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Doctoral School of Physics

Department of Theoretical Physics

Faculty of Science and Informatics

University of Szeged

Szeged, Hungary

2009





CONTENTS

Contents

Part I

Introduction 1

1 Transport in mesoscopic systems 5

1.1 Semiconductor heterostructures . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Effective mass equation, transverse modes . . . . . . . . . . . . . . . . . . 7

1.3 Experimental characterization . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Hall measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 High-field magnetoresistance . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Transport characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 The Landauer formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Spin-orbit interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Models of quantum rings 23

2.1 Interference effects in quantum rings . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Quantum rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.2 The effect of magnetic field . . . . . . . . . . . . . . . . . . . . . . 24

2.1.3 Spin-dependent interference . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Model of a quantum ring with elastic scatterers . . . . . . . . . . . . . . . 26

2.2.1 Closed ring with Aharonov-Bohm flux . . . . . . . . . . . . . . . . 28

2.2.2 The scattering matrix method to couple leads to the ring . . . . . . 29

2.2.3 Transmission probability through the ring . . . . . . . . . . . . . . 31

2.3 Spin-dependent propagation in quantum rings . . . . . . . . . . . . . . . . 32

2.3.1 The one-dimensional Hamiltonian of the ring . . . . . . . . . . . . . 33

2.3.2 Two-terminal ring with Aharonov-Bohm flux . . . . . . . . . . . . . 34

2.3.3 Two-terminal ring with Rashba spin-orbit interaction . . . . . . . . 37

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

***
Part II

3 Asymmetric injection 43

3.1 Introduction of arm-dependent asymmetry into the scattering matrix . . . 43

3.2 Solution of the scattering problem with arm-dependent asymmetry . . . . 46

3.2.1 No scatterers in the arms . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 Scatterer in the arm . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

i



CONTENTS

4 Three-terminal quantum ring with spin-dependent propagation 55
4.1 Formal solution of the problem . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 The three-terminal quantum ring as an electron spin beam splitter . . . . . 61

4.2.1 One input, two outputs . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 The condition for spin polarization . . . . . . . . . . . . . . . . . . 63
4.2.3 Polarization in a symmetric ring . . . . . . . . . . . . . . . . . . . . 64
4.2.4 Polarization with asymmetric configurations . . . . . . . . . . . . . 67
4.2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 The physical background of spin polarization:spatial interference . . . . . . 68
4.3.1 Spin probability currents in the ring . . . . . . . . . . . . . . . . . 68
4.3.2 Visualization of the effect . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Spatial-spin correlations: intertwining . . . . . . . . . . . . . . . . . . . . . 72
4.4.1 Mathematical formulation of the problem . . . . . . . . . . . . . . . 73
4.4.2 The nature of spatial-spin correlations . . . . . . . . . . . . . . . . 74
4.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Two-dimensional quantum ring arrays 77
5.1 Building blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Properties of the conductance . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Spin transformational properties . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4 The effect of point-like scatterers . . . . . . . . . . . . . . . . . . . . . . . 86
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Summary 88
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Introduction

In most of the commonly used conductors the electric current is carried by electrons. Al-

though electrons have a discrete charge, diffraction experiments also have demonstrated

that they propagate as waves. The wave properties of individual electrons are hardly im-

portant in usual conductors the width of which is about ten million times the wavelength

corresponding to an electron. The conductance of such a conductor is inversely propor-

tional to its length and scales linearly with its cross-sectional area. The proportionality

coefficient, or conductivity, characterizes the material the conductor is made of, and is

independent of its dimensions. One may ask: What happens with this simple scaling law

when one makes a conductor thinner and shorter so that the wave property of electrons

becomes relevant? This question has been in the center of interest of scientists for a

long time. Due to the development in miniaturization, it became possible to fabricate

conductors whose dimensions are small enough not to follow the mentioned scaling law,

but still much larger than microscopic objects like atoms. These are called mesoscopic

conductors (”meso” stands for the mentioned intermediate length scale) [1,2]. The scaling

law breaks down when the conductor size is small enough to allow coherent propagation

of an electron across it in the given material. This happens when the dimensions of the

conductor are comparable to the relevant wavelength, the mean free path and the phase

relaxation length of the electrons. (These latter two notions describe the distance that

an electron travels before its initial momentum or the phase of its wave function is de-

stroyed, respectively.) The conductance of such small conductors is quantized in universal,

material-independent units [3], and they operate as electron waveguides.

