
Meta-brokering solution

for establishing Grid Interoperability

Ph.D. Thesis

by

Attila Kertész

Supervisor:

Prof. Dr. Péter Kacsuk

MTA SZTAKI

A Thesis Submitted in Fulfilment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Doctoral School of Computer Science

Faculty of Science and Informatics

University of Szeged

Szeged, 2011

i

Contents

Table of Contents i

List of Tables iv

List of Figures v

Acknowledgements vii

1 Introduction 1

1.1 Summary of research results . 3

1.2 Agenda . 5

2 Problem statement 7

2.1 The role of Grid brokering . 10

2.2 Taxonomy of resource brokers . 11

2.2.1 Grid Middleware . 12

2.2.2 Job handling . 12

2.2.3 Scheduling . 14

2.3 Survey of resource brokers . 16

2.4 The problem of Grid Interoperability 19

2.5 Multi-grid brokering approaches for interoperation 22

2.5.1 Multi-grid extension of GTbroker 23

2.5.2 Multi-grid brokering from portals 28

2.6 Summary . 32

3 Analysing and modeling Grid brokering 33

3.1 The anatomy of Grid resource management 33

3.2 An extended formal model for Grids 38

3.2.1 Universes and signature . 42

ii

3.2.2 Initial state . 44

3.2.3 Rule 1: Resource selection . 45

3.2.4 Rule 2: State transition . 47

3.2.5 Rule 3: Termination . 48

3.3 ASM model for Grid brokering . 48

3.3.1 Rule 4: Host selection for Grid brokering 49

3.3.2 Rule 5: Broker selection . 52

3.3.3 Refining the ASM model to formalize the matchmaking of GT-

broker . 54

3.4 Interoperability levels for Grid brokering 55

3.5 Summary . 59

4 High-level brokering solution for establishing Grid Interoperability 61

4.1 A general architecture for meta-brokering 61

4.2 Grid Meta-Brokering Service for high-level resource management . . . 66

4.2.1 Data Model for describing broker capabilities 68

4.2.2 The implemented data model: Broker Property Description

Language . 69

4.2.3 Description of the components of GMBS 74

4.2.4 Refining the ASM model to formalize the matchmaking of GMBS 83

4.3 Related Grid Interoperability efforts in Grid resource management . . 84

4.3.1 Related Grid Interoperability efforts with multiple Grid mid-

dleware support . 84

4.3.2 Related Grid Interoperability efforts by portals 85

4.3.3 Related Grid Interoperability efforts with higher level Grid re-

source management . 87

4.3.4 Classification of related works 90

4.4 Outlook of GMBS . 92

4.5 Summary . 95

5 The evaluation of Grid meta-brokering 97

5.1 Evaluation of GMBS . 97

5.1.1 Evaluation methodology . 97

5.1.2 Grid meta-brokering simulation architecture 98

5.1.3 Evaluation with parallel workloads 101

iii

5.1.4 Evaluation with preliminary training 103

5.1.5 Evaluation with Grid workloads 106

5.2 Summary . 109

6 Conclusions 111

A Summary in English 113

B Summary in Hungarian 119

C Additional information 125

Bibliography 136

iv

List of Tables

Table 1.1 Theses and publications . 5

Table 2.1 Survey of Grid brokers . 17

Table 2.2 Comparison evaluations between GTbroker and LCG-2 WMS. . 27

Table 4.1 A subset of special job description language attributes. 66

Table 4.2 Web Service interface methods of the GMBS. 79

Table 4.3 Classification of Grid Interoperability solutions. 93

Table 5.1 Evaluation results of the first experiment. 101

Table 5.2 Evaluation results of the second experiment. 102

Table 5.3 Evaluation results of the third experiment. 103

Table 5.4 Evaluation results of the fourth experiment. 107

v

List of Figures

Figure 2.1 A complex Taverna workflow 8

Figure 2.2 Categories of the Taxonomy: Grid Middleware group 12

Figure 2.3 Categories of the Taxonomy: Job handling group 13

Figure 2.4 Categories of the Taxonomy: Scheduling group 15

Figure 2.5 The architecture of Grid systems. 23

Figure 2.6 GTbroker extension to support Grid Interoperability. 25

Figure 2.7 Multiple-broker utilization in the P-GRADE Portal. 31

Figure 3.1 Grid resource managers and their connections 35

Figure 3.2 The anatomy of Grid resource management 37

Figure 3.3 Basic elements of the initial ASM model for Grids. 41

Figure 3.4 The modified ASM model for Grids. 42

Figure 3.5 Grid brokering in the ASM model. 51

Figure 3.6 Meta-brokering in the ASM model. 52

Figure 3.7 State transitions in the ASM model. 54

Figure 3.8 Interoperability levels. 58

Figure 4.1 General meta-brokering architecture 63

Figure 4.2 Description languages for meta-brokering. 65

Figure 4.3 Main fields of the preliminary JSDL extension. 67

Figure 4.4 Structure of the data model for resource broker capabilities. . . 68

Figure 4.5 The schema of the Broker Property Description Language. . . . 70

Figure 4.6 The schema of the Broker Property Description Language 2.0. . 71

Figure 4.7 The schema of the Meta-Broker Scheduling Description Language. 72

Figure 4.8 Realization of the general architecture. 75

Figure 4.9 Grid Meta-Broker Service . 77

Figure 4.10Sequence diagram of the GMBS utilization. 78

Figure 4.11GMBS usage scenarios. 80

vi

Figure 5.1 Meta-brokering simulation environment. 99

Figure 5.2 Evaluation diagram corresponding to the first row of Table 5.3 . 104

Figure 5.3 Evaluation diagram corresponding to the second row of Table 5.3 105

Figure 5.4 Evaluation results of runs in the first three experiments 106

Figure 5.5 Compared evaluation results for the three types of runs 108

Figure 5.6 Evaluation results of runs in the fourth experiment 109

Figure C.1 UML class diagram of GMBS. 135

vii

ACKNOWLEDGEMENTS

I would like to thank:

Péter Kacsuk, my supervisor, for his mentoring, encouragement and for guiding

me into the world of Grid Computing by helping me to find my own research

topic and supporting me to reach my goals.

my colleagues, especially Zsolt Németh, Zoltán Juhász, Gergely Sipos, Gábor Kecs-

keméti and Lajos Schrettner, for inspiring me, sharing ideas and for their valu-

able advices that helped me to publish papers and arrive at this dissertation.

my co-authors, for helping me to gain research skills during my scientific visits to

institutes abroad, including Peter Praxmarer, Ivan Rodero and Francesc Guim.

and finally my wife, my family and my friends, for their love and continuous

support during my studies.

Ask and it will be given to you; seek and you will find;

knock and the door will be opened to you.

For everyone who asks receives; he who seeks finds;

and to him who knocks, the door will be opened.

Matthew 7:7-8

Chapter 1
Introduction

Grid Computing [29] has become a separate research field in the ’90s and since then

it has been targeted by many projects all around the world. Several years ago users

and companies having computation and data intensive applications looked sceptical

at the forerunners of Grid solutions that promised less execution time and easy-to-use

application development environments by creating a new virtually unified high per-

formance system of interconnected computers from all around the world. Research

groups were forming around specific parts of Grid systems and different research ar-

eas emerged, because former techniques of distributed computing were not applicable

in Grid systems. Many user groups from various research fields (biology, chemistry,

physics, etc.) put their trust in Grids and today usage statistics and research results

show that they were undoubtedly right. Grid Computing has been in the spotlight,

several international projects have aimed to establish sustainable Grids (eg. Core-

GRID [95], EGEE [92], NextGRID [121], GEANT [97], KnowARC [104], EUAsiaGrid

[94] and OSG [127]).

Core Grid services are provided and implemented by a so-called Grid middleware

[33]. The first widespread middleware was the Globus Toolkit [30], which became a de

facto standard for Grid Computing around 2002. Since then several middleware solu-

tions have appeared, and the production Grids using these solutions formed separate

islands that represent borders for both researchers and user communities. A decade of

Grid development has established many national and international production Grids

based on different middleware solutions (eg. HunGrid [110], NGS [120], EGEE [92],

UNICORE [143], NorduGrid [122] and OSG [127]). As a result of the numerous

Grid projects and available production Grids, user support centers [142, 98, 146, 103]

2 Introduction

have been set up in order to ease application porting to Grid environments. In some

cases these applications are so large and complex that their executions require more

computing resources than a particular Grid can provide. Therefore similarly to the

World-Wide Web, the interconnection of these separate islands can result in a World-

Wide Grid in the future. Such an aggregated system could cope with the growing

number of users and computation-intensive applications.

Resource management in Grid systems is the research field most affected by user

demands. Though well-designed, evaluated and widely used resource managers (also

called as brokers) have been developed, new capabilities are required, such as interop-

erability and agreement support. The available resource managers have already been

surveyed by other research groups [52], but these publications do not detail capabili-

ties related to interoperability and do not separate operational roles (eg. scheduling,

brokering, management). This dissertation aims at providing a high-level brokering

solution to establish Grid Interoperability [70], which means the bridging of different

Grid infrastructures in order to allow users on one Grid to run computing jobs and

exchange data with users on other Grids. The current solutions of Grid resource man-

agement will not be able to fulfil the high demands of future generation Grid systems,

though several Grid resource brokers [2] have been developed supporting different Grid

systems. The main problem is that most of them cannot cross the borders of separate

Grid islands caused by different Grid middleware solutions, therefore they can mature

as slowly as middleware solutions evolve. These newly arisen problems need to be

treated by novel research approaches in order to aggregate the separated Grid islands

and manage them together, because currently used Grid middleware solutions do not

support real interoperation other then restricted bilateral ones.

Solving these problems is crucial for the next generation of Grids, which should

spread from the academic to the business world. The advance of Grids seems to fol-

low the way foreseen by the Next Generation Grids Expert Group, which has been

established by the European Commission. In their third report [61] they have pointed

out that Grid and web services are converging and envisaged hybrid services called as

SOKUs (Service Oriented Knowledge Utility), which enable more flexibility, adapt-

ability and advanced interfaces, therefore interoperability is evident and congenital

in these systems.

Following these expert guidelines and the latest requirements of Grid user groups,

I propose in this dissertation such a high-level Grid brokering solution that enables

Grid Interoperability by providing the highest number of brokering capabilities in a

1.1. Summary of research results 3

way that it does not require any changes to the underlying Grid middleware services.

1.1 Summary of research results

During the research presented in this dissertation my first goal was to elaborate a

classification of Grid resource brokers. At that time, the less than ten-year-old Grid

Computing had several resource management solutions named by different expres-

sions operating on different middleware addressing various user needs. During the

preparation of the first thesis I examined the widespread Grid resource brokers used

by different user communities, identified their key functionalities and properties, gath-

ered them into a taxonomy, and classified them in a survey using the elements of the

taxonomy. I analysed the connections and inner structures of the available Grid re-

source manager components, identified different operational roles and resolved their

contradictory naming acronyms and expressions by creating an anatomy of Grid re-

source managers. I formalized the identified brokering roles, and inserted them into

the Abstract State Machine (ASM) model of Grid systems [60]. I identified and de-

fined interoperability levels for Grid brokering solutions and expressed them in the

presented model that enables the classification of related brokering approaches. I

stated the following thesis based on these results:

Thesis I. I designed a category framework of broker capabilities that

I used to create a general taxonomy of Grid brokers. I designed an

anatomy of Grid resource managers that I used to formalize Grid

brokering levels based on the ASM model of Grids [60].

Grid Interoperability [70] is a fundamental challenge of Grid Computing nowadays.

The presented broker taxonomy also points out the heterogeneity in most brokering

components and methods. The resource management anatomy revealed their simi-

larities and possible interactions that paved the way for introducing a meta-level in

Grid brokering to interoperate different Grid systems. Some of the surveyed brokers

are capable of low-level interoperation by accessing resources of different Grids. I

showed how these approaches address multi-grid brokering by broker-extension and

multi-brokering from Grid portals. For a higher level of interoperability, a general

broker description language is needed in order to enable the unified management of

Grid brokers. The second thesis contains the elaboration of such language based on

a meta-data model, using the categories of the broker taxonomy.

4 Introduction

Thesis II. I designed a new, XML-based description language called

Broker Property Description Language (BPDL) that is able to de-

scribe any Grid resource broker that can be categorized in the tax-

onomy. A high-level brokering service can use this language for the

unified management of these brokers.

I named the novel approach that performs high-level brokering at the meta-level

of Grid resource management as meta-brokering. The next, third thesis includes

the description of the required components of a general meta-brokering architecture

(besides the broker description language) and a realization of the abstract architecture

in a meta-brokering service that does not require any modifications to the utilized

brokers and Grids.

Thesis III. I determined the general requirements of Grid meta-

brokering, and developed a general architecture based on these re-

quirements that introduces a higher abstraction layer for enabling

Grid Interoperability by the unified management of Grid brokers.

Based on this general architecture, I designed the necessary compo-

nents to build the Grid Meta-Broker Service (GMBS).

The components of the realized meta-brokering service perform user interactions,

monitoring of resource and Grid load, tracking broker performance and automatic bro-

ker selection. After publishing this meta-brokering approach, other research groups

have also realized the need for interoperable brokering and started to develop their

own solutions. I designed a classification of these solutions based on the interoper-

ability levels introduced in Thesis I. The final part of the research was to evaluate the

proposed meta-broker. The GridSim Toolkit [12] is a widely accepted and used Grid

simulator that can be easily tailored to analyse Grid brokering methods. The fourth

thesis presents a meta-brokering simulation architecture that extends GridSim, and

the performance evaluation of the implemented meta-broker in this environment by

using real world resource usage traces form the publicly available Parallel and Grid

Workloads Archive [129, 107].

Thesis IV. I developed a new simulation environment based on the

GridSim [12] simulator that is able to evaluate meta-brokering. I

performed the evaluation of GMBS in this environment with a per-

formance analysis using both real parallel and Grid workload traces.

1.2. Agenda 5

I proved the effectiveness of the interoperable meta-brokering service

with the evaluation.

The evaluation results showed that the interoperable meta-brokering solution of

GMBS was able to achieve an order of magnitude better performance in Grid applica-

tion execution compared to the general, non-interoperable Grid utilization simulated

by random broker selection.

Table 1.1 shows the connections between the theses and the publications:

Table 1.1: Theses and publications
[P4] [P18] [P16] [P1] [P5] [P17] [P2] [P11] [P6]

Thesis I. • • • • • • • • •
Thesis II. • •
Thesis III. • • • •
Thesis IV. •

[P7] [P3] [P8] [P10] [P14] [P19] [P12] [P9] [P13] [P15]

Thesis I. • •
Thesis II. • • • • • •
Thesis III. • • • • • • • • • •
Thesis IV. • •

1.2 Agenda

This section provides an outline of the dissertation to show where and how it validates

the claims made previously.

Chapter 1 contains the introductory part of the research performed including the

theses of the dissertation followed by an overview of the structure of the docu-

ment itself.

Chapter 2 and 3 describes the problem area starting with a motivation example

followed by a literature review and a deep investigation of Grid resource man-

agers. Based on the presented findings a formal model has also been developed

that serves as a basis for the comparison of related research approaches. The

contributions of Thesis I. are discussed in these chapters.

6 Introduction

Chapter 4 provides the novel solution in the area of Grid resource management for

the problem of Grid Interoperability. It also enumerates avenues of future work

for further development of the concept and its applications. The contributions

of Thesis II. and III. are discussed in this chapter.

Chapter 5 is where the experiments, the evaluation of the proposed novel meta-

brokering solution are fully described. This part includes the details of how the

empirical side of the research has been conducted. The contributions of Thesis

IV. are discussed in this chapter.

Chapter 6 contains a restatement of the claims and results of the dissertation.

Appendix A and B contain summaries of the dissertation in English and Hungar-

ian.

Appendix C contains additional technical information related to the broker descrip-

tion language and the implementation of GMBS introduced in Chapter 4.

Chapter 2
Problem statement

The EGEE project [92] has been initiated in Europe to target two well-defined ap-

plication areas: high energy physics and biomedicine. In high energy physics, very

large amounts of data are produced and analysed, therefore it has one of the key user

groups running applications on the EGEE infrastructure. Since then a wide range of

research areas has appeared including Earth Sciences, Astroparticle Physics, Com-

putational Chemistry, Drug Discovery, Hydrology and Cosmology. EGEE formed a

strategic alliance with the LHC Computing Grid (LCG) project [148] from the be-

ginning, in order to satisfy the computing needs of the Large Hadron Collider (LHC)

particle accelerator in CERN, which is one of the largest scientific instruments in

the world planned to provide 15 petabytes of data per year. Besides, four different

LHC experiments also use EGEE resources: ALICE (A Large Ion Collider Exper-

iment), ATLAS (A Toroidal LHC Apparatus), CMS (the Compact Muon Solenoid

Experiment) and LHCb (The Large Hadron Collider Beauty Experiment) [92].

The biomedical area has also joined the EGEE project in the beginning. It has

various applications for drug discovery, medical tomography, protein analysis, molec-

ular docking analysis and mass screening of molecular interactions [92]. As a result of

the numerous Grid projects and available production Grids mentioned in the intro-

duction, user support centers have been set up in order to ease application porting to

Grid environments. The TeraGrid Advanced User Support [142] (AUS) project serves

American research communities, while in Europe the Global Grid User Support [98]

(GGUS) portal and the Westminster Grid Application Support Service (W-GRASS)

[146] provide application porting services. In Hungary, the Grid Application Support

Centre [103] (GASuC) provides similar facilities.

8 Problem statement

As a result of these user support teams, numerous applications have been gridified

that require enormous computational power. For example, one of the 1195 applica-

tions published in the myExperiment Project [119] that can be executed in EGEE

[92], the Success Abandonment Classification complex Taverna workflow by Andrea

Wiggins [140] contains 65 tasks shown in Figure 2.1. It retrieves data from FLOSS-

mole and from the Notre Dame SourceForge repository to compute project statistics

based on releases, downloads and project lifespan. These statistics are then used to

classify projects according to different comparison criteria.

Figure 2.1: A complex Taverna workflow

The UK ProSim project has a proteine molecule simulation workflow [134] for in

silico modelling of intermolecular recognition, which is critical for biological processes

in human cells including the function of antibodies in immune responses to invading

pathogens and xenotransplants. The application uses in silico modelling for deter-

mining how proteins interact with ligands and how to manipulate them to improve

9

or change their specificity. It integrates readily available software programs in an

optimised workflow to reproduce receptor-ligand complexes with a good degree of

accuracy. One single Lysozm molecule simulation of the application alone costs 170

CPU hours. The UK National Grid Service [120] (NGS) is used to decrease execution

times of these experiments.

The Savannah Experiment [135] application by A. Lynch examines the sensitivity

of the Australian monsoon to savannah fire. Each 21 year simulation takes about

6-12 weeks to execute on a single processor. The gridified workflow separates each

simulation into 252 monthly steps. In the project the first experiment was carried

out on 7 hosts of the PRAGMA Grid [131]. It contained 90 simulations running for

143 days. They plan to perform a second experiment involving TeraGrid [142] and

OSG [127].

The Phaser experiment [133] examined the Phaser molecular replacement (MR)

application by A. M. Buckle that uses a brute force approach to identify candiate

models for MR which involves exhaustive MR calculations using representative struc-

tures from a database. They used OSG [127], PRAGMA [131] and GIN-VO [125]

resources in order to demonstrate the need for interoperability. The experiment took

for two months executing around 71,000 jobs using 511,000 CPU hours.

Biomedical research is also a highly studied area in Hungary. For the request of

a researcher of the Biological Research Center (BRC) of the Hungarian Academy of

Sciences I have ported a biochemical application [47] to EGEE that also serves as a

motivating example for the research aims of this dissertation. This application gener-

ates 50 000 conformers of flexible molecules by unconstrained molecular dynamics at

high temperature to overcome conformational bias, then finishes each conformer by

simulated annealing and energy minimization to obtain reliable structures. The exe-

cution time of this application for one particular parameter-setup on a single machine

takes around one week, while I have managed to reduce it to one day by running the

gridified application in one of the Virtual Organizations (VO) of EGEE [47]. When

this application is used in production, at least one quantitative structure-activity re-

lationships (QSAR) study is executed, which needs 15-20 molecules as a minimum to

simulate. This implies that for a complex statistical study hundreds of such an ap-

plication need to be executed, which cannot be performed even within some months

time on a single Virtual Organization.

As we have seen, in several cases these applications are so large and complex that

the execution requires more computing resources than a particular Grid can provide.

10 Problem statement

In order to produce results for similar complex applications within a time frame

acceptable for researchers, the different Virtual Organizations and separate Grids

need to be managed together, need to be aggregated. Such a virtually unified system

could cope with the growing number of users and computation-intensive applications.

2.1 The role of Grid brokering

Executing a user application in a Grid environment requires several prerequisites.

Users need to learn the interfaces of the Grid services and need to describe their

application prior to submissions. Production Grid systems may consist of hundreds

of thousands of resources (eg. 240,000 processor cores in EGI [93]), therefore it is

not an easy task to find out the actual state of the computing and storage resources

and select one for a user program. There was no question about automating resource

discovery and selection. Special resource managers, also called resource brokers are

meant to solve this problem [2]. As resource management is a key part of current

Grid middleware solutions, and most middleware developer groups and projects have

developed their own tools for resource brokering.

Job scheduling on a multiprocessor system has been studied for more than 30 years

and is known to be NP-complete [83]. Scheduling in Grid systems, which is one of the

tasks of Grid resource managers, become more complicated with multi-organizational

shared resources, therefore Grid scheduling is also NP-hard [35, 74]. In order to

achieve better scheduling the general approach is to use some form of heuristics, eg.

job run time estimates. On the other hand, the inaccuracy of these estimates is a

perennial problem mentioned in the job scheduling literature, and even if the users are

required to provide these values, there is not a substantial improvement in the overall

average accuracy [56]. In [69], Ramirez-Alcaraz et. al. have analyzed different Grid

allocation strategies depending on the type and amount of information they require,

and they found that the information about user run time estimate and local schedules

does not help to significantly improve the outcome of the allocation strategies. They

concluded that quite simple schedulers with minimal information requirements can

provide good performance. Practice seems to adapt to these findings, because too

complex, sophisticated scheduling algorithms are rarely used in Grid brokers, as we

will see in the next section.

To enhance the manageability of Grid resources and users, Virtual Organizations

(VO) were founded. This kind of grouping has also started an isolation process in

2.2. Taxonomy of resource brokers 11

Grid middleware development forming separate islands in the ocean of Grids. In-

teroperability among these islands plays an important role in current Grid research.

This chapter gives a classification of the present Grid resource brokers by their rele-

vant properties and functionalities. Identifying the key features and mapping them to

user needs can open a new way for enhancing interoperability among different Grids.

Although the same services are available in different middleware, they have been im-

plemented in different ways. This taxonomy gives an insight how these brokers are

built up and can be accessed, and helps researchers to have a better understanding

of the current trends of resource brokering.

2.2 Taxonomy of resource brokers

Regarding taxonomies in Grid Computing, two main papers have been published

about resource management systems [52] and workflow management systems [88]. As

a resource broker is usually part of the resource management system (RMS) of a Grid,

the first one is closer to my particular research area. That taxonomy introduces an

abstract model of resource management in different Grid Systems, then describes and

compares the existing architectures. While each RMS operates on one middleware,

resource brokers can be middleware-independent entities, therefore some of them

are able to access resources of different middleware. A more concrete distinction

and clarification of different resource manager components will be given in the next

chapter in Section 3.1. This taxonomy is needed to clarify the role and usage of

current resource brokers, and to gather and present also those ones that were out of the

scope of the RMS taxonomy. I further examine the interfaces and the implementation

details of these brokers to reveal their main capabilities and properties.

The aim of this taxonomy is to gather the recent Grid brokers used by different

Grid user communities, highlighting their main properties and examining the dif-

ferences and similarities regarding their architecture and operation. I classified the

revealed properties to 7 major categories and split into three groups. The following

subsections comment the categories of these groups.

The first group is middleware oriented (Middleware Support), the second explains

mainly the user application-related categories (Interface, Job Model, QoS and Data

Movement), finally the third deals with scheduling features (Information System Sup-

port and Scheduling Model). The simplest, typical user application in Grids is called

a job. A complex user application called a workflow can be built up by more in-

12 Problem statement

terconnected jobs, where the interconnection represents data or control dependences

among the jobs. In this dissertation I assume that user applications are submitted to

the system (to the broker) in the form of jobs, or in case of workflows a higher level

service (eg. a workflow enactor or manager in [88]) submit the jobs of the workflow

to the system in a proper execution order.

2.2.1 Grid Middleware

The first main category – shown in Figure 2.2 – shows the underlying infrastructures

of the overviewed brokers. They usually rely on one of these middleware solutions

[99, 100, 25, 77] and use their functions to discover resources and submit user jobs.

We can distinguish between service-based and non-service-based ones. Generally this

property determines the architecture of the broker. It can be stated that the most

widespread middleware is the Globus Toolkit, since LCG-2 is built upon Globus

services and the NorduGrid ARC also uses and extends some of them.

Figure 2.2: Categories of the Taxonomy: Grid Middleware group

2.2.2 Job handling

This group contains mainly user and job related properties and can be seen in Figure

2.3. The first thing the user faces is the interface of the broker. Early solutions pro-

vided only command-line access, while APIs are important for higher level utilization

and management by other applications. Some brokers even have Graphical User In-

terfaces (GUI) to ease user interaction. Service-based brokers offer service access (eg.

Web-Service interface of VIOLA MetaScheduling Service (MS) [87] and eNanos [71]),

2.2. Taxonomy of resource brokers 13

which is an advanced method and needed by the latest developments. This function

can enhance interoperability and provide platform-independent access.

Figure 2.3: Categories of the Taxonomy: Job handling group

The job model of the broker is also important for users and applications. These

properties tell how to describe a user job and which types a broker can handle. There

are several non-XML language descriptions, but the latest developments follow the

XML syntax. It would be reasonable for the brokers to accept and use XML job

descriptions, even if they access middleware solutions supporting different languages

[99, 92, 25, 77]. In this case they would need to translate the request, but this approach

leads to better interoperability. The rest of the properties in this subcategory shows

what type of jobs can be submitted to a specific broker: only sequential or parallel;

in the second case co-allocation and advance reservation are handled or not. Brokers

can support other special job-handling functionalities such as parameter study and

interactive jobs.

Fulfilling user requirements is a critical task of the broker. Related properties are

gathered into the Quality of Service group. Accounting is used for the administra-

tion of the users and tracking their Grid utilization, and billing serves Grid economy.

Agreements are used to guarantee some level of service during brokering. User re-

quirements can contain special requests, which are crucial for the job or application.

On the other hand resource providers would protect sites from being flooded by user

jobs. In order to find a balance and fulfil requirements these policies appear in the

14 Problem statement

agreements, which are taken into account in scheduling decisions. Various solutions

can be developed to create such service level agreements, but this functionality is

still an open issue. Basically two types are used: the WS-Agreement [89, 87] and

the USLA [21]. The third part of QoS is fault tolerance. The dynamic nature of

Grids lowers the number of successful job submissions. To ensure a higher level of

quality, brokers should be fault tolerant. Rescheduling and replication are the basic

functionalities, and checkpointing can provide a more reliable brokering, though this

is rarely supported, yet. Rescheduling can be event-driven or periodic, and usually

choosing a different resource makes sense, retry on the same resource is only a waste

of time.

Most of the brokers provide automatic centralized data movement for input and

output file staging. User-directed utilization can also be supported, when the user

copies files to storage elements and tells the broker to use them.

2.2.3 Scheduling

The third group gathers properties related to resource information, discovery and

scheduling. The properties of this group are shown on Figure 2.4. Several resource

brokers use the information system of the underlying middleware. In this case the

relevant information from the brokers’ view is the data store and query. The two

main subcategories are the directory-based and service-based implementations. These

properties tell us how the brokers access resource data and what kind of information

they can use for resource mapping – since this is determined by the information

system of the middleware. Some brokers use additional information about the Grid

gathered by an information system of their own. Examining historical data (resource

availability, job failures, etc.) is one of these approaches. The other type of gathering

relies on special agents, which provide information about specific elements of the Grid.

Matchmaking is the major task of Grid brokers. The scheduling properties can

qualify brokers and determine the goodness of their decisions. In smaller scope of

resources like Virtual Organizations (VO), usually a centralized scheduler component

is used to make decisions. In decentralized schedulers the matchmaking process can

be split up and queues can be utilized for job requests, or more components can

collaborate to utilize a wider range of resources. The first solution is rather used

in hierarchical and the second in peer-to-peer architectural models. The decision

making can be static or dynamic. When a user fixes a resource for its job, or the

2.2. Taxonomy of resource brokers 15

Figure 2.4: Categories of the Taxonomy: Scheduling group

scheduler component of the broker uses only static historical information, we are

talking about static matchmaking. In a dynamic decision the broker has an up-to-

date information about the resources and makes a just-in-time matching, or uses up

some additional prediction-based information. For example, Lőrincz et. al. monitor

previous runtime information to determine the behavior of the job and use these

additional data in scheduling [58]. The schedulers can take into account specific

policies that affect decision making. These methods usually favor the users, but the

provider expectations or the balanced state of the Grid can also be observed. User

policies can tell the broker to submit the job to a resource that completes the request

in the shortest time or for the less cost possible. An example for the time-based user

policy is the VIOLA MS [87], which uses a first fit reservation policy that tries to place

the job at its requested time, otherwise it schedules the job for the earliest possible

time after the one requested. Reliable resource selection can also be an interesting

point of view, where less error can occur, or a secure one that ensures the safety of the

job. Providers may expect from the broker to utilize more or less a specific resource,

or gain as much as they could from the resource utilization. An alternative method

is to serve the user requests as to keep the balance of the load on the Grid.

16 Problem statement

2.3 Survey of resource brokers

The properties of the taxonomy were gathered from 16 Grid brokers. Table 2.1

shows the examined brokers, and gives a short description of their architecture and

operation. The columns corresponding to the groups of categories were described in

Section 2.2. This survey displays the main properties of the brokers. It indicates how

the categories of the taxonomy are implemented and used in different solutions.

From the survey and the taxonomy we can clearly identify which properties are

used rarely and which ones are highly supported. Regarding the whole taxonomy

I can state that the Globus Toolkit is used by most of the brokers, therefore the

RSL language is still the most widespread. The command-line interface is usual, and

most of the brokers use a central scheduling architecture with just-in-time match-

making optimized for minimal completion time. Rescheduling is widely used for fault

tolerance.

On the contrary, the JSDL [113], which is a uniform standardized language, is

rarely supported, yet. APIs, co-allocation, advance reservation and interactive job

support should be provided by more brokers. A decentralized architecture could be

a better solution in several cases, and local information systems should be built to

gather more dynamic data and perform prediction-based matchmaking. As Grids are

heading towards the markets, provider-oriented policies should be more supported,

and economy-based scheduling need to be considered. This solution requires QoS,

so agreements must be supported by future brokers. To enhance reliability, check-

pointing and job migration should be targeted by future developments. Finally the

most important thing to do is to provide all these broker properties to the users,

making available more brokering services, more middleware functionalities and more

resources in a transparent way. Interoperability is the key to achieve this vision.

The presented taxonomy helps in identifying and categorizing the most important

properties of Grid resource brokers in various Grid environments. I revealed the

interfaces and relevant functionalities of the currently used brokers, which can enhance

better resource utilization and future development. With the presented survey users

and scientists can have a better understanding of the operation and utilization of the

current brokers. Developers should target issues that are missing or rarely used in

these solutions, but there is a definite need for them – to achieve this, the properties

of the taxonomy give the guidelines.

