (Information System) Grid load database.
The Simulator is an extended GridSim entity:

e it can generate a requested number of gridlets (jobs) with different properties,

start and run time (length);
e it is connected to the created brokers and able to submit jobs to them;

e the default job distribution is the random broker selection (though at least the

middleware types are taken into account);
e in case of job failures a different broker is selected for the actual job;

e it is also connected to the Grid Meta-Broker Service through its web service

interface and able to call its matchmaking service for broker selection.
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Table 5.1: Evaluation results of the first experiment.

Work- | AVG Time | AVG Time
Brokers | Resources | Jobs load RND MB
3/X-3/Y 93959.86
(rnd) 6x4(x4) 100 | 20x(6x4) | 1086140.78 8.6%
3/X-3/Y 18469.28
(fepu) 6x4(x4) 100 | 20x(6x4) 255944.12 7.2%

5.1.3 Evaluation with parallel workloads

For the evaluation of the GMBS I executed three experiments with parallel workloads,
each of them is summarized in Table 5.1, 5.2 and 5.3 respectively. The tables have
six columns, each row denotes a simulation with the specified environment setups.
The first column shows the number of brokers participating in the actual simulation,
their middleware types and the used scheduling policy (e.g. 3/X - 3/Y (rnd) means
that 6 brokers are used in the simulation: three of them are operating on middleware
X, the remaining three are using middleware Y, and all brokers use the rnd policy).
The second column shows the number of resources participating in the simulation:
6x4(x4) denotes an environment consisting of 6 brokers operating on 4 resources each;
each resource is a cluster of 4 machines. The third column shows the number of jobs
submitted in a run of the simulation. The fourth column shows the number of jobs
submitted to each resource as background load: 20x(6x4) means that 20 jobs were
submitted to each cluster of the 6 brokers, i.e. 480 workload jobs have been submitted
to 24 clusters during the simulation. I used the cleaned SDSC Blue Horizon workload
logs from the Parallel Workloads Archive [129], which contain detailed workload logs
collected from large scale parallel systems in production use in various places around
the world. This cleaned log file contains data on 243,314 jobs of 468 users with 32
months of activity. I have chosen this trace, because it represents a high variety of
user applications submitted by many users. This log had the longest time frame with
the highest load from the available traces in the archive. These were important char-
acteristics, because I had to partition these logs to feed simulated resources of several
simulated Grids/VOs. I have analysed the traces in order to select representative
fragments, and further partitioned this file into separate workload files to feed the
clusters of the simulated Grids as background load. In case of the setup denoted by
20x(6x4), I created 24 workload files, each of them contained 20 jobs. The sorting of

the jobs to files from the original log file has been done in a continuous manner, and
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their arrival times have been manually rescaled to fit the simulation time interval;
the runtime of the jobs remained the same as in the original log. The fifth column
shows the average simulated run time of the jobs, when I used random distribution
among the brokers. The sixth column shows the average simulated run time for the
jobs submitted to brokers selected by the GMBS, and also denotes the percentage

according to the measured times in the fifth column.

Table 5.2: Evaluation results of the second experiment.

Brokers Resour- Jobs Work- | AVG Time | AVG Time
ces load RND MB
226344.34
8/X 17.1%
(rnd) 8x4(x4) 100 | 20x(8x4) | 1320141.79 ond: 29304.05
1.7%
117563.16
8/X 49.7%
(fepu) 8x4(x4) | 100 | 20x(8x4) | 236322.30 ond 14318.0
6.1%

In the first experiment, which is summarized in Table 5.1, I submitted 100 jobs
at a time. I used an environment consisting of 6 brokers operating on four resources
each; each resource had four machines. Three brokers used resources with GRID_X
middleware and the other three used resources with GRID_Y middleware. Four special
properties (checkpointing, advance reservation, co-allocation and agreement handling)
were distributed among the brokers, each broker had two special properties, out of
which one was unreliable (50% failure). Half of the jobs were sent to GRID X, the
rest to GRID_Y. 20% of the jobs had no special property, the rest of the jobs had
one special property and all the four properties were distributed equally among the
jobs (20 jobs had no special property, 20 jobs had checkpointing requirement, 20 jobs
required co-allocation, 20 jobs had advance reservation requirement and the rest 20
jobs required agreement handling). The run time of the jobs took around 5 minutes
each. The first row denotes a configuration, in which 6 brokers used random selection
policy (which is the first one of the available policies described in subsection 5.1.2),
100 jobs were submitted into the system and 20 jobs were submitted to each resource
(cluster) as background workload. In the second row the fepu policy is used by the
brokers, the number of jobs and workload samples were the same.

Due to the broker property distribution in the first simulation setup, a job with a
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Table 5.3: Evaluation results of the third experiment.

Brokers Resour- Jobs Work- | AVG Time | AVG Time
ces load RND MB

6/X | 6x8(x2) 20x(6x8) 986968.93

(fepu) 35.7%
3/X 3x10(x2) 20x(3x10)

(nfail) 100 804538.18 With training:
1/X | 1x16(x2) 20x(1x16) 52990.76
(rnd) 6.6%
6/X | 6x8(x2) 50x(6x3) 737762.46

(fepu) 32.5%
3/X 3x10(x2) 50x(3x10)

(nfail) 1000 2268272.70 With training:
1/X | 1x16(x2) 50x(1x16) 373857.80
(rnd) 16.5%

special property running on either middleware could surely successfully run only on
one specific broker. This caused overloading of some brokers even with the use of the
GMBS, therefore I created a different environment. In the second experiment I set
up 8 brokers operating on 4 resources each (just like in the previous configuration),
but all having the same GRID_X middleware. The same property distribution was
used for the jobs. The brokers had 2-2 special properties again, but every second
broker had one unreliable property (in this case two brokers could run some job the
same time without any failures). The results are shown in Table 5.2. The last column
contains additional information: this means I repeated the measurement again, in a

way that the brokers were aware of previous submission failures.

5.1.4 Evaluation with preliminary training

In the second experiment I realized that repeating measurements on the same environ-
ment setup caused additional performance gain. In such cases the first evaluation run
can be regarded as a training phase, in which the meta-broker learns which properties
of the brokers are unreliable. Based on these experiences, I developed a preliminary
training phase, in which I submit training jobs with different property requirements
to each broker. As a result of these submissions, the dynamic performance data of
the participating brokers are initiated in the BPDLs. In the following experiments I
also measured the performance results of runs using such training phases.

In the third experiment (shown in Table 5.3) I submitted first 100, then 1000
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Figure 5.2: Evaluation diagram corresponding to the first row of Table 5.3

jobs at a time. I defined 10 brokers running on Grids with similar middleware. I
distributed three properties (checkpointing, co-allocation and agreement handling):
6 brokers had 1-1 property, out of which three brokers were unreliable. These 6
brokers were running on 8 resources each. Three other brokers had 2-2 properties,
1-1 were unreliable. These three brokers were running on 10 resources each. Finally,
the 10th broker had no special property and ran on 16 resources. 40% of the jobs
had no special property, the rest were distributed equally among the three properties.
The run time of the submitted jobs was around 10 minutes. In the training phase
10 preliminary jobs have been submitted in order to initiate the BPDLs. 50 jobs
were submitted to each resource by the workload entities in the second phase of this
experiment, which put heavier load on the resources. The last column of Table 5.3

shows the results of these simulations.