Although some of the pioneering experiments with mesoscopic conductors were per-

formed using metallic conductors [4], recent works are mostly based on semiconductor

heterostructures, such as AlGaAs/GaAs, or InGaAs/InAlAs. In these systems a highly

mobile two-dimensional electron gas is present at the interface of the two semiconductor

layers, which provides a good basis for the fabrication of mesoscopic conductors of various

structure. Among these, ring shaped devices (often called quantum rings) are intensely

studied due to their ability to show various types of quantum interference phenomena,

such as the well-known Aharonov-Bohm effect [5], when the wave function of a charged

particle passing around a magnetic flux experiences a phase shift as a result of the enclosed

magnetic field.



INTRODUCTION

Electrons – besides their wave nature – possess another quantum property, called spin.

The idea of investigating, and possibly utilizing this additional feature in electronic trans-

port led to the development of a new field of research: spintronics [6–9]. Devices, based

on early results of spintronics are already commercially available, e.g., giant magnetoresis-

tance (GMR) [10,11] led to computer hard drives that can store data with unprecedented

surface density. An important common feature of these spintronic devices is that they use

spin degree of freedom as a classical resource, quantum mechanical features play no role.

In other words, spin states are ”up” and ”down” with respect to a certain quantization

direction but their superpositions (preferably) play no role. The idea of utilizing spin

as a quantum resource is a more recent direction in this field and may be related to the

birth of quantum computing [12–15], which has attracted a lot of attention because of

its potential to offer an exponential speedup over classical computation for certain prob-

lems [16, 17]. A quantum computational algorithm uses quantum bits (qubits), which

are two-level quantum systems represented by a two-dimensional Hilbert space, i.e., their

state is an arbitrary superposition of the logical ”up” and ”down” states. Among a variety

of other possibilities, electron spin has been proposed as the qubit in a quantum computa-

tional system. From a practical point of view, using spin instead of charge in information

processing applications may lead to less energy consumption, as spin flips require less

energy than usual charge based operations. However, in order to achieve the ambitious

goal of spin based computing, several problems have to be solved. Quantum information

processing protocols [18] require coherent behavior, superpositions of the quantum bits

must be available. From the transport point view, when the quantum mechanical infor-

mation is being delivered by (spin) currents, the question whether these ”flying qubits”

are practically useful is related to the nature of the transport. In the diffusive regime,

when the size of the device exceeds the (spin) coherence length, no coherent behavior can

be expected. Coherent manipulation of spins is possible only if the coherence length is

larger than the size of the device. Currently, high mobility samples have become available

such that at cryogenic temperatures spin coherence lengths [19–21] of 100 µm have been

found, which mean a promising perspective in the fabrication of devices of a few microns

that are capable of coherent manipulation of spins.

Semiconductor heterostructures, which have an internal electric field perpendicular to

the interface between the two layers, have found great interest in spintronic research. This

is due to the fact that in such systems, the manipulation of the electron spin is possible

via an effect of relativistic origin. This is called Rashba spin-orbit interaction [22]: in

the particle’s rest frame there is a magnetic field perpendicular to the electric field and

the direction of movement. The spin direction precesses around the axis parallel to this

magnetic field and the precession rate depends on the spin-orbit interaction strength,

which can be controlled by an external gate voltage [23,24].

A pioneering example of spintronic devices that make use of Rashba spin-orbit in-
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teraction [25–28] is the spin field-effect transistor proposed by Datta and Das [25]. In

this proposal, a spin-polarized electron is injected from a ferromagnetic source contact

into a two-dimensional electron gas. The electron then undergoes spin precession due to

the Rashba effect before it is collected by a ferromagnetic drain contact. By varying the

strength of the spin-orbit coupling with an applied gate voltage, one can alter the degree

of spin precession and thus modulate the current through the device. Another device that

has received considerable attention is the spin-interference device proposed in Ref. [29].

This is a small ring