2.3. Survey of resource brokers 17

Table 2.1: Survey of Grid brokers

Grid Broker
Middleware

Support
Job handling Scheduling

AliEn RB [73] Alice

File transfer opti-
mization, fault tol-
erance by multi-
threading

Push and pull task
assignment

Apples [15] GT 2
Parameter study
support, event-
driven rescheduling

Centralized adap-
tive scheduling
with heuristics,
self-scheduled
workqueues

eNanos [71] GT 2, 3
Web-Service in-
terface, API,
rescheduling

User-oriented poli-
cies, local informa-
tion system

EZ-GRID
Broker [79]

GT 2, 3
GUI for job han-
dling, transparent
file transfer

Own information
service with dynamic
and historical data,
Policy Engine Frame-
work for provider
policies

GRIDBUS Grid
Service Broker

[86]

GT,
UNICORE,

Alchemi

Failure man-
agement and
application recov-
ery, parameter
study, API support
(XPML description
file)

Economy-based and
data-aware schedul-
ing

GridWay [38]
GT, gLite,
NorduGrid,

OSG

Job migration sup-
port (checkpoint-
ing, resubmission),
API support

Decentralized (or
centralized) sched-
uler, adaptive
scheduling

GRIP Broker [9]
GT 2, 3,

UNICORE

Ontology Engine
for translating
different job de-
scription

Ontology Engine for
translating different
information service
data

GRMS [53] GT 2, 3
Service-based, job
migration support

Own job description
language (GJD), job
registry, multicriteria
framework

GRUBER [21] GT 3, 4

SLA-based re-
source sharing in
multi-VO environ-
ment, disk quota
considerations

Internal site monitor-
ing feature, various
user-oriented policies

18 Problem statement

GTbroker [P1]
GT 2, 3,
LCG-2

Periodic and event-
driven reschedul-
ing, automated file
staging

User-oriented poli-
cies, additional
dynamic information

JSS RB [23]
GT 4,

NorduGrid
ARC

WS-Agreement
for advance reser-
vations, resource
filtering by user
requirements,
file staging and
replication support

Scheduling al-
gorithms with
benchmark-based
execution time and
transfer time estima-
tion

KOALA [59] GT 2, 3

Periodic and event-
driven reschedul-
ing, parallel co-
allocated job han-
dling, automated
file staging

Processor and data
co-allocation, own in-
formation service, hi-
erarchical scheduling
with queues, incre-
mental claiming pol-
icy

LCG-2/ gLite
Broker [92]

LCG-2/
gLite

Periodic and event-
driven reschedul-
ing, interactive job
support

Eager or lazy poli-
cies, push and pull
models for task as-
signments, provider-
oriented policy sup-
port

NIMROD/G
[11]

GT 2, Legion

Application level
accounting, param-
eter study support,
periodic reschedul-
ing (Nimrod/G
plan file)

Deadline and budget-
based constrained
scheduling, hierarchi-
cal and decentralized
agent-based sched-
uler

OGSI Broker
[51]

GT 3
User defined rank-
ing in resource se-
lection

User-oriented and
provider-oriented re-
source owner policies,
internal agent-based
information system

VIOLA MS [87] UNICORE

WS-Agreement for
advance reserva-
tions, co-allocation,
WS interface

First fit reservation

2.4. The problem of Grid Interoperability 19

2.4 The problem of Grid Interoperability

Before discussing the proposed solution of this dissertation, I need to clarify the

targeted problem area. My interpretation of Grid Interoperability will be given at

the end of this section, but before I do that I review the existing definitions that

have been stated so far starting from the very general ones. The Oxford Advanced

Learner’s Dictionary [128] defines the word ”interoperable” as:

”interoperable – (technical) (of computer systems or programs) able to

exchange information”

Wikipedia [147] defines ”interoperability” as:

”Interoperability is a property of a product or system, whose interfaces are

completely understood, to work with other products or systems, present or

future, without any restricted access or implementation.”

The definition of the IEEE Glossary [39] for ”interoperability” is as follows:

”The ability of two or more systems or components to exchange informa-

tion and to use the information that has been exchanged.”

Finally, in the Information Technology Vocabulary [111] we can found that interop-

erability is:

”The capability to communicate, execute programs, or transfer data among

various functional units in a manner that requires the user to have little

or no knowledge of the unique characteristics of those units.”

Summarizing these definitions I can conclude that an interoperable system should

have a commonly accepted interface in order to exchange information and should be

able to work together with other systems. Now focusing on the particular research

field of Grid Computing, let me gather the definitions from related research papers.

Riedel et. al. have published the view of the Grid Interoperation Now (GIN)

Community Group [125] of OGF [124] on Grid interoperation in [70]. They noticed

that more world-wide domain-specific Grid infrastructures have emerged orthogonal

to national Grid initiatives, and the technology used in these Grids is typically not

interoperable with each other. They differentiate between Grid interoperation and

interoperability. Their definitions are as follows:

20 Problem statement

”Interoperation is what needs to be done to get production Grids to work

together as a fast short-term achievement using as much existing technolo-

gies as available today.”

”Interoperability is the native ability of Grids and Grid technologies to

interact directly via common open standards in the future, which is a rather

long-term achievement.”

To facilitate interoperation, different translators and adapters should be provided to

unify common-purpose components of various Grids. According to [70], GIN ad-

dresses interoperation in five specific areas: (i) authorization and integrity manage-

ment, (ii) data management and movement, (iii) job description and submission,

(iv) information services and (v) cross-grid operations on multiple Grid infrastruc-

tures. For example the GIN-INFO area of GIN plans to unify monitoring information

into a common database (GIN-BDII), or regarding data management the GIN-DATA

area targets interoperation of data transfers among different Grids. The GIN-JOBS

area deals with job submission interfaces and proposed JSDL [113] for a unified job

description and OGSA-BES [96] for a generic submission interface. Besides these

definitions, the GIN guidelines do not include any attempt to provide a common allo-

cation protocol or brokering solutions of resources between production Grid projects

and infrastructures. They say this is beyond the scope of the GIN efforts [125] and

resource allocation decisions are left to negotiations between projects or the individ-

ual Grid infrastructures. As a summary, they try to develop short-term solutions

to support interoperation, but they also keep in mind that these solutions should

be revised and standardized to reach interoperability in the long term (once future

middleware releases incorporate these standards).

Field in [28] argues that a common interface could solve interoperation among

different Grids, but reaching agreement on which interface to use and implementing

the selected one by all parties will take time. Since common standards for Grid

Interoperability are still being defined and only a few have been widely accepted, they

also think that adapters, translators and gateways are needed. Adapters are used to

bridge incompatible interfaces, and translators are used to convert information to a

format other systems can understand. To use them some parts of the middleware may

have to be modified, but generally they can use their own interfaces. Their usage may

also indicate the areas where standardization is needed. A gateway is a service that

is independent from the middleware and bridges different Grid infrastructures. It

2.4. The problem of Grid Interoperability 21

can be used without the modification of the middleware, but it may become a single

point of failure or a scalability bottleneck. He says Grid interoperation is a bilateral

activity between two Grid infrastructures, what he exemplifies with the interoperation

activity of EGEE and OSG. Finally he states that even with technical interoperability

assured, a truly federated Grid will bring additional operational challenges, since Grid

infrastructures still evolve.

The KnowARC project [104] has published a survey of 9 Grid middleware solutions

[114], in which they identified so-called minimal pre-conditions for Grid Interoperabil-

ity. Their definition for interoperability is:

”The subject of Grid interoperation and interoperability is the bridging of

Grid infrastructures, allowing users on one Grid to run computing jobs

and exchange data with users on other Grids.”

In this document the authors referred four models (LISI, LCIM, LCI and SOSI) that

classify the degree of interoperability among systems or components into interoper-

ability levels, and use the levels of Information Systems Interoperability (LISI) that

defines five stages from isolated to enterprise levels. This model rather classifies so-

lutions according to their operational layers: a low-level solution that acts at the

Resource layer of Grids (eg. cluster manager) falls into level 2 of LISI, while a high-

level solution that acts at the Application layer of Grids (eg. workflow enactor) falls

into level 4, which is the highest. I believe that a solution acting at lower layers of

Grid systems (or the middleware stack) may have higher degree of interoperability

then a solution operating at the highest layer of Grid systems. Since my research

focuses on resource management in Grids I will use a different classification scheme

in Section 3.4 of the next chapter, in order to compare the degree of interoperability

of related solutions. The survey concludes that loose and tight integration can be

used to create interoperability among different Grid middleware solutions. In a tight

integration they should share common interfaces (this corresponds to the long-term

solutions envisioned by GIN), while in a loose integration gateways should be devel-

oped (which matches the short-term goals of GIN). I propose solutions for this latest,

loose Grid integration in the next chapter.

I mostly agree with the definitions and views stated above, which together repre-

sent the problem of Grid Interoperability. I also think that Grid Interoperability will

be fully achieved in the long-term based on standards, and walking on this path short-

term solutions will provide interoperation among different Grids. Nevertheless I do

22 Problem statement

not want to make a clear distinction between the terms interoperability and interop-

eration, since solutions performing interoperation are created to serve (the final goal

of) interoperability. Out of the five specific areas GIN addresses for interoperation,

I neglect authorization and data management in a sense that I let them handled by

third-party tools (eg. certificate management of portals). Keeping this in mind, first

I summarize the current short-term solutions in the next Section, then in Chapter

3 I further examine the resource management area of Grids to find a more suitable

place to establish interoperability, and in Chapter 4 I present my high-level broker-

ing solution for Grid Interoperability that manages to interoperate different Grids by

providing the highest variety of brokering capabilities to the user communities.

2.5 Multi-grid brokering approaches for interop-

eration

To cope with the highly dynamic nature of Grids, end-users typically access Grid

resources through resource management systems or Grid portals that serve as both

application developer and executor environments. Unfortunately, these tools are typ-

ically tightly coupled to one specific Grid environment and do not provide multi-grid

support. Even if a tool is connected to multiple Grids, applications that utilize ser-

vices from these Grids simultaneously are not supported. There have been several

attempts to make existing production Grids and Grid services interoperable, but none

of them have succeeded to establish a permanent, interoperable Grid environment.

Grid Interoperability can be targeted at different layers of Grid systems (see

Figure 2.5). At the lowest, Network and Resource layers (where networking tools, op-

erating systems and cluster managers can be found) we can find the highest variety

of hardware and software (even under the same Grid middleware solutions), therefore

there is no reason to address these layers. The layer of Grid middleware seems to be

a better choice. Though there are still many services to be modified, the UniGrids

[144] project has developed a solution at this layer, but it operates only between

Unicore and Globus Grids [99]. The highest, the Application layer lies between the

users and the middleware. At this stage we can develop or redesign high level mid-

dleware tools to create reliable and easily manageable connections among different

systems: portals and other application development and executor environments be-

long here. In this dissertation I target the third and fourth layers. Before I introduce

2.5. Multi-grid brokering approaches for interoperation 23

a high-level brokering solution to enable Grid Interoperability, I discuss two instant

approaches that enhance Grid interoperation: broker extension and multi-brokering

from portals. Though these approaches can establish interoperation among different

Grids, there are certain disadvantages that should be eliminated by a sustainable and

easily maintainable solution.

Figure 2.5: The architecture of Grid systems.

2.5.1 Multi-grid extension of GTbroker

The most obvious way to provide interoperability among different Grid systems is

to extend the existing and widely used Grid resource management systems (or re-

source brokers) with multiple Grid middleware support. This approach has several

advantages and disadvantages: probably this modification would favour the users

most, since they would not need to change their customs, submission methods or

job descriptions. But from the other point of view, it requires lots of efforts by the

developers to interface new middleware services, so it is definitely a time consuming

solution. Furthermore the more systems a broker supports, the more ponderous and

unmanageable it becomes. In Section 2.3 we have seen from the taxonomy that such

an extension can contribute to Grid Interoperability. As a short-term, but instant so-

lution, I demonstrate how this multi-grid brokering can be achieved by describing the

extension of GTbroker (also considered in the taxonomy) to EGEE Grids [92], which

tool has been developed on top of the Globus Toolkit 2 [99], the first widespread and

stable Grid middleware.

24 Problem statement

GTbroker uses an extended RSL (Resource Specification Language [99]) file that

should contain the user requirements and job properties. We can use additional

attributes (included as comments in the RSL) for specifying the target VO (voname)

and the location of the input and output files (jobpath). Users can influence resource

selection by specifying minimum disk space requirement (mindisk) and a resubmission

deadline (skip) that forces job cancel and resubmission, when a job is still pending

on a resource after the specified time period. The default scheduling policy computes

ranks for available resources according to their queue lengths, and the resource with

the highest rank is selected. In addition four predefined scheduling policies can be

used (sched): resource ranking by CPU speed, disk space or memory size, and the

fourth is random resource selection (from a predefined number of resources with the

highest ranks). The matchmaking process of the broker uses both static and dynamic

information: regarding information systems, the MDS contains static properties of

the appropriate Grid resources; to gain dynamic information, GTbroker asks the local

schedulers for present availability and the load of each node in the selected cluster.

In this way the broker can determine the actual load, right before submitting the job

to the selected resource. This additional piece of information makes the broker able

to react to dynamic changes, and to avoid choosing an overloaded cluster. With this

method, it automatically finds the resources with the highest availability, therefore

the submitted jobs can run as early as possible. Fault tolerance is supported by

resubmissions. Should a job fail or be pending for too long on a resource (this time

interval can be set in the broker), the broker cancels and resubmits it to another high

priority one. The actual states of the jobs are tracked by the broker, therefore it is

possible to cancel and resubmit jobs.

In order to extend a Grid resource broker to support other types of Grid mid-

dleware, first we need to learn how to interact with the new system. Brokers need

to gather resource information, move files, perform job submissions, track job states

and retrieve output files. Most of these activities need interaction with different mid-

dleware services. Security issues such as authentication and authorization could be

a challenging problem. In our case all the related Grid systems use GSI certificates,

where different proxies can be used for these Grids and they can be treated as other

input files. Establishing interoperability in user authorization among different Grid

solutions would need high efforts (a specific OGF [124] workgroup is dealing with this

topic). Different authorization methods are used in specific Grid middleware (eg. in

EGEE and Unicore), furthermore unifying user databases of different Grids/VOs is

2.5. Multi-grid brokering approaches for interoperation 25

not straightforward at all (eg. confidential data handling). Regarding licenses and

source code protection, another paper describes a solution called GEMLCA [18] for

executing legacy code applications as Grid services. Figure 2.6 shows, how broker-

extension can contribute to Grid Interoperability. In the middle we can see the

GTbroker, which can be connected to any Globus-based Grid. Generally users sub-

mit jobs through its command line interface, which requires the same input data as

an ordinary Globus submission (RSL, job and input files). I depicted four Grids, on

which the broker was successfully utilized. The Austrian Grid was used for develop-

ment and preliminary testing. The UK National Grid Service was also used mainly

for development purposes. Its Information System contained both MDS2 and BDII

attributes, therefore some modifications have been done in the broker. In the follow-

ing I describe the necessary steps to be taken to extend a broker with interoperable

capabilities.

Figure 2.6: GTbroker extension to support Grid Interoperability.

26 Problem statement

GTbroker has been redesigned to support the LCG-2 (EGEE) middleware, by

modifying the information query to be able to gather all data from the information

system and handling special attributes in the RSL to enable job submission to EGEE

VOs (these VO names have to be specified in general queries and submissions). Since

the file movement, job description and job state tracking can also be done through

similar Globus services in LCG-2 Grids, I did not modify these parts (nevertheless

for an entirely different middleware I should have done it). As a final step of the

extension process, I analysed and compared the performance of GTbroker to the

LCG-2 Broker (i.e. Workload Management System (WMS) [92]), while they were

operated on the same testbeds, under the same load, at the same time. Both brokers

mainly rely on the Information System (BDII) of the Grid on which they are utilized.

GTbroker orders the resources found in a VO by defining a rank to each of them.

The following metrics are used within this calculation: the number of available CPUs

in the resource, the maximum number of jobs that can be run on the resource, the

number of jobs actually running on the resource, the estimated response time of the

resource, and the node count for MPI jobs.

With these metrics the hosts can be ordered in a way that the ones having the best

resources for the actual job get higher priority than the others. The LCG-2 WMS

also makes decisions by a calculated rank. The default is the estimated response

time, and only production state resources are chosen. Furthermore a specific rank

can be defined by the user in a JDL [92] description, which is the job specification

language in EGEE Grids. In case of data-intensive applications, it tries to find a

close host: it takes into account the distance of the physical files on the Storage

Elements to the actual Computing Element. I carried out the broker evaluation on

EGEE VOs to compare GTbroker and the LCG-2 WMS. I wanted to measure the

performance of these brokers and to get some more information on their behaviours,

and to demonstrate that GTbroker also performs well on the LCG-2 middleware.

The tests contained several phases with different job types. I used the VOCE [145]

and SEEGRID [139] production Grids for job submissions. In SEEGRID jobs could

be submitted to 18 clusters having 2 to 32 nodes (overall around 130). Regarding

VOCE jobs could reach 10 clusters having 2 to 125 nodes (overall around 290). I have

used special scripts to utilize the brokers during the whole job life-cycle (multiple

submissions, status checking, log retrieving).

For the evaluation I have split the tests into three phases (Table 2.2). In the first

phase I submitted 20 jobs to VOCE with short running times and output staging.

2.5. Multi-grid brokering approaches for interoperation 27

Table 2.2: Comparison evaluations between GTbroker and LCG-2 WMS.
Comparison evaluation Average run Number of
on production Grids time of jobs failed jobs

VOCE 20 short jobs
GTbroker: 0:01:49 GTbroker: 0

LCG-2 broker: 0:07:39 LCG-2 broker: 16

VOCE 20 long jobs
GTbroker: 0:33:43 GTbroker: 0

LCG-2 broker: 1:43:58 LCG-2 broker: 0

VOCE 20 long MPI jobs
GTbroker: 0:03:26 GTbroker: 0

LCG-2 broker: 0:35:19 LCG-2 broker: 4

SEEGRID 20 long jobs
GTbroker: 0:35:54 GTbroker: 0

LCG-2 broker: 0:37:38 LCG-2 broker: 4

SEEGRID 20 long MPI jobs
GTbroker: 0:39:14 GTbroker: 3

LCG-2 broker: 4:40:31 LCG-2 broker: 3

SEEGRID 60 long jobs
GTbroker: 0:16:31 GTbroker: 0

LCG-2 broker: 0:18:15 LCG-2 broker: 15

With GTbroker I measured 1-2 minutes total run time of all the jobs (makespan),

while the jobs with LCG2 broker run for several minutes and most of the jobs failed. I

also submitted MPI jobs to VOCE with short running times that run on 5 nodes with

job and output staging. GTbroker achieved 3-5 minutes total run time, while with

the LCG-2 broker 6 jobs run for 2-10 minutes, the rest took 40-70 minutes or failed

to finish. I found that the LCG2 broker picked resources that actually responded

after a longer time. In the second phase I also submitted 20 jobs at a time with

both brokers to the same VO, but the run time of the jobs took about 10 minutes

plus job input and output staging. During one of the experiments most of the VOCE

resources were unreliable and only GTbroker made successful submissions with several

resubmissions. The total run time of this test took 20-30 minutes, while all the jobs

failed with LCG-2 broker and some with GTbroker. Next time I experienced less

unreliability but also a heavy load. At this time the average was 30 minutes with

GTbroker and 90 minutes with LCG-2 WMS. The SEEGRID VO seemed much more

reliable. With the same jobs both brokers achieved 35 minutes average, but some jobs

have failed with LCG2 broker. Then I submitted 20 MPI jobs to SEEGRID with 10

minutes subjobs/tasks running on 5 nodes. At this time jobs with both brokers had

to wait for clusters with more free nodes so the total run time average was 7.5 hours

for GTbroker and 8.5 hours for LCG2 broker, but 9 jobs were failed again with LCG2

broker. I have repeated this measurement, when there was less load on SEEGRID.

I measured 40 minutes average with GTbroker and 4.5 hours with LCG-2 broker,

28 Problem statement

but some jobs were failed for each broker. Finally in the third phase I submitted

60 jobs running for about 10 minutes plus job and output staging to SEEGRID. I

started 20 jobs at a time repeated two times after 5 minutes. GTbroker achieved

16 minutes average total run time, while LCG2 broker 18 minutes average with 15

failed or non-responding jobs. I repeated this test several times and measured similar

results.

As a summary I can state that sometimes the LCG2 broker makes a random

pick and selects slowly responding or even non-responding resources. Resubmissions

with the LCG-2 broker were most of the time unsuccessful; therefore it is not as

reliable as GTbroker. On the contrary, GTbroker made reliable resubmissions and

the hidden non-responding or draining resources could have been skipped. For jobs

with short running time it produced better results, for larger jobs their performances

were about the same. Though it has an eager matchmaking, the user can modify the

resource selection with the extended RSL attributes (mentioned at the beginning of

this subsection). On fairness I remark that both brokers were running concurrently

on the related VOs, therefore they were competing for the same resources during the

evaluation.

The results demonstrate that existing resource management systems can be ex-

tended to use other middleware systems, but in this way developers need to redesign

these brokers to support services of the additional middleware. If we take a closer

look and examine the existing resource brokers, we find that they also have similar

and different properties that may satisfy different user requirements. For example,

some of them support co-allocation of parallel jobs, while others provide special fault-

tolerant features. When users require most of these features, they still need to use

more brokers. Next I exemplify, how multi-brokering can be done with the help of

portals.

2.5.2 Multi-grid brokering from portals

To exploit the advantages of using various Grids at the same time, we need to utilize

more brokers. In this situation we need to learn various job specification languages

and broker capabilities. Currently there are several Grid tools available as Grid user

interfaces that try to hide the details of low level middleware utilization by providing

transparent, uniform access. Grid portals provide a convenient environment for Grid

utilization. In this section I show how such a portal can utilize various resource

2.5. Multi-grid brokering approaches for interoperation 29

brokers to access resources of different Grids by providing interoperability among

these Grids. There are general purpose and specialized portals for supporting specific

applications. For example, the Conflet (CONFigurable portLET) framework [66] can

be used to create specific portlets to user applications in portals. In Figure 2.7, we can

see how multi-brokering can be achieved in portals. In this kind of Grid utilization

we do not expect from Grid brokers to support more than one middleware, but to do

their best on their initial middleware.

The P-GRADE Portal [46] is a workflow-oriented Grid portal with the main goal to

support all stages of Grid workflow development and execution processes. It enables

the graphical design of workflows created from various types of executable components

(sequential, MPI [78] or PVM [80] jobs), executing these workflows in Globus-based

computational Grids relying on user credentials, and finally, analysing the monitored

trace-data by the built-in visualization facilities. This portal provides the following

functions: defining Grid environments, creation and modification of workflow applica-

tions, managing Grid certificates, controlling the execution of workflow applications

on Grid resources and monitoring and visualizing the progress of workflows and their

component jobs.

The P-GRADE Portal is interfacing several Grid brokers to reach the resources of

different Grids in an automated way. As workflow managers schedule the actual job

submissions in portals, they should be set to utilize brokers. In this portal Condor

DAGMan [82] is responsible for workflow execution. Although it itself cannot invoke

Grid services, it supports customized Grid service invocations by its pre/scheduler/-

post script concept [82]. One pre and one post script can be attached to every node

(job) of a DAGMan workflow. DAGMan guarantees that it first executes the pre

script, then the scheduler script and finally the post script when it reaches a work-

flow node. Consequently, the Portal Server automatically generates appropriate pre,

scheduler and post scripts for every workflow node when the workflow is saved on

the server. These scripts can handle GridFTP transfers and submit jobs to GRAM

clients of the connected Grids. These scripts are used in the same way in both single-

and multi-grid configurations (multi-grid means jobs are set to different Grids, and

setting a job to a Grid means that among the node properties some Grid or its broker

is selected from a drop-down list), however the contents of these portal scripts de-

pend on the actual Grid (different Grids have different commands). In general, when

DAGMan processes a node (job) in a workflow that is set to a broker, first it invokes

the pre script that prepares the broker utilization (e.g. copy remote input files), the

30 Problem statement

scheduler script submits the job to the broker, and the post script tracks job states

until the execution is finished. The broker provides information about the actual job

status and the post script notifies the portal about the status changes.

Currently the portal can utilize GTbroker for Globus 2, 3 [99] and LCG-2 Grids

[92], the WMS of the LCG-2/gLite middleware and the broker of NorduGrid mid-

dleware [122]. The jobs of the workflow that require EGEE services can run on an

EGEE type of Grid [92]; jobs that require only Globus services can be mapped to

resources handled by GTbroker, and finally the NorduGrid Broker can be utilized

to run jobs on resources of the NorduGrid ARC. Different Resource Brokers usually

require different user job descriptions. In the Workflow Editor of the portal the users

can choose a broker for each job of the defined workflow. According to this setting

a Language Editor pops up, where the user can edit the attributes through the GUI

fields. This Editor generates an RSL, JDL or an xRSL [122] file from these job re-

quirements, depending on the middleware of the target Grid. The scheduler script of

DAGMan invokes the brokers with these descriptions. In case of Globus-based Grids

the file movements are also handled by GTbroker, so the scheduler script only needs

to activate and run an instance of GTbroker. In case of EGEE WMS and NorduGrid

broker, there are special commands for tracking job states and retrieving the output

and log files, therefore the scheduler script needs to call these services, too. In case

of remote files only the EGEE brokers use a so-called ”close to file” policy: it means

they try to place the job to a resource, which is the nearest to the location of its

remote input files. Since most of these brokers do not handle remote file transfers,

the portal workflow manager solves this problem again based on DAGMan services.

DAGMan submits a wrapper script as the executable, carrying all the job files and

descriptions. After this script is started on the selected computing resource, it han-

dles the remote input file transfers and – after the real job execution – the remote

output file transfers between the storage elements and the actual computing element.

With this solution all kinds of file transfers can be carried out during broker utiliza-

tion. This solution was described in detail for supporting MPI applications in [27].

The portal has a certificate manager portlet, which is responsible for managing X.509

certificates. Users can upload certificates into MyProxy servers and download GSI

proxies that are handled automatically by the workflow manager (proxies are mapped

to VOs).

Figure 2.7 shows how multiple broker utilization is carried out in the P-GRADE

Portal. In this way a workflow can be brokered over several Grids based on different

2.5. Multi-grid brokering approaches for interoperation 31

Figure 2.7: Multiple-broker utilization in the P-GRADE Portal.

underlying Grid technologies and still providing the most beneficial utilization of the

available resources. A workflow, depicted in the figure, is a directed acyclic graph

that connects sequential or parallel programs into an interoperating set of jobs. The

nodes of such a graph are batch jobs, while the arc connections define data relations

among these jobs. Arcs define the execution order of the jobs and the input/output

dependencies that must be resolved by the workflow manager during execution. After

a user has defined a workflow and has set the jobs to brokers, the execution can be

started. The three jobs in the middle of the workflow do not depend on each other,

therefore they can be started simultaneously. Since they are set to different VOs and

brokers, multi-brokering is performed: the first job is submitted to an EGEE VO

through the WMS, the second through GTbroker to NGS and the third through the

NorduGrid broker to the Swiss Grid.

The usage of Grid portals performing multiple-broker utilization contributes to

solve the Grid Interoperability issue. Furthermore this interoperable workflow execu-

tion means higher performance and provides shorter makespan most of the time. Let

us imagine a simple scenario, when we set all jobs of a workflow to one middleware

(that usually means we submit the jobs to the same broker), and set a similar work-

flow to utilize more middleware systems as shown in Figure 2.7. It is easy to see that

the second workflow instance can access more computing power. The more load the

32 Problem statement

middleware of this first workflow has, the more time the second workflow can save

(even if it also uses the same middleware for most of the jobs). More information

on interoperability at workflow level with the P-GRADE portal can be seen in [45].

The contribution representing the multi-grid brokering from the P-GRADE Portal is

a joint result. My own contribution includes the porting of GTbroker into the portal

and the scenario that describes multi-brokering.

Even though these instant, short-term approaches can establish interoperation

among different Grids, there are certain disadvantages that should be eliminated.

Extending an existing broker with support for more and more Grids can result in

a much-too-robust system, and most broker components would need modifications.

Interfacing brokers to portals for additional Grid support does not need the redesign

of the brokers, but still some portal components have to be modified. Though current

portals provide a transparent access to various Grid services, an additional disadvan-

tage of this approach is that users need to know broker capabilities, and manually

select from the available brokers. Users could learn the capabilities of the utilized bro-

kers, but they are lacking dynamic information, such as successful submission rate,

background resource load of the brokers, reliability of the brokers and so on. A deeper

investigation of Grid resource management is needed in order to find a place, where

a sustainable, well-designed, high-level brokering service could be created eliminating

these problems.

2.6 Summary

In this chapter I introduced Grid brokering by presenting a survey that gathers the

relevant tools currently available in the literature for user communities to access re-

sources of different Service Grid systems. I analyzed these brokers and developed

a taxonomy that categorizes broker properties. I gathered definitions for Grid In-

teroperability that together with the taxonomy represent the problem area of this

dissertation. I also demonstrated how multi-grid brokering can be achieved by bro-

kers and portals as a short-term interoperable solution. The results of this chapter

belong to thesis I, and were published in paper [P1], [P2], [P4], [P5], [P11]. In the

next chapter I make a closer connection between brokering and interoperability and

present an informal and formal model for interoperable Grid brokering.

Chapter 3
Analysing and modeling Grid brokering

In order to solve interoperability with Grid resource management, we need to have a

deeper insight to this area. In the previous section I have introduced Grid brokering

and established a Grid resource brokering taxonomy to determine what properties

brokers possess and what functionalities are desired for certain tasks. The presented

survey shows that the currently available Grid resource management tools are built

on different middleware components supporting different properties and named with

a bunch of acronyms – even the ones having similar purposes. This plethora of ap-

proaches formed the domain of Grid resource management into a grey box with blurry

boundaries where neither the users nor the researchers can clearly see how these tools

are related and what their relevant properties are. Until the definitions and interre-

lations are clarified, further development and interoperability cannot be facilitated.

Therefore, in the next section I analyse the resource management layer and give infor-

mal definitions of brokering entities revealed by a Grid resource management anatomy.

Further on I will investigate how brokering methods of Grid resource management

can be formalized and what essential functionalities related to interoperability can be

separated based on a formal model.

3.1 The anatomy of Grid resource management

Taking a closer look on current Grid resource managers and research directions we are

facing confusing contradictory definitions and references. When searching and com-

paring related works we meet meta-schedulers, local and global schedulers, brokers,

resource allocation managers and some other related expressions. In this section I

34 Analysing and modeling Grid brokering

gather and classify these expressions used in the area of Grid Resource Management

regardless of the different types of Grids they might be connected to, or used in. I

refer to these definitions further on in this dissertation by naming specific compo-

nents, building blocks of these solutions. Similarly to the pioneer work preformed by

I. Foster et. al. [33] to map the relevant actors of Grid systems, I have created the

anatomy of Grid resource management. As a result of my analysis, we can see my

view on the architecture of a Grid system focusing on resource utilization in Figure

3.1. All the abbreviations used in this figure denote collections (groups) of simi-

lar components or services. The arrows denote possible connections between these

groups of components, and not all these components are needed for successful job

submissions: some users prefer to use portals for application development and execu-

tion, and others may access lower-level resource managers directly. In the following I

introduce these groups by gathering the generally used acronyms and expressions for

components having similar roles and utilization scopes.