Figure 5.2 and 5.3 depict detailed evaluation runs with logarithmic time curves
for randomized broker selection, Meta-Broker utilization and enhanced Meta-Broker
utilization with preliminary training phases. The detailed values correspond to the
first and second rows of Table 5.3, respectively. In Figure 5.4, we can see the sum-

marized results denoting average runtime values for each experiment setup, which
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Figure 5.3: Evaluation diagram corresponding to the second row of Table 5.3

clearly show that the Grid Meta-Broker Service provides less total execution time
(makespan) by automating broker and Grid selection for users. During utilization it
is able to adapt to broker failures and to avoid selecting overloaded Grids. Using a

preliminary training phase can significantly improve the performance.

Taking a look at these three simulation experiments we can see that the envi-
ronments are reasonably chosen. For the first time I set up a simple environment
with 3-3 brokers on different Grid middleware. For the second time I omitted differ-
entiating the middleware types, because in this environment it meant only another
broker property (it did not require additional scheduling steps). I also enlarged the
environment by two more brokers up to 8, and set 4 brokers totally reliable. For the
third time I scaled the environment up to 10 diverse brokers operating on clusters
with different sizes. Finally I have doubled the execution time of the jobs from 5 to
10 minutes, scaled the number of submitted job up to 1000 and the workload jobs
to 50 per cluster within the same environment. I can conclude that meta-brokering

caused significant speedup in all the presented experiments.



106 The evaluation of Grid meta-brokering

2000000
1800000
1600000
1400000
1200000
1000000
800000
600000
400000
200000

Meta-Broker with

training phase
¢ N
EN ° .@."‘ B Meta-Broker

B H Random Broker
Selection

Figure 5.4: Evaluation results of runs in the first three experiments

5.1.5 Evaluation with Grid workloads

Though in the previous subsection I have measured convincing utilization gains by
using the GMBS for job submissions to different simulated Grid environments based
on traces of parallel environments, I decided to create a larger simulation environment
closer to the latest Grid usage trends. This simulation setup was derived from real-
life production Grids. Since current Grids and brokers support only a few special
properties, I used four in these simulations. To determine the (proportional) number

of resources in the simulated Grids I compared the sizes of current production Grids
(EGEE VOs, DAS3, NGS, Grid5000, OSG, ...).

Table 5.4 shows the evaluation environment used in this fourth experiment, and
the average of the measured evaluation runs. I used similar notations in this table as
in the previous subsection. In this evaluation I utilized 14 brokers, all used the (best
performing) fepu scheduling policy — this is denoted by the first column of Table 5.4.
The second column shows the number of resources connected to the brokers (I used
the same notation as in the previous tables). In this case I submitted 1000 jobs to

the system (see third column of Table 5.4) after a delay of 6000 simulated seconds
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(in order to let the workload jobs started in this initial warm-up period and to avoid
measuring unrepresentative data), and measured the makespan of all the jobs. An
application of 1000 jobs can be so complex that it may easily overload a particular
Grid, therefore multiple Grid utilization is definitely needed. The run time of the jobs
were set to 10 minutes. Out of the 1000 jobs 100 had no special property, and for the
rest of the jobs the four properties were distributed in the following way: 30 jobs had
agreement handling property, 30 had advance reservation, 20 had co-allocation and 10
had checkpointing as requirement (note that the actual realization of these properties
is irrelevant for the simulated evaluation). The properties were distributed among the
14 brokers: 9 brokers had only one property, out of which 3 were unreliable, 4 brokers
had two properties each, out of which 3 were unreliable, and finally one broker had

three properties with one unreliable property (unreliability means 50% failure).

Table 5.4: Evaluation results of the fourth experiment.

Resour- AVG Time | AVG Time | AVG Time
Brokers ces Jobs RND MB MB with
training
2x4(x4)
14/X 2x6(x4) 34225.35 33488.21
(fepu) 3x8(x4) | 1000 68583.03 49.9% 48.8%
4x10(x4)
3x12(x4)

The workload log was selected from the Grid Workloads Archive (GWA [107, 41]).
I used the GWA-T-11 LCG Grid trace file. This log contains 11 days of activity with
188,041 jobs of 216 users sent to 170 nodes that made up the LCG Grid [92] in 2005.
The main reasons for choosing this trace were that it contained the highest number of
processors, it had a time frame that fits the execution of an application of 1000 jobs,
and its jobs were categorized according to the nodes they were submitted to. In this
revised simulation architecture I used 120 nodes (called resources in the simulation),
therefore I partitioned the logs and created 120 workload files (out of the possible
170 nodes included in the log). At this time I left the number of jobs per node, and
the arrival and execution times untouched. These files were fed to the simulation
environment as background workload. In addition to the table description seen in
subsections 5.1.3 and 5.1.4, Table 5.4 contains a separate column denoting the results
of GMBS utilization including training phases. This time 100 jobs were submitted to

each broker prior the evaluation runs to initiate the performance values.
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For this fourth experiment I repeated the simulations five times for each setup,
and compared the averages of the evaluation measurements. The results are shown
in Figure 5.6. The last columns represent the average values of the five runs (Avg),
which are also shown in the last three columns of Table 5.4. In order to compare the
three types of simulation runs I took the ones closest to the average and depicted them
in Figure 5.5. Here we can see that after 100 jobs the random selection picked heavily
loaded or unreliable brokers (as an ordinary user would behave), while submissions
with the GMBS avoided utilizing these brokers. Due to uninitialized BPDLs and
the heavy load caused by the workload jobs, there were still some submissions with
the GMBS that took more then 60000 simulated seconds, which were successfully
eliminated in another evaluation run of GMBS using the preliminary training phase.
The results show that in a simulated Grid environment with real Grid workload,
under a high number of job submissions the GMBS utilization was able to shorten
the makespan by more than 50%. This time the training phase gave only a little gain,
because the GMBS was able to adapt to broker failures soon due to the high number
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of submitted jobs.

Summarizing the evaluation results of the four experiments I can state that the
interoperable meta-brokering solution of GMBS achieved much better (in some cases
an order of magnitude better) performance in Grid application execution compared
to the general, non-interoperable Grid utilization.

Regarding the overhead the meta-brokering layer generates, we only need to con-
sider the latency of the web service calls and the matchmaking time of the GMBS.
In these evaluations this latency took up around 200 milliseconds for a job, so it is
negligible comparing to general broker response times (which can last up to several

minutes).
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Figure 5.6: Evaluation results of runs in the fourth experiment

5.2 Summary

In this chapter I introduced a simulation architecture for meta-brokering that I used
to evaluate GMBS using real parallel and Grid workloads. The performance analysis
clearly showed that GMBS performs much better related to random broker selection.
Furthermore, I measured approximately an order of magnitude better performance
using the preliminary training phase in the experiments. The results of this chapter
belong to thesis IV, and were published in papers [P17] and [P19].



110 The evaluation of Grid meta-brokering




Chapter

Conclusions

Current Grid systems are used by a high number of various research communities, but
the lack of interoperability among them represents borders for further development
and efficient usage. Numerous user applications are so large and complex that their
executions require more computing resources than a particular Grid can provide. In
order to solve this problem, I proposed in this dissertation a novel meta-brokering
solution that is able to serve complex user requirements by providing transparent
access to resources of several Grid systems simultaneously, in an automated way.
The goal of this work was to enable Grid Interoperability by providing the highest
number of brokering capabilities in a way that it does not require any changes to the

underlying Grid middleware services.

The initial steps of the dissertation aimed at clarifying the roles and relations of
Grid resource manager components by presenting a survey of available tools, a taxon-
omy of their brokering services and properties and an anatomy of their conformation.
The revealed Grid brokering mechanisms are formalized by using Abstract State Ma-
chines (ASM) in order to give precise definitions including classification levels for
interoperability that are used later for literature classification.

A new interoperable meta-brokering approach is introduced together with a gen-
eral, abstract architecture. To enable the integrated management of different brokers,
a new broker description language has been designed to describe all the available Grid
resource brokers. As a proof of the concept, the components of the Grid Meta-Broker
Service have been developed that perform user interactions, monitoring of resource

and Grid load, tracking broker performance and automatic broker selection.

In order to evaluate the implemented meta-brokering service, a meta-brokering
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simulation environment has been developed. The presented performance evaluation
uses real parallel and Grid workload traces, its results affirm that the proposed meta-
brokering solution enables better adaptation and achieves an order of magnitude bet-
ter performance over random broker selection. Possible directions for future work are
to broaden the interoperability beyond service Grids, and to extend meta-brokering
to manage arbitrary heterogeneous distributed systems.

The brokering-related services of the P-GRADE portal [46] and the gUSE/WS-
PGRADE system [43] are based on the contributions of this dissertation. Several
scientific projects use or are supported by these systems. Therefore the results of this
dissertation are used in the following European Union projects: SHIWA project [138],
EDGI project [91], CancerGrid project [102] and GASuC project [103], and in the
following national projects: UK ProSim project [134], MoSGrid project [118], and a
biology project of ETH Zurich [141].

The scientific results of the theses have been published in numerous journals,
conference and workshop papers and have been presented in various scientific forums.
These publications have inspired further research, generated collaborations, and are
well represented by many independent citations. Most of the research presented in
this dissertation has resulted from active involvement in the CoreGRID and S-CUBE
EU Network of Excellence projects [95, 137].
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Summary in English

Introduction

Grid Computing [29] has become a separate research field in the '90s and since then
it has been targeted by many projects all around the world. Several years ago users
and companies having computation and data intensive applications looked sceptical
at the forerunners of Grid solutions that promised less execution time and easy-to-use
application development environments by creating a new virtually unified high per-
formance system of interconnected computers from all around the world. Research
groups were forming around specific parts of Grid systems and different research ar-
eas emerged, because former techniques of distributed computing were not applicable
in Grid systems. Many user groups from various research fields (biology, chemistry,
physics, etc.) put their trust in Grids and today usage statistics and research results
show that they were undoubtedly right. Grid Computing has been in the spotlight,
several international projects have aimed to establish sustainable Grids (eg. Core-
GRID [95], EGEE [92], NextGRID [121], GEANT [97], KnowARC [104], EUAsiaGrid
[94] and OSG [127]).

Core Grid services are provided and implemented by a so-called Grid middleware
[33]. The first widespread middleware was the Globus Toolkit [30], which became a de
facto standard for Grid Computing around 2002. Since then several middleware solu-
tions have appeared, and the production Grids using these solutions formed separate
islands that represent borders for both researchers and user communities. A decade of

Grid development has established many national and international production Grids
based on different middleware solutions (eg. HunGrid [110], NGS [120], EGEE [92],
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UNICORE [143], NorduGrid [122] and OSG [127]). As a result of the numerous
Grid projects and available production Grids, user support centers [142, 98, 146, 103]
have been set up in order to ease application porting to Grid environments. In some
cases these applications are so large and complex that their executions require more
computing resources than a particular Grid can provide. Therefore similarly to the
World-Wide Web, the interconnection of these separate islands can result in a World-
Wide Grid in the future. Such an aggregated system could cope with the growing

number of users and computation-intensive applications.

Resource management in Grid systems is the research field most affected by user
demands. Though well-designed, evaluated and widely used resource managers (also
called as brokers) have been developed, new capabilities are required, such as interop-
erability and agreement support. The available resource managers have already been
surveyed by other research groups [52], but these publications do not detail capabili-
ties related to interoperability and do not separate operational roles (eg. scheduling,
brokering, management). This dissertation aims at providing a high-level brokering
solution to establish Grid Interoperability [70], which means the bridging of different
Grid infrastructures in order to allow users on one Grid to run computing jobs and
exchange data with users on other Grids. The current solutions of Grid resource man-
agement will not be able to fulfil the high demands of future generation Grid systems,
though several Grid resource brokers [2] have been developed supporting different Grid
systems. The main problem is that most of them cannot cross the borders of separate
Grid islands caused by different Grid middleware solutions, therefore they can mature
as slowly as middleware solutions evolve. These newly arisen problems need to be
treated by novel research approaches in order to aggregate the separated Grid islands
and manage them together, because currently used Grid middleware solutions do not

support real interoperation other then restricted bilateral ones.

Solving these problems is crucial for the next generation of Grids, which should
spread from the academic to the business world. The advance of Grids seems to fol-
low the way foreseen by the Next Generation Grids Expert Group, which has been
established by the European Commission. In their third report [61] they have pointed
out that Grid and web services are converging and envisaged hybrid services called as
SOKUs (Service Oriented Knowledge Utility), which enable more flexibility, adapt-
ability and advanced interfaces, therefore interoperability is evident and congenital
in these systems. Following these expert guidelines and the latest requirements of

Grid user groups, I propose in this dissertation such a high-level Grid brokering solu-
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tion that enables Grid Interoperability by providing the highest number of brokering
capabilities in a way that it does not require any changes to the underlying Grid

middleware services.

New scientific results

During the research presented in this dissertation my first goal was to elaborate a
classification of Grid resource brokers. At that time, the less than ten-year-old Grid
Computing had several resource management solutions named by different expres-
sions operating on different middleware addressing various user needs. During the
preparation of the first thesis I examined the widespread Grid resource brokers used
by different user communities, identified their key functionalities and properties, gath-
ered them into a taxonomy, and classified them in a survey using the elements of the
taxonomy. I analysed the connections and inner structures of the available Grid re-
source manager components, identified different operational roles and resolved their
contradictory naming acronyms and expressions by creating an anatomy of Grid re-
source managers. | formalized the identified brokering roles, and inserted them into
the Abstract State Machine (ASM) model of Grid systems [60]. I identified and de-
fined interoperability levels for Grid brokering solutions and expressed them in the
presented model that enables the classification of related brokering approaches. I

stated the following thesis based on these results:

Thesis 1. I designed a category framework of broker capabilities that
I used to create a general taxonomy of Grid brokers. I designed an
anatomy of Grid resource managers that I used to formalize Grid
brokering levels based on the ASM model of Grids [60].

Grid Interoperability [70] is a fundamental challenge of Grid Computing nowadays.
The presented broker taxonomy also points out the heterogeneity in most brokering
components and methods. The resource management anatomy revealed their simi-
larities and possible interactions that paved the way for introducing a meta-level in
Grid brokering to interoperate different Grid systems. Some of the surveyed brokers
are capable of low-level interoperation by accessing resources of different Grids. I
showed how these approaches address multi-grid brokering by broker-extension and
multi-brokering from Grid portals. For a higher level of interoperability, a general

broker description language is needed in order to enable the unified management of



116 Summary in English

Grid brokers. The second thesis contains the elaboration of such language based on

a meta-data model, using the categories of the broker taxonomy.