R – resource: In general it means a physical machine, where user programs

are executed. We can distinguish between three types regarding their utilization:

Computing Element (CE), where the user program (also task or job) execution takes

place, Storage Element (SE), where user data is stored, and Instrument Element (IE)

as defined in the domain of remote instrumentation. Remote Instruments (RI or IE

as Instrument Element [34]) are various tools to access, process, produce or consume

data usually by physicists, chemists, biologists or other researchers. As a higher level

abstraction of these components, Web Services (WS) or Grid Services (GS) could also

be regarded as resources, since they similarly produce output for a given user input.

LRMS – local resource management system, scheduler, local scheduler,

local resource manager, sub-scheduler: These tools are usually cluster or queue

managers that were taken from high-performance and distributed computing, and

now generally used in Grid Systems. The widely used examples are PBS, SGE and

LSF [26].

RAM – resource access manager: This is usually a component of a Grid

middleware that accesses the resource directly and handles the arriving Grid jobs. It

provides an interface for the middleware to the resource. An example is GRAM in

the Globus Toolkit [99].

RMS – Grid resource management system, global scheduler, meta-

scheduler, resource broker, Grid scheduler, orchestrator: They usually in-

teract with one or more components of a Grid middleware. An RMS can be an

3.1. The anatomy of Grid resource management 35

Figure 3.1: Grid resource managers and their connections

internal middleware service, or an external tool that uses other middleware compo-

nents or services. Its role is similar to the role of LRMS – this is the reason why they

can be confused sometimes. While the LRMS usually schedules user tasks within

a Grid resource (e.g. a cluster) among free processors, the RMS schedules jobs at

the Grid middleware layer by selecting a resource (R) that best matches the require-

ments of the user jobs. (Nevertheless the selected resource can also be a cluster with

an LRMS.) Therefore an LRMS is generally called a scheduler, and the RMS is a

meta-scheduler. The other listed expressions for RMS basically mean tools used for

the same purpose (i.e. selecting an R for a job). Some of them only slightly differ,

some of them support different middleware solutions, job types, agreements or various

36 Analysing and modeling Grid brokering

quality of services. The taxonomy (in Section 2.2) introduces these properties and

the differences among the currently used brokers belonging to this group.

MB – meta-broker, inter-domain broker, intergrid gateway: Meta-broker-

ing is a novel approach that introduces another level above current Grid resource

managers in order to facilitate inter-Grid load balancing. I target this part of the

resource management layer in order to solve interoperability problems. This approach

is introduced and discussed in detail in Section 4.1 of the next chapter. The Grid

meta-broker can be placed on top of the resource brokers, it uses meta-data to decide

where to send a user’s job. Another approach for meta-brokering was introduced

in [40] and [72], in which similar broker instances communicate with each other in

a peer-to-peer fashion and exchange jobs, when the locally managed domains are

saturated.

WFMS – workflow management system, workflow enactor, workflow

manager, workflow scheduler: The role of this component is to execute complex

user applications called as workflows. Its core component is a workflow scheduler,

which is responsible for submitting the jobs in the workflow in a way that the execution

of the whole workflow will be the cheapest regarding some cost function (time, budget,

etc.). Workflow enactors or managers [88] can be regarded as complex systems having

more components (which I do not detail here). These workflow enactors are usually

connected to one or more RMSs that take care of the actual job scheduling. The

workflow management system can also be connected to more middleware services.

This tool may incorporate resource-related information into its scheduling (not only

workflow properties), in this case it is better to access the resources directly and

neglect the usage of other Grid resource managers. I mention this category only for

the sake of completeness, and do not detail it further in this dissertation.

Portal – Grid portal, problem solving environment: This tool provides

a high-level user friendly environment for accessing Grid services. Members of this

group generally use graphical user interfaces to define jobs, create workflows, submit

them and track their states. They are usually connected to, or incorporate some

WFMS or RMS to manage Grid resources. More information on Grid portals can be

found in [46].

Further on in this dissertation I focus on two groups of this architecture: the

RMS and the MB. As a second view of the anatomy, Figure 3.2 is used to reveal

some small differences among the used expressions within these groups. In general

a meta-scheduler is focusing more on job scheduling (executing an algorithm), a re-

3.1. The anatomy of Grid resource management 37

Figure 3.2: The anatomy of Grid resource management

38 Analysing and modeling Grid brokering

source broker incorporates more services such as job handling and job state tracking,

while a resource management system takes care of the whole job management process

with job accounting and other related services. A meta-scheduler and a broker can

communicate with and use other services of the middleware to be able to manage

the whole job’s life-cycle. In this sense scheduling is an atomic process, brokering

incorporates scheduling, and resource management includes brokering.

3.2 An extended formal model for Grids

In the previous anatomy I have shown informally how resource management is carried

out by various tools from the Resource layer up to the Application layer of Grid

systems. The aim of this section is to establish a formal, semantic model for Grid

resource management using Abstract State Machines (ASM) based on the anatomy.

In order to formalize the different brokering levels shown in the anatomy in Section 3.1,

I refer and extend the formal definition of Grid Computing published by Zs. Németh,

and V. Sunderam in 2003 [60]. That time there had been several definitions for Grid

Computing without the ability of making a clear distinction between Grids and other

distributed systems. This work concluded that Grids cannot be defined purely by

their properties, rather their runtime semantics make the real difference. Based on the

analysis, a formal definition was given for Grid Computing revealing its essential and

characteristic functionalities. The aim and methodology of my contribution regarding

Grid brokering is similar: establishing a formal, semantic model for Grid resource

management using Abstract State Machines (ASM) that clarifies the relations of

different brokering approaches. I extend the formal model for Grids by classifying

brokering components into three categories and defining three agents for resource

management at different levels of the Grid middleware.

First I give a brief introduction of the formal Abstract State Machine (ASM)

method. ASM represents a mathematically well founded framework for system design

and analysis [6]. It is able not just to model a working mechanism precisely but also

to reveal the highly abstract nature of a system, therefore it can easily be tailored

to the required level of abstraction. Logician structures applied in ASMs offer an

expressive, flexible and complete way of state description. The basic sets and the

functions interpreted on them can be freely chosen to the required level of complexity

and precision.

In ASM, a signature (or vocabulary) is a finite set of function names, each of fixed

3.2. An extended formal model for Grids 39

arity. Furthermore, it also contains the symbols true, false, undef, = and the usual

boolean operators. A state A of signature Υ is a non-empty set X together with

interpretations of function names in Υ on X. X is called the superuniverse of A. An

r-ary function name is interpreted as a function from X r to X, a basic function of A.

A 0-ary function name is interpreted as an element of X [108]. A location of A (can

be seen like the address of a memory cell) is a pair l = (f , a), where f is a function

name of arity r in vocabulary Υ and a is an r-tuple of elements of X. The element

f(a) is the content of location l. An update is a pair a = (l, b), where l is a location

and b is an element of X. Firing a at state A means putting b into the location l

while other locations remain intact. The resulting state is the sequel of A. It means

that the interpretation of a function f at argument a has been modified resulting in

a new state. ASMs are defined as a set of rules. An update rule f(a) := b causes

an update ((f , a), b), i.e. hence the interpretation of function f on argument a will

result b. It must be emphasized that both a and b are evaluated in A. The nullary

Self function allows an agent to identify itself among other agents. It is interpreted

differently by different agents (that is why it is not a member of the vocabulary.) An

agent a interprets Self as a while an other agent cannot interpret it as a. The Self

function cannot be the subject of updates. A conditional rule R is of form

if c

then R1

else

R2

endif

To fire R the guard c must be examined first and whenever it is true R1, otherwise

R2 must be fired. A block of rules is a rule and can be fired simultaneously if they

are mutually consistent. Some applications may require additional space during their

run, therefore the reserve of a state is the (infinite) source where new elements can

be imported from by the following construct

extend U by v1, . . . , vn with

R

endextend

40 Analysing and modeling Grid brokering

meaning that new elements are imported from the reserve and they are assigned

to universe U and then rule R is fired [108].

The basic sequential ASM model can be extended in various ways like non-

deterministic sequential models with the choice construct, first-order guard expres-

sions, one-agent parallel and multi-agent distributed models. A distributed ASM [6]

consists of a finite set of single-agent programs Πn called modules, a signature Υ,

which includes each Fun(Πn)-{Self}, i.e. it contains all the function names of each

module but not the nullary Self function, and a collection of initial states.

As it can be seen, ASM states are represented as (modified) logician’s structures,

i.e. basic sets (universes) with functions interpreted on them. Structures are modified

in ASM to enable state transitions for modeling dynamic systems. Applying a step of

ASM M to state (structure) A will produce another state A′ on the same set of func-

tion names. If the function names and arities are fixed, the only way of transforming

a structure is to change the value of some functions for some arguments. There-

fore, the most general structure transformation (ASM rule) is a guarded destructive

assignment to functions at given arguments [6].

Refinement [6] is defined as a procedure where abstract and more concrete ASMs

are related according to the hierarchical system design. At higher levels of abstraction

implementation details have less importance whereas they become dominant as the

level of abstraction is lowered giving rise to practical issues. Its goal is to find a

controlled transition among design levels.

I am not aware of any other works that investigate formal models specifically

for Grid resource manager components. Bratosin et al. proposed a reference model

for Grid architectures based on coloured Petri nets in [8]. Though they provide a

definition for job scheduling, they do not detail brokering steps and mechanisms at

different levels. Altenhofen et al. investigated Service Oriented Architectures in [3],

more specifically service discovery, mediation and composition. These components

have some similar functionalities but this work is more focused on a unified, higher

level service framework, and do not explore resource manager components. Börger

et al. proposed an ASM model for workflows in [7]. The work presents workflow

interpretations and transitions, which are related to this model, but they stay at

the Application layer and do not deal with brokering at job level whereas my model

targets the middleware below the Application layer.

Before I define the model, I present the ASM for Grids defined in [60] with some

modifications. Figure 3.3 shows the important elements of the initial model. The

3.2. An extended formal model for Grids 41

ASM universes of the model are depicted on the left of the figure, and on the right a

graphical representation of the connections of some elements of these universes and

the most relevant functions governing process execution are shown. In this model user

applications consist of one or more processes (denoted by p in the figure), while Grids

consist of several nodes (n) having one or more resources (r). During the execution

of the user application first an agent maps the actual process of the application to a

resource in the Grid, then the process is installed on the node of the resource as a

task (t), which starts to use the resource. When all the processes of the application

finished using their resources, the application is finished.

Figure 3.3: Basic elements of the initial ASM model for Grids.

I extend this formal model by introducing Grid brokering at different levels. I

reuse the initial model of Grid systems introduced in [60] in a slightly modified form

here. The modification is indicated by introducing more practical issues related to

realization; by aligning the model to the terminology and naming conventions of

Grid brokering; and finally by experiences in Grid Computing since the paper was

published. These modifications do not invalidate or alter the content and conclusion

of the initial model just add more relevant details. The modifications are shown in

42 Analysing and modeling Grid brokering

Figure 3.4, in which I emphasise that a user application consists of jobs (j) that can

have one or more processes (p). A Grid consists of hosts (h) that have one or more

resources (r).

In the following subsections I define the basic elements of my extended formal

model based on ASM: the universes, the signature and the rules.

Figure 3.4: The modified ASM model for Grids.

3.2.1 Universes and signature

To define this formal framework, first I need to examine real service Grid systems.

Certain objects of the physical reality are modeled as elements of universes and re-

lationships between real objects are represented as functions and relations. In Grid

systems users (universe USER) define their applications in the form of jobs (universe

JOB), which is the most typical computing paradigm for Grids, hence I restrict my

model to this case. A job consists of one or more processes (universe PROCESS).

The installed instances of processes are called tasks (universe TASK), which can

3.2. An extended formal model for Grids 43

be run on different hosts (universe HOST). Hosts are the building blocks of Grid

systems, and typically a job is mapped, then sent to a host for execution. A host

may have several nodes (e.g. when a host is a cluster), and nodes have certain

resources that processes require to run. Since nodes are usually invisible (and un-

manageable) for higher level tools, therefore I neglect them in this model. In this way

one or more physical resources (universe PRESOURCE) belong to a host, which

also determines the physical location (universe LOCATION) of the resources. The

processes of jobs require some of these resources to run. Users should select a host

according to these resource requirements, which are called as abstract resources (uni-

verse ARESOURCE). Information on the physical resources of the hosts can be

gathered by querying the information system of a Grid.

Once a job is submitted to a host, it is mapped to physical resources during ex-

ecution. While a resource is busy, the mapped process is in waiting state. When

the resource becomes free, the process starts using it and enters running state. Pro-

cess termination implies a done state in case of successful run, and a failed state in

case of an error. In general, Grid authorization allows users to log in to some hosts

and validates user privileges to use some resources of some hosts [32]. The requested

(abstract) and the physical resources have certain attributes (universe ATTR). Com-

patibility between an abstract and a physical resource means the physical resource

can satisfy the process requirement. According to this informal description, the fol-

lowing functions are used in the model:

job: PROCESS → JOB

user, globaluser, localuser: JOB → USER

submitted: JOB × HOST → {true, false}

procRequest: PROCESS × ARESOURCE → {true, false}

uses: PROCESS × PRESOURCE → {true, false}

mapped: PROCESS → LOCATION

belongsTo: PRESOURCE × HOST → {true, false}

installed: TASK × LOCATION → {true, false}

attr: {ARESOURCE, PRESOURCE} → ATTR

location: PRESOURCE → LOCATION

handler: PRESOURCE → PROCESS

type: PRESOURCE → ATTR

compatible: ATTR × ATTR → {true, false}

44 Analysing and modeling Grid brokering

canLogin: USER × HOST → {true, false}

canUse: USER × PRESOURCE → {true, false}

jobState: JOB → {submitted, waiting, running, done, failed}

procState: PROCESS → {waiting, running}

event: TASK → {start, abort, terminate}

mappedHost: JOB → HOST

mappedResource: PROCESS × ARESOURCE → PRESOURCE

3.2.2 Initial state

I assume that k processes belong to a job of a user. The job and its processes have

some requirements, and no process and job is mapped to any resource or host. There-

fore the states of the jobs and processes are undefined. In the following I define the

initial state of my model:

∃p1, p2, . . . , pk ∈ PROCESS : job(pi) 6= undef, 1 ≤ i ≤ k

∀pi, 1 ≤ i ≤ k : user(pi) = u ∈ USER

∀pi, 1 ≤ i ≤ k : ∃ar ∈ ARESOURCE : procRequest(pi, ar) = true

∀pi, 1 ≤ i ≤ k : ∃pr ∈ PRESOURCE : uses(pi, pr) = false

∀j : mappedHost(j) = undef

∀pi, 1 ≤ i ≤ k : task(pi) = undef

∀pi, 1 ≤ i ≤ k : mapped(pi) = undef

∀j : jobState(j) = undef

∀pi, 1 ≤ i ≤ k : procState(pi) = undef

∀u ∈ USER, ∃pr1, pr2, . . . , prm ∈ PRESOURCE :

canUse(u, pri) = true, 1 ≤ i ≤ m

After I have defined the universes and the signature, in the following I give the

rules of my model that constitute a module, i.e. a program that is executed by each

agent in the model. The model presented here is a distributed multi-agent ASM

where agents are jobs, i.e. elements from the JOB universe. The working behaviour

of the brokering model is depicted from the perspective of the jobs, hence the self

function is represented as j and means the identity of a job, i.e. it can identify itself

among other agents. It is interpreted differently by different agents.

3.2. An extended formal model for Grids 45

3.2.3 Rule 1: Resource selection

According to Figure 3.4, when the job is sent to a host, the required resources need

to be selected that are used by the processes of the job. During job execution, a task

of each process is installed to the location of the required and selected resource. The

precondition of resource selection is that the process of the job should be able to use

the mapped resource. In case of the process can directly access the physical resource

(rd) the execution (resource usage) is automatically started, otherwise a local han-

dler process should provide the execution platform (i.e. the additional software or

service). If this handler process does not exist, it should be started before execution.

The agent responsible for resource mapping needs to ensure that the chosen resource

fulfils the abstract resource requirement of the process. Here is the formal definition:

let h = mappedHost(j)

let job(p) = j

let pr = mappedResource(p, ar)

if (∃ar ∈ ARESOURCE):

procRequest(p, ar) = true & pr 6= undef & canUse(user(p), pr) = true

then if type(pr) = rd

then mapped(p) := location(pr)

installed(task(p), location(pr)) := true

else if (¬∃p′ ∈ PROCESS): handler(pr) = p′

extend PROCESS by p′

with mapped(p′) := location(pr)

installed(task(p′), location(pr)) := true

handler(pr) := p′

do forall ar ∈ ARESOURCE

procRequest(p′, ar) := false

enddo

endextend

endif

procRequest(p, ar) := false

uses(p, pr) := true

endif

46 Analysing and modeling Grid brokering

Πresource mapping

if (∃ar ∈ ARESOURCE, ∃p ∈ PROCESS, ∃h ∈ HOST):

job(p) = j & mappedResource(p, ar) = undef &

procRequest(p, ar) = true & h = mappedHost(j)

then choose pr in PRESOURCE

satisfying compatible(attr(ar), attr(pr)) & belongsTo(pr, h) = true

mappedresource(p, ar) := pr

endchoose

endif

Here, I note that though generally a job runs on a host (if it is a parallel job of

communicating processes, it runs on a number of resources of this host in parallel),

some middleware tools may enable co-allocation of parallel processes on nodes of

different hosts. I do not deal with this situation, since it is rarely used and supported,

but further refinement of this model could represent such cases.

Before job execution it is necessary to authenticate users. In Service Grids users

are authenticated by proxies of Grid certificates [32]. A local process is responsible

for validating these proxies by mapping global users to local ones having the same

privileges. The related formalism of user mapping is similar to the one presented in

[60]:

Πuser mapping

let pr = mappedresource(p, ar)

if (∃ar ∈ ARESOURCE, ∃p ∈ PROCESS):

procRequest(p, ar) = true & pr 6= undef & canUse(user(p), pr) = true

then if type(pr) = rd | (∃p′ ∈ PROCESS) : handler(pr) = p′

then choose u in USER

satisfying canLogin(u, location(pr))

usermapping(globaluser(p), pr) := u

endchoose

else if (∃p′ ∈ PROCESS): handler(pr) = p′

3.2. An extended formal model for Grids 47

then usermapping(globaluser(p), pr) := localuser(handler(pr))

endif

endif

3.2.4 Rule 2: State transition

In this subsection I define, how job states are evolving during execution:

if (∃h ∈ HOST): submitted(j, h) = true

then jobState(j) := submitted

endif

if (∃p ∈ PROCESS): job(p) = j & mapped(p) 6= undef

then procState(p) := waiting

jobState(j) := waiting

endif

if (∃pr ∈ PRESOURCE, ∃p ∈ PROCESS): job(p) = j & uses(p, pr) = true

then procState(p) := running

jobState(j) := running

endif

if (∃p ∈ PROCESS, ∃t ∈ TASK, ∃pr ∈ PRESOURCE, ∃h ∈ HOST):

uses(p, pr) = true & belongsTo(pr, h) = true

& installed(t, h) = true & event(t) = abort

then jobState(j) := failed

PROCESS(p) := false

endif

Though in general, process spawning could cause additional resource requests for

job execution in a host, I do not detail this in my model, and keep it as abstract as

possible, since at the level of Grid brokering process communications and spawning

are invisible. In order to handle these situations, I assume that resource requests of

spawned processes are known a priori. State transitions related to job termination

are formalized in Rule 3.

48 Analysing and modeling Grid brokering

3.2.5 Rule 3: Termination

Job execution is terminated under the following conditions:

if (∃p ∈ PROCESS):

job(p) = j & procState(p) = running & event(task(p)) = terminate

then PROCESS(p) := false

endif

if (∃p1, . . . , pm ∈ PROCESS): job(pi) = j & jobState(j) = failed, 1 ≤ i ≤ m

then PROCESS(pi) := false

endif

if (¬∃p ∈ PROCESS): job(p) = j & jobState(j) = running

then jobState(j) := done

endif

3.3 ASM model for Grid brokering

Now that we have the revised formal model for Grids, in this section I focus on

middleware components responsible for brokering in Grids. In this ASM model these

components are represented by agents. First I recall the related parts of the informal

anatomy introduced in Section 3.1 then show how these resource manager components

can appear as agents in the formal model described above. Furthermore I emphasize

how these brokering components contribute to Grid Interoperability, i.e. how they

may support transparent job submissions to different, separated Grids.

At the lowest level of Grid resource management we can find local resource man-

agers (LRMS) that were taken from high-performance and distributed computing,

and now generally used in Grid Systems. This local resource management is formal-

ized in Rule 1 of this model. Without additional brokering components users need to

choose from the available hosts manually relying on mostly static information. One

level above, Grid resource managers (RMS), also called Grid brokers, are needed to

automate host selection. With the help of Grid brokers, host selection is automated,

but users are still bounded to separate Grids (i.e. Grid systems that are complete

systems on their own but closed to any form of interoperability between each other,

either by technology, compatibility, administrative or other restrictions) managed by

3.3. ASM model for Grid brokering 49

their own brokers. Nevertheless users have the ability to select manually, which bro-

ker and Grid they would like to use (even static information on broker properties are

available in form of manuals or taxonomies). In order to achieve better interoperabil-

ity broker selection should also be automated. Therefore we need a novel approach

called meta-brokering, which introduces another layer above current Grid brokers in

order to facilitate inter-Grid load balancing and interoperable brokering.

A typical Grid usage scenario for a job execution that requires the following steps:

1. The user defines its application as jobs, also stating the requirements of its

execution.

2. The user requirements of the job is examined by the meta-broker, and mapped

to the properties of the available brokers. A proper broker, that is able to

submit the job, is selected for submission.

3. The selected broker examines the resource requirements of the job and matches

them to the physical resources of the available hosts. A host having all the

required resources is selected for execution.

4. The agent on the selected host (the local resource manager) maps the resource

requirements of the job to the available physical resources during execution.

In the following subsections I define two more rules to model the informal descrip-

tion and discussion above. We need additional universes and functions to describe

brokering functionalities in this model.

3.3.1 Rule 4: Host selection for Grid brokering

Brokers (universe BROKER) are responsible for host selection, therefore hosts are

managed by brokers, which can have different properties (universe PRORERTY)

that users may require for job execution. A user should select a broker for its job

according to these requirements (universe REQUIREMENT). Furthermore I place

universe ARESOURCE as a subset of universe REQUIREMENT , since the ele-

ments of both sets represent user requirements, and universe PRESOURCE can be

a subset of universe PRORERTY , because physical resources can be regarded as

host properties. The following functions are added to the model:

50 Analysing and modeling Grid brokering

request: JOB × REQUIREMENT → {true, false}

submitted: JOB × {HOST, BROKER} → {true, false}

manages: BROKER × HOST → {true, false}

have: BROKER × PRORERTY → {true, false}

attr: {REQUIREMENT, PRORERTY } → ATTR

I extend the initial state by:

∀j : ∃r ∈ REQUIREMENT : request(j, r) = true

I extend Rule 2 with the following state changes:

if (∃b ∈ BROKER): submitted(j, b) = true

then jobState(j) := submitted

endif

if (∃h ∈ HOST): submitted(j, h) = true

then jobState(j) := waiting

endif

Once a broker is selected by the user, it should find an execution host. The pre-

condition of this host selection process is that the user of the job should be able to

use the required resources of the selected host. The broker agent responsible for host

mapping needs to ensure that the chosen host has all the resources requested by the

processes of the job. This additional component responsible for Grid brokering is

highlighted in Figure 3.5. In the following I state the formal definition for Rule 4 that

performs host selection:

h = mappedHost(j)

if (∃ar1, . . . , arm ∈ ARESOURCE, ∃pr1, . . . , prm ∈ PRESOURCE):

request(j, ari) = true & h 6= undef

& canUse(user(j), prk) = true, belongsTo(prk, h) = true, 1 ≤ i, k ≤ m

then submitted(j, h) := true

endif

3.3. ASM model for Grid brokering 51

Figure 3.5: Grid brokering in the ASM model.

Πhost mapping

if (∃j ∈ JOB, ∃ar1, . . . , arm ∈ ARESOURCE, ∃pr1, . . . , prm ∈ PRESOURCE):

mappedHost(j) = undef & request(j, ari) = true, 1 ≤ i ≤ m

then choose h in HOST

satisfying compatible(attr(ari), attr(prk))

where belongsTo(prk, h) = true, 1 ≤ i, k ≤ m

mappedhost(j) := h

endchoose

endif

52 Analysing and modeling Grid brokering

Figure 3.6: Meta-brokering in the ASM model.

3.3.2 Rule 5: Broker selection

At the highest level of Grid resource management a broker needs to be selected au-

tomatically for a user job. An important precondition of the selection process is that

such a broker needs to be selected that manages hosts with resources that the user

of the job can use. Furthermore the agent responsible for broker selection, the meta-

broker (universe METABROKER) needs to ensure that the chosen broker has all

the properties required by the user’s job. Therefore users need to characterize their

job requirements in a certain job description language, which should include both the

required broker properties and abstract resources of the processes of the job. This

additional Grid middleware component is highlighted in Figure 3.6. The following

function is added to the model:

mappedBroker: JOB → BROKER

I extend the initial state by:

3.3. ASM model for Grid brokering 53

∀j : mappedBroker(j) = undef

The formal definition of the meta-broker is as follows:

let b = mappedBroker(j)

if (∃r ∈ REQUIREMENT, ∃pr ∈ PRESOURCE, ∃h ∈ HOST):

request(j, r) = true & b 6= undef & canUse(user(j), pr) = true,

belongsTo(pr, h) = true, manages(b, h) = true

then submitted(j, b) := true

endif

Πbroker mapping

if (∃r1, . . . , rm ∈ REQUIREMENT, ∃p1, . . . , pm ∈ PROPERTY, ∃j ∈ JOB,

∃b ∈ BROKER):

mappedBroker(j) = undef & ∀i : request(j, ri) = true

& ∀i : have(b, pi) = true, 1 ≤ i ≤ m

then choose b in BROKER

satisfying compatible(attr(ri), attr(pi)), 1 ≤ i ≤ m

endif

Finally I have to mention that jobs can be interconnected in order to form a

complex Grid application called a workflow. The execution of a workflow requires a

coordinating tool called workflow enactor that schedules the interdependent jobs for

executions. I refrain from formalizing workflow management and incorporate it into

this model, since the central entities of this model are jobs, and therefore I assume

that Grid applications are submitted into the system in the form of jobs.

A state transition diagram that shows the connections and graphically represents

state evolving defined by Rule 2 and 3 together with the additional states of Rule 4

and 5 can be seen in Figure 3.7. The prerequisites of state changes are denoted by

initials of the corresponding elements of the model (eg. j → b means the job is sent

to a broker).

54 Analysing and modeling Grid brokering

Figure 3.7: State transitions in the ASM model.

As a summary, I have shown that Grid brokering takes place at three levels, and

the following operations need to be performed: broker mapping, host mapping and

resource mapping. Later on I will show how practical examples of these components

can be described by this formal ASM model with the help of ASM refinement. I

will use this model to show how certain functions – kept abstract in Rule 4 and 5

presented earlier – are transformed to reveal implementation details.

3.3.3 Refining the ASM model to formalize the matchmaking

of GTbroker

In the following I present the refinement of the host mapping (Rule 4) of the ASM

model for Grid brokering introduced in Section 3.3.1.

3.4. Interoperability levels for Grid brokering 55

Π′

host mapping

if (∃j ∈ JOB, ∃ar1, . . . , arn ∈ ARESOURCE, ∃policy ∈ REQUIREMENT,

∃pr1, . . . , prm ∈ PRESOURCE, ∃h1, . . . , ht ∈ HOST, ∃r1, . . . , rt ∈ REAL):

mappedhost(j) = undef & request(j, policy) = true,

request(j, ari) = true, 1 ≤ i ≤ n ≤ m

then do forall k (1 ≤ k ≤ t)

rk := countRank(policy, hk)

if (¬∃l, i): attr(ari) ≤ attr(pri)

& belongsTo(prl, hk) = true, 1 ≤ i ≤ n, 1 ≤ l ≤ m

then rk := 0

enddo

choose rmax in (r1, . . . , rt)

satisfying rmax ≥ rk, 1 ≤ k, max ≤ t

mappedhost(j) := hmax

endchoose

endif

This refinement also reveals the meaning of the compatible function. In case of

GTbroker (discussed in Section 2.5.1), the attributes of resource requirements denote

the amount of resource capacity (e.g. memory size or processor speed) needed by

the processes of the job for execution. This means, if the available physical resource

has equal or greater capacity than requested, the process can run. The host selection

method can be influenced by users using the special policy requirement. The value of

its attribute tells the additional countRank: REQUIREMENT ×HOST → REAL

function how to compute the rank for the available hosts (e.g. higher priority can

be given to hosts with faster processors). Finally, the host with the highest rank is

selected for execution.

3.4 Interoperability levels for Grid brokering

In Section 2.4 we have seen that there are different interpretation models for inter-

operability in general in the literature, but these models cannot be applied to my

56 Analysing and modeling Grid brokering

particularly focused area of Grid resource managers. To denote and differentiate

the quality and degree of interoperability different solutions provide, I rely on the

application requirements users pose on the execution environment. To satisfy these

requirements, brokers need to find those resources that are able to execute the user

jobs and need to provide special services (or capabilities). Hosts of different Grids

may have different resources specialized for specific user application needs, and dif-

ferent brokers are specialized in different job execution policies and services (see the

taxonomy and survey in Section 2.2 and 2.3). In order to categorize different Grid

Interoperability solutions, I define the following interoperability levels:

No interoperability When a broker can access resources and services of only one

particular Grid.

Low-level interoperability When a broker (or more inter-connected or centrally

managed brokers) can reach resources of more, different Grids.

High-level interoperability When more inter-connected or centrally managed het-

erogeneous brokers can reach resources and different services of more, different

Grids.

Using the previously defined ASM model for Grid brokering, I give a formal def-

inition for these interoperability levels. In the model I have defined so far, I used

the assumption that a broker manages hosts of only one Grid. In this case the type

or identifier of a Grid could be expressed as a property of a broker. I also used the

assumption that users can use a broker if they can access hosts managed by that

broker (thus belonging to the same Grid). In order to express interoperability levels

in my model, I extend it with a new set containing different Grids (universe GRID)

that serve as host providers, therefore the following function is added to the model:

provides: GRID × HOST → {true, false}

I extend the initial state by:

∀hi ∈ HOST, 1 ≤ i ≤ k : ∃g ∈ GRID : provides(g, hi) = true

As a simple definition I can state that Grid Interoperability means providing ac-

cess to hosts of different Grids. Since most brokers are coupled to one Grid, therefore

3.4. Interoperability levels for Grid brokering 57

it is able to provide access only to its hosts. This statement leads us to the 0-level

no interoperability, which is formalized as follows. For a given b ∈ BROKER:

∀hi ∈ HOST, 1 ≤ i ≤ k : ∃!g ∈ GRID :

manages(b, hi) = true & provides(g, hi) = true

The low-level interoperability means that a broker is able to provide access to hosts

of more, different Grids:

∀gi ∈ GRID, 1 < i ≤ k : ∃h ∈ HOST :

provides(gi, h) = true & manages(b, h) = true

In this case, if k = 1 for a broker b it means it has no interoperability, and if k > 1

it has a 2-level interoperability. Furthermore the higher the value of k is, the more

interoperable the broker is.

In order to denote higher degree of interoperability, a more refined definition of

Grid Interoperability is needed. Besides providing access to more Grids and therefore

to a higher number of hosts, the other goal of interoperability is to provide support for

more user requirements by utilizing (brokering) services of different Grids. This leads

us to the definition of the high-level interoperability, in which we take into account

the number of user requirements that a broker b and its managed hosts and resources

may satisfy:

∀ri ∈ REQUIREMENT, 1 ≤ i ≤ n : ∃gl ∈ GRID, 1 ≤ l ≤ q,

∃h ∈ HOST, ∃pr ∈ PRESOURCE :

manages(b, h) = true & provides(gl, h) = true &

belongsTo(pr, h) = true & compatible(attr(ri), attr(pr)) = true

This expression tells us that a broker b is able to satisfy k user requirements by sub-

mitting the user job to a physical resource of a Grid that supports these requirements.

Besides abstract resource requirements, user jobs usually need to use special broker

services called broker properties (examples can be found in the broker taxonomy in

2.2). In order to determine the number of properties (or capabilities) a broker has we

need the following expression:

58 Analysing and modeling Grid brokering

∀rj ∈ REQUIREMENT, 1 ≤ j ≤ m : ∃p ∈ PROPERTY :

have(b, p) = true & compatible(attr(rj), attr(p)) = true

If all ri and rj are pairwise disjunct elements of universe REQUIREMENT , k + m

gives the total number of disjunct user requirements a broker b can satisfy. For a

given meta-broker mb ∈ METABROKER this number is the sum of the satisfiable

disjunct requirements of all brokers it utilizes. As a result those meta-brokering

solutions fall into this category that support different broker properties/services. The

higher the degree of interoperability of a solution the higher the number of disjunct

user requirements (k + m) it is able to satisfy.

A graphical representation of the introduced interoperability levels can be seen

in Figure 3.8. Gi represent different Grids, and bi denote brokers having different

capabilities.

Figure 3.8: Interoperability levels.

3.5. Summary 59

3.5 Summary

In this chapter I investigated Grid resource manager components both informally

and formally by developing an anatomy and an ASM model for Grid brokering. I

highlighted how interoperation appears in this model and defined interoperability

levels that will be used later to classify related solutions. The results of this chapter

belong to thesis I, and were published in papers [P16], [P18] and [P19].

60 Analysing and modeling Grid brokering

Chapter 4
High-level brokering solution for

establishing Grid Interoperability

4.1 A general architecture for meta-brokering

In Section 2.4 we have seen that the Grid Interoperability problem can be tackled

in short term by developing gateways that serve as entry services of Grids. Such a

service should be built by using the latest standards and new technologies and trends.

Regarding new technologies, the Next Generation Grids (NGG) Expert Group has

identified a convergence between Grid and web services [61]. IT companies are de-

veloping and adapting their services to utility services, in which agent technologies,

semantics, heuristics and self-awareness play a more important role taking into ac-

count the latest end-user requirements. They call these utility services Service Ori-

ented Knowledge Utilities (SOKUs), which will become the building blocks of future

Grids. This convergence of Grid services brings other technologies closer, and Grid

development takes over new ideas and solutions from related research fields. Since

this evolution takes much time to transform the whole system and there is a high

demand for establishing Grid Interoperability, I have been looking for a solution that

requires minimal or no modifications at all to the middleware, and still incorporates

new technologies having the ability to become a SOKU in future Grids. In this sec-

tion I introduce a novel scheduling philosophy called meta-brokering that creates a

meta-level above current resource management solutions by using these technologies

and open standards. Following this way, I have developed a method to make data

about resource managers available for cooperated, automatic processing in the form

62 High-level brokering solution for establishing Grid Interoperability

of meta-data. I provide language schemas to store and share this meta-data, and

to be processed by various scheduling policies. First I examine the requirements of

this meta-brokering approach, then present a general solution that can be realized in

different Grid environments.

Interoperability problems appeared in several parts of Grid middleware, including

resource management. Since most of the middleware components rely on or are in

connection with resource managers, it is crucial to establish interoperation among

different Grid resource managers. The lack of standards is a problem that cannot

be solved in shorter period of time, but there is a definite need for standardization

to tackle the interoperability problem. The proper solution for interoperability is

to design a system, in which all components know how to communicate with each

other. Protocols need to be established and utilized by all components. However,

when protocols are diverse by themselves, the classical approach to this problem is to

create a superior instance, a kind of mediator in a sense, which has the task to provide

an interface between the individual components. This approach is taken in my case

to create a new layer in Grid resource management called meta-brokering (denoted

by MB in Section 3.1). The role of this layer is to utilize the existing, widely used and

reliable resource brokers and to manage them transparently. Since most of the users

have certificates to access more Grids (or Virtual Organizations (VOs)), they are

facing a new problem: which Grid/VO, which broker should I choose for my specific

application? Just like users needed resource brokers to choose proper resources within

a Grid, now they need a meta-brokering service to decide, which broker (or Grid/VO)

is the best for them and also to hide the differences of utilizing them.

Figure 3.1 in Section 3.1 shows the relevant actors in Grid resource management;

we need to examine this anatomy of Grid resource management in order to find the

right solution. Below the RMS level standardization could be one solution, since

this lower layer is part of the core of every middleware system, therefore all of them

would need to be redesigned to support a common standard. A good candidate for

this solution is virtualization, which has already attracted several researchers and a

new research area was born called Cloud Computing [14]. Above the RMS level each

component could actually help enhancing interoperability. Starting from the user in-

terface, the diversity in job description languages represents the first problem: though

the Job Submission Description Language (JSDL) [113] is a standardized language,

only few systems have adopted it, yet. Starting from the highest level, Grid portals

are the first candidates for solving the Grid Interoperability problem. Some of them

4.1. A general architecture for meta-brokering 63

have already achieved some level of interoperability [45], but for the final solution,

the support for all the job description languages, interfacing all resources, RAMs,

RMSs, WFMSs and related middleware services should be done, which cannot be

performed with the current approaches. They need the help of some new component

that takes up some of these duties. One solution could be a general WFMS that sup-

ports all the workflow description formats [106], interfaces the RMSs or RAMs and

can be integrated to every portal. This seems to be an achievable solution, since only

some services need to be supported, but still many descriptions have to be learned,

and adapting such a WFMS would also need high efforts from the portal developers.

This argument has led to the design of a new meta-brokering service. It is high-level

enough to hide and manage the RMSs, and low-level enough to be integrated into

portals and WFMSs.

Figure 4.1: General meta-brokering architecture

Now that I have pointed out the place where a new abstraction layer responsible for

establishing interoperability could be created, I continue with the requirements of this

solution that fills the gap among the different components in resource management.

Figure 4.1 is intended to show all the components and tools needed by a general

Meta-Broker. In the following I describe these components by introducing the main

64 High-level brokering solution for establishing Grid Interoperability

requirements of this higher level brokering service:

JDL – Job Description Language: Since the goal of a meta-brokering service

is to offer a uniform way to access various Grids, a unified description format is

needed to specify all the user requirements. JSDL [113] proposed by OGF is a good

candidate.

CDL – Capability Description Language: Each broker has a different set

of functionalities, they can be specialized in different application types. In order to

store and track these properties, it is required to use a CDL. It should be general

enough to include all the service capabilities (interfaces, job submission, monitoring

and agreements).

SDL – Scheduling Description Language: Besides CDL and JDL the schedul-

ing requirements and policies also need to be stored separately. The users can express

their needs by extending the JDL with SDL, and the scheduling policies and methods

of the brokers can be stored in this format.

Scheduling: This component performs the scheduling (matchmaking) of incom-

ing user requests. A proper Grid broker (which implies a domain, VO or execution

environment) needs to be selected for a user job taking into account the available

scheduling policies.

GJI – Global Job Identifiers: It is important to have unique mapping of user

jobs to different Grids. An implementation can be a single job ID provider for the

meta-brokering system or simply using each broker system as a prefix for the assigned

Grid job ID.

SM – Security Management: The role of this component is to provide secure

access to the interconnected domains. For example, different user certificates, proxies

may be accepted in different VOs and Grids. In order to provide a transparent way

for users, these various proxies also need to be handled by meta-brokers.

Accounting Mechanism: The GJI and SM can be a part of a global accounting

component. The role of this mechanism is to manage user access by pre-defined

policies. Though Grid economy is still in a pre-mature state, in the future the meta-

brokering service should also serve business Grids or clouds.

Agreements Mechanism: This component is in connection with the Accounting

mechanism. Service Level Agreements (SLA) are planned to be used in future Grids,

though investigating SLA usage in Grids has already been started [65]. The role of

this part is to negotiate user requirements, which can also affect scheduling policies.

When agreements will be generally accepted and used, this mechanism should be

4.1. A general architecture for meta-brokering 65

extended to do negotiations with higher and lower levels.

Monitoring Mechanism: Reliable operation requires global monitoring, in

terms of the inter-connected brokers, reachable domain, Grid resources, load and local

component functionalities. Self-awareness and fault tolerance need to be provided by

the system itself, which needs extensive monitoring.

Prediction Mechanism: This component is in connection with the Monitor-

ing and Scheduling mechanisms. It is necessary to perform calculations of broker

availability, service utilization and user request load to cope with the highly dynamic

nature of Grids.

Addressing and Notification Mechanism: This component is responsible for

accessing the inter-connected resource brokers, and managing communication includ-

ing local events and external job state notifications.

The goal of the presented meta-brokering approach is to establish a connection be-

tween individual Grids (domains or Virtual Organizations) by managing their brokers.

The general meta-brokering architecture (Figure 4.1) is middleware-independent,

therefore implementations of this framework can solve the Grid Interoperability prob-

lem and it can be easily interfaced by application level tools, such as portals or

workflow managers. The next section discusses how such an implementation can be

realized in a service called Grid Meta-Brokering Service (GMBS).

Figure 4.2: Description languages for meta-brokering.

66 High-level brokering solution for establishing Grid Interoperability

4.2 Grid Meta-Brokering Service for high-level re-

source management

Figure 4.2 depicts the necessary description documents need to be used in order to

facilitate meta-brokering. Heterogeneity appeared not only in the fabric layer of Grids,

but also in the middleware. Even components and services of the same middleware

may support different ways for accessing them. After a point this variety slows down

Grid development, and makes the system unmanageable.

Table 4.1: A subset of special job description language attributes.
RSL xRSL JDL JSDL
(GTbroker) (NorduGrid) (EGEE)

(*sched=ran-
dom*)

(*sched=ran-
dom*)

FuzzyRank=true; extension

(*sched=CPU/
Memory/Disk*)

(*sched=CPU/
Memory/Disk*)

rank=other.GlueHost-
ProcessorClockSpeed/
GlueHostMain-
MemoryRAMSize/
GlueSAState-
AvailableSpace;

extension

(*minMe-
mory=int*),
(*mindisk=int*)

(memory=int),
(disk=int)

Requirements: (Glue-
HostMainMemo-
ryRAMSize<int);
anyMatch(other.stor-
age.CloseSEs,
target.GlueSAState-
AvailableSpace>int);

〈resources〉
〈jsdl:Individual-
DiskSpace〉
〈jsdl:Individual-
Physical-
Memory〉 ...
〈/resources 〉

(*skiptime=int*) (*skiptime=int*) /*skiptime=int*/ extension
rescheduling by
default

(rerun=max.5) RetryCount=max.10; extension

Languages are one of the most important factors of communication. Different

resource management systems use different resource specification descriptions like

RSL, JDL, etc. These documents need to be written by the users to specify all

kinds of job-related requirements and data. The OGF [124] has already started to

take several steps towards interoperability by defining standards, and developed a

resource specification language standard called JSDL [113] – this should be used to

overcome the above mentioned difficulties (with possible extensions). As the JSDL is

also general enough to describe jobs of different Grids, I have chosen this to be the job

4.2. Grid Meta-Brokering Service for high-level resource management 67

description format of my meta-brokering solution. Nevertheless there are special job

attributes denoting special job handling, various scheduling and data management

features that cannot be expressed in JSDL. Since one of the goals of meta-brokering

is to support all these brokering capabilities, I gathered these special attributes of

the different job description documents, and specified a JSDL extension – depicted in

Figure 4.3 – that I also proposed to the Grid Scheduling Architecture research group

of OGF [124] for standardization as an SDL. During the translation of these special

requirements to languages that are not able to express them, the missing attributes

are included as comments in order to keep the translations consistent. Some examples

on the mapping among these attributes are shown in Table 4.1.

Figure 4.3: Main fields of the preliminary JSDL extension.

Besides describing user jobs, we also need to describe resource brokers in order to

differentiate and manage them. These brokers have various features for supporting

different user needs. These needs should be expressed in the user’s JSDL, and iden-

tified by the Meta-Broker for each corresponding broker. Therefore I proposed an

extendible Broker Property Description Language (BPDL) – similar to the purpose

of JSDL –, to express metadata about brokers. This description language is discussed

68 High-level brokering solution for establishing Grid Interoperability

in the following subsection.

4.2.1 Data Model for describing broker capabilities

For describing Grid Resource Broker capabilities, I introduce an extensible meta-

data model. This model can be taken as an extension of the general scheduling

model presented in [67]. Beside their resource and job model, there is a need for a

model describing broker characteristics in order to compare, interoperate and manage

different resource brokers, schedulers. I use the same notations for building up the

model.

Figure 4.4: Structure of the data model for resource broker capabilities.

The metadata to be stored regarding resource brokers are expressed through

<attribute,value> pairs – I denote with P the set of all possible such pairs. A

broker denoted by B ⊆ P is modeled as a pair:

<brokerID,description>,

where brokerID is a unique identifier, and description ⊆ P is a set of attribute/value

pairs, which contains metadata of basic and special properties. Figure 4.4 shows the

tree of pairs in P, which defines the whole model.

In order to present a usage scenario for matchmaking, I define a function over this

model with the following structure:

• µ: T × B i → B, where T is a set of tasks [67] (here: jobs) and B is a set of

brokers.

4.2. Grid Meta-Brokering Service for high-level resource management 69

For t ∈ T , b0, ... ,bn ∈ B, n≥0:

• µ(t , (b1, b2, b3)) = b2 means that for a job denoted by t matched with brokers

denoted by b1, b2 and b3 the matchmaking function returns b2, which is the

fittest broker for the job. That means the returned broker can most efficiently

execute the job. (Note that b0 can be a special element, which is an empty

description. This is the return value, when no broker fits the job requirements.)

In the scenario shown in the following section a JSDL of the job is denoted by t ,

and a BPDL of a broker by bi.

4.2.2 The implemented data model: Broker Property De-

scription Language

Based on the data model introduced in the previous section I have created an XML-

based language called BPDL (Broker Property Description Language). The common

subset of the individual broker properties are the basic properties: the supported

middleware, job types, certificates, interfaces and monitoring issues. There are also

special ones, such as remote file handling, fault tolerant features, agreement support,

QoS support, performance metrics and various scheduling policies. The union of these

properties forms a complete broker description document that can be filled out and

regularly updated for each utilized resource broker – the graphical representation of

this document can be seen in Figure 4.5. The special any##other type describes

a mechanism that can be used to extend the schema with custom elements and at-

tributes. The fields of the BPDL are closely related to the categories of the broker

taxonomy presented in Section 2.2 of Chapter 2. This ensures that all the widespread

brokers can be described with this language, therefore they can be managed by so-

lutions using BPDL. Notice that this language can also be used for peer-to-peer

communication and identification in a decentralized architecture. In particular, the

agreements are another mechanism typically used in this kind of architectures to

broaden a domain or as a communication mechanism during the negotiation process.

In BPDL, the common subset of the individual broker properties is stored here:

• BrokerID: It contains a unique identifier of a resource broker.

• Interface: This field provides meta-data about the accessibility and notification

methods of the broker.

70 High-level brokering solution for establishing Grid Interoperability

��������	
��

�������������	
����
���	����

��������

���	

����������

�����������

��������������������
����

��������������������

�����������

���������������

���������������

����� �������

! "

�����#����$���

! "

��������������%

�����&�������

�����&����������������
����

�����&����������������

�����������

�����'�����(���)������%

! "

�����&��������%������

�����(�����������������������

! "

�����*�&����������

! "

�����+%�������

! "

��������$��������������

Figure 4.5: The schema of the Broker Property Description Language.

4.2. Grid Meta-Brokering Service for high-level resource management 71

��������	
���

�������������	
����
���	����

������������

���	

��������
�

�����
�����

���������
���

��������
����
���

��������
����

� ���

��������

�������

������
���������

���������
�
��

�����!
����
�"���

�����#��������$
���

�����#��������$

��������
�

�����#
����

� ���

�����%
������
���

�����%
������

��������
�

�����#����&�

�����'��
�%
������

������
���� ���
#
�����
���

������
���� ���
#
�����

��������
�

�����(")*�����$��

�����(")%��+��+�

�����,�����
�-���

�����,���
�-���

�����'��
�#
����

� ���

�������
�������

. ���

����
������������
���	����

��������

 �����%�	

Figure 4.6: The schema of the Broker Property Description Language 2.0.

72 High-level brokering solution for establishing Grid Interoperability

��������	
��
�

��������	
��
�������������

���
	�
�

��	

����������

�����������

�����������������
��
�

�����������������

�����������

����������������

� ���

�����������
�

� ���

����������

������ ��!��

������"�����#���$%%���

& ���

������'��������������

� ���

������(��
��
�

������(��

����������

�����������

������$!�������

& ���

������#�����������%���%�������

� ���

������$�)��%�"����)�����

������*�������

������+���$%%����������

������,����-���.�%�����

������*���%�
��
�

������*���%�

����������

������*���%�-���

������'����*���%�

������	"��*���%�

Figure 4.7: The schema of the Meta-Broker Scheduling Description Language.

4.2. Grid Meta-Brokering Service for high-level resource management 73

• Monitoring: This field used for specifying self, job or resource monitoring mech-

anisms of the broker.

• Security: It provides data about job and user authentication methods, such as

MyProxy server connections.

The most important attributes storing static information are the followings:

• Middleware: It shows, in which kind of middleware, Grid or VO the broker can

operate, which Information Services it uses.

• JobType: It specifies the type of jobs that the broker can handle.

• RemoteFileAccess: This field shows the protocols used for transferring files.

The dynamic information is updated by the GMBS during utilization. This data is

intended to provide up-to-date performance and availability information for schedul-

ing. The following field is used for this purpose:

• PerformanceMetrics: It stores historical data on previous job submissions, which

can be used to determine reliability of broker properties. The Prediction at-

tribute can be used to store predicted data about broker availability and relia-

bility.

After I realized that the OGF standardization process may take several years

to come up with a commonly accepted SDL, I decided to revise and modify BPDL

by gathering the scheduling-related attributes to a revised JSDL extension called

MBSDL (Meta-Broker Scheduling Description Language). The structure of the new

BPDL – that I call BPDL 2.0 –, remains nearly the same, I have only clarified some

attributes, added missing ones and separated the scheduling-related ones to MBSDL.

Therefore the MBSDL language can be used to extend BPDL with scheduling-related

attributes. The graphical representation of BPDL 2.0 can be seen in Figure 4.6, and

the same of MBSDL in Figure 4.7. The full schema of these XML documents can

be seen in the appendix in Chapter C. Since JSDL is also lacking these attributes,

MBSDL can also be used by other brokers or resource manager tools as a JSDL

extension. Its schema contains three fields:

74 High-level brokering solution for establishing Grid Interoperability

• Constraints: In this field we can specify terms that are necessary to be fulfilled

during scheduling. It includes middleware, remote file access and job type

constraints, as well as processing time and budget cost requirements. Finally

there is an opportunity to specify customized ones.

• QoS (Quality of Service) requirements: Here one can specify agreements, job

priorities, advance reservations, email notification or access controls. Fault tol-

erant features can also be selected to affect the schedule.

• Policy: In this field we can choose from various scheduling policies, or we can

define customized ones. E.g. the LRMSPolicy is used to describe local scheduler

capabilities.

The union of these properties forms a complete broker description document that

can be filled in and regularly updated for each utilized resource broker. These two

kinds of data formats are used by GMBS (Figure 4.2): JSDL is used by the users

to specify jobs and the BPDL by administrators to specify brokers – both parties

can use MBSDL to extend their descriptions. To advance standardization processes

in this topic I keep on negotiating with the GSA-RG (Grid Scheduling Architecture

Research-Group) of OGF [124] in order to create a common Scheduling Description

Language. Once it is done, I will use that instead of MBSDL.

4.2.3 Description of the components of GMBS

Figure 4.8 introduces the derived architecture (from the general architecture shown

in Figure 4.1) of the meta-broker I propose to solve Grid Interoperability at the

resource management layer of Grids. This figure can be compared to the general

meta-brokering architecture, and it gives an insight which abstract components are

realized in this solution. Figure 4.9 (a refined version of Figure 4.8) introduces the

final architecture of the Grid Meta-Broker Service (GMBS) that enables the users to

access resources of different Grids through their own brokers. In this way, this higher

level tool matches resource brokers to user requests. The system is implemented as a

web-service that is independent from middleware-specific components. The provided

services can be reached through web interfaces defined by WSDL. A UML class dia-

gram representing the main components of GMBS can be seen in Figure C.1 of the

appendix in Chapter C. In the following I describe the role of its components and

their interaction.

4.2. Grid Meta-Brokering Service for high-level resource management 75

Figure 4.8: Realization of the general architecture.

When I first presented this novel Grid meta-brokering approach in 2006 [P3], there

were not any other related solutions. Later this approach has matured and I created

the first prototype and published more detailed papers about this meta-brokering

solution. Meanwhile other research groups have also realized the need for the meta-

brokering approach and started to develop their own solutions, which appeared in the

literature, and contained citations to my publications. A summary and classification

of these related works are given in Section 4.3.

The Translator component of GMBS is responsible for transforming the resource

specification defined by the user (in JSDL and MBSDL) to the language of the ap-

propriate resource broker that the meta-broker selects to use for a given job. From all

the various job specification formats a subset of basic job attributes can be chosen,

which can be denoted relatively in the same way in each document (these attributes

also exist in JSDL). The translation of these parts is almost trivial. The rest of the

job attributes describe special job handling, various scheduling features and remote

storage access. Generally these cases can hardly be matched among the different

systems, because only few of them support the same solutions (some examples are

shown in Table 4.1), even the same functionality can be expressed in different ways

76 High-level brokering solution for establishing Grid Interoperability

in different languages.

The Information Collector (IC) component stores the data of the reachable bro-

kers and historical data of the previous submissions. This information shows whether

the chosen broker is available, or how reliable its services are. During broker utiliza-

tion the successful submissions and failures are tracked, and regarding these events

a rank is modified for each special attribute in the BPDL of the appropriate broker

(these attributes were listed above). In this way, the BPDL documents represent and

store the dynamic states of the brokers. All data is stored in XML, and advanced

XML-serialization techniques are used by the IC. The load of the resources utilized by

the brokers is also taken into account to help the Matchmaker to select the proper en-

vironment for the actual job. When a large number of jobs with similar requirements

are sent to the Meta-Broker, the so-called best effort matchmaking (choosing the less

loaded one) may flood a broker and its utilized resources: that is the main reason,

why load balancing is an important issue. In order to cope with this problem, there

is an IS Agent service reporting to the Information Collector, which regularly checks

the load of the Grids of each connected resource broker, and store this data. This tool

is implemented as a separate web-service connected to the Information Systems of

the Grids of the utilized brokers (the IS acronym denotes this role). On the contrary

to the work performed by GIN-INFO [125], where contents of different information

schemas are translated, the IS Agent creates and aggregated database of minimal

attributes from these schemas, which is regularly updated. This approach require

no modification or additional components for the utilized production Grids (unlike

the GIN top-level-DBII approach [125]). With the additional information provided

by this agent the matchmaking process can adapt to the load of the utilized Grids.

Finally, the actual state (load, configurations) of the GMBS is also stored here, and

it can also be queried by users. The continuous monitoring of Grid load and broker

performances makes this Grid service self-adaptive.

Since the agreement handling and SLA usage are not mature enough in current

Grids [65], the Accounting mechanism of the general architecture stated in Section

4.1 is not implemented in the GMBS, yet. Furthermore I think that SLA negotiation

can be complex enough to be managed by a separate service that would cooperate

with GMBS in agreement negotiation processes. On the other hand, the MBSDL

language provides a similar solution: it is possible to denote in the QoS requirements

and Policy fields some special requirements that are forwarded by the GMBS to the

selected broker (that supports such requirements). Then it will be the task of the

4.2. Grid Meta-Brokering Service for high-level resource management 77

Figure 4.9: Grid Meta-Broker Service

invoked broker to ensure the QoS requirement during the actual resource selection.

The Security and Accounting mechanisms are not implemented in the GMBS, either.

The security solution applied in this service is the same as described in [45] for the

multi-grid P-GRADE portal and hence I do not give more details here on the security

issues. There are two scenarios how to use GMBS:

Scenario 1: Figure 4.10 depicts a sequence diagram for job submissions through

the GMBS. When the users or portals prefer to invoke and track the brokers them-

selves, the Invoker component of the Service is not used. In this case only the JSDL

document of a job needs to be provided for the GMBS. First the Core (MBService)

calls the Parser to get the job details then turns to the MatchMaker component to

match the required services to the properties of the brokers stored in the Information

Collector. When the fittest broker is found, it contacts the Translator. After the

Translator has converted the JSDL to the job description language of the matched

broker, it responds with the name of the broker and its job description (or with a mes-

sage that none of the registered brokers is able to fulfil the specified job requirements).

In this case security issues are handled by the user or the portal (just like ordinary job

submissions). Finally, the output of the submission (e.g. execution time, success/-

failed status, etc.) needs to be provided to the GMBS (to let the Core modify the

broker property ranks). Here I note that according to this scenario description, the

GMBS only knows about jobs submitted to the Grids through its interface, therefore

78 High-level brokering solution for establishing Grid Interoperability

it does not have a global view of all the reachable Grids. Nevertheless it is prepared

for this uncertainty, and it relies more on the reported historical job submission re-

sults. In the simulation environment (to be discussed in 5.1.2) I use real workloads,

which submissions are done directly to the brokers without the use of the GMBS.

These jobs increase the load of the simulated Grids and appear in the information

system of the simulation environment (just like in real Grids), which is tracked by the

GMBS, and the load information is used during matchmaking. Scenario 1 is useful

for systems that already have reliable connections to resource brokers and would like

to use the meta-brokering service for broker selection and inter-Grid load balancing.

Currently these issues are not taken into account in Grid portals. Even multi-grid

access is rarely supported, where the users have to choose from a list of resource bro-

kers. Furthermore this utilization can be achieved with minimal adaptation efforts

and requires fewer data transfers.

Figure 4.10: Sequence diagram of the GMBS utilization.

Scenario 2: When the actual job submission to the resource brokers is also done

by the GMBS, the Invoker components are used to contact the brokers. The Invokers

are broker-specific components: they communicate with the interconnected brokers,

invoking them with job requests and collecting the results. In this case data handling

4.2. Grid Meta-Brokering Service for high-level resource management 79

is also an important task of this component. In this case the user has to upload

the job, Grid certificate proxies and input files along with the JSDL to the GMBS,

and the Matchmaker component tries to find a proper broker for the request. If it

could not find a broker that was able to fulfil the user requirements, the request is

discarded, otherwise the JSDL is translated to the language of the selected broker. In

the JSDL extension the middleware constraint fields can be used to specify certificate

proxy names for Grids/VOs. This information is used by the Invokers to select the

valid certificate proxy from the uploaded files for the actual job submission. Then the

responsible Invoker takes care of transferring the necessary files to the selected Grid

environment. After job submission, it stages back the output files and upgrades the

historical data stored in the Information Collector with the log of the utilized broker.

The Core component of the service is responsible for managing the communication

(information and data exchange) among the other components. The communication

to the outer world is also done by this part through its web-service interface. Generally

the following operations can be done through this interface (see Table 4.2): adding a

new broker with BPDL, querying the available brokers and the name of the tracked

Grids/VOs (by IS Agents), adding new Information Systems to be tracked (by IS

Agents), submitting jobs (with JSDL) and signaling submitted job results.

Table 4.2: Web Service interface methods of the GMBS.
WS operations Description

addBroker
Adding a new broker to the system

with its BPDL description

addVO
Adding a new VO or Grid to the system

with its IS interface data

submitJSDL
Submitting a job with its JSDL

description

signalJobResult
Notifying the MB of the result

of the submission

getBrokerNames
Querying the utilized brokers

getBrokerPerf
Querying the performance rank of

a utilized broker

getVONames
Querying the connected Grids or

VOs (behind the brokers)

getVOLoad
Querying the actual load of

a connected Grid or VO

Figure 4.11 shows the differences between these two scenarios. In the first case

80 High-level brokering solution for establishing Grid Interoperability

(which corresponds to scenario 1 described above), a lightweight version of the GMBS

is used, so the service can focus on scheduling and let the operator parties do the

broker invocation. In the second case (scenario 2), the Invokers contact the brokers

and take care of data movements.

Figure 4.11: GMBS usage scenarios.

The previously introduced languages are used for matching the user requests to

the description of the interconnected brokers: which is the role of the MatchMaker

component. The scheduling strategy of GMBS is a non-queue-based one. It examines

every user request in the same order of arrival in the system, which reflects the notion

of fairness which is generally accepted by most users. Regarding broker selection, the

used strategy is similar to the Condor matchmaking approach [82] that has been

widely used in Grid resource management. The matchmaking process of GMBS also

takes into account user interests and systems performance. The JSDL contains the

user request (this supposed to be an exact specification of the user’s job) including the

special attributes defined in MBSDL, while the interconnected brokers are described

by their BPDL documents. The matchmaking process consists of the following steps

to find the fittest broker:

• The Matchmaker compares the JSDL of the actual job to the BPDL of the

4.2. Grid Meta-Brokering Service for high-level resource management 81

registered resource brokers. First the job requirement attributes are matched

against the broker properties stored in their BPDLs: this selection determines a

group of brokers that are able to submit the job (denoted by GOODBROKERS

in Listings 4.1). This phase consists of two steps: first the brokers are filtered

by all the requirements stated in the JSDL. If no brokers could fulfil the request,

another filtering process is started with minimal requirements (those ones are

kept, which are real necessary for job execution). If the available brokers still

could not accept the job, it is rejected.

• In the second phase the previous submissions of the brokers and the load of the

underlying Grids are taken into account. The pseudo code of the matchmaking

functions of this phase is shown in Listings 4.1. The MatchMaker component

counts a rank for each of the remaining brokers (by getBrokerPerf). This rank

is calculated from the job completion rate (counted with getFinishedJobs and

getFailedJobs) that is updated in the PerformanceMetrics field of the BPDL for

each broker. The list of the remaining brokers is compared according to these

ranks. Finally the first broker having the highest performance value is selected

for submission, unless the background Grid load (queried by getVOLoad) of the

second one is at least 20 percent less (this load is regularly updated by the IS

Agent). In this later case the second best performing broker is selected.