Thesis II. I designed a new, XML-based description language called
Broker Property Description Language (BPDL) that is able to de-
scribe any Grid resource broker that can be categorized in the tax-
onomy. A high-level brokering service can use this language for the

unified management of these brokers.

I named the novel approach that performs high-level brokering at the meta-level
of Grid resource management as meta-brokering. The next, third thesis includes
the description of the required components of a general meta-brokering architecture
(besides the broker description language) and a realization of the abstract architecture
in a meta-brokering service that does not require any modifications to the utilized
brokers and Grids.

Thesis III. I determined the general requirements of Grid meta-
brokering, and developed a general architecture based on these re-
quirements that introduces a higher abstraction layer for enabling
Grid Interoperability by the unified management of Grid brokers.
Based on this general architecture, I designed the necessary compo-
nents to build the Grid Meta-Broker Service (GMBS).

The components of the realized meta-brokering service perform user interactions,
monitoring of resource and Grid load, tracking broker performance and automatic bro-
ker selection. After publishing this meta-brokering approach, other research groups
have also realized the need for interoperable brokering and started to develop their
own solutions. I designed a classification of these solutions based on the interoper-
ability levels introduced in Thesis I. The final part of the research was to evaluate the
proposed meta-broker. The GridSim Toolkit [12] is a widely accepted and used Grid
simulator that can be easily tailored to analyse Grid brokering methods. The fourth
thesis presents a meta-brokering simulation architecture that extends GridSim, and
the performance evaluation of the implemented meta-broker in this environment by

using real world resource usage traces form the publicly available Parallel and Grid
Workloads Archive [129, 107].
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Thesis IV. I developed a new simulation environment based on the
GridSim [12] simulator that is able to evaluate meta-brokering. I
performed the evaluation of GMBS in this environment with a per-
formance analysis using both real parallel and Grid workload traces.
I proved the effectiveness of the interoperable meta-brokering service

with the evaluation.

The evaluation results showed that the interoperable meta-brokering solution of
GMBS was able to achieve an order of magnitude better performance in Grid applica-
tion execution compared to the general, non-interoperable Grid utilization simulated

by random broker selection.

Conclusions

Current Grid systems are used by a high number of various research communities, but
the lack of interoperability among them represents borders for further development
and efficient usage. Numerous user applications are so large and complex that the
execution may require more computing resources than a particular Grid can provide.
In order to solve this problem, I proposed a novel resource management solution in this
dissertation that is able to serve complex user requirements by providing transparent
access to resources of several Grid systems simultaneously, in an automated way.

The brokering-related services of the P-GRADE portal [46] and the gUSE/WS-
PGRADE system [43] are based on the contributions of this dissertation. Several
scientific projects use or are supported by these systems. Therefore the results of this
dissertation are applied in the following European Union projects: SHIWA project
[138], EDGI project [91], CancerGrid project [102] and GASuC project [103], and in
the following national projects: UK ProSim project [134], MoSGrid project [118] and
a biology project of ETH Zurich [141].

The scientific results of the theses have been published in numerous journals,
conference and workshop papers and have been presented in various scientific forums.
These publications have inspired further research, generated collaborations, and are
well represented by many independent citations. Most of the research presented in
this dissertation has resulted from active involvement in the CoreGRID and S-CUBE
EU Network of Excellence projects [95, 137].
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Summary in Hungarian

Bevezetés

A 90-es években kezdett kibontakozni egy 1j kutatasi irdany az elosztott szamitasok
teriiletén, amelyet Grides szdmitdsoknak (Grid Computing [29]) neveztek el. A Grid
rendszerek (szamitohéalok) lényege a vilag kiillonbozo tdjain 1évé szamitasi rendszerek
virtudlis egyesitése, nagyobb szamitasi kapacitas elérése érdekében. Az érdeklédés
egyre nott ezen szakteriilet irant: ezt bizonyitja a szamos vilagméretli Grid ku-
tatassal foglalkozé projekt (pld. CoreGRID [95], EGEE [92], NextGRID [121], GE-
ANT [97], KnowARC [104], EUAsiaGrid [94] és OSG [127]). Ekkor még a nagy
szamitasi igényt feladatokkal rendelkez6 kutatok kétkedéssel tekintettek a Gride-
ket hirdetd, népszerisito fejlesztékre, akik rovidebb futtatdsi idot és kényelmes ke-
zelofeliiletet igértek. Mivel az elosztott szamitasokban alkalmazott korabbi technikak
nem bizonyultak alkalmasnak a Grid rendszerek kiilonféle kihivasainak megoldaséra,
1j kutatési irdnyok korvonalazédtak ki, melyek ondallo kutatédsi teriiletté emelték a
Grides szamitasokat. A Grid rendszerek fejlédése soran szamos kutatasi tertiletrél
(pld. bioldgia, kémia, fizika) érkeztek felhasznélok, akik a kezdeti nehézségek ellenére
beléptek a Gridet alkalmazok korébe. A napjainkban lathaté statisztikdk és kutatasi
eredmények azt mutatjak, hogy helyesen cselekedtek. A maéara elegendden stabil és
megbizhaté Gridek kutatasa a felhasznaldi igényekre Osszpontosit, hiszen ezen kove-
telmények teljesitése elengedhetetlen a majdan iizleti célokat szolgdlé Gridek szamara.

A Grid rendszerek magjéat az tn. koztes réteg (Grid middleware [33]) adja, ame-
lyet az egyes projektek elszigetelt médon kezdtek el kidolgozni. Az elsd, a gya-
korlatban is elterjedt "de facto” szabvanyként kezelt koztes réteg a Globus Toolkit
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[30] volt. A kiilénboz6 projektek vildgszerte szamos, a gyakorlatban miikodd un.
produkciés Grideket hoztak létre a kozel tiz éves fejlesztések kovetkeztében (pld.
HunGrid [110], NGS [120], EGEE [92], UNICORE [143], NorduGrid [122] és OSG
[127]). Az igy kialakult Gridek viszont eltéré megvaldsitasi koztes rétegekre épiiltek,
mely a kutatd és fejleszté kozosségek mellett a felhaszndléi csoportokat is elszige-
telte. A napjainkban is elérhetd Grid rendszerek népszeriisitésére tobb nemzetkozi
projekt specidlis felhaszndl6-tamogaté csoportot [142, 98, 146, 103] hozott 1étre a tu-
domanyos alkalmazasok gridesitésére. Az adaptalt alkalmazasok kozott el6fordulnak
olyan nagy méretli és komplexitdsi munkafolyamatok, amelyek lefuttatasdhoz egyet-
len Grid er6forrasai kevésnek bizonyulnak. Ezért a vilaghalohoz hasonléan, a jovében
egy egyuttmiikodo, vilagméretlt Grid rendszer lesz csak képes kiszolgalni a novekvo
méretil és igényi felhasznaldi kozosségeket. Ehhez egyesiteni kell az elszeparalt szige-
tekként miikod6 Grideket, mely nagy kihivést jelent és 1j kutatasi megkozelitéseket
kivan.