This is the default scheduling used by GMBS. Different threshold values for load

balancing among the candidate brokers may be used for better scheduling perfor-

mance. More sophisticated scheduling algorithms with various fuzzy functions can

be found in joint publications [P13, 19, 20]. We can see from the description of the

matchmaking process that the GMBS does not use predicted data, but relies on its

measured historical performance results of the brokers to cope with uncertainty. In

the next section we will see simulation measurements for the makespan of groups of

jobs. One may wonder if this makespan could be estimated, or the makespan of some

individual jobs could be predicted and this information could be used for a more

efficient scheduling. Unfortunately in Grids it is really hard (almost impossible) to

estimate the finish time of a job. For such an estimation, we would need the exact

running time of the jobs to be submitted, the number of the jobs, the exact waiting

time of the submitted job on the selected resource at the time of submission (this

is the running time of the queued jobs) including the response time of the resource

manager, and the exact time of the input/output file transfers. Most of the time the

82 High-level brokering solution for establishing Grid Interoperability

Listing 4.1: Pseudo code of the matchmaking of GMBS

FUNCTION: selectBestBroker

IN : GOODBROKERS = b1, ..., bn , candidate broker s

OUT: BESTBROKER, the matched broker

BEGIN:

BESTBROKER = GOODBROKERS1

SNDBROKER = GOODBROKERS2

FOR i = 2 TO GOODBROKERS.size() {
IF (getBrokerPerf(BESTBROKER) <

getBrokerPerf(GOODBROKERSi)) {
SNDBROKER = BESTBROKER
BESTBROKER = GOODBROKERSi

}
}
/∗ choose the second best per forming i f
at l e a s t 20 percent l e s s loaded ∗/
IF (getVOLoad(BESTBROKER) > getVOLoad(SNDBROKER+20) {

BESTBROKER = SNDBROKER
}

RETURN: BESTBROKER

FUNCTION: getBrokerPerf

IN : BROKER, a broker

OUT: PERFVAL, the performance value o f the broker

BEGIN:

PERFVAL = (getFinishedJobs (BROKER)+1) /
(getFailedJobs (BROKER)∗3)+1)

RETURN: PERFVAL

4.2. Grid Meta-Brokering Service for high-level resource management 83

underlying Grid middleware does not provide enough information on its related com-

ponents or services (local managers), and even the users cannot give exact estimations

on the run time of their own jobs [56].

4.2.4 Refining the ASM model to formalize the matchmaking

of GMBS

In the following I present the refinement of the broker mapping (Rule 5) of the ASM

model for Grid brokering introduced in Section 3.2 of Chapter 3.

Π′

broker mapping

if (∃r1, . . . , rm ∈ REQUIREMENT, ∃p1, . . . , pn ∈ PROPERTY,

∃j ∈ JOB, ∃b1, . . . , bl ∈ BROKER, ∃v1, . . . , vl ∈ REAL):

mappedbroker(j) = undef & ∀t : request(j, rt) = true, 1 ≤ t ≤ m,

& ∀i : have(bk, pi) = true, 1 ≤ i ≤ n, 1 ≤ k ≤ l

then do forall k (1 ≤ k ≤ l)

vk := getBrokerPerf(bk)

if (¬∃t, i): attr(rt) = attr(pi) & have(bk, pi) = true, 1 ≤ t ≤ m, 1 ≤ i ≤ n

then vk := 0

enddo

choose vmax in (v1, . . . , vl)

satisfying vmax ≥ vk, 1 ≤ k, max ≤ l

mappedbroker(j) := bmax

endchoose

endif

This refinement also details how the compatible function is implemented. In case of

the Grid Meta-broker Service, the attributes of the broker properties are certain key-

words. The users have to use the same keywords in their requirement specifications,

therefore compatibility means exact string matching. The refined agent also uses an

additional function getBrokerPerf: BROKER → REAL, which returns a real num-

ber denoting the dynamic performance of the appropriate broker. The higher this

value is the better the broker performs.

84 High-level brokering solution for establishing Grid Interoperability

In the next section I summarize the related works, and the next chapter continues

with the performance analysis of GMBS.

4.3 Related Grid Interoperability efforts in Grid

resource management

Several research groups have noticed that current Grid resource management tools

will not be able to fulfil the high demands of future generation Grid systems, and

have started to look for solutions to enhance interoperability. In the previous chapters

I have introduced and formalized Grid brokering and the problem of Grid Interop-

erability. Though I propose interoperability solution at the resource management

layer of Grid systems, I mention that there are interoperation efforts at lower and

higher layers, too. For example, the Generic Grid-Grid Bridge (3G Bridge) [42] is a

generic implementation for a low-level gateway service that allows the execution of

jobs within different Grid middleware using Grid plugins that implement interfaces

job submission entry points of different Grids. Regarding upper layers, a solution for

Grid Interoperability at workflow level is presented in [45], which provides a way to

execute the components of a workflow simultaneously in several Grids.

I differentiate three directions to tackle the problem of Grid Interoperability in

Grid resource management:

1. the first approach is to extend existing brokers with multiple Grid middleware

support,

2. the second direction uses portals to interface different brokers,

3. the third category represents higher level brokering approaches including inter-

broker communication and meta-brokering, which introduces another level above

current brokering solutions.

4.3.1 Related Grid Interoperability efforts with multiple Grid

middleware support

The idea of this approach is to extend existing resource brokers with multiple Grid

middleware support. We have already seen in the Grid broker taxonomy in Section 2.2

4.3. Related Grid Interoperability efforts in Grid resource management 85

that some brokers are designed or have been extended to support services of different

Grids. The following ones fall into this category:

• The Gridbus Grid Service Broker [86] is designed for computational and data-

Grid applications. Although it supports all Globus middleware, and it provides

an interface to be implemented for other middleware support (experimentally

done for UNICORE [143] and Nordugrid [122]), it is mainly used in Globus

Grids. In their latest publication [13] they also identified the burden of middle-

ware support extensions and proposed a peer-to-peer resource discovery service

to create a Grid-Federation network.

• Gridway [38] has been developed in a Globus incubation project, therefore it

supports all Globus versions. Lately it has been extended to interface more

middleware [105] (namely gLite, NorduGrid and OSG [127]).

• The JSS [24] is a decentralized resource broker that is able to utilize both GT4

[99] and NorduGrid resources, and they plan to interface EGEE.

• GTbroker has been designed for Globus Grids, later extended to support EGEE

Grids. This broker will be introduced and further discussed in Section 2.5.1.

As we can see, some groups have started to extend their solutions, but the adoption

of all services of other middleware systems could not be fully done in any of these

attempts. These tools use different job descriptions and do not communicate with

each other: putting an end to this separation process would need high efforts by all

parties, therefore I need to look for different approaches.

4.3.2 Related Grid Interoperability efforts by portals

The second approach means providing a higher level tool that supports different

middleware services, including job submission, brokering or storage access. Related

solutions of this approach are Grid portals. The widespread and well known ones are

Pegasus [76], GridFlow [16], K-Wf [62] Grid portal and Single Point of Access (SPA)

portal of the HPC-Europa Project [109]. Though the first three examples provide

high-level access to Grid services, they usually operate only on one middleware.

The HPC-Europa project aimed at building a Grid portal that provides a uni-

form and intuitive user interface to access and use resources from different domains,

86 High-level brokering solution for establishing Grid Interoperability

so-called centers. Since most of the HPC centers have already deployed their own

site-specific HPC and Grid infrastructure, it is an important requirement for them

to keep the autonomy of these centers by allowing them to use their middleware and

local policies. There are five different systems that provide job submission and ba-

sic monitoring functionality in the HPC-Europa infrastructure: eNANOS [71], GRIA

middleware [101], Grid Resource Management System (GRMS) [53], Job Schedul-

ing Hierarchically (JOSH) [112] and UNICORE [143]. The Single Point of Access

(SPA) effort of HPC-Europa provides two sets of interfaces to application users. The

first one is a generic interface set that can be used by all users for most of their

batch applications. These uniform interfaces are used to access the most relevant

Grid functionalities, which have been identified by analysing the requirements of the

centers. These key functionalities are: job submission, job monitoring, resource infor-

mation access, accounting, authorization, and data management. The second, more

application-specific set of interfaces, allow users to manage more complex applications

by building portlets. Using these interfaces the accompanying resource managers can

build a plugin-based component. These interface methods need to be used by all

brokers, providing the same abstract functionality; therefore during an integration

the broker would also have to be modified. From the end-user perspective, a uniform

Graphical User Interface is provided that is common for all systems deployed in the

HPC-Europa infrastructure. When a user wants to submit a job, the user is required

to choose the center to which the job has to be submitted and to specify its require-

ments. There is no global scheduling, the brokering is done by the user manually. To

help this selection, the system can provide a description of the capabilities of the site-

specific plug-ins. In this way the user gets an XML-based description of the methods

the appropriate plug-in supports, and a description of the data structures to be used

for invocation (e.g., job description).

My proposed multi-grid brokering solution is provided by the P-GRADE Portal

[46], which is a Grid portal, with the main goal to support all stages of multi-grid

workflow development and execution processes in various production Grids. It enables

graphical design of workflows created from various types of executable components

(sequential and parallel), executing these workflows in Globus-based computational

Grids relying on user credentials, and finally, analysing the monitored trace-data by

the built-in visualization facilities. The following functionalities are supported: defin-

ing Grid environments, creation and modification of workflow applications, managing

Grid certificates, controlling the execution of workflow applications on Grid resources

4.3. Related Grid Interoperability efforts in Grid resource management 87

and monitoring and visualizing the progress of workflows and their component jobs.

The portal is interfaced to different brokers to access different VOs and Grids, such

as LCG-2, gLite WMS [92], GTbroker and the NorduGrid broker [122]. During

the workflow development process, the user can choose one from the interconnected

production Grids. Furthermore resource managers or specific resources can also be

selected afterwards. This manual selection need to be done by the user (just like in

the previous HPC-Europa approach). To help the users, this portal provides GUI for

resource information and a specific workflow for VO-usability test.

In both of these interoperable portal approaches users can submit jobs to different

domains in a transparent way. Though this provides some level of interoperability, the

users still need to be aware of the capabilities of the available resource managers, and

they need to gather or track resource information themselves. In order to automate

these tasks higher level approaches are needed, which are discussed next.

4.3.3 Related Grid Interoperability efforts with higher level

Grid resource management

Meta-brokering means a higher level solution that schedules user jobs among various

Grid brokers/domains. One of these meta-brokering approaches aims at enabling

communication among existing resource brokers. The GSA-RG of OGF [124] works

on a project for enabling Grid scheduler interaction. They try to define common

protocol and interface among schedulers enabling inter-Grid usage. Though a common

interface for inter-broker communication would enhance interoperation of different

Grids, it usually takes a long time to standardize such protocols. To achieve this,

they use standard tools (JSDL [113], OGSA [123], WS-Agreement [89], and propose

an SDL (Scheduling Description Language) to extend the currently available job

description language. Lately researchers of this group were paying more attention

to agreements, and examined how to use WS-Agreement to make negotiations and

perform interaction [75].

Other groups have started to develop their own protocols for inter-broker com-

munication. One of these groups is the Latin American Grid initiative (LA Grid

[72, 116]), which is a multifaceted international academic and industry partner-

ship between major institutions in the United States, Mexico, Argentina, Spain and

other locations around the world. The LA Grid main research areas are transpar-

ent Grid access, autonomic resource management and job flow management. The

88 High-level brokering solution for establishing Grid Interoperability

meta-scheduling project in LA Grid aims to support Grid applications with resources

located and managed in different domains. They define broker instances with a set of

functional modules: connection management, resource management, job management

and notification management. These modules implement protocols used in LA Grid

through web services. A broker instance interacts with existent brokers within the

resource domain. Each broker instance collects resource information from its neigh-

bours and saves the information in its resource repository. The resource information

is distributed in the Grid and each instance will have a view of all resources. The

resource information is in aggregated forms to save storage space and communication

bandwidth. A job request can be submitted to any known broker instance using web

services. When a job request arrives, the broker matches the job to a domain with

the appropriate set of resources. The matching algorithm is influenced by multiple

factors; an important one is the location of resources such that the preference will be

given to the local domain in which the job is submitted. If the matched resources

are outside of the domain, the job is routed to a broker instance in another domain.

From that point this additional broker instance is responsible for dispatching the job

again, if needed, and reporting the job states back to the instance where the job was

originally submitted.

The Koala Grid scheduler [115] was designed to work on DAS-2 interacting with

Globus [99] middleware services with the main features of data and processor co-

allocation, and it has been extended to support DAS-3 and Grid’5000. To inter-

connect different Grids, they have also decided to use inter-broker communication.

Their policy is to use a remote Grid only if the local one is saturated. They use

a so-called delegated matchmaking (DMM) [40], where Koala instances delegate re-

source information in a peer-2-peer manner. The LA Grid approach is similar, but

they share aggregated resource data, while DMM uses a ranking of domains by their

resources. For preliminary test they have built a simulator that behaves similarly as

the previously mentioned Grids. The simulations results show that their architecture

accommodates equally well for low and high system loads.

Gridway [105] has also broadened its support for multiple Grids. They introduce

a Scheduling Architectures Taxonomy (SAT) [55] where they describe a Multiple

Grid Infrastructure. It consists of different categories, we are interested in the Multi-

ple Meta-Scheduler Layers, where Gridway instances can communicate and interact

through Grid gateways (these instances are called GridGateways). These instances

can access resources belonging to different administrative domains (Grids/VOs). The

4.3. Related Grid Interoperability efforts in Grid resource management 89

basic idea is to pass user requests to another domain, when the current is overloaded –

this approach follows the same idea as the previously introduced Koala DMM. Grid-

way is also based on Globus, and has been extended for GT4 [99] and gLite [100].

They further developed this idea and in their latest work they demonstrate interop-

eration with Gridway on federation of Grids [85] (namely on TeraGrid, EGEE and

OSG).

The InterGrid approach [4], which promotes interlinking of Grid systems through

peering agreements to enable inter-Grid resource sharing is similar to the idea of

the federation of Grids. This approach has an economical view, where business ap-

plication support and sustainability are primal goals. In this architecture, so-called

IntraGrid Resource Managers (IRM) would play the role of Resource Brokers. The

InterGrid Gateway (IGG) would be responsible of making agreements with other

Grids through their IRMs. Their main tasks are to manage peering agreements and

discover and allocate resources from different domains. The disadvantages are also

similar: all IRMs should use the same protocol, therefore existing brokers should be

redesigned to participate in this system.

Comparing the previous approaches, I can state that all of them use a new method

to expand current Grid resource management boundaries. Meta-brokering appears

in a sense that different domains are being examined as a whole, but they rather

delegate resource information among domains, broker instances or gateways through

their own, implementation-dependent interfaces. Usually the local domain has pref-

erence, and when a job is passed to somewhere else, the result should be transferred

back to the initial point. Regarding multi-grid usage, the existing Grids are very

strict and conservative in the sense that they are very reluctant to introduce any

modification that is coming from research or from other Grid initiatives. Hence these

solutions aiming at inter-connecting the existing brokers through common interfaces

require a long standardization procedure before it will be accepted and adapted by

the various Grid communities. The idea of a Grid federation based on GridWay is

the most advanced solution, its only disadvantage that it fails to unify different user

communities relying on brokers offering special services we have seen in the taxonomy

(eg. co-allocation, checkpointing and so on).

On the other hand the advantage of my proposed meta-brokering concept is that

it supports highest number of broker capabilities possible, and it does not require any

modification of the existing Grid resource managers, since it utilizes and delegates

broker information by reaching them through their current interfaces. An important

90 High-level brokering solution for establishing Grid Interoperability

characteristics of Grid Interoperability is to support all the special user requirements

that are available (see the taxonomy categories in Section 2.2).

4.3.4 Classification of related works

Now we have the comparative descriptions of the related works and approaches, I

continue with the formal classification based on the ASM model introduced in Section

3.3 of Chapter 3.

As we have seen above, four solutions fall into the Broker extension group. Grid-

bus is able to submit jobs to Globus, UNICORE and Nordugrid – let us denote these

Grids by g, u, n ∈ GRID respectively. Gridway can be used in Globus, gLite, Nor-

dugrid and OSG – similarly denoted by g, l, n, o ∈ GRID. JSS can utilize Globus

and Nordugrid resources (g, n ∈ GRID), while GTbroker can use Globus, LCG-2

and gLite resources (g, e, l ∈ GRID). Therefore the following statement holds for

the brokers (denoted by bname ∈ BROKER) in this group:

∃he, hg, hl, hn, ho, hu ∈ HOST :

provides(g, hg) = true &

manages(bGridbus, hg) = true & manages(bGridway, hg) = true &

manages(bJSS, hg) = true & manages(bGTbroker, hg) = true

provides(n, hn) = true & manages(bGridbus, hn) = true &

manages(bGridway, hn) = true & manages(bJSS, hn) = true

provides(l, hl) = true &

manages(bGridway, hl) = true & manages(bGTbroker, hl) = true

provides(u, hu) = true & manages(bGridbus, hu) = true

provides(o, ho) = true & manages(bGridway, ho) = true

provides(e, he) = true & manages(bGTbroker, he) = true

The SPA of HPC-Europa and the P-GRADE portal fall into the multi-brokering

group. SPA can utilize eNanos, GRMS and JOSH, so the following statement holds

4.3. Related Grid Interoperability efforts in Grid resource management 91

for it:

∀ri ∈ REQUIREMENT, 1 ≤ i ≤ k : ∃h ∈ HOST, ∃pr ∈ PRESOURCE :

belongsTo(pr, h) = true & compatible(attr(ri), attr(pr)) = true &

(manages(beNanos, h) = true OR manages(bGRMS , h) = true OR

manages(bJOSH , h) = true)

and

∀rj ∈ REQUIREMENT, 1 ≤ j ≤ m : ∃p ∈ PROPERTY :

compatible(attr(rj), attr(p)) = true &

(have(beNanos, p) = true OR have(bGRMS , p) = true OR

have(bJOSH, p) = true)

The P-GRADE portal manages GTbroker, the Nordugrid broker and WMS of

EGEE, therefore it is true that:

∀rl ∈ REQUIREMENT, 1 ≤ l ≤ n : ∃h ∈ HOST, ∃pr ∈ PRESOURCE :

belongsTo(pr, h) = true & compatible(attr(rl), attr(pr)) = true &

(manages(bGTbroker, h) = true OR manages(bNordugrid, h) = true OR

manages(bWMS , h) = true)

and

∀rq ∈ REQUIREMENT, 1 ≤ q ≤ t : ∃p ∈ PROPERTY :

compatible(attr(rq), attr(p)) = true &

(have(bGTbroker, p) = true OR have(bNordugrid, p) = true OR

have(bWMS, p) = true)

As a result the SPA of HPC-Europa may satisfy k +m user requirements by three

brokers, and the P-GRADE portal may satisfy n + t requirements by three other

brokers. But users need to select manually the proper broker for all the jobs to be

executed.

Regarding solutions in the third, Meta-brokering group, the first four solutions

use the same broker instances in a peer-to-peer meta-brokering environment, there-

fore they can only provide their own broker properties:

∀ri ∈ REQUIREMENT, 1 ≤ i ≤ k : ∃h ∈ HOST, ∃pr ∈ PRESOURCE :

belongsTo(pr, h) = true & compatible(attr(ri), attr(pr)) = true &

92 High-level brokering solution for establishing Grid Interoperability

manages(bLA, h) = true

and

∀rj ∈ REQUIREMENT, 1 ≤ j ≤ m : ∃p ∈ PROPERTY :

compatible(attr(rj), attr(p)) = true & have(bLA, p) = true

The same holds for bKOALA, bInterGrid and bGridwayFederation. While in case of GMBS

the following statement holds for all bz managed by GMBS:

∀rl ∈ REQUIREMENT, 1 ≤ l ≤ n : ∃h ∈ HOST, ∃pr ∈ PRESOURCE :

manages(bz, h) = true & belongsTo(pr, h) = true &

compatible(attr(rl), attr(pr)) = true

and

∀rq ∈ REQUIREMENT, 1 ≤ q ≤ t : ∃p ∈ PROPERTY :

compatible(attr(rq), attr(p)) = true & have(bz, p) = true

Since GMBS can utilize all brokers that can be described by BPDL (at least the 16

brokers of the taxonomy) and therefore it represents all their properties, it is true that

m << t, so it can provide the highest level of Grid Interoperability with automatic

broker selection.

The classification of the previously introduced solutions according to the formal

statements given above can bee seen in Table 4.3. A bullet in the appropriate column

means that the actual solution is able to provide the level of interoperability the

column denotes. ”M” means manual and ”A” means automatic selection from the

available Grids (or brokers) for a user request.

4.4 Outlook of GMBS

Even though GMBS has reached a maturity state in its present form that it is able to

solve the problem of Grid Interoperability, development does not stop here. There are

several ongoing collaborations that work on extensions of GMBS in order to prepare

it to cope with future challenges.

Since currently user communities are tightly coupled to brokers or Grid portals,

the best way to use GMBS is a matchmaking service for Grid portals. Together with

my colleagues we are currently working on interfacing GMBS with the P-GRADE

Portal [46] and the WS-PGRADE portal [43]. Recent Grid usage trends show that

4.4. Outlook of GMBS 93

Table 4.3: Classification of Grid Interoperability solutions.

Solution
Low-level High-level

interoperability
M A M A

Broker extension
Gridbus •
Gridway •

GTbroker •
JSS •

Multi-brokering
HPC-Europa • • •

P-GRADE Portal • • •

Meta-brokering
LA Grid • •

Koala DMM • •
InterGrid • •

Gridway Federation • •
GMBS • • • •

new or growing user communities set up a new portal to serve the community instead

of joining portals of other user communities (see the growing number of portal instal-

lations [132] in case of the P-GRADE portal). Till this trend continues, all portals will

have their own GMBS instance that will be able to serve their users. This means that

the centralized architecture of GMBS will not become a bottleneck for job submissions

in the portal. Nevertheless we cannot say that such a situation will not ever appear

in the future. To target this scalability issue, we have already started a collaboration

with the Technical University of Delft for investigating load sharing with multiple

meta-broker instances connected to a peer-to-peer network [49]. This solution will

avoid possible future bottlenecks and will be capable of serving thousands of users

accessing a single GMBS instance.

In an other collaboration we have investigated the scheduling part of the GMBS

matchmaking process, and designed a Decision Maker component in [P13] as an

extension of the MatchMaker component of GMBS. The first part of the matchmaking

remained unchanged: the list of the available brokers is filtered according to the

requirements of the actual job read from its job description. Then the list of the

remaining brokers along with their performance data and background load are sent

to the Decision Maker in order to determine the fittest broker for the actual job. The

94 High-level brokering solution for establishing Grid Interoperability

Decision Maker uses a random number generator, which generates pseudo-random

numbers. We also developed a unique random number generator, which generates

random numbers with a given distribution, which we called a generator function. To

improve the scheduling performance of the Meta-Broker we need to send the job to

the broker that best fits the requirements and executes the job without failures with

the shortest execution time. Every broker has three properties that the algorithm

can rely on: the successful counter, the failure counter and the load counter. We

have developed four different kinds of decision algorithms using these counters and

shown that the scheduling process of GMBS can be improved with the Decision Maker

component. Later on in [19, 20] we have developed an additional algorithm based on

a weighted fitness function that uses the Pliant System, which also brought additional

performance gain.

In this dissertation I particularly focused on Service Grids. Desktop Grids are

commonly known as volunteer computing systems, because they often rely upon the

general public to donate compute resources or spare cycles. Unlike Service Grids,

which are based on complex architectures, volunteer computing has a simple archi-

tecture and has demonstrated the ability to integrate dispersed, heterogeneous com-

puting resources with ease, successfully scavenging cycles from tens of thousands of

idle desktop computers. These two kinds of Grid systems have been completely sepa-

rated, hence there has not been a mechanism to exploit their individual advantageous

features in a unified environment. However, with the objective to support new scien-

tific communities who need extremely large numbers of resources, the solution could

be to interconnect these two kinds of Grid systems into an integrated Service Grid

– Desktop Grid (SG-DG) infrastructure. User communities have gathered around

various Grid systems (including Service and Desktop Grids) forming separate islands

that represent borders they cannot cross. As these communities are growing and

demanding more and more computational power, uniting these islands draws more

attention in Grid research and development. An approach to extend GMBS to Desk-

top Grids is given in [48]. In this paper we investigated with my colleagues, how to

use the 3GBridge service [84] acting as a Service Grid broker that can be managed

by GMBS.

Cloud Computing [14] is a novel infrastructure that focuses on commercial resource

provision and virtualization. Grids already provide solutions for executing complex

user tasks, but they are still lacking non-functional guarantees. The newly emerging

demands of Grid users and researchers call for expanding current execution models

4.5. Summary 95

with business-oriented utilization and support for special services. These demands

could be fulfilled in Grids by using the novel virtualization technologies developed

for Clouds. Looking beyond Grids, in the near future such complex applications will

appear that require the simultaneous utilization of Grid, Web and Cloud services.

To target this problem area, we have started a collaboration with the Technical Uni-

versity of Vienna to develop a unified service architecture called SLA-based Resource

Virtualization (SSV) that builds on three main areas: agreement negotiation, broker-

ing and service deployment using virtualization. The brokering functionalities of this

architecture is provided by GMBS. The basic requirements of this architecture, the

corresponding components and their interactions have been published in [P15] and

[50].

4.5 Summary

In this chapter I introduced a general architecture for meta-brokering and described

the development of the Grid Meta-Broker Service. I gathered the related approaches

in the literature that have appeared up to now, and classified all the available inter-

operable solutions. This classification shows that GMBS provides the highest level

of Grid Interoperability. Finally I gave an outlook where GMBS continues to evolve,

and how it will serve as a general gateway for heterogeneous distributed environments

beyond Grids in the future. The results of this chapter belong to theses II and III,

and were published in papers [P3], [P6], [P7], [P8], [P9], [P10], [P12], [P14], [P13],

[P15], [P17], and [P19].

96 High-level brokering solution for establishing Grid Interoperability

Chapter 5
The evaluation of Grid meta-brokering

5.1 Evaluation of GMBS

5.1.1 Evaluation methodology

In Section 4.3.3 of Chapter 4 we have seen how the meta-brokering service proposed

in this dissertation and the related solutions address Grid Interoperability, and we ar-

gued that GMBS provides the highest level of interoperability by satisfying most user

requirements with automatic broker selection. Therefore the evaluation methodology

addressed in this section targets the speedup of scientific Grid applications measured

by using the proposed interoperable GMBS meta-brokering service, compared to the

usual, non-interoperable case. As I mentioned in the introduction of this dissertation,

various production Grids have been set up all around the world attracting separate

user communities. As a result, in this general, non-interoperable Grid utilization dif-

ferent users submit their jobs to different production Grids they belong to. In the

following experiments I use random distribution of user jobs in order to simulate this

non-interoperable utilization.

In order to address universality, I use real user application execution traces as

background workload gathered both in parallel and production Grid environments,

published in publicly available archives [129, 107]. Since these traces contain various

jobs of hundreds of users, a general job execution time cannot be determined. There-

fore, I decided to rely on my own experiences of application gridification in selecting

the reference Grid application for the simulations. In the beginning of Chapter 2 I

also discussed that user support teams have been established in order to help applica-

98 The evaluation of Grid meta-brokering

tion gridification. I have been involved in the work of the Grid Application Support

Centre [103], and learned how the decomposition of the original application should

be selected in order to reduce the overall makespan of its jobs. According to these ex-

periences, in the evaluation I examine how meta-brokering may speed up application

executions decomposed to jobs running around 10 minutes.

Although I have gathered 16 brokers surveyed in the taxonomy in Section 2.2 of

Chapter 2, not all of them are used in current production Grids by large number

of users. Taking into account the major service Grids around the world, their ag-

gregated access through meta-brokering to establish Grid Interoperability could be

achieved with the integrated management of around 10 brokers. Since the usage of

Service Level Agreements [65] is still rarely supported in production Grids, scientific

applications use only some special requirements. They are expected to increase in the

near future, but the current non-interoperable Grid systems hinders using complex

requirements (which would reduce the number of suitable resources). According to

these current practical usage conditions, in the following subsections I evaluate the

performance of meta-brokering in simulated Grid environments managed by 6 to 14

brokers having various properties. Each broker has an own simulated Grid with 16

to 48 nodes loaded by real workload traces.

5.1.2 Grid meta-brokering simulation architecture

Regarding general purpose Grid simulations, two main solutions have been developed:

SimGrid [57], GridSim [12]. For simulating Grid scheduling, additional tools have

been developed: GangSim [22], GSSIM [54], OptorSim [5] and Alvio [36]. GangSim is

specialized in SLA-based resource sharing simulations. GSSIM is based on GridSim

and it can be used to evaluate various scheduling algorithms for Grid brokers. Optor-

Sim is designed to test dynamic replication strategies used in optimising the efficiency

of data movements in Grids. Finally Alvio provides a framework for evaluating the

performance of different Grid scheduling policies. Most of these tools do not support

evaluating higher level, meta-brokering algorithms in their current forms. Only an

extension of the Alvio simulator deals with built-in meta-brokering policies, but it

rather focuses on job forwarding among brokers in a peer-to-peer fashion.

In order to evaluate my proposed meta-brokering service, I have designed a gen-

eral meta-brokering simulation environment, in which all the related Grid resource

management entities can be simulated and coordinated. Since SimGrid simulates

5.1. Evaluation of GMBS 99

various distributed computing platforms, it covers a wider application area, less spe-

cialized in Grid systems and has less impact in Grid research. On the other hand,

the GridSim toolkit is a fully extendible, widely used and accepted Grid simulation

tool – these are the main reasons why I have chosen this toolkit for my simulations.

It can be used for evaluating VO-based resource allocation, workflow scheduling, and

dynamic resource provisioning techniques in global Grids [12]. It supports modeling

and simulation of heterogeneous Grid resources, users, applications, brokers and local

schedulers in a Grid Computing environment. It provides primitives for the creation

of jobs (called gridlets), mapping of these jobs to resources, and their management,

therefore resource brokers can be simulated to study scheduling algorithms. It pro-

vides a multilayered design architecture based on SimJava [37], a general purpose

discrete-event simulation package implemented in Java. All components in GridSim

communicate with each other through message passing operations defined by Sim-

Java.

Figure 5.1: Meta-brokering simulation environment.

The general meta-brokering simulation architecture can be seen in Figure 5.1. On

the right-bottom part we can see the GridSim components used for the simulated

Grid systems. Resources can be defined with different Grid-types. Resources consist

of more machines, to which workloads can be set. As an extension of GridSim classes,

I have developed the Broker and Simulator entities in order to enable the simulation

100 The evaluation of Grid meta-brokering

of meta-brokering. On top of this simulated Grid infrastructure we can use the Broker

entities for setting up brokers with various scheduling policies, while the Simulator

component is responsible for parametrizing and executing each experiment. Before

the GMBS is used in the simulation, it has to be configured with BPDL descriptions,

and the job requests need to be submitted in JSDL.

Brokers are extended GridUser entities:

• they can be connected to one or more resources;

• different properties can be set to these brokers (agreement handling, co-allocation,

advance reservation, etc.);

• some properties can be marked as unreliable;

• various scheduling policies can be defined (pre-defined ones: rnd – random

resource selection, fcpu – resources having more free CPUs or less waiting jobs

are selected, nfailed – resources having less machine failures are selected);

• generally resubmission is used, when a job fails due to resource failure;

• finally they report to the IS (Information System) Grid load database.

The Simulator is an extended GridSim entity:

• it can generate a requested number of gridlets (jobs) with different properties,

start and run time (length);

• it is connected to the created brokers and able to submit jobs to them;

• the default job distribution is the random broker selection (though at least the

middleware types are taken into account);

• in case of job failures a different broker is selected for the actual job;

• it is also connected to the Grid Meta-Broker Service through its web service

interface and able to call its matchmaking service for broker selection.

5.1. Evaluation of GMBS 101

Table 5.1: Evaluation results of the first experiment.

Brokers Resources Jobs
Work- AVG Time AVG Time
load RND MB

3/X – 3/Y
6x4(x4) 100 20x(6x4) 1086140.78

93959.86
(rnd) 8.6%

3/X – 3/Y
6x4(x4) 100 20x(6x4) 255944.12

18469.28
(fcpu) 7.2%

5.1.3 Evaluation with parallel workloads

For the evaluation of the GMBS I executed three experiments with parallel workloads,

each of them is summarized in Table 5.1, 5.2 and 5.3 respectively. The tables have

six columns, each row denotes a simulation with the specified environment setups.

The first column shows the number of brokers participating in the actual simulation,

their middleware types and the used scheduling policy (e.g. 3/X - 3/Y (rnd) means

that 6 brokers are used in the simulation: three of them are operating on middleware

X, the remaining three are using middleware Y, and all brokers use the rnd policy).

The second column shows the number of resources participating in the simulation:

6x4(x4) denotes an environment consisting of 6 brokers operating on 4 resources each;

each resource is a cluster of 4 machines. The third column shows the number of jobs

submitted in a run of the simulation. The fourth column shows the number of jobs

submitted to each resource as background load: 20x(6x4) means that 20 jobs were

submitted to each cluster of the 6 brokers, i.e. 480 workload jobs have been submitted

to 24 clusters during the simulation. I used the cleaned SDSC Blue Horizon workload

logs from the Parallel Workloads Archive [129], which contain detailed workload logs

collected from large scale parallel systems in production use in various places around

the world. This cleaned log file contains data on 243,314 jobs of 468 users with 32

months of activity. I have chosen this trace, because it represents a high variety of

user applications submitted by many users. This log had the longest time frame with

the highest load from the available traces in the archive. These were important char-

acteristics, because I had to partition these logs to feed simulated resources of several

simulated Grids/VOs. I have analysed the traces in order to select representative

fragments, and further partitioned this file into separate workload files to feed the

clusters of the simulated Grids as background load. In case of the setup denoted by

20x(6x4), I created 24 workload files, each of them contained 20 jobs. The sorting of

the jobs to files from the original log file has been done in a continuous manner, and

102 The evaluation of Grid meta-brokering

their arrival times have been manually rescaled to fit the simulation time interval;

the runtime of the jobs remained the same as in the original log. The fifth column

shows the average simulated run time of the jobs, when I used random distribution

among the brokers. The sixth column shows the average simulated run time for the

jobs submitted to brokers selected by the GMBS, and also denotes the percentage

according to the measured times in the fifth column.

Table 5.2: Evaluation results of the second experiment.

Brokers
Resour-

Jobs
Work- AVG Time AVG Time

ces load RND MB

8x4(x4) 100 20x(8x4) 1320141.79

226344.34
8/X 17.1%
(rnd) 2nd: 22304.95

1.7%

8x4(x4) 100 20x(8x4) 236322.30

117563.16
8/X 49.7%

(fcpu) 2nd: 14318.0
6.1%

In the first experiment, which is summarized in Table 5.1, I submitted 100 jobs

at a time. I used an environment consisting of 6 brokers operating on four resources

each; each resource had four machines. Three brokers used resources with GRID X

middleware and the other three used resources with GRID Y middleware. Four special

properties (checkpointing, advance reservation, co-allocation and agreement handling)

were distributed among the brokers, each broker had two special properties, out of

which one was unreliable (50% failure). Half of the jobs were sent to GRID X, the

rest to GRID Y. 20% of the jobs had no special property, the rest of the jobs had

one special property and all the four properties were distributed equally among the

jobs (20 jobs had no special property, 20 jobs had checkpointing requirement, 20 jobs

required co-allocation, 20 jobs had advance reservation requirement and the rest 20

jobs required agreement handling). The run time of the jobs took around 5 minutes

each. The first row denotes a configuration, in which 6 brokers used random selection

policy (which is the first one of the available policies described in subsection 5.1.2),

100 jobs were submitted into the system and 20 jobs were submitted to each resource

(cluster) as background workload. In the second row the fcpu policy is used by the

brokers, the number of jobs and workload samples were the same.

Due to the broker property distribution in the first simulation setup, a job with a

5.1. Evaluation of GMBS 103

Table 5.3: Evaluation results of the third experiment.

Brokers
Resour-

Jobs
Work- AVG Time AVG Time

ces load RND MB
6/X 6x8(x2)

100

20x(6x8)

804538.18

286968.93
(fcpu) 35.7%
3/X 3x10(x2) 20x(3x10)

(nfail) With training:
1/X 1x16(x2) 20x(1x16) 52990.76
(rnd) 6.6%
6/X 6x8(x2)

1000

50x(6x8)

2268272.70

737762.46
(fcpu) 32.5%
3/X 3x10(x2) 50x(3x10)

(nfail) With training:
1/X 1x16(x2) 50x(1x16) 373857.80
(rnd) 16.5%

special property running on either middleware could surely successfully run only on

one specific broker. This caused overloading of some brokers even with the use of the

GMBS, therefore I created a different environment. In the second experiment I set

up 8 brokers operating on 4 resources each (just like in the previous configuration),

but all having the same GRID X middleware. The same property distribution was

used for the jobs. The brokers had 2-2 special properties again, but every second

broker had one unreliable property (in this case two brokers could run some job the

same time without any failures). The results are shown in Table 5.2. The last column

contains additional information: this means I repeated the measurement again, in a

way that the brokers were aware of previous submission failures.

5.1.4 Evaluation with preliminary training

In the second experiment I realized that repeating measurements on the same environ-

ment setup caused additional performance gain. In such cases the first evaluation run

can be regarded as a training phase, in which the meta-broker learns which properties

of the brokers are unreliable. Based on these experiences, I developed a preliminary

training phase, in which I submit training jobs with different property requirements

to each broker. As a result of these submissions, the dynamic performance data of

the participating brokers are initiated in the BPDLs. In the following experiments I

also measured the performance results of runs using such training phases.

In the third experiment (shown in Table 5.3) I submitted first 100, then 1000

104 The evaluation of Grid meta-brokering

Figure 5.2: Evaluation diagram corresponding to the first row of Table 5.3

jobs at a time. I defined 10 brokers running on Grids with similar middleware. I

distributed three properties (checkpointing, co-allocation and agreement handling):

6 brokers had 1-1 property, out of which three brokers were unreliable. These 6

brokers were running on 8 resources each. Three other brokers had 2-2 properties,

1-1 were unreliable. These three brokers were running on 10 resources each. Finally,

the 10th broker had no special property and ran on 16 resources. 40% of the jobs

had no special property, the rest were distributed equally among the three properties.

The run time of the submitted jobs was around 10 minutes. In the training phase

10 preliminary jobs have been submitted in order to initiate the BPDLs. 50 jobs

were submitted to each resource by the workload entities in the second phase of this

experiment, which put heavier load on the resources. The last column of Table 5.3

shows the results of these simulations.

Figure 5.2 and 5.3 depict detailed evaluation runs with logarithmic time curves

for randomized broker selection, Meta-Broker utilization and enhanced Meta-Broker

utilization with preliminary training phases. The detailed values correspond to the

first and second rows of Table 5.3, respectively. In Figure 5.4, we can see the sum-

marized results denoting average runtime values for each experiment setup, which

5.1. Evaluation of GMBS 105

Figure 5.3: Evaluation diagram corresponding to the second row of Table 5.3

clearly show that the Grid Meta-Broker Service provides less total execution time

(makespan) by automating broker and Grid selection for users. During utilization it

is able to adapt to broker failures and to avoid selecting overloaded Grids. Using a

preliminary training phase can significantly improve the performance.

Taking a look at these three simulation experiments we can see that the envi-

ronments are reasonably chosen. For the first time I set up a simple environment

with 3-3 brokers on different Grid middleware. For the second time I omitted differ-

entiating the middleware types, because in this environment it meant only another

broker property (it did not require additional scheduling steps). I also enlarged the

environment by two more brokers up to 8, and set 4 brokers totally reliable. For the

third time I scaled the environment up to 10 diverse brokers operating on clusters

with different sizes. Finally I have doubled the execution time of the jobs from 5 to

10 minutes, scaled the number of submitted job up to 1000 and the workload jobs

to 50 per cluster within the same environment. I can conclude that meta-brokering

caused significant speedup in all the presented experiments.

106 The evaluation of Grid meta-brokering

Figure 5.4: Evaluation results of runs in the first three experiments

5.1.5 Evaluation with Grid workloads

Though in the previous subsection I have measured convincing utilization gains by

using the GMBS for job submissions to different simulated Grid environments based

on traces of parallel environments, I decided to create a larger simulation environment

closer to the latest Grid usage trends. This simulation setup was derived from real-

life production Grids. Since current Grids and brokers support only a few special

properties, I used four in these simulations. To determine the (proportional) number

of resources in the simulated Grids I compared the sizes of current production Grids

(EGEE VOs, DAS3, NGS, Grid5000, OSG, ...).

Table 5.4 shows the evaluation environment used in this fourth experiment, and

the average of the measured evaluation runs. I used similar notations in this table as

in the previous subsection. In this evaluation I utilized 14 brokers, all used the (best

performing) fcpu scheduling policy – this is denoted by the first column of Table 5.4.

The second column shows the number of resources connected to the brokers (I used

the same notation as in the previous tables). In this case I submitted 1000 jobs to

the system (see third column of Table 5.4) after a delay of 6000 simulated seconds

5.1. Evaluation of GMBS 107

(in order to let the workload jobs started in this initial warm-up period and to avoid

measuring unrepresentative data), and measured the makespan of all the jobs. An

application of 1000 jobs can be so complex that it may easily overload a particular

Grid, therefore multiple Grid utilization is definitely needed. The run time of the jobs

were set to 10 minutes. Out of the 1000 jobs 100 had no special property, and for the

rest of the jobs the four properties were distributed in the following way: 30 jobs had

agreement handling property, 30 had advance reservation, 20 had co-allocation and 10

had checkpointing as requirement (note that the actual realization of these properties

is irrelevant for the simulated evaluation). The properties were distributed among the

14 brokers: 9 brokers had only one property, out of which 3 were unreliable, 4 brokers

had two properties each, out of which 3 were unreliable, and finally one broker had

three properties with one unreliable property (unreliability means 50% failure).

Table 5.4: Evaluation results of the fourth experiment.

Brokers
Resour-

Jobs
AVG Time AVG Time AVG Time

ces RND MB MB with
training

2x4(x4)

1000 68583.03
14/X 2x6(x4) 34225.35 33488.21
(fcpu) 3x8(x4) 49.9% 48.8%

4x10(x4)
3x12(x4)

The workload log was selected from the Grid Workloads Archive (GWA [107, 41]).

I used the GWA-T-11 LCG Grid trace file. This log contains 11 days of activity with

188,041 jobs of 216 users sent to 170 nodes that made up the LCG Grid [92] in 2005.

The main reasons for choosing this trace were that it contained the highest number of

processors, it had a time frame that fits the execution of an application of 1000 jobs,

and its jobs were categorized according to the nodes they were submitted to. In this

revised simulation architecture I used 120 nodes (called resources in the simulation),

therefore I partitioned the logs and created 120 workload files (out of the possible

170 nodes included in the log). At this time I left the number of jobs per node, and

the arrival and execution times untouched. These files were fed to the simulation

environment as background workload. In addition to the table description seen in

subsections 5.1.3 and 5.1.4, Table 5.4 contains a separate column denoting the results

of GMBS utilization including training phases. This time 100 jobs were submitted to

each broker prior the evaluation runs to initiate the performance values.

108 The evaluation of Grid meta-brokering

Figure 5.5: Compared evaluation results for the three types of runs

For this fourth experiment I repeated the simulations five times for each setup,

and compared the averages of the evaluation measurements. The results are shown

in Figure 5.6. The last columns represent the average values of the five runs (Avg),

which are also shown in the last three columns of Table 5.4. In order to compare the

three types of simulation runs I took the ones closest to the average and depicted them

in Figure 5.5. Here we can see that after 100 jobs the random selection picked heavily

loaded or unreliable brokers (as an ordinary user would behave), while submissions

with the GMBS avoided utilizing these brokers. Due to uninitialized BPDLs and

the heavy load caused by the workload jobs, there were still some submissions with

the GMBS that took more then 60000 simulated seconds, which were successfully

eliminated in another evaluation run of GMBS using the preliminary training phase.

The results show that in a simulated Grid environment with real Grid workload,

under a high number of job submissions the GMBS utilization was able to shorten

the makespan by more than 50%. This time the training phase gave only a little gain,

because the GMBS was able to adapt to broker failures soon due to the high number

5.2. Summary 109

of submitted jobs.

Summarizing the evaluation results of the four experiments I can state that the

interoperable meta-brokering solution of GMBS achieved much better (in some cases

an order of magnitude better) performance in Grid application execution compared

to the general, non-interoperable Grid utilization.

Regarding the overhead the meta-brokering layer generates, we only need to con-

sider the latency of the web service calls and the matchmaking time of the GMBS.

In these evaluations this latency took up around 200 milliseconds for a job, so it is

negligible comparing to general broker response times (which can last up to several

minutes).

Figure 5.6: Evaluation results of runs in the fourth experiment

5.2 Summary

In this chapter I introduced a simulation architecture for meta-brokering that I used

to evaluate GMBS using real parallel and Grid workloads. The performance analysis

clearly showed that GMBS performs much better related to random broker selection.

Furthermore, I measured approximately an order of magnitude better performance

using the preliminary training phase in the experiments. The results of this chapter

belong to thesis IV, and were published in papers [P17] and [P19].

110 The evaluation of Grid meta-brokering

Chapter 6
Conclusions

Current Grid systems are used by a high number of various research communities, but

the lack of interoperability among them represents borders for further development

and efficient usage. Numerous user applications are so large and complex that their

executions require more computing resources than a particular Grid can provide. In

order to solve this problem, I proposed in this dissertation a novel meta-brokering

solution that is able to serve complex user requirements by providing transparent

access to resources of several Grid systems simultaneously, in an automated way.

The goal of this work was to enable Grid Interoperability by providing the highest

number of brokering capabilities in a way that it does not require any changes to the

underlying Grid middleware services.

The initial steps of the dissertation aimed at clarifying the roles and relations of

Grid resource manager components by presenting a survey of available tools, a taxon-

omy of their brokering services and properties and an anatomy of their conformation.

The revealed Grid brokering mechanisms are formalized by using Abstract State Ma-

chines (ASM) in order to give precise definitions including classification levels for

interoperability that are used later for literature classification.

A new interoperable meta-brokering approach is introduced together with a gen-

eral, abstract architecture. To enable the integrated management of different brokers,

a new broker description language has been designed to describe all the available Grid

resource brokers. As a proof of the concept, the components of the Grid Meta-Broker

Service have been developed that perform user interactions, monitoring of resource

and Grid load, tracking broker performance and automatic broker selection.

In order to evaluate the implemented meta-brokering service, a meta-brokering

112 Conclusions

simulation environment has been developed. The presented performance evaluation

uses real parallel and Grid workload traces, its results affirm that the proposed meta-

brokering solution enables better adaptation and achieves an order of magnitude bet-

ter performance over random broker selection. Possible directions for future work are

to broaden the interoperability beyond service Grids, and to extend meta-brokering

to manage arbitrary heterogeneous distributed systems.

The brokering-related services of the P-GRADE portal [46] and the gUSE/WS-

PGRADE system [43] are based on the contributions of this dissertation. Several

scientific projects use or are supported by these systems. Therefore the results of this

dissertation are used in the following European Union projects: SHIWA project [138],

EDGI project [91], CancerGrid project [102] and GASuC project [103], and in the

following national projects: UK ProSim project [134], MoSGrid project [118], and a

biology project of ETH Zurich [141].

The scientific results of the theses have been published in numerous journals,

conference and workshop papers and have been presented in various scientific forums.

These publications have inspired further research, generated collaborations, and are

well represented by many independent citations. Most of the research presented in

this dissertation has resulted from active involvement in the CoreGRID and S-CUBE

EU Network of Excellence projects [95, 137].

Appendix A
Summary in English

Introduction

Grid Computing [29] has become a separate research field in the ’90s and since then

it has been targeted by many projects all around the world. Several years ago users

and companies having computation and data intensive applications looked sceptical

at the forerunners of Grid solutions that promised less execution time and easy-to-use

application development environments by creating a new virtually unified high per-

formance system of interconnected computers from all around the world. Research

groups were forming around specific parts of Grid systems and different research ar-

eas emerged, because former techniques of distributed computing were not applicable

in Grid systems. Many user groups from various research fields (biology, chemistry,

physics, etc.) put their trust in Grids and today usage statistics and research results

show that they were undoubtedly right. Grid Computing has been in the spotlight,

several international projects have aimed to establish sustainable Grids (eg. Core-

GRID [95], EGEE [92], NextGRID [121], GEANT [97], KnowARC [104], EUAsiaGrid

[94] and OSG [127]).

Core Grid services are provided and implemented by a so-called Grid middleware

[33]. The first widespread middleware was the Globus Toolkit [30], which became a de

facto standard for Grid Computing around 2002. Since then several middleware solu-

tions have appeared, and the production Grids using these solutions formed separate

islands that represent borders for both researchers and user communities. A decade of

Grid development has established many national and international production Grids

based on different middleware solutions (eg. HunGrid [110], NGS [120], EGEE [92],

114 Summary in English

UNICORE [143], NorduGrid [122] and OSG [127]). As a result of the numerous

Grid projects and available production Grids, user support centers [142, 98, 146, 103]

have been set up in order to ease application porting to Grid environments. In some

cases these applications are so large and complex that their executions require more

computing resources than a particular Grid can provide. Therefore similarly to the

World-Wide Web, the interconnection of these separate islands can result in a World-

Wide Grid in the future. Such an aggregated system could cope with the growing

number of users and computation-intensive applications.

Resource management in Grid systems is the research field most affected by user

demands. Though well-designed, evaluated and widely used resource managers (also

called as brokers) have been developed, new capabilities are required, such as interop-

erability and agreement support. The available resource managers have already been

surveyed by other research groups [52], but these publications do not detail capabili-

ties related to interoperability and do not separate operational roles (eg. scheduling,

brokering, management). This dissertation aims at providing a high-level brokering

solution to establish Grid Interoperability [70], which means the bridging of different

Grid infrastructures in order to allow users on one Grid to run computing jobs and

exchange data with users on other Grids. The current solutions of Grid resource man-

agement will not be able to fulfil the high demands of future generation Grid systems,

though several Grid resource brokers [2] have been developed supporting different Grid

systems. The main problem is that most of them cannot cross the borders of separate

Grid islands caused by different Grid middleware solutions, therefore they can mature

as slowly as middleware solutions evolve. These newly arisen problems need to be

treated by novel research approaches in order to aggregate the separated Grid islands

and manage them together, because currently used Grid middleware solutions do not

support real interoperation other then restricted bilateral ones.

Solving these problems is crucial for the next generation of Grids, which should

spread from the academic to the business world. The advance of Grids seems to fol-

low the way foreseen by the Next Generation Grids Expert Group, which has been

established by the European Commission. In their third report [61] they have pointed

out that Grid and web services are converging and envisaged hybrid services called as

SOKUs (Service Oriented Knowledge Utility), which enable more flexibility, adapt-

ability and advanced interfaces, therefore interoperability is evident and congenital

in these systems. Following these expert guidelines and the latest requirements of

Grid user groups, I propose in this dissertation such a high-level Grid brokering solu-

115

tion that enables Grid Interoperability by providing the highest number of brokering

capabilities in a way that it does not require any changes to the underlying Grid

middleware services.

New scientific results

During the research presented in this dissertation my first goal was to elaborate a

classification of Grid resource brokers. At that time, the less than ten-year-old Grid

Computing had several resource management solutions named by different expres-

sions operating on different middleware addressing various user needs. During the

preparation of the first thesis I examined the widespread Grid resource brokers used

by different user communities, identified their key functionalities and properties, gath-

ered them into a taxonomy, and classified them in a survey using the elements of the

taxonomy. I analysed the connections and inner structures of the available Grid re-

source manager components, identified different operational roles and resolved their

contradictory naming acronyms and expressions by creating an anatomy of Grid re-

source managers. I formalized the identified brokering roles, and inserted them into

the Abstract State Machine (ASM) model of Grid systems [60]. I identified and de-

fined interoperability levels for Grid brokering solutions and expressed them in the

presented model that enables the classification of related brokering approaches. I

stated the following thesis based on these results:

Thesis I. I designed a category framework of broker capabilities that

I used to create a general taxonomy of Grid brokers. I designed an

anatomy of Grid resource managers that I used to formalize Grid

brokering levels based on the ASM model of Grids [60].

Grid Interoperability [70] is a fundamental challenge of Grid Computing nowadays.

The presented broker taxonomy also points out the heterogeneity in most brokering

components and methods. The resource management anatomy revealed their simi-

larities and possible interactions that paved the way for introducing a meta-level in

Grid brokering to interoperate different Grid systems. Some of the surveyed brokers

are capable of low-level interoperation by accessing resources of different Grids. I

showed how these approaches address multi-grid brokering by broker-extension and

multi-brokering from Grid portals. For a higher level of interoperability, a general

broker description language is needed in order to enable the unified management of

116 Summary in English

Grid brokers. The second thesis contains the elaboration of such language based on

a meta-data model, using the categories of the broker taxonomy.

Thesis II. I designed a new, XML-based description language called

Broker Property Description Language (BPDL) that is able to de-

scribe any Grid resource broker that can be categorized in the tax-

onomy. A high-level brokering service can use this language for the

unified management of these brokers.

I named the novel approach that performs high-level brokering at the meta-level

of Grid resource management as meta-brokering. The next, third thesis includes

the description of the required components of a general meta-brokering architecture

(besides the broker description language) and a realization of the abstract architecture

in a meta-brokering service that does not require any modifications to the utilized

brokers and Grids.

Thesis III. I determined the general requirements of Grid meta-

brokering, and developed a general architecture based on these re-

quirements that introduces a higher abstraction layer for enabling

Grid Interoperability by the unified management of Grid brokers.

Based on this general architecture, I designed the necessary compo-

nents to build the Grid Meta-Broker Service (GMBS).

The components of the realized meta-brokering service perform user interactions,

monitoring of resource and Grid load, tracking broker performance and automatic bro-

ker selection. After publishing this meta-brokering approach, other research groups

have also realized the need for interoperable brokering and started to develop their

own solutions. I designed a classification of these solutions based on the interoper-

ability levels introduced in Thesis I. The final part of the research was to evaluate the

proposed meta-broker. The GridSim Toolkit [12] is a widely accepted and used Grid

simulator that can be easily tailored to analyse Grid brokering methods. The fourth

thesis presents a meta-brokering simulation architecture that extends GridSim, and

the performance evaluation of the implemented meta-broker in this environment by

using real world resource usage traces form the publicly available Parallel and Grid

Workloads Archive [129, 107].

117

Thesis IV. I developed a new simulation environment based on the

GridSim [12] simulator that is able to evaluate meta-brokering. I

performed the evaluation of GMBS in this environment with a per-

formance analysis using both real parallel and Grid workload traces.

I proved the effectiveness of the interoperable meta-brokering service

with the evaluation.

The evaluation results showed that the interoperable meta-brokering solution of

GMBS was able to achieve an order of magnitude better performance in Grid applica-

tion execution compared to the general, non-interoperable Grid utilization simulated

by random broker selection.

Conclusions

Current Grid systems are used by a high number of various research communities, but

the lack of interoperability among them represents borders for further development

and efficient usage. Numerous user applications are so large and complex that the

execution may require more computing resources than a particular Grid can provide.

In order to solve this problem, I proposed a novel resource management solution in this

dissertation that is able to serve complex user requirements by providing transparent

access to resources of several Grid systems simultaneously, in an automated way.

The brokering-related services of the P-GRADE portal [46] and the gUSE/WS-

PGRADE system [43] are based on the contributions of this dissertation. Several

scientific projects use or are supported by these systems. Therefore the results of this

dissertation are applied in the following European Union projects: SHIWA project

[138], EDGI project [91], CancerGrid project [102] and GASuC project [103], and in

the following national projects: UK ProSim project [134], MoSGrid project [118] and

a biology project of ETH Zurich [141].

The scientific results of the theses have been published in numerous journals,

conference and workshop papers and have been presented in various scientific forums.

These publications have inspired further research, generated collaborations, and are

well represented by many independent citations. Most of the research presented in

this dissertation has resulted from active involvement in the CoreGRID and S-CUBE

EU Network of Excellence projects [95, 137].

118 Summary in English

Appendix B
Summary in Hungarian

Bevezetés

A 90-es években kezdett kibontakozni egy új kutatási irány az elosztott számı́tások

területén, amelyet Grides számı́tásoknak (Grid Computing [29]) neveztek el. A Grid

rendszerek (számı́tóhálók) lényege a világ különböző tájain lévő számı́tási rendszerek

virtuális egyeśıtése, nagyobb számı́tási kapacitás elérése érdekében. Az érdeklődés

egyre nőtt ezen szakterület iránt: ezt bizonýıtja a számos világméretű Grid ku-

tatással foglalkozó projekt (pld. CoreGRID [95], EGEE [92], NextGRID [121], GE-

ANT [97], KnowARC [104], EUAsiaGrid [94] és OSG [127]). Ekkor még a nagy

számı́tási igényű feladatokkal rendelkező kutatók kétkedéssel tekintettek a Gride-

ket hirdető, népszerűśıtő fejlesztőkre, akik rövidebb futtatási időt és kényelmes ke-

zelőfelületet ı́gértek. Mivel az elosztott számı́tásokban alkalmazott korábbi technikák

nem bizonyultak alkalmasnak a Grid rendszerek különféle kih́ıvásainak megoldására,

új kutatási irányok körvonalazódtak ki, melyek önálló kutatási területté emelték a

Grides számı́tásokat. A Grid rendszerek fejlődése során számos kutatási területről

(pld. biológia, kémia, fizika) érkeztek felhasználók, akik a kezdeti nehézségek ellenére

beléptek a Gridet alkalmazók körébe. A napjainkban látható statisztikák és kutatási

eredmények azt mutatják, hogy helyesen cselekedtek. A mára elegendően stabil és

megb́ızható Gridek kutatása a felhasználói igényekre összpontośıt, hiszen ezen köve-

telmények teljeśıtése elengedhetetlen a majdan üzleti célokat szolgáló Gridek számára.

A Grid rendszerek magját az ún. köztes réteg (Grid middleware [33]) adja, ame-

lyet az egyes projektek elszigetelt módon kezdtek el kidolgozni. Az első, a gya-

korlatban is elterjedt ”de facto” szabványként kezelt köztes réteg a Globus Toolkit

120 Summary in Hungarian

[30] volt. A különböző projektek világszerte számos, a gyakorlatban működő ún.

produkciós Grideket hoztak létre a közel t́ız éves fejlesztések következtében (pld.

HunGrid [110], NGS [120], EGEE [92], UNICORE [143], NorduGrid [122] és OSG

[127]). Az ı́gy kialakult Gridek viszont eltérő megvalóśıtású köztes rétegekre épültek,

mely a kutató és fejlesztő közösségek mellett a felhasználói csoportokat is elszige-

telte. A napjainkban is elérhető Grid rendszerek népszerűśıtésére több nemzetközi

projekt speciális felhasználó-támogató csoportot [142, 98, 146, 103] hozott létre a tu-

dományos alkalmazások grideśıtésére. Az adaptált alkalmazások között előfordulnak

olyan nagy méretű és komplexitású munkafolyamatok, amelyek lefuttatásához egyet-

len Grid erőforrásai kevésnek bizonyulnak. Ezért a világhálóhoz hasonlóan, a jövőben

egy együttműködő, világméretű Grid rendszer lesz csak képes kiszolgálni a növekvő

méretű és igényű felhasználói közösségeket. Ehhez egyeśıteni kell az elszeparált szige-

tekként működő Grideket, mely nagy kih́ıvást jelent és új kutatási megközeĺıtéseket

ḱıván.

A Grid rendszereken belül az erőforrás-kezelő komponensek fejlesztésével foglal-

kozó kutatási területet érinti a leginkább a felhasználói igények felerősödése (pld.

eltérő Grid erőforrások együttes használata, szerződések alkalmazása, stb.). Ez az

értekezés az eltérő megvalóśıtású szolgáltatói Gridek együttműködésének (Grid Inte-

roperability [70]) elérését tűzte ki célul a Grides erőforrás kezelés témakörében. A

Grides együttműködés a különféle Grid infrastruktúrák áthidalását jelenti, amely le-

hetővé teszi, hogy egy adott Grid felhasználói képesek legyenek más Grid erőforrásait

felhasználni alkalmazásaik futtatására és adataik megosztására a többi Grid felhaszná-

lóival. Bár napjainkra számos jól megtervezett, széles körben használt Grides erőfor-

rás-kezelő rendszer (Resource Management System), Grid bróker [2] elérhető a fel-

használói közösség számára, ezek az eszközök a Gridet megvalóśıtó köztes réteg kom-

ponenseire, szolgáltatásaira épülnek, melyek kevéssé adnak lehetőséget az újonnan

felmerült igények kieléǵıtésére. Az elérhető Grides erőforrás-kezelő komponenseket

más kutatócsoportok is vizsgálták [52], viszont ezen publikációk nem részletezik az

együttműködés szempontjából fontos kapcsolatokat, felelősségi köröket és tulajdon-

ságokat. A jelenlegi megvalóśıtások nagy része nem képes átlépni a köztes réteg al-

kalmazói korlátait, ezáltal csak a teljes Grid rendszer fejlesztésével azonos mértékben

fejlődhetnek, mely igen lassú előrelépést és az új igények tekintetében radikális változ-

tatásokat jelentenek. Emellett napjaink szolgáltatói Gridjei viszonylag elkülöńıtett

felhasználói közösséggel és fejlesztői csoporttal rendelkeznek, mely szintén az együtt-

működés előseǵıtésének útjában áll.

121

Az együttműködő Gridek problémájával nagy tekintélyű szakértői csoportok is

foglalkoznak. Az egyik ilyen, Európában irányadó Grides szakértői csoport a Next

Generation Grids Expert Group, amely az Európai Bizottság égisze alatt működik.

Az európai Gridek jövőjéről szóló harmadik közleményükben [61], a 2010-ig meg-

valóśıtandó és azon túlmutató célokat, kutatási irányokat jelölték ki. Ebben a doku-

mentumban a webes és Grides technológiák konvergenciáját állaṕıtották meg, és egy-

ben kijelölték az utat a szolgáltatás-orientált tudásalapú komponensek, ún. SOKU-

k (Service Oriented Knowledge Utility) fejlesztése felé, amelyeknek együttműködő,

megb́ızható és hibatűrő működést megvalóśıtó, megfelelő tudásbázissal rendelkező

szolgáltatásoknak kell lenniük. Mindezen szakértői útmutatásokat figyelembe véve

ez az értekezés olyan magas szintű brókerező szolgáltatást javasol az együttműködési

probléma megoldására, amely a lehető legtöbb felhasználói igényt képes kieléǵıteni,

és nem igényli a köztes réteg komponenseinek újratervezését.

Új tudományos eredmények

Kutatásaim során első célom a Grid brókerezés szakirodalmának mélyreható vizsgála-

ta volt. Ezidőtájt a közel 10 éves Grid rendszerek már számos erőforrás-kezelő

megoldásokkal rendelkeztek, azonban ezek az eszközök különféle Grid megvalóśıtásra

épültek, más elnevezéssel rendelkeztek és eltérő felhasználói igényeket céloztak meg.

Az első tézis előkésźıtéseként megvizsgáltam a napjainkban elérhető, nagyobb fel-

használói közösségek által használt Grides erőforrás brókerek működését, feléṕıtését

és gyakorlati tulajdonságaikat. Részletesen tanulmányoztam a különböző erőforrás-

kezelő komponensek külső kapcsolatait és belső feléṕıtésüket, és azonośıtottam az

eltérő felelősségi köröket és megnevezéseket egy Grid erőforrás-kezelő anatómia meg-

határozásával. Az ASM (Abstract State Machine) Grid formális modellt [60] fel-

használva formalizáltam az azonośıtott Grides brókerező feladatköröket és együttmű-

ködési szinteket, melyek lehetővé teszik a Grid brókerező megoldások elkülöńıtését.