A Grid rendszereken beliil az erdforras-kezelé komponensek fejlesztésével foglal-
kozé kutatdsi teriiletet érinti a leginkdbb a felhaszndl6i igények felerésodése (pld.
eltéré Grid eréforrasok egyiittes haszndlata, szerzédések alkalmazasa, stb.). Ez az
értekezés az eltéré megvaldsitdsi szolgaltatoi Gridek egytittmiikodésének (Grid Inte-
roperability [70]) elérését tiizte ki célul a Grides eréforrds kezelés témakorében. A
Grides egyiittmiikodés a kiilonféle Grid infrastruktiurak athidalasat jelenti, amely le-
het6vé teszi, hogy egy adott Grid felhasznal6i képesek legyenek més Grid er6forrdsait
felhasznalni alkalmazasaik futtatasara és adataik megosztaséara a tobbi Grid felhaszné-
l6ival. Bar napjainkra szamos jol megtervezett, széles korben hasznélt Grides erofor-
ras-kezel6 rendszer (Resource Management System), Grid bréker [2] elérhet6 a fel-
hasznaloi kozosség szamara, ezek az eszkozok a Gridet megvaldsito koztes réteg kom-
ponenseire, szolgaltatasaira épiilnek, melyek kevéssé adnak lehetOséget az tjonnan
felmertilt igények kielégitésére. Az elérhet6 Grides erdforras-kezelé komponenseket
méas kutatéesoportok is vizsgaltak [52], viszont ezen publikdciék nem részletezik az
egyittmiikodés szempontjabol fontos kapcsolatokat, felelosségi koroket és tulajdon-
sagokat. A jelenlegi megvaldsitasok nagy része nem képes atlépni a koztes réteg al-
kalmazoi korlatait, ezaltal csak a teljes Grid rendszer fejlesztésével azonos mértékben
fejlédhetnek, mely igen lassu elorelépést és az 1j igények tekintetében radikalis valtoz-
tatasokat jelentenek. Emellett napjaink szolgaltatéi Gridjei viszonylag elkiilonitett
felhasznaloi kozosséggel és fejlesztéi csoporttal rendelkeznek, mely szintén az egytitt-

miikodés elGsegitésének utjaban all.
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Az egyiittmiikod6 Gridek probléméjaval nagy tekintély szakértoi csoportok is
foglalkoznak. Az egyik ilyen, Eurépaban irdnyadé Grides szakértéi csoport a Next
Generation Grids Expert Group, amely az Eurdpai Bizottsag égisze alatt mikodik.
Az eurdpai Gridek jovéjérél sz6lé harmadik kézleményiikben [61], a 2010-ig meg-
valésitandé és azon tilmutatd célokat, kutatasi iranyokat jelolték ki. Ebben a doku-
mentumban a webes és Grides technologidk konvergenciajat allapitottak meg, és egy-
ben kijelolték az utat a szolgaltatas-orientalt tudasalapi komponensek, un. SOKU-
k (Service Oriented Knowledge Utility) fejlesztése felé, amelyeknek egytittmiikédé,
meghbizhaté és hibatiiré miikodést megvaldsitd, megfeleld tudasbazissal rendelkezo
szolgaltatasoknak kell lennitik. Mindezen szakértéi ttmutatasokat figyelembe véve
ez az értekezés olyan magas szintii brokerezd szolgéaltatast javasol az egytittmiikodési
probléma megoldasara, amely a lehetd legtobb felhasznaldi igényt képes kielégiteni,

és nem igényli a koztes réteg komponenseinek tjratervezését.

d

Uj tudomanyos eredmények

Kutatésaim soran elso célom a Grid brékerezés szakirodalmanak mélyrehato vizsgala-
ta volt. Ezid6tajt a kozel 10 éves Grid rendszerek mar szamos eroforras-kezeld
megoldasokkal rendelkeztek, azonban ezek az eszkozok kiilonféle Grid megvaldsitasra
épiiltek, mas elnevezéssel rendelkeztek és eltérd felhasznaldi igényeket céloztak meg.
Az elsé tézis elOkészitéseként megvizsgaltam a napjainkban elérhet6, nagyobb fel-
haszndldéi kozosségek altal haszndlt Grides eréforras brokerek miikodését, felépitését
és gyakorlati tulajdonsagaikat. Részletesen tanulmanyoztam a kiilonbozé eréforras-
kezel6 komponensek kiilso kapcsolatait és belsé felépitésiiket, és azonositottam az
eltérd felel6sségi koroket és megnevezéseket egy Grid erdforras-kezeld anatémia meg-
hatdrozasaval. Az ASM (Abstract State Machine) Grid formadlis modellt [60] fel-
hasznalva formalizaltam az azonositott Grides brokerezé feladatkoroket és egyiittmii-
kodési szinteket, melyek lehetové teszik a Grid brékerezd megoldasok elkiilonitését.

Ezek az eredmények a kovetkezo tézishez vezettek:

I. Tézis. Felallitottam egy gyakorlati tulajdonsiagokon alapulé ka-
tegoria rendszert, melyet felhasznalva létrehoztam egy altalanos Grid
bréker taxonémiat. Kidolgoztam egy Grid eroforras-kezel6 anatémiat,

amely alapjan formalizaltam a Grid broékerez6 szinteket felhasznalva
az ASM Grid modellt [60].
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A Grid rendszerek kutatasaban napjaink legnagyobb kihivasat az egytittmiikodés
[70] megteremtése jelenti. A broker taxondmia is ramutat a brékerezé maddszerek
és komponensek kiilonbozoségére, mig az anatomia felfedi az egyiittmiikodés szem-
pontjabdl fontos hasonldsdgokat és kijeloli az egytittmiikodés megteremtésének le-
hetOségét egy magasabb absztrakcids szinten. A taxondmiaban vizsgdalt brokerek
koziil néhany képes alacsony szintii egyiittmiikodésre tobb Grid eréforrasainak eléré-
sével. Gyakorlati példakon keresztiill bemutattam az ezen az elven miikodo multi-
Grid brékerezést broker-kiterjesztéssel és portal hasznalataval. Egy magasabb szintii
egyiittmiikodést lehet6vé tevd brékerezéshez sziikség van egy brékereket leird nyelvre
a brokerek egytittes kezeléséhez. A broker taxondmia kategoriait felhasznald, magas

szintli adat-modellre épiilé nyelv kidolgozasat foglalja magdba a méasodik tézis.

II. Tézis. Létrehoztam egy olyan 1ij, XML-alapi brdéker-leiré nyel-
vet, a BPDL-t (Broker Property Description Language), mely fel-
hasznalasaval egy magas szintii brokerez6 szolgaltatas képes tetszo-
leges szamu, a bréker taxonémiaba sorolhaté Grid brékert egy rend-

szerben kezelni.

A brékerek egytittes kezelését megvaldsitd, meta-szinten miik6dd, magas szinti
Grides ert6forras-kezelé megoldést meta-brokerezésnek neveztem el. A kovetkezo,
harmadik tézis keretében azonositottam egy dltalanos meta-brokerez6 megoldas kove-
telményrendszerét a miikodéshez sziikséges komponensek definialasaval, és kidolgoz-
tam ezen absztrakt rendszer olyan megvaldsitasat, amely nem igényli az alkalmazott

brékerek és Grid rendszerek moédositasat.