Ezek az eredmények a következő tézishez vezettek:

I. Tézis. Felálĺıtottam egy gyakorlati tulajdonságokon alapuló ka-

tegória rendszert, melyet felhasználva létrehoztam egy általános Grid

bróker taxonómiát. Kidolgoztam egy Grid erőforrás-kezelő anatómiát,

amely alapján formalizáltam a Grid brókerező szinteket felhasználva

az ASM Grid modellt [60].

122 Summary in Hungarian

A Grid rendszerek kutatásában napjaink legnagyobb kih́ıvását az együttműködés

[70] megteremtése jelenti. A bróker taxonómia is rámutat a brókerező módszerek

és komponensek különbözőségére, mı́g az anatómia felfedi az együttműködés szem-

pontjából fontos hasonlóságokat és kijelöli az együttműködés megteremtésének le-

hetőségét egy magasabb absztrakciós szinten. A taxonómiában vizsgált brókerek

közül néhány képes alacsony szintű együttműködésre több Grid erőforrásainak eléré-

sével. Gyakorlati példákon keresztül bemutattam az ezen az elven működő multi-

Grid brókerezést bróker-kiterjesztéssel és portál használatával. Egy magasabb szintű

együttműködést lehetővé tevő brókerezéshez szükség van egy brókereket léıró nyelvre

a brókerek együttes kezeléséhez. A bróker taxonómia kategóriáit felhasználó, magas

szintű adat-modellre épülő nyelv kidolgozását foglalja magába a második tézis.

II. Tézis. Létrehoztam egy olyan új, XML-alapú bróker-léıró nyel-

vet, a BPDL-t (Broker Property Description Language), mely fel-

használásával egy magas szintű brókerező szolgáltatás képes tetsző-

leges számú, a bróker taxonómiába sorolható Grid brókert egy rend-

szerben kezelni.

A brókerek együttes kezelését megvalóśıtó, meta-szinten működő, magas szintű

Grides erőforrás-kezelő megoldást meta-brókerezésnek neveztem el. A következő,

harmadik tézis keretében azonośıtottam egy általános meta-brókerező megoldás köve-

telményrendszerét a működéshez szükséges komponensek definiálásával, és kidolgoz-

tam ezen absztrakt rendszer olyan megvalóśıtását, amely nem igényli az alkalmazott

brókerek és Grid rendszerek módośıtását.

III. Tézis. Meghatároztam egy általános meta-brókerező szolgáltatás

követelményrendszerét, mely alapján megterveztem a rendszer meta-

bróker architektúráját. Ez egy új absztrakciós szint bevezetésével le-

hetővé teszi a Grid rendszerek együttműködését tetszőleges brókerek

integrálásával. Az architektúra terv alapján megvalóśıtottam az új

GMBS (Grid Meta-Broker Service) meta-bróker szolgáltatás kompo-

nenseit.

A megvalóśıtás komponensei elvégzik a menedzselt brókerek teljeśıtményének és

Gridjeik terheltségének monitorozását, szabványos interfészen keresztül biztośıtják

123

a felhasználói interakciót és elvégzik az automatikus bróker-választást. A meta-

brókerező módszer publikálása után hasonló megközeĺıtések jelentek meg a szakiro-

dalomban. Az első tézisben definiált formális együttműködési szintek seǵıtségével

összehasonĺıtottam ezeket a megközeĺıtéseket. Kutatásom végső állomását a meta-

bróker kiértékelése jelentette. A széles körben elterjedt és használt GridSim Tool-

kit [12] Grides szimulációs környezetet használtam fel a kiértékelő rendszer kidol-

gozásához. A negyedik tézis a GridSim-et kiegésźıtő, a meta-brókerezés vizsgálatát

lehetővé tevő szimulációs környezet kidolgozását és a meta-bróker valós adatokkal

történő kiértékelését tartalmazza, melyhez a valós szuperszámı́tógép és Grid futási

adatokat tartalmazó Parallel és Grid Workloads Archive nyilvánosan elérhető adat-

tárak adatfájljait használtam fel [129, 107].

IV. Tézis. A GridSim [12] szimulációs környezetre éṕıtve megtervez-

tem és megvalóśıtottam egy új, meta-brókerezés vizsgálatát lehetővé

tevő szimulációs rendszert. Ezt felhasználva elvégeztem a GMBS

meta-bróker szolgáltatás teljeśıtmény elemzését valós párhuzamos szu-

perszámı́tógép és Grides erőforrások terheltségi adatainak alapján. A

vizsgálattal bizonýıtottam a meta-bróker szolgáltatás hatékonyságát.

A különböző módon felparaméterezett szimulációs ḱısérletek mindegyikében haté-

konyabbnak bizonyult a brókereket együttműködő módon alkalmazó meta-brókerező

szolgáltatás a hagyományos, elszigetelt bróker használattal szemben. A mérési ered-

mények alapján a GMBS meta-bróker szolgáltatás képes több, mint 10-szeres gyor-

sulás elérésére a véletlenszerű brókerválasztással szemben.

Összefoglalás

Napjainkban a számos kutatói közösség által használt Grid rendszerek további fej-

lődésének útjában áll az együttműködés hiánya. A Gridekre adaptált alkalmazások

között megjelentek olyan nagy méretű és komplexitású munkafolyamatok, amelyek le-

futtatásához egy Grid erőforrásai kevésnek bizonyulnak. Ennek a problémának a meg-

oldására olyan fejlett erőforrás-kezelő megoldásokat mutattam be ebben a disszertáci-

óban, amelyek képesek a különféle Grid rendszerek erőforrásait együttesen és auto-

matizált módon felhasználni a komplex felhasználói igények kieléǵıtésére.

A P-GRADE portal [46] és a gUSE/WS-PGRADE rendszer [43] brókerezéssel

kapcsolatos szolgáltatásai az értekezésben kidolgozott módszereken alapulnak. En-

124 Summary in Hungarian

nek megfelelően a disszertáció eredményei a következő Európai Uniós projektekben

hasznosulnak: SHIWA projekt [138], EDGI projekt [91], CancerGrid projekt [102]

és a GASuC projekt [103]. A következő országos projektek szintén használják a

portálokat: UK ProSim projekt [134], MoSGrid projekt [118], valamint az ETH Zu-

rich egy biológus projektje [141].

A tézisek tudományos eredményeit számos nemzetközi folyóiratban, konferen-

cia és workshop cikkben publikáltam, és különféle tudományos fórumokon adtam

elő. A disszertáció publikációi több későbbi kutatás alapjául szolgáltak, amelyet a

sok független hivatkozás fémjelez világszerte. Az értekezésben bemutatott kutatási

eredmények nagy része a CoreGRID és S-CUBE európai kiválósági hálózatokban

(Network of Excellence) [95, 137] történő akt́ıv részvétel sikere.

Appendix C
Additional information

In Section 4.2 of Chapter 4 I introduced an extendable Broker Property Description

Language (BPDL) to express metadata about brokers. After revising the schema

of this language description I created BPDL 2.0, and the Meta-Broker Scheduling

Description Language (MBSDL) that is able to express special attributes of the dif-

ferent job description documents and can be used as an extension of JSDL. The XML

schemas of these documents are presented next.

1

2 <?xml version=” 1.0 ” encoding=”UTF−8”?>

3 <xsd:schema xmlns:xsd=” h t t p : //www.w3 . org /2001/XMLSchema”

xmlns:bpdl=” ur i :BrokerProper tyDescr i p t i onLanguage ”

xmlns:mbsdl=”uri :MBSchedul ingDescrip t ionLanguage ”

targetNamespace=” ur i :BrokerProper tyDescr i p t i onLanguage ”

elementFormDefault=” q u a l i f i e d ” attr ibuteFormDefau l t=” un qu a l i f i e d ”>

4 <xsd : import namespace=”uri :MBSchedul ingDescrip t ionLanguage ”

schemaLocation=”mbsdl . xsd”/>

5 <xsd :e l ement name=”BPDL” type=”bpdl:BPDL Type”>

6 <xsd :annota t i on>

7 <xsd:documentat ion>Broker Property Desc r ip t i on Language

2 .0</xsd:documentat ion>

8 </ xsd :annota t i on>

9 </ xsd :e l ement>

10 <xsd:complexType name=”BPDL Type”>

11 <xsd : sequence>

12 <xsd:any namespace=”##other ” processContents=” l a x ”/>

13 <xsd :e l ement name=”BrokerID” type=”bpdl :BrokerID Type ”/>

14 <xsd :e l ement name=” In t e r f a c e ” type=” bpd l : I n t e r f a c eType ”

maxOccurs=”unbounded”/>

126 Additional information

15 <xsd :e l ement name=”Monitoring” type=” bpd l :Moni tor ing Type ”/>

16 <xsd :e l ement name=” Secur i t y ” type=” bpd l : S e cu r i t y Type ”/>

17 <xsd :e l ement name=”PerformanceMetrics ”

type=” bpd l :Per formanceMetr ics Type ”/>

18 <xsd :e l ement r e f=”mbsdl:SDL”/>

19 </ xsd : sequence>

20 <x s d : a t t r i b u t e name=”name” type=”xsd:NCName” use=” requ i r ed ”/>

21 <x s d : a t t r i b u t e name=” d e s c r i p t i o n ” type=” x s d : s t r i n g ”

use=” op t i ona l ”/>

22 <x s d : a t t r i b u t e name=”targetNameSpace” type=”xsd:anyURI”

use=” op t i ona l ”/>

23 <xsd :anyAttr ibute namespace=”##other ” processContents=” l a x ”/>

24 </xsd:complexType>

25 <xsd:complexType name=”BrokerID Type”>

26 <xsd : s impleContent>

27 <x sd : e x t en s i on base=” x s d : s t r i n g ”>

28 <xsd :anyAttr ibute namespace=”##other ” processContents=” l a x ”/>

29 </ x sd : e x t en s i on>

30 </ xsd : s impleContent>

31 </xsd:complexType>

32 <xsd:complexType name=” Inter faceType ”>

33 <xsd : sequence>

34 <xsd :e l ement name=” type ” type=” bpd l : In t e r f ace sEnumera t i on ”/>

35 <xsd :e l ement name=”name” type=” x s d : s t r i n g ”/>

36 <xsd :e l ement name=” d e s c r i p t i o n ” type=” x s d : s t r i n g ”

minOccurs=”0”/>

37 <xsd :e l ement name=”Parameters ” minOccurs=”0”>

38 <xsd:complexType>

39 <xsd : sequence>

40 <xsd :e l ement name=”Parameter” maxOccurs=”unbounded”>

41 <xsd:complexType>

42 <xsd : sequence>

43 <xsd :e l ement name=” d e s c r i p t i o n ” minOccurs=”0”/>

44 </ xsd : sequence>

45 <x s d : a t t r i b u t e name=”name” type=”xsd:NCName”/>

46 <x s d : a t t r i b u t e name=” type ” type=”xsd:NCName”/>

47 </xsd:complexType>

48 </ xsd :e l ement>

49 </ xsd : sequence>

50 </xsd:complexType>

51 </ xsd :e l ement>

52 <xsd :e l ement name=”ReturnedValue” minOccurs=”0”>

127

53 <xsd:complexType>

54 <xsd : sequence>

55 <xsd :e l ement name=” d e s c r i p t i o n ” minOccurs=”0”/>

56 </ xsd : sequence>

57 <x s d : a t t r i b u t e name=”name” type=”xsd:NCName”/>

58 <x s d : a t t r i b u t e name=” type ” type=”xsd:NCName”/>

59 </xsd:complexType>

60 </ xsd :e l ement>

61 </ xsd : sequence>

62 </xsd:complexType>

63 <xsd:complexType name=”MonitoringMetric Type”>

64 <xsd : sequence>

65 <xsd :e l ement name=”Name” type=” x s d : s t r i n g ”/>

66 <xsd :e l ement name=”Descr i p t i on ” type=” x s d : s t r i n g ”/>

67 </ xsd : sequence>

68 <x s d : a t t r i b u t e name=”MetricType ”

type=” bpd l :Moni tor ingIn foEnumerat ion” use=” requ i r ed ”/>

69 <xsd :anyAttr ibute namespace=”##other ”/>

70 </xsd:complexType>

71 <xsd:complexType name=”Monitoring Type ”>

72 <xsd : sequence>

73 <xsd :e l ement name=”Metric” type=” bpd l :Moni tor ingMetr ic Type ”

maxOccurs=”unbounded”/>

74 </ xsd : sequence>

75 <x s d : a t t r i b u t e name=”accessMethod ” type=” x s d : s t r i n g ”

use=” op t i ona l ”/>

76 <xsd :anyAttr ibute namespace=”##other ”/>

77 </xsd:complexType>

78 <xsd:complexType name=”Secur i ty Type ”>

79 <x sd : cho i c e>

80 <xsd :e l ement name=”MyProxy” type=”bpdl:MyProxy Type”/>

81 <xsd :e l ement name=”OtherSecur i ty ”

type=” bpd l :OtherSecur i t y Type ”/>

82 </ x sd : cho i c e>

83 <xsd :anyAttr ibute namespace=”##other ”/>

84 </xsd:complexType>

85 <xsd:complexType name=”MyProxy Type”>

86 <xsd : sequence>

87 <xsd :e l ement name=” IsSuppor ted ” type=” xsd : boo l ean ”/>

88 <xsd :e l ement name=”ServerName” type=” x s d : s t r i n g ”

minOccurs=”0”/>

89 <xsd :e l ement name=”PortNumber” type=” x s d : i n t ” minOccurs=”0”/>

128 Additional information

90 </ xsd : sequence>

91 <xsd :anyAttr ibute namespace=”##other ”/>

92 </xsd:complexType>

93 <xsd:complexType name=”OtherSecur i ty Type ”>

94 <xsd : sequence>

95 <xsd :e l ement name=” De t a i l s ” type=” x s d : s t r i n g ”/>

96 </ xsd : sequence>

97 <x s d : a t t r i b u t e name=”name” type=”xsd:NCName”/>

98 <xsd :anyAttr ibute namespace=”##other ”/>

99 </xsd:complexType>

100 <xsd:complexType name=”PerformanceMetrics Type ”>

101 <xsd : sequence>

102 <xsd :e l ement name=”AVGWaitingTime”

type=” bpdl :PerformanceMetric Type ”/>

103 <xsd :e l ement name=”AVGSlowdown”

type=” bpdl :PerformanceMetric Type ”/>

104 <xsd :e l ement name=”FinishedJobs ”

type=” bpdl :PerformanceMetric Type ”/>

105 <xsd :e l ement name=”Fa i l edJobs ”

type=” bpdl :PerformanceMetric Type ”/>

106 <xsd :e l ement name=”OtherMetric”

type=” bpdl :PerformanceMetric Type ” maxOccurs=”unbounded”/>

107 <xsd :e l ement name=”Pred i c t i on ”

type=” bpdl :PerformanceMetric Type ” minOccurs=”0”

maxOccurs=”unbounded”/>

108 </ xsd : sequence>

109 <xsd :anyAttr ibute namespace=”##other ”/>

110 </xsd:complexType>

111 <xsd:complexType name=”PerformanceMetric Type”>

112 <xsd : sequence>

113 <xsd :e l ement name=”name” type=” x s d : s t r i n g ”/>

114 <xsd :e l ement name=” d e s c r i p t i o n ” type=” x s d : s t r i n g ”/>

115 <xsd :e l ement name=” va lue ” type=” x s d : s t r i n g ”/>

116 </ xsd : sequence>

117 <xsd :anyAttr ibute namespace=”##other ”/>

118 </xsd:complexType>

119 <xsd:s impleType name=” Inter facesEnumerat ion”>

120 <x s d : r e s t r i c t i o n base=” x s d : s t r i n g ”>

121 <xsd:enumerat ion va lue=”Submit”/>

122 <xsd:enumerat ion va lue=”Cancel”/>

123 <xsd:enumerat ion va lue=”Suspend”/>

124 <xsd:enumerat ion va lue=”Resume”/>

129

125 <xsd:enumerat ion va lue=”Migrate ”/>

126 <xsd:enumerat ion va lue=” o the r ”/>

127 </ x s d : r e s t r i c t i o n>

128 </ xsd:s impleType>

129 <xsd:s impleType name=”MonitoringInfoEnumeration”>

130 <x s d : r e s t r i c t i o n base=” x s d : s t r i n g ”>

131 <xsd:enumerat ion va lue=” S t a t i c I n f o ”/>

132 <xsd:enumerat ion va lue=”DynamicInfo ”/>

133 <xsd:enumerat ion va lue=”AggregatedIn fo ”/>

134 <xsd:enumerat ion va lue=” o the r ”/>

135 </ x s d : r e s t r i c t i o n>

136 </ xsd:s impleType>

137 </xsd:schema>

138

139

140 <?xml version=” 1.0 ” encoding=”UTF−8”?>

141 <xsd:schema xmlns:xsd=” h t t p : //www.w3 . org /2001/XMLSchema”

xmlns:mbsdl=”uri :MBSchedul ingDescrip t ionLanguage ”

targetNamespace=”uri :MBSchedul ingDescr ip t ionLanguage ”

elementFormDefault=” q u a l i f i e d ” attr ibuteFormDefau l t=” un qu a l i f i e d ”>

142 <xsd :e l ement name=”SDL” type=”mbsdl:SDL Type”>

143 <xsd :annota t i on>

144 <xsd:documentat ion>MB Schedul ing Desc r ip t i on

Language</ xsd:documentat ion>

145 </ xsd :annota t i on>

146 </ xsd :e l ement>

147 <xsd:complexType name=”SDL Type”>

148 <xsd : sequence>

149 <xsd:any namespace=”##other ” processContents=” l a x ”/>

150 <xsd :e l ement name=”Cons t ra in t s” type=”mbsd l :Constra ints Type ”/>

151 <xsd :e l ement name=”QoS” type=”mbsdl:QoS Type”/>

152 <xsd :e l ement name=”Po l i cy ” type=”mbsd l :Po l i cy Type ”/>

153 </ xsd : sequence>

154 <x s d : a t t r i b u t e name=”name” type=”xsd:NCName” use=” requ i r ed ”/>

155 <x s d : a t t r i b u t e name=” d e s c r i p t i o n ” type=” x s d : s t r i n g ”

use=” op t i ona l ”/>

156 <x s d : a t t r i b u t e name=”targetNameSpace” type=”xsd:anyURI”

use=” op t i ona l ”/>

157 <xsd :anyAttr ibute namespace=”##other ” processContents=” l a x ”/>

158 </xsd:complexType>

159 <xsd:complexType name=”Constra ints Type ”>

160 <xsd : sequence>

130 Additional information

161 <xsd:any namespace=”##other ”/>

162 <xsd :e l ement name=”Middleware” type=”mbsdl :Middleware Type”

maxOccurs=”unbounded”/>

163 <xsd :e l ement name=”JobType” type=”mbsdl:JobTypeEnumeration”

maxOccurs=”unbounded”/>

164 <xsd :e l ement name=”Time” type=”mbsdl:Time Type ”/>

165 <xsd :e l ement name=”Budget” type=” x s d : l on g ”/>

166 <xsd :e l ement name=”RemoteFileAccess ”

type=”mbsdl:RemoteFileAccessEnumeration ” minOccurs=”0”

maxOccurs=”unbounded”/>

167 <xsd :e l ement name=”OtherConstra int” type=”mbsdl :Other Type ”

maxOccurs=”unbounded”/>

168 </ xsd : sequence>

169 </xsd:complexType>

170 <xsd:complexType name=”Middleware Type”>

171 <xsd : sequence>

172 <xsd :e l ement name=”GridName” type=”mbsdl:GridNameEnumeration ”

minOccurs=”0”/>

173 <xsd :e l ement name=”ProxyName” type=” x s d : s t r i n g ” minOccurs=”0”/>

174 <xsd :e l ement name=”MYProxy” type=”mbsdl:MyProxy Type”

minOccurs=”0”/>

175 <xsd :e l ement name=”Vir tua lOrgan i sa t i on ”

type=”mbsd l :V i r tua lOrgani sa t i on Type ” minOccurs=”0”

maxOccurs=”unbounded”/>

176 <xsd :e l ement name=” InformationSystem”

type=”mbsdl : InformationSystem Type ” minOccurs=”0”/>

177 <xsd:any namespace=”##other ” minOccurs=”0”/>

178 </ xsd : sequence>

179 <xsd :anyAttr ibute namespace=”##other ” processContents=” l a x ”/>

180 </xsd:complexType>

181 <xsd:complexType name=”Vir tua lOrganisa t ion Type ”>

182 <xsd : sequence>

183 <xsd :e l ement name=” InformationSystem”

type=”mbsdl : InformationSystem Type ”/>

184 <xsd :e l ement name=”ProxyName” type=” x s d : s t r i n g ” minOccurs=”0”/>

185 <xsd:any namespace=”##other ” minOccurs=”0”/>

186 </ xsd : sequence>

187 <x s d : a t t r i b u t e name=”name” type=”xsd:NCName” use=” requ i r ed ”/>

188 <xsd :anyAttr ibute namespace=”##other ” processContents=” l a x ”/>

189 </xsd:complexType>

190 <xsd:complexType name=”InformationSystem Type”>

191 <xsd : sequence>

131

192 <xsd :e l ement name=”MDS” type=” x s d : s t r i n g ” minOccurs=”0”/>

193 <xsd :e l ement name=”BDII” type=” x s d : s t r i n g ” minOccurs=”0”/>

194 <xsd :e l ement name=”WebMDS” type=” x s d : s t r i n g ” minOccurs=”0”/>

195 <xsd:any namespace=”##other ” minOccurs=”0”/>

196 </ xsd : sequence>

197 <x s d : a t t r i b u t e name=”name” type=”xsd:NCName” use=” requ i r ed ”/>

198 <xsd :anyAttr ibute namespace=”##other ” processContents=” l a x ”/>

199 </xsd:complexType>

200 <xsd:complexType name=”QoS Type”>

201 <xsd : sequence>

202 <xsd:any namespace=”##other ”/>

203 <xsd :e l ement name=”Agreement” type=”mbsdl:Agreement Type ”

minOccurs=”0” maxOccurs=”unbounded”/>

204 <xsd :e l ement name=”FaultTorelanceMechanisms ”

type=”mbsdl :FaultToleranceEnumerat ion ”

maxOccurs=”unbounded”/>

205 <xsd :e l ement name=”AdvanceReservation ”

type=”mbsdl :AdvanceReservat ion Type ” minOccurs=”0”/>

206 <xsd :e l ement name=” Pr i o r i t y ” type=” x s d : s t r i n g ” minOccurs=”0”/>

207 <xsd :e l ement name=”GridAccessContro l ” type=” x s d : s t r i n g ”

minOccurs=”0”/>

208 <xsd :e l ement name=”Emai lNo t i f i ca t i on ” type=” x s d : s t r i n g ”

minOccurs=”0”/>

209 </ xsd : sequence>

210 <xsd :anyAttr ibute namespace=”##other ” processContents=” l a x ”/>

211 </xsd:complexType>

212 <xsd:complexType name=”BrokerName Type”>

213 <xsd : s impleContent>

214 <x sd : e x t en s i on base=” x s d : s t r i n g ”>

215 <xsd :anyAttr ibute namespace=”##other ” processContents=” l a x ”/>

216 </ x sd : e x t en s i on>

217 </ xsd : s impleContent>

218 </xsd:complexType>

219 <xsd:complexType name=”Pol icy Type ”>

220 <xsd : sequence>

221 <xsd :e l ement name=”PolicyName” type=”mbsdl :Pol icyEnumerat ion ”

minOccurs=”0”/>

222 <xsd :e l ement name=”OtherPo l icy ” type=”mbsdl :Other Type ”

minOccurs=”0”/>

223 <xsd :e l ement name=”LRMSPolicy” type=”mbsdl :Other Type ”

minOccurs=”0”/>

224 </ xsd : sequence>

132 Additional information

225 <xsd :anyAttr ibute namespace=”##other ”/>

226 </xsd:complexType>

227 <xsd:complexType name=”Time Type”>

228 <xsd : sequence>

229 <xsd :e l ement name=”StartTime” type=” x s d : d a t e ”/>

230 <xsd :e l ement name=”Duration” type=” x s d : l on g ”/>

231 <xsd :e l ement name=”TimeOut” type=” x s d : l on g ”/>

232 </ xsd : sequence>

233 <xsd :anyAttr ibute namespace=”##other ”/>

234 </xsd:complexType>

235 <xsd:complexType name=”Other Type ”>

236 <xsd : sequence>

237 <xsd :e l ement name=”Name” type=” x s d : s t r i n g ”/>

238 <xsd :e l ement name=”Value” type=” x s d : s t r i n g ”/>

239 </ xsd : sequence>

240 <xsd :anyAttr ibute namespace=”##other ”/>

241 </xsd:complexType>

242 <xsd:complexType name=”MyProxy Type”>

243 <xsd : sequence>

244 <xsd :e l ement name=”Name” type=” x s d : s t r i n g ” minOccurs=”0”/>

245 <xsd :e l ement name=”ServerName” type=” x s d : s t r i n g ”/>

246 <xsd :e l ement name=”PortNumber” type=” x s d : i n t ” minOccurs=”0”/>

247 </ xsd : sequence>

248 <xsd :anyAttr ibute namespace=”##other ”/>

249 </xsd:complexType>

250 <xsd:complexType name=”Agreement Type”>

251 <xsd : sequence>

252 <xsd :e l ement name=”Target ” type=”xsd:anyURI”/>

253 <xsd :e l ement name=”Conf idenceLeve l ”

type=” x s d : p o s i t i v e I n t e g e r ”/>

254 </ xsd : sequence>

255 <xsd :anyAttr ibute namespace=”##other ”/>

256 </xsd:complexType>

257 <xsd:complexType name=”AdvanceReservation Type ”>

258 <xsd : sequence>

259 <xsd :e l ement name=”ResourceName” type=” x s d : s t r i n g ”/>

260 <xsd :e l ement name=”Date” type=” x s d : d a t e ”/>

261 </ xsd : sequence>

262 <xsd :anyAttr ibute namespace=”##other ”/>

263 </xsd:complexType>

264 <xsd:s impleType name=”GridNameEnumeration”>

265 <x s d : r e s t r i c t i o n base=” x s d : s t r i n g ”>

133

266 <xsd:enumerat ion va lue=”GT2”/>

267 <xsd:enumerat ion va lue=”GT3”/>

268 <xsd:enumerat ion va lue=”GT4”/>

269 <xsd:enumerat ion va lue=”EGEE−LCG−2”/>

270 <xsd:enumerat ion va lue=”EGEE−gL i t e ”/>

271 <xsd:enumerat ion va lue=”NorduGrid”/>

272 <xsd:enumerat ion va lue=”Unicore”/>

273 </ x s d : r e s t r i c t i o n>

274 </ xsd:s impleType>

275 <xsd:s impleType name=”JobTypeEnumeration ”>

276 <x s d : r e s t r i c t i o n base=” x s d : s t r i n g ”>

277 <xsd:enumerat ion va lue=” S e r i a l ”/>

278 <xsd:enumerat ion va lue=”Mpi”/>

279 <xsd:enumerat ion va lue=”Pvm”/>

280 <xsd:enumerat ion va lue=”Checkpo in tab l e ”/>

281 <xsd:enumerat ion va lue=” I n t e r a c t i v e ”/>

282 <xsd:enumerat ion va lue=”Threads”/>

283 <xsd:enumerat ion va lue=”OpenMP”/>

284 <xsd:enumerat ion va lue=”Mpi+OpenMP”/>

285 <xsd:enumerat ion va lue=”Caf”/>

286 <xsd:enumerat ion va lue=”Upc”/>

287 </ x s d : r e s t r i c t i o n>

288 </ xsd:s impleType>

289 <xsd:s impleType name=”RemoteFileAccessEnumeration”>

290 <x s d : r e s t r i c t i o n base=” x s d : s t r i n g ”>

291 <xsd:enumerat ion va lue=”GridFTP”/>

292 <xsd:enumerat ion va lue=”RFT”/>

293 <xsd:enumerat ion va lue=”GASS”/>

294 <xsd:enumerat ion va lue=”Unicore”/>

295 <xsd:enumerat ion va lue=”SRB”/>

296 <xsd:enumerat ion va lue=”EGEE−LFN”/>

297 </ x s d : r e s t r i c t i o n>

298 </ xsd:s impleType>

299 <xsd:s impleType name=”PolicyEnumeration ”>

300 <x s d : r e s t r i c t i o n base=” x s d : s t r i n g ”>

301 <xsd:enumerat ion va lue=”ScheduleByCpu ”/>

302 <xsd:enumerat ion va lue=”ScheduleByMemory ”/>

303 <xsd:enumerat ion va lue=”Schedu leByDiskSize”/>

304 <xsd:enumerat ion va lue=”RandomHost”/>

305 </ x s d : r e s t r i c t i o n>

306 </ xsd:s impleType>

307 <xsd:s impleType name=”FaultToleranceEnumeration ”>

134 Additional information

308 <x s d : r e s t r i c t i o n base=” x s d : s t r i n g ”>

309 <xsd:enumerat ion va lue=”Checkpo int ing”/>

310 <xsd:enumerat ion va lue=”Reschedu l ing”/>

311 <xsd:enumerat ion va lue=”Rep l i ca t i on ”/>

312 </ x s d : r e s t r i c t i o n>

313 </ xsd:s impleType>

314 </xsd:schema>

In Section 4.2 of Chapter 4 I also discussed the components of a proposed meta-

brokering service called GMBS. Figure C.1 is intended to give an overview of the

implementation of GMBS through a UML class diagram representing the main com-

ponents of the system.

135

Figure C.1: UML class diagram of GMBS.

136 Additional information

Bibliography

[1] M. Addis, et al: ”Experiences with eScience workflow specification and enact-

ment in bioinformatics”, in Proc. of UK e-Science All Hands Meeting (Editor:

Simon J. Cox), 2003.

[2] E. Afgan, ”Role of the Resource Broker in the Grid”, Proceedings of the 42nd

annual Southeast regional conference, 2004.

[3] M. Altenhofen, A. Friesen and J. Lemcke, ”ASMs in Service Oriented Architec-

tures”, Journal of Universal Computer Science, vol. 14, no. 12, pp. 2034-2058,

2008.

[4] M. D. Assuncao, R. Buyya and S. Venugopal, ”InterGrid: A Case for Internet-

working Islands of Grids”, Concurrency and Computation: Practice and Expe-

rience (CCPE), Online ISSN: 1532-0634; Print ISSN: 1532-0626, Wiley Press,

New York, USA, Jul. 16 2007.

[5] W. H. Bell, D. G. Cameron, R. Carvajal-Schiaffino, A. P. Millar, K. Stockinger

and F. Zini, ”Evaluation of an Economy-Based File Replication Strategy for a

Data Grid”, In International Workshop on Agent based Cluster and Grid Com-

puting at CCGrid 2003, IEEE Computer Society Press, May 2003.

[6] Börger, E., and R. Stark, ”Abstract State Machines. A method for High-level

System Design and Analysis”, Springer, 2003.

[7] Börger, E. and B. Thalheim, ”Modeling Workflows, Interaction Patterns, Web

Services and Business Processes: The ASM-Based Approach”, In Proceedings of

the 1st international Conference on Abstract State Machines, B and Z, Lecture

Notes In Computer Science, vol. 5238, Springer-Verlag, pp. 24-38, 2008.