III. Tézis. Meghataroztam egy altalanos meta-brokerezo szolgaltatas
kovetelményrendszerét, mely alapjan megterveztem a rendszer meta-
broker architektirajat. Ez egy 1j absztrakcids szint bevezetésével le-
het6vé teszi a Grid rendszerek egyilittmiikodését tetszoleges brokerek
integralasaval. Az architektira terv alapjan megvalésitottam az 1j
GMBS (Grid Meta-Broker Service) meta-bréker szolgaltatdas kompo-

nenseit.

A megvaldsitas komponensei elvégzik a menedzselt brokerek teljesitményének és

Gridjeik terheltségének monitorozasat, szabvanyos interfészen keresztiil biztositjak
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a felhaszndaléi interakciot és elvégzik az automatikus bréker-valasztast. A meta-
brokerezé moédszer publikaldsa utan hasonlé megkozelitések jelentek meg a szakiro-
dalomban. Az elsé tézisben definidlt formélis egytittmiikodési szintek segitségével
osszehasonlitottam ezeket a megkozelitéseket. Kutatdsom végsd alloméasit a meta-
broker kiértékelése jelentette. A széles korben elterjedt és hasznélt GridSim Tool-
kit [12] Grides szimuldciés kornyezetet hasznaltam fel a kiértékel6 rendszer kidol-
gozasahoz. A negyedik tézis a GridSim-et kiegészito, a meta-brokerezés vizsgalatat
lehetové tevo szimuldcids kornyezet kidolgozasat és a meta-bréker valds adatokkal
torténd kiértékelését tartalmazza, melyhez a valds szuperszamitogép és Grid futasi
adatokat tartalmazo Parallel és Grid Workloads Archive nyilvanosan elérhet6 adat-
tarak adatfdjljait hasznaltam fel [129, 107].

IV. Tézis. A GridSim [12] szimuléiciés kérnyezetre épitve megtervez-
tem és megvaldsitottam egy 1ij, meta-brokerezés vizsgalatat lehetové
tevo szimulacidés rendszert. Ezt felhasznalva elvégeztem a GMBS
meta-broker szolgaltatas teljesitmény elemzését valos parhuzamos szu-
perszamitogép és Grides er6forrasok terheltségi adatainak alapjan. A

vizsgalattal bizonyitottam a meta-bréker szolgaltatas hatékonysagat.

A kiilonb6z6 médon felparaméterezett szimulacids kisérletek mindegyikében haté-
konyabbnak bizonyult a brokereket egyiittmi{ikodé médon alkalmazé meta-brékerezo
szolgaltatas a hagyomaényos, elszigetelt bréker hasznalattal szemben. A mérési ered-
mények alapjan a GMBS meta-bréker szolgaltatas képes tobb, mint 10-szeres gyor-

sulés elérésére a véletlenszeru brokervilasztassal szemben.

Osszefoglalés

Napjainkban a szamos kutatéi kozosség altal hasznalt Grid rendszerek tovabbi fej-
16désének utjaban all az egytittmiikodés hidnya. A Gridekre adaptalt alkalmazasok
kozott megjelentek olyan nagy méretli és komplexitasi munkafolyamatok, amelyek le-
futtatasahoz egy Grid eréforrasai kevésnek bizonyulnak. Ennek a problémanak a meg-
oldaséra olyan fejlett eroforras-kezelé megoldasokat mutattam be ebben a disszertaci-
6ban, amelyek képesek a kiilonféle Grid rendszerek erdforrasait egyiittesen és auto-
matizalt mdédon felhasznalni a komplex felhaszndaléi igények kielégitésére.

A P-GRADE portal [46] és a gUSE/WS-PGRADE rendszer [43] brékerezéssel

kapcsolatos szolgaltatasai az értekezésben kidolgozott mddszereken alapulnak. En-
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nek megfeleléen a disszertdcio eredményei a kovetkezd Eurdpai Unids projektekben
hasznosulnak: SHIWA projekt [138], EDGI projekt [91], CancerGrid projekt [102]
és a GASuC projekt [103]. A kovetkezd orszagos projektek szintén hasznéljdk a
portalokat: UK ProSim projekt [134], MoSGrid projekt [118], valamint az ETH Zu-
rich egy biolégus projektje [141].

A tézisek tudoméanyos eredményeit szamos nemzetkozi folydiratban, konferen-
cia és workshop cikkben publikaltam, és kiilonféle tudoményos féorumokon adtam
el6. A disszertacié publikaciéi tobb késobbi kutatas alapjaul szolgaltak, amelyet a
sok fliggetlen hivatkozds fémjelez vilagszerte. Az értekezésben bemutatott kutatasi
eredmények nagy része a CoreGRID és S-CUBE eurdpai kivalosagi halézatokban

(Network of Excellence) [95, 137] torténé aktiv részvétel sikere.
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Appendix

Additional information

In Section 4.2 of Chapter 4 I introduced an extendable Broker Property Description
Language (BPDL) to express metadata about brokers. After revising the schema
of this language description I created BPDL 2.0, and the Meta-Broker Scheduling
Description Language (MBSDL) that is able to express special attributes of the dif-
ferent job description documents and can be used as an extension of JSDL. The XML

schemas of these documents are presented next.

<?xml version="1.0" encoding="UTF-8"7>
<xsd:schema xmlns:xsd="http://www.w3. org/2001/XMLSchema”
xmlns:bpdl="uri:BrokerPropertyDescriptionLanguage”
xmlns:mbsdl="uri:MBSchedulingDescriptionLanguage”
targetNamespace="uri:BrokerPropertyDescriptionLanguage”
elementFormDefault="qualified” attributeFormDefault="unqualified”>
<xsd:import namespace="uri:MBSchedulingDescriptionLanguage”
schemaLocation="mbsdl. zsd” />
<xsd:element name="BPDL” type="bpdl:BPDL_Type”™
<xsd:annotation>
<xsd:documentation>Broker Property Description Language
2.0</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:complexType name="BPDL_Type”>
<xsd:sequence>
<xsd:any namespace="##other” processContents="laz”/>
<xsd:element name="BrokerID” type="bpdl:BrokerID_Type”/>
<xsd:element name="Interface” type="bpdl:InterfaceType”