138 Bibliography

[8] Bratosin, C., W. Aalst, N. Sidorova, and N. Trcka, A Reference Model for Grid

Architectures and Its Analysis, In Proceedings of the OTM 2008 Confederated in-

ternational Conferences, Lecture Notes In Computer Science, vol. 5331. Springer-

Verlag, pp. 898-913, 2008.

[9] J. Brooke, D. Fellows, K. Garwood, C. Goble, ”Semantic matching of Grid re-

source descriptions”, UoM. 2nd European Across-Grids Conference (AxGrids

2004), 2004.

[10] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, and V.

Welch, ”A National-Scale Authentication Infrastructure”, IEEE Computer, 33

(12), pp. 60-66, 2000.

[11] R. Buyya, D. Abramson, J. Giddy, ”Nimrod/G: An Architecture for a Resource

Management and Scheduling System in a Global Computational Grid”, The 4th

International Conference on High Performance Computing in Asia-Pacific Region

(HPC Asia 2000), IEEE Computer Society Press, 2000.

[12] R. Buyya and M. Murshed, ”GridSim: A Toolkit for the Modeling and Simula-

tion of Distributed Resource Management and Scheduling for Grid Computing”,

Concurrency and Computation: Practice and Experience., pp. 1175-1220, Vol-

ume 14, Issue 13-15, 2002.

[13] R. Buyya, S. Venugopal, R. Ranjan, and C. S. Yeo, ”The Gridbus Middleware

for Market-Oriented Computing”, Market Oriented Grid and Utility Computing,

Wiley Press, Hoboken, New Jersey, USA, Oct. 2009.

[14] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg and I. Brandic. ”Cloud Computing

and Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing

as the 5th Utility”, Future Generation Computer Systems, ISSN: 0167-739X,

Elsevier Science, Amsterdam, The Netherlands, 2009.

[15] H. Casanova, G. Obertelli, F. Berman, R. Wolski, ”The AppLeS parameter sweep

template: user-level middleware for the grid”, In Proceedings of the ACM/IEEE

Conference on Supercomputing, IEEE Computer Society, 2000.

[16] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd, ”GridFlow: WorkFlow Man-

agement for Grid Computing”, in Proc. of the 3rd IEEE/ACM International

Bibliography 139

Symposium on Cluster Computing and the Grid (CCGRID’03), pp. 198-205,

2003.

[17] E. Deelman, et al, ”Mapping Abstract Complex Workflows onto Grid Environ-

ments”, Journal of Grid Computing, Vol.1, no. 1, pp. 25-39, 2003.

[18] T. Delaittre, T. Kiss, A. Goyeneche, G. Terstyanszky, S.Winter, P. Kacsuk,

”GEMLCA: Running Legacy Code Applications as Grid Services”, Journal of

Grid Computing, Vol. 3 No. 1-2, pp. 75-90, 2005.

[19] J. D. Dombi, A. Kertész, ”Scheduling solution for Grid Meta-brokering using

Pliant system”, In Proc. of. 2nd International Conference on Agents and Artificial

Intelligence (ICAART ’10), pp. 46-53, Valencia, Spain, 22-24 January, 2010.

[20] J. D. Dombi, A. Kertész, ”Advanced Scheduling Techniques with the Pliant Sys-

tem for High-Level Grid Brokering”, Communications in Computer and Informa-

tion Science (CCIS), Vol. 129, Springer-Verlag Berlin Heidelberg, pp. 173–185,

2011.

[21] C. Dumitrescu, I. Foster, ”GRUBER: A Grid Resource Usage SLA Broker”, 11th

International Euro-Par Conference, LNCS 3648, pp. 465-474, 2005.

[22] C. L. Dumitrescu and I. Foster, ”Gangsim: A simulator for grid scheduling

studies”, In proc. of IEEE International Symposium on Cluster Computing and

Grid, pp 1151-1158, 2005.

[23] E. Elmroth and J. Tordsson, ”An Interoperable Standards-based Grid Resource

Broker and Job Submission Service”, First IEEE Conference on e-Science and

Grid Computing, IEEE Computer Society Press, pp. 212-220, 2005.

[24] E. Elmroth and J. Tordsson, ”A standards-based Grid resource brokering service

supporting advance reservations, coallocation and cross-Grid interoperability”,

Concurrency and Computation: Practice and Experience, Vol. 25, No. 18, pp.

2298-2335, 2009.

[25] D. W. Erwin and D. F. Snelling., ”UNICORE: A Grid Computing Environment”,

In Lecture Notes in Computer Science, volume 2150, Springer, pp. 825-834, 2001.

140 Bibliography

[26] Y. Etsion, D. Tsafrir, ”A short survey of commercial cluster batch schedulers”,

Technical Report 2005-13, School of Computer Science and Engineering, the

Hebrew University, May 2005, Jerusalem, Israel, 2005.

[27] Z. Farkas, P. Kacsuk, G. Gombás and Z. Balaton, ”Generic MPI program execu-

tion support at job and workflow level by the P-GRADE Grid portal”, Journal

of Grid Computing, submitted in 2006.

[28] L. Field, ”Getting Grids to work together”, CERN Computer Newsletter, 41 (5),

pp. 8-9, 2006.

[29] I. Foster, C. Kesselman, ”Computational Grids, The Grid: Blueprint for a New

Computing Infrastructure”, Morgan Kaufmann, pp. 15-52, 1998.

[30] I. Foster, C. Kesselman, ”The Globus project: A status report”, in Proc. of the

Heterogeneous Computing Workshop, IEEE Computer Society Press, pp. 4-18,

1998.

[31] I. Foster and C. Kesselman, ”The Grid 2: Blueprint for a New Computing In-

frastructure”, Morgan Kaufmann Publishers Inc., 2003.

[32] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, ”A security architecture for

computational grids”, In Proceedings of the 5th ACM Conference on Computer

and Communications Security, ACM, pp. 83-92, 1998.

[33] I. Foster, C. Kesselman, S. Tuecke, The Anatomy of the Grid: Enabling Scalable

Virtual Organizations, International J. Supercomputer Applications, 15(3), 2001.

[34] E. Frizziero, M. Gulmini, F. Lelli, G. Maron, A. Oh, S. Orlando, A. Petrucci, S.

Squizzato, and S.Traldi, ”Instrument Element: A New Grid component that En-

ables the Control of Remote Instrumentation”. In Proceedings of the Sixth IEEE

international Symposium on Cluster Computing and the Grid (CCGRID’06),

Volume 00, May 16-19, IEEE Computer Society, Washington, DC, 52, 2006.

[35] M. R. Garey and D. S. Johnson, ”Computers and Intractability; a Guide to the

Theory of Np-Completeness”, W. H. Freeman & Co., New York, USA, 1979.

[36] F. Guim, J. Corbalan, J. Labarta, ”Modeling the impact of resource sharing in

Backfilling Policies using the Alvio Simulator”, 15th Annual Meeting of the IEEE

Bibliography 141

International Symposium on Modeling, Analysis, and Simulation of Computer

and Telecommunication Systems, 2007.

[37] F. Howell and R. McNab, ”SimJava: A discrete event simulation library for

Java”, In Proc. of the International Conference on Web-Based Modeling and

Simulation, San Diego, USA, 1998.

[38] E. Huedo, R. S. Montero, I. M. Llorente, ”A framework for adaptive execution

in grids”, Software: Practice and Experience. vol. 34, 7, pp. 631-651, 2004.

[39] Institute of Electrical and Electronics Engineers, ”IEEE Standard Computer

Dictionary: A Compilation of IEEE Standard Computer Glossaries”, New York,

1990.

[40] A. Iosup, T. Tannenbaum, M. Farrellee, D. Epema, and M. Livny, Inter-operating

grids through Delegated MatchMaking. Sci. Program. 16, 2-3, pp. 233-253, 2008.

[41] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, D. H.J. Epema,

”The Grid Workloads Archive”, Future Generation Computer Systems, Volume

24, Issue 7, pages 672-686, July 2008.

[42] P. Kacsuk, Z. Farkas and G. Fedak, ”Towards making BOINC and EGEE inter-

operable”, In Proc. of the International Grid Interoperability and Interoperation

Workshop (IGIIW), Indianapolis, 2008.

[43] P. Kacsuk, K. Karóczkai, G. Hermann, G. Sipos, and J. Kovács, ”WS-PGRADE:

Supporting parameter sweep applications in workflows”, Proc. of the 3rd Work-

shop on Workflows in Support of Large-Scale Science (in conjunction with SC08),

Austin, 2008.

[44] P. Kacsuk and T. Kiss, ”Towards a scientific workflow-oriented computational

World Wide Grid”, Technical report, TR-115, CoreGRID – Network of Excel-

lence, December 2007.

[45] P. Kacsuk, T. Kiss, G. Sipos, ”Solving the grid interoperability problem by P-

GRADE portal at workflow level”, Future Generation Computer Systems, Vol-

ume 24, Issue 7, Pages 744-751, 2008.

[46] P. Kacsuk, G. Sipos, ”Multi-Grid, Multi-User Workflows in the P-GRADE Grid

Portal”, Journal of Grid Computing, Volume 3, num. 3-4, pp. 221-238, 2006.

142 Bibliography

[47] A. Kertész, F. Ötvös, P. Kacsuk, ”Gridifying the TINKER conformer genera-

tor application for gLite Grid”, In proc. of 1st Workshop on High Performance

Bioinformatics and Biomedicine (HiBB’10) in conjunction with Euro-Par 2010,

Ischia, Italy, August 31 - September 3, 2010.

[48] A. Kertész, Z. Farkas, P. Kacsuk, ”Multi-level Brokering Solution for Interoper-

ating Service and Desktop Grids”, In proc. of CoreGRID/ERCIM Workshop on

Grids, Clouds and P2P Computing in conjunction with Euro-Par 2010, Ischia,

Italy, August 31 - September 3, 2010.

[49] A. Kertész, P. Kacsuk, A. Iosup and D. H.J. Epema, ”Investigating peer-to-

peer meta-brokering in Grids”, Technical report, TR-0170, Institute on Resource

Management and Scheduling, CoreGRID – Network of Excellence, August 2008.

[50] A. Kertész, G. Kecskeméti, I. Brandic, ”Autonomic SLA-aware Service Virtual-

ization for Distributed Systems”, In proceedings of the 19th Euromicro Interna-

tional Conference on Parallel, Distributed and Network-Based Computing, Ayia

Napa, Cyprus, February, 2011.

[51] Y. Kim, J. Yu, J. Hahm, J. Kim, et al., ”Design and Implementation of an

OGSI-Compliant Grid Broker Service”, Proc. of CCGrid, 2004.

[52] K. Krauter, R. Buyya, M. Maheswaran, ”A taxonomy and survey of grid resource

management systems for distributed computing”, Softw., Pract. Exper., vol. 32,

pp. 135-164, 2002.

[53] K. Kurowski, B. Ludwiczak, J. Nabrzyski, A. Oleksiak, J. Pukacki, Dynamic

grid scheduling with job migration and rescheduling in the GridLab resource

management system, Scientific Programming. IOS Press, Volume 12, Number 4,

pp. 263-273, 2004.

[54] K. Kurowski, J. Nabrzyski, A. Oleksiak, J. Weglarz, ”Grid scheduling simula-

tions with GSSIM”, In proc. of 13th International Conference on Parallel and

Distributed Systems (ICPADS’07), pp. 1-8, 2007.

[55] K. Leal, E. Huedo, I. M. Llorente, ”A decentralized model for scheduling indepen-

dent tasks in Federated Grids”, Future Generation Computer Systems, Volume

25, Issue 8, pp. 840-852, 2009.

Bibliography 143

[56] C. B. Lee, Y. Schwartzman, J. Hardy, and A. Snavely, ”Are user runtime esti-

mates inherently inaccurate?”, Springer LNCS, Volume 3277, pp. 253-263, 2005.

[57] A. Legrand, L. Marchal, H. Casanova, ”Scheduling distributed applications: The

SimGrid simulation framework”, In Proceedings 3rd IEEE/ACM International

Symposium on Cluster Computing and the Grid (CCGrid2003), Tokyo, Japan,

2003.

[58] L. Cs. Lőrincz, A. Ulbert, Z. Horváth, T. Kozsik, ”Towards an Agent Inte-

grated Speculative Scheduling Service”, In Distributed and Parallel Systems,

Springer US, 6th Austrian-Hungarian Workshop on Distributed and Parallel Sys-

tems (DAPSYS’06), pp. 211-222, 2007.

[59] H. Mohamed and D. Epema, KOALA: a co-allocating grid scheduler, Concur-

rency and Computation: Practice and Experience, Vol. 22, No. 16, pp. 1851-1876,

2008.

[60] Zs. Németh, and V. Sunderam, Characterizing Grids: Attributes, Definitions,

and Formalisms, Journal of Grid Computing, vol. 1, pp. 9-23, 2003.

[61] Next Generation Grids Expert Group Report no. 3, ”Future for European Grids:

GRIDs and Service Oriented Knowledge Utilities – Vision and Research Direc-

tions 2010 and Beyond”, NGG3, December 2006.

[62] F. Neubauer, A. Hoheisel and J. Geiler, ”Workflow-based Grid applications”,

Future Generation Computer Systems, pp. 6-15, Volume 22, Issues 1-2, January

2006.

[63] J, Novotny, M. Russell, O. Wehrens: ”Grid-Sphere: A Portal Framework for

Building Collaborations” in Proc. of the 1st International Workshop on Middle-

ware in Grid Computing, Rio de Janeiro, Brazil, 2003.

[64] J. Novotny, S. Tuecke, V. Welch, ”An Online Credential Repository for the

Grid: MyProxy”, in Proc. of 10th IEEE International. Symposium on High

Performance Distributed Computing, 2001.

[65] M. Parkin, R. M. Badia and J. Martrat, ”A Comparison of SLA Use in Six of

the European Commissions FP6 Project”, CoreGRID Technical report no. TR-

0129, Institute on Resource Management and Scheduling, CoreGRID – Network

of Excellence, 2008.

144 Bibliography

[66] D. Pasztuhov, I. Szeberényi, ”The new architecture of CONFLET system”, NIIF,

Networkshop 2007. Online: https://nws.niif.hu/ncd2007/docs/aen/036.pdf.

[67] A. Pugliese, D. Talia and R. Yahyapour, ”Modeling and Supporting Grid

Scheduling”, CoreGrid Technical Report no. 56, August 2006.

[68] M. Rambadt, Ph. Weider: UNICORE – Globus: Interoperability of Grid Infras-

tructures, Proceedings of Cray User Group Summit 2002, Manchester, 2002.

[69] J. M. Ramirez-Alcaraz, A. Tchernykh, R. Yahyapour, U. Schwiegelshohn, A.

Quezada-Pina, J. L. Gonzalez-Garcia, A. Hirales-Carbajal, ”User Run Time Es-

timate Unaware Online Job Scheduling in Hierarchical Grids”, Submitted to

Journal of Grid Computing, 2010.

[70] M. Riedel et al., ”Interoperation of World-Wide Production e-Science Infras-

tructures”, Concurrency and Computation: Practice and Experience, Volume

21, Issue 8, pp. 961-990, 2009.

[71] I. Rodero, J. Corbalan, R.M. Badia, J. Labarta, ”eNANOS Grid Resource Bro-

ker”, P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 111-121, ISBN:

3-540-26918-5, Amsterdam, The Netherlands, 14-16 February, 2005.

[72] I. Rodero, F. Guim, J. Corbalan, L.L. Fong, Y.G. Liu, S.M. Sadjadi, ”Looking

for an Evolution of Grid Scheduling: Meta-brokering”, Coregrid Workshop in

Grid Middleware’07, Dresden, Germany, June 2007.

[73] P. Saiz, L. Aphecetche, P. Buncic, R. Piskac, J. E. Revsbech, V. Sego, AliEn–

ALICE environment on the GRID, Nuclear Instruments and Methods in Physics

Research, Volume 502, Issues 2-3, pp. 437-440, 2003.

[74] U. Schwiegelshohn, A. Tchernykh, R. Yahyapour, ”Online scheduling in grids”,

22nd IEEE International Symposium on Parallel and Distributed Processing

(IPDPS 2008), pp. 1-10, 2008.

[75] J. Seidel, O. Waldrich, W. Ziegler, P. Wieder and R. Yahyapour, ”Using SLA for

resource management and scheduling – a survey”, Technical report, TR-0096,

Institute on Resource Management and Scheduling, CoreGRID – Network of

Excellence, August 2007.

Bibliography 145

[76] G. Singh et al, ”The Pegasus Portal: Web Based Grid Computing”, in Proc. of

20th Annual ACM Symposium on Applied Computing, Santa Fe, New Mexico,

2005.

[77] O. Smirnova et al., ”The NorduGrid Architecture And Middleware for Scientific

Applications”, Springer-Verlag, LNCS 2657, 2003.

[78] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, J. Dongarra, ”MPI: The

Complete Reference”, MIT Press, 1995.

[79] B. Sundaram and B. M. Chapman, ”XML-Based Policy Engine Framework for

Usage Policy Management in Grids”, In Proceedings of the Third international

Workshop on Grid Computing, LNCS vol. 2536, Springer-Verlag, pp. 194-198,

2002.

[80] V. Sunderam, J. Dongarra, ”PVM: A framework for parallel distributed com-

puting”, Concurrency: Practice and Experience, 2(4), pp. 315-339, 1990.

[81] I. Taylor, et al., ”Grid Enabling Applications Using Triana”, Workshop on Grid

Applications and Programming Tools, Seattle, 2003.

[82] D. Thain, T. Tannenbaum, and M. Livny, ”Distributed Computing in Practice:

The Condor Experience”, Concurrency and Computation: Practice and Experi-

ence, pp. 323-356, Volume 17, Issue 2-4, 2005.

[83] J.D. Ullman, ”NP-complete scheduling problems”, Journal of Computer and

System Sciences, Volume 10, Issue 3, pp. 384-393, 1975.

[84] E. Urbah, P. Kacsuk, Z. Farkas, G. Fedak, G. Kecskemeti, O. Lodygensky, A.

Marosi, Z. Balaton, G. Caillat, G. Gombás, Á. Kornafeld, J. Kovács, H. He,

R. Lovas, ”EDGeS: Bridging EGEE to BOINC and XtremWeb”, In Journal of

Grid Computing, Special Issue: Grid Interoperability, vol 7, issue 3, pp. 335-354,

2009.

[85] C. Vazquez, E. Huedo, R. S. Montero et I. M. Llorente, ”Federation of TeraGrid,

EGEE and OSG Infrastructures through a Metascheduler”, Future Generation

Computer Systems 26, pp. 979-985, 2010.

[86] S. Venugopal, K. Nadiminti, H. Gibbins and R. Buyya, Designing a Resource

Broker for Heterogeneous Grids, Software: Practice and Experience, Volume 38,

146 Bibliography

Issue 8, Pages: 793-825, ISSN: 0038-0644, Wiley Press, New York, USA, July

10, 2008.

[87] O. Waldrich, P. Wieder and W. Ziegler, A Meta-scheduling Service for Co-

allocating Arbitrary Types of Resources, In Parallel Processing and Applied

Mathematics, LNCS, Volume 3911/2006, pp. 782-791, 2006.

[88] J. Yu, R. Buyya, ”A taxonomy of workflow management systems for grid com-

puting”, Journal of Grid Computing, Vol. 3, pp. 171-200, 2005.

Web references

[89] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, J. Pruyne, J. Rofrano,

S. Tuecke, and M. Xu, ”Web Services Agreement Specification”, Internet,

http://www.ogf.org/documents/GFD.107.pdf, March 2007.

[90] Austrian Grid initiative, http://www.austriangrid.at/, December 2010.

[91] Enabling Desktop Grids for e-Science, http://edgi-project.eu/, December 2010.

[92] Enabling Grids for E-sciencE (EGEE) project, http://www.eu-egee.org/,

September 2010.

[93] European Grid Infrastructure, http://www.egi.eu/, September 2010.

[94] EUAsiaGrid project, http://www.euasiagrid.org, September 2010.

[95] European Research Network on Foundations, Software Infrastructures and Ap-

plications for large scale distributed, GRID and Peer-to-Peer Technologies (Core-

Grid Project), http://www.coregrid.net, December 2010.

[96] I. Foster et al., ”OGSA Basic Execution Service Version 1.0”, GFD.108,

http://www.ogf.org/documents/GFD.108.pdf, November 2008.

[97] GEANT project, http://www.geant.net, September 2010.

[98] Global Grid User Support, http://www.ggus.org, December 2010.

[99] Globus Toolkit, http://www.globus.org/toolkit, September 2008.

Bibliography 147

[100] gLite middleware for Grid computing, http://glite.cern.ch/, December 2010.

[101] GRIA service-oriented infrastructure, http://www.gria.org/, June 2009.

[102] Grid aided computer system for rapid anti-cancer drug design, CancerGrid

project, http://cancergrideu.w3h.hu/, December 2010.

[103] Grid Application Support Centre, http://www.lpds.sztaki.hu/gasuc/, Decem-

ber 2010.

[104] Grid-enabled Know-how Sharing Technology Based on ARC Services and Open

Standards (KnowARC) project, http://www.knowarc.eu, November 2009.

[105] GridWay documentation,

http://www.gridway.org/doku.php?id=documentation, September 2010.

[106] Grid Workflow Forum, http://www.gridworkflow.org/, September 2008.

[107] The Grid Workloads Archive, http://gwa.ewi.tudelft.nl, September 2009.

[108] Y. Gurevich, ”Draft of the ASM Guide”, University of Michi-

gan EECS Department Technical Report CSE-TR-336-97, 1997,

ftp://www.eecs.umich.edu/groups/gasm/guide97.pdf, September 2009.

[109] The HPC-Europa Project, http://www.hpc-europa.org, September 2009.

[110] HunGrid virtual organisation, http://www.grid.kfki.hu/hungrid/, September

2009.

[111] Information Technology Vocabulary, Fundamental Terms (ISO/IEC 2382-01,

1993), http://jtc1sc36.org/doc/36N0646.pdf, December 2010.

[112] Job Scheduling Hierarchically (JOSH),

http://gridengine.sunsource.net/josh.html, October 2007.

[113] Job Submission Description Language (JSDL),

http://www.ggf.org/documents/GFD.56.pdf, September 2008.

[114] KnowARC project deliverable no. D3.1-1, ”Interoperability Minimal Service

Survey”, 2007, http://www.knowarc.eu/documents/Knowarc D3.1-1 07.pdf,

September 2010.

148 Bibliography

[115] The KOALA Co-Allocating Grid Scheduler,

http://www.st.ewi.tudelft.nl/koala/, September 2010.

[116] Latin American Grid Program, http://latinamericangrid.org/, September 2010.

[117] LCG-2 User Guide,

https://edms.cern.ch/file/454439/2/LCG-2-UserGuide.html, August, 2005.

[118] Molecular Simulation Grid (MoSGrid), http://www.mosgrid.de/, December

2010.

[119] The myExperiment Project workflows,

http://www.myexperiment.org/workflows, December 2010.

[120] National Grid Service (NGS), http://www.ngs.ac.uk/, September 2010.

[121] NextGRID – Architecture for Next Generation Grids project,

http://www.nextgrid.org/, December 2010.

[122] NorduGrid Middleware, http://www.nordugrid.org/middleware/, September

2010.

[123] Open Grid Services Architecture (OGSA) specifications,

http://www.globus.org/ogsa/, September 2010.

[124] Open Grid Forum (OGF), http://www.ogf.org, September 2008.

[125] Open Grid Forum Grid Interoperation Now Community Group,

http://forge.gridforum.org/sf/projects/gin, September 2010.

[126] OpenLDAP API, http://www.openldap.org, September 2008.

[127] Open Science Grid (OSG) project, http://www.opensciencegrid.org, September

2010.

[128] The Oxford Advanced Learner’s Dictionary,

http://www.oxfordadvancedlearnersdictionary.com/, September 2010.

[129] Parallel Workloads Archive, http://www.cs.huji.ac.il/labs/parallel/workload/,

September 2008.

[130] PBS GridWorks, http://www.pbsgridworks.com/, September 2008.

Bibliography 149

[131] Pacific Rim Application and Grid Middleware Assembly (PRAGMA) Grid,

http://www.pragma-grid.net/about/, September 2010.

[132] P-GRADE Portal, http://portal.p-grade.hu/?m=installations&s=0, September

2010.

[133] Phaser experiment, http://goc.pragma-grid.net/wiki/index.php/Run -Phaser -

on PRAGMA grid and OSG, September 2010.

[134] ProSim Project/JISC Engage Program,

https://sites.google.com/a/staff.westminster.ac.uk/engage/, September 2010.

[135] Sensitivity of the Australian Monsoon to Savannah Fire (Savannah) experiment,

http://goc.pragma-grid.net/wiki/index.php?title=Savannah, September 2010.

[136] Semantic Grid Vision, http://www.semanticgrid.org/vision.html, September

2008.

[137] Software Services and Systems Network European Network of Excellence FP7

project, http://www.s-cube-network.eu/, September 2010.

[138] SHaring Interoperable Workflows for large-scale scientific simulations on Avail-

able DCIs (SHIWA) project, http://liferay.lpds.sztaki.hu:8080/web/shiwa, De-

cember 2010.

[139] Southern Eastern European GRid-enabled eInfrastructure Development (SEE-

GRID), http://www.see-grid.org, September 2010.

[140] Success Abandonment Classification workflow by Andrea Wiggins,

http://www.myexperiment.org/workflows/140.html, December 2010.

[141] Swiss Grid portal,

http://alprose01.projects.cscs.ch:8080/gridsphere/gridsphere, September 2010.

[142] TeraGrid Advanced User Support (AUS) project,

https://www.teragrid.org/web/user-support/aus projects, September 2010.

[143] Uniform Interface to Computing Resources (UNICORE) project,

http://www.unicore.eu, September 2010.

[144] UniGrids (former GRIP) Project, http://www.unigrids.org/, September 2008.

150 Bibliography

[145] Virtual Organisation for Central Europe (VOCE),

http://egee.ces-net.cz/en/voce, September 2010.

[146] Westminster Grid Application Support Service (W-GRASS),

http://wgrass.wmin.ac.uk, September 2010.

[147] Wikipedia, the free encyclopedia,

http://en.wikipedia.org/wiki/Interoperability, September 2010.

[148] Worldwide LHC Computing Grid project,

http://lcg.web.cern.ch/LCG/, September 2010.

Publications

[P1] A. Kertész, ”Brokering solutions for Grid middlewares”, In Pre-proc. of 1st

Doctoral Workshop on Mathematical and Engineering Methods in Computer

Science, (MEMICS 2005), Znojmo, Czech Republic, 14-17 October, 2005.

[P2] A. Kertész, G. Sipos, P. Kacsuk, ”Brokering Multi-Grid Workflows in the P-

GRADE Portal”, In Euro-Par 2006: Parallel Processing, CoreGRID Workshop

on Grid Middleware, Springer-Verlag LNCS, Volume 4375, pp. 138-149, June

2007.

[P3] A. Kertész, P. Kacsuk, ”Grid Meta-Broker Architecture: Towards an Interoper-

able Grid Resource Brokering Service”, In Euro-Par 2006: Parallel Processing,

CoreGRID Workshop on Grid Middleware, Springer-Verlag LNCS, Volume 4375,

pp. 112-115, June 2007.

[P4] A. Kertész, P. Kacsuk, ”A Taxonomy of Grid Resource Brokers”, In Distributed

and Parallel Systems, Springer US, 6th Austrian-Hungarian Workshop on Dis-

tributed and Parallel Systems (DAPSYS’06), pp. 201-210, May 2007.

[P5] A. Kertész, G. Sipos, P. Kacsuk, ”Multi-Grid Brokering with the P-GRADE

Portal”, In Post-Proceedings of the Austrian Grid Symposium (AGS’06), pp.

166-178, OCG Verlag, Austria, 2007.

[P6] A. Kertész, ”Grid Brókerek evolúciója: Egységben az erő”, H́ıradástechnika,

Volume LXII, pp. 21–25, 2007/12.

Bibliography 151

[P7] A. Kertész, ”The evolution of Grid Brokers: Union for Interoperability”, Jour-

nal of Scientific Association for Infocommunications with co-operation with the

National Council of Hungary for Information and Communications Technology,

pp. 55-59, Volume LXIII, HU ISSN 0018-2028, January 2008.

[P8] A. Kertész, P. Kacsuk, ”Meta-Broker for Future Generation Grids: A new ap-

proach for a high-level interoperable resource management”, In Grid Middleware

and Services: Challenges and Solutions, 2nd CoreGRID Workshop on Grid Mid-

dleware, Springer US, pp. 53-63, June 2008.

[P9] A. Kertész, I. Rodero, F. Guim, ”Data Model for Describing Grid Resource Bro-

ker Capabilities”, In Grid Middleware and Services: Challenges and Solutions,

2nd CoreGRID Workshop on Grid Middleware, Springer US, pp. 39-52, June

2008.

[P10] A. Kertész, I. Rodero, F. Guim, ”Meta-Brokering approaches in state-of-the-

art Grid Resource Management”, CoreGRID Integration Workshop 2008 – In-

tegrated Research in Grid Computing, pp. 371-382, Hersonissos, Crete, Greece,

April 2008.

[P11] A. Kertész, Z. Farkas, P. Kacsuk, T. Kiss, ”Grid Interoperability by Multiple

Broker Utilization and Meta-Brokering”, In Grid Enabled Remote Instrumen-

tation, Springer US Book Series on Signals and Communication Technology,

(INGRID’07), pp. 303-312, October 2008.

[P12] P. Kacsuk, A. Kertész and T. Kiss, ”Can We Connect Existing Production

Grids into a World Wide Grid?”, In High Performance Computing for Com-

putational Science (VECPAR’08), Springer LNCS, Volume 5336, pp. 109-122,

December 2008.

[P13] A. Kertész, J. D. Dombi, J. Dombi, ”Adaptive scheduling solution for grid

meta-brokering”, Acta Cybernetica, Volume 19, pp. 105-123, 2009.

[P14] A. Kertész, I. Rodero, F. Guim, ”Meta-Brokering Solutions for Expanding

Grid Middleware Limitations”, In Euro-Par 2008 Workshops – Parallel Process-

ing, Workshop on Secure, Trusted, Manageable and Controllable Grid Services

(SGS’08), Springer LNCS, Volume 5415, pp. 199-210, April 2009.

152 Bibliography

[P15] A. Kertész, G. Kecskeméti, I. Brandic, ”An SLA-based Resource Virtualization

Approach For On-demand Service Provision”, In proceedings of 3rd International

Workshop on Virtualization Technologies in Distributed Computing (VTDC’09)

in conjunction with ICAC’09, Barcelona, Spain, ACM, pp. 27-34, June 15, 2009.

[P16] A. Kertész and Zs. Németh, ”Formal Aspects of Grid Brokering”, In EPTCS 14,

8th International Workshop on Parallel and Distributed Methods in verifiCation

(PDMC’09), pp. 18-31, CoRR abs/0912.2549, 2009.

[P17] A. Kertész, P. Kacsuk, ”Grid Interoperability Solutions in Grid Resource Man-

agement”, IEEE Systems Journal’s Special Issue on Grid Resource Management,

Volume 3, Issue 1, pp. 131-141, March 2009.

[P18] A. Kertész and T. Prokosch, ”The Anatomy of Grid Resource Management”,

In book: Remote Instrumentation and Virtual Laboratories, Eds.: Davoli, F.;

Meyer, N.; Pugliese, R.; Zappatore, S., Springer Science+Business Media, LLC,

pp. 123-132, 2010.

[P19] A. Kertész, P. Kacsuk, ”GMBS: A New Middleware Service for Making Grids

Interoperable”, Future Generation Computer Systems, vol. 26, no. 4, pp. 542-

553, 2010.