maxOccurs="unbounded” />



15
16
17

18
19
20
21

22

23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

126 Additional information

<xsd:element name="Monitoring” type="bpdl:Monitoring_Type”/>
<xsd:element name="Security” type="bpdl:Security_-Type”/>
<xsd:element name="PerformanceMetrics”
type="bpdl:PerformanceMetrics-Type” />
<xsd:element ref="mbsdl:SDL”/>
</xsd:sequence>
<xsd:attribute name="name” type="zsd:NCName” use="required”/>
<xsd:attribute name="description” type="xzsd:string”
use="optional” />
<xsd:attribute name="targetNameSpace” type="zsd:anyURI”
use="optional”/>
<xsd:anyAttribute namespace="##other” processContents="laz”/>
</xsd:complexType>
<xsd:complexType name="BrokerID_Type”>
<xsd:simpleContent>
<xsd:extension base="zsd:string”>
<xsd:anyAttribute namespace="##other” processContents="laz”/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="InterfaceType ”>
<xsd:sequence>
<xsd:element name="type” type="bpdl:InterfacesEnumeration”/>
<xsd:element name="name” type="zsd:string”/>
<xsd:element name="description” type="zsd:string”
minOccurs="0"/>
<xsd:element name="Parameters” minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Parameter” maxOccurs="unbounded”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="description” minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name” type="zsd:NCName” />
<xsd:attribute name="type” type="zsd:NCName” />
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="ReturnedValue” minOccurs="0">
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<xsd:complexType>
<xsd:sequence>
<xsd:element name="description” minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name” type="zsd:NCName” />
<xsd:attribute name="type” type="zsd:NCName” />
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="MonitoringMetric_Type”>
<xsd:sequence>
<xsd:element name="Name” type="zsd:string”/>
<xsd:element name="Description” type="xzsd:string”/>
</xsd:sequence>
<xsd:attribute name="MetricType”
type="bpdl:MonitoringInfoEnumeration” use="required”/>
<xsd:anyAttribute namespace="##other”/>
</xsd:complexType>
<xsd:complexType name="Monitoring_-Type >
<xsd:sequence>
<xsd:element name="Metric” type="bpdl:MonitoringMetric_Type”
maxOccurs="unbounded” />
</xsd:sequence>
<xsd:attribute name="accessMethod” type="xzsd:string”
use="optional”/>
<xsd:anyAttribute namespace="##other” />
</xsd:complexType>
<xsd:complexType name="Security_-Type”>
<xsd:choice>
<xsd:element name="MyProxy” type="bpdl:MyProxy_Type”/>
<xsd:element name="OtherSecurity”
type="bpdl:OtherSecurity_Type” />
</xsd:choice>
<xsd:anyAttribute namespace="##other”/>
</xsd:complexType>
<xsd:complexType name="MyProzy_-Type”™
<xsd:sequence>
<xsd:element name="IsSupported” type="xzsd:boolean”/>
<xsd:element name="ServerName” type="xzsd:string”
minOccurs="0"/>

<xsd:element name="PortNumber” type="zsd:int” minOccurs="0"/>
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90 </xsd:sequence>

91 <xsd:anyAttribute namespace="##other”/>
92 </xsd:complexType>

93 <xsd:complexType name="OtherSecurity_Type”™>

94 <xsd:sequence>

95 <xsd:element name="Details” type="zsd:string”/>
96 </xsd:sequence>

97 <xsd:attribute name="name” type="zsd:NCName” />

98 <xsd:anyAttribute namespace="##other”/>

99 </xsd:complexType>
100 <xsd:complexType name="PerformanceMetrics_Type”>

101 <xsd:sequence>

102 <xsd:element name="AVGWaitingTime”
type="bpdl:PerformanceMetric_Type” />

103 <xsd:element name="AVGSlowdown”
type="bpdl:PerformanceMetric_Type” />

104 <xsd:element name="FinishedJobs”

type="bpdl:PerformanceMetric_Type” />

105 <xsd:element name="FailedJobs”
type="bpdl:PerformanceMetric_Type” />

106 <xsd:element name="OtherMetric”
type="bpdl:PerformanceMetric_Type” maxQccurs="unbounded” />

107 <xsd:element name="Prediction”
type="bpdl:PerformanceMetric_Type” minOccurs="0"
maxOccurs="unbounded” />

108 </xsd:sequence>

109 <xsd:anyAttribute namespace="##other” />

110 </xsd:complexType>

111 <xsd:complexType name="PerformanceMetric_.Type”>

112 <xsd:sequence>

113 <xsd:element name="name” type="zsd:string”/>
114 <xsd:element name="description” type="xzsd:string”/>
115 <xsd:element name="value” type="zsd:string”/>
116 </xsd:sequence>

117 <xsd:anyAttribute namespace="##other”/>

118 </xsd:complexType>

119 <xsd:simpleType name="InterfacesEnumeration”™

120 <xsd:restriction base="zsd:string”>

121 <xsd:enumeration value="Submit”/>

122 <xsd:enumeration value="Cancel”/>

123 <xsd:enumeration value="Suspend”/>

124 <xsd:enumeration value="Resume”/>
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125 <xsd:enumeration value="Migrate” />

126 <xsd:enumeration value="other”/>

127 </xsd:restriction>

128 </xsd:simpleType>

129 <xsd:simpleType name="MonitoringlnfoEnumeration”
130 <xsd:restriction base="zsd:string”>

131 <xsd:enumeration value="StaticInfo”/>

132 <xsd:enumeration value="DynamicInfo” />
133 <xsd:enumeration value="Aggregatedinfo”/>
134 <xsd:enumeration value="other”/>

135 </xsd:restriction>

136 </xsd:simpleType>

137 </xsd:schema>

138

139

140 <?xml version="1.0" encoding="UTF-8"7>

141 <xsd:schema xmlns:xsd="http://www.ws. org/2001/XMLSchema”
xmlns:mbsdl="uri:MBSchedulingDescriptionLanguage”
targetNamespace="uri:MBSchedulingDescriptionLanguage”
elementFormDefault="qualified” attributeFormDefault="unqualified”>

142 <xsd:element name="SDL” type="mbsdl:SDL_Type >

143 <xsd:annotation>

144 <xsd:documentation>MB Scheduling Description

Language</xsd:documentation>

145 </xsd:annotation>

146 </xsd:element>

147 <xsd:complexType name="SDL_Type”>

148 <xsd:sequence>

149 <xsd:any namespace="##other” processContents="laz”/>

150 <xsd:element name="Constraints” type="mbsdl:Constraints_Type”/>
151 <xsd:element name="QoS” type="mbsdl:QoS_-Type” />

152 <xsd:element name="Policy” type="mbsdl:Policy_Type” />

153 </xsd:sequence>

154 <xsd:attribute name="name” type="zsd:NCName” use="required”/>

155 <xsd:attribute name="description” type="xzsd:string”

use="optional” />
156 <xsd:attribute name="targetNameSpace” type="zsd:anyURI”
use="optional”/>
157 <xsd:anyAttribute namespace="##other” processContents="laz”/>
158 </xsd:complexType>
159 <xsd:complexType name="Constraints_-Type”>
160 <xsd:sequence>
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161 <xsd:any namespace="##other” />

162 <xsd:element name="Middleware” type="mbsdl:Middleware-Type”
maxOccurs="unbounded” />

163 <xsd:element name="JobType” type="mbsdl:JobTypeEnumeration”
maxOccurs="unbounded” />

164 <xsd:element name="Time” type="mbsdl:Time_Type” />

165 <xsd:element name="Budget” type="zsd:long”/>

166 <xsd:element name="RemoteFileAccess”

type="mbsdl:RemoteFileAccessEnumeration” minOccurs="0"
maxOccurs="unbounded” />

167 <xsd:element name="OtherConstraint” type="mbsdl:Other_Type”
maxOccurs="unbounded” />

168 </xsd:sequence>

169 </xsd:complexType>

170 <xsd:complexType name="Middleware_-Type”>

171 <xsd:sequence>

172 <xsd:element name="GridName” type="mbsdl:GridNameEnumeration”
minOccurs="0"/>

173 <xsd:element name="ProzyName” type="zsd:string” minOccurs="0"/>

174 <xsd:element name="MYProxy” type="mbsdl:MyProxzy_-Type”
minOccurs="0"/>

175 <xsd:element name="VirtualOrganisation”
type="mbsdl: VirtualOrganisation_Type” minOccurs="0"
maxOccurs="unbounded” />

176 <xsd:element name="InformationSystem”

type="mbsdl:InformationSystem_Type” minOccurs="0"/>

177 <xsd:any namespace="##other” minOccurs="0"/>
178 </xsd:sequence>
179 <xsd:anyAttribute namespace="##other” processContents="laz”/>

180 </xsd:complexType>

181 <xsd:complexType name="VirtualOrganisation_Type”>
182 <xsd:sequence>

183 <xsd:element name="InformationSystem”

type="mbsdl:InformationSystem _Type” />

184 <xsd:element name="ProzyName” type="zsd:string” minOccurs="0"/>
185 <xsd:any namespace="#Z#other” minOccurs="0"/>

186 </xsd:sequence>

187 <xsd:attribute name="name” type="zsd:NCName” use="required”/>

188 <xsd:anyAttribute namespace="##other” processContents="laz”/>

189 </xsd:complexType>
190 <xsd:complexType name="InformationSystem_Type”>
191 <xsd:sequence>
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192 <xsd:element name="MDS” type="zsd:string” minOccurs="0"/>
193 <xsd:element name="BDII” type="zsd:string” minOccurs="0"/>
194 <xsd:element name="WebMDS” type="zsd:string” minOccurs="0"/>
195 <xsd:any namespace="##other” minOccurs="0"/>

196 </xsd:sequence>

197 <xsd:attribute name="name” type="zsd:NCName” use="required”/>
198 <xsd:anyAttribute namespace="##other” processContents="laz”/>

199 </xsd:complexType>
200 <xsd:complexType name="QoS_Type”>

201 <xsd:sequence>
202 <xsd:any namespace="##other” />
203 <xsd:element name="Agreement” type="mbsdl:Agreement_Type”

minOccurs="0" maxOccurs="unbounded” />

204 <xsd:element name="FaultTorelanceMechanisms”
type="mbsdl:FaultToleranceEnumeration”
maxOccurs="unbounded” />

205 <xsd:element name="AdvanceReservation”
type="mbsdl:AdvanceReservation_Type” minOccurs="0"/>

206 <xsd:element name="Priority” type="zsd:string” minOccurs="0"/>

207 <xsd:element name="GridAccessControl” type="zsd:string”
minOccurs="0"/>

208 <xsd:element name="EmailNotification” type="zsd:string”
minOccurs="0"/>

209 </xsd:sequence>

210 <xsd:anyAttribute namespace="##other” processContents="laz”/>

211 </xsd:complexType>

212 <xsd:complexType name="BrokerName_Type”>

213 <xsd:simpleContent>

214 <xsd:extension base="zsd:string”>

215 <xsd:anyAttribute namespace="##other” processContents="laz”/>
216 </xsd:extension>

217 </xsd:simpleContent>

218 </xsd:complexType>

219 <xsd:complexType name="Policy_Type”>

220 <xsd:sequence>

221 <xsd:element name="PolicyName” type="mbsdl:PolicyEnumeration”
minOccurs="0"/>

222 <xsd:element name="OtherPolicy” type="mbsdl:Other_Type”
minOccurs="0"/>

223 <xsd:element name="LRMSPolicy” type="mbsdl:Other_Type”
minOccurs="0"/>

224 </xsd:sequence>
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225 <xsd:anyAttribute namespace="##other” />
226 </xsd:complexType>
227 <xsd:complexType name="Time_Type”>

228 <xsd:sequence>

229 <xsd:element name="StartTime” type="xzsd:date”/>
230 <xsd:element name="Duration” type="xzsd:long”/>
231 <xsd:element name="TimeOut” type="zsd:long”/>
232 </xsd:sequence>

233 <xsd:anyAttribute namespace="##other”/>

234 </xsd:complexType>
235 <xsd:complexType name="Other_Type ">

236 <xsd:sequence>

237 <xsd:element name="Name” type="zsd:string”/>
238 <xsd:element name="Value” type="zsd:string”/>
239 </xsd:sequence>

240 <xsd:anyAttribute namespace="##other” />

241 </xsd:complexType>
242 <xsd:complexType name="MyProzy_-Type >

243 <xsd:sequence>

244 <xsd:element name="Name” type="zsd:string” minOccurs="0"/>
245 <xsd:element name="ServerName” type="xzsd:string”/>

246 <xsd:element name="PortNumber” type="zsd:int” minOccurs="0"/>
247 </xsd:sequence>

248 <xsd:anyAttribute namespace="##other”/>

249 </xsd:complexType>
250 <xsd:complexType name="Agreement_Type”>

251 <xsd:sequence>
252 <xsd:element name="Target” type="zsd:anyURI”/>
253 <xsd:element name="ConfidenceLevel”

type="zsd:positivelnteger”/>
254 </xsd:sequence>
255 <xsd:anyAttribute namespace="##other” />
256 </xsd:complexType>
257 <xsd:complexType name="AdvanceReservation_Type”>

258 <xsd:sequence>

259 <xsd:element name="ResourceName” type="xzsd:string”/>
260 <xsd:element name="Date” type="zsd:date”/>

261 </xsd:sequence>

262 <xsd:anyAttribute namespace="##other” />

263 </xsd:complexType>
264 <xsd:simpleType name="GridNameEnumeration”>
265 <xsd:restriction base="zsd:string”>
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270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
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<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
</xsd:restriction>
</xsd:simpleType>

value="GT2” />
value="GT3” />
value="GT}” />
value="EGEE-LCG-2" />
value="EGEF-gLite” />
value="NorduGrid” />

value="Unicore” />

<xsd:simpleType name="JobTypeEnumeration ”>

<xsd:restriction base="zsd:string”>

<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
</xsd:restriction>
</xsd:simpleType>

value="Serial”/>
value="Mpi” />
value="Pvm” />
value="Checkpointable” />
value="Interactive”/>
value="Threads” />
value="OpenMP” />
value="Mpi+OpenMP” />
value="Caf” />
value="Upc” />

<xsd:simpleType name="RemoteFileAccessEnumeration”™

<xsd:restriction base="zsd:string”>

<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
</xsd:restriction>
</xsd:simpleType>

value="GridFTP” />
value="RFT” />
value="GASS” />
value="Unicore” />
value="SRB” />
value="EGEE-LFN” />

<xsd:simpleType name="PolicyEnumeration >

<xsd:restriction base="zsd:string”>

<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
</xsd:restriction>
</xsd:simpleType>

value="ScheduleByCpu” />
value="ScheduleByMemory” />
value="ScheduleByDiskSize” />
value="RandomHost” />

<xsd:simpleType name="FaultToleranceEnumeration ”>
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308 <xsd:restriction base="zsd:string”>

309 <xsd:enumeration value="Checkpointing”/>
310 <xsd:enumeration value="Rescheduling”/>
311 <xsd:enumeration value="Replication”/>
312 </xsd:restriction>

313 </xsd:simpleType>
314 </xsd:schema>

In Section 4.2 of Chapter 4 I also discussed the components of a proposed meta-
brokering service called GMBS. Figure C.1 is intended to give an overview of the
implementation of GMBS through a UML class diagram representing the main com-

ponents of the system.
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Figure C.1: UML class diagram of GMBS.
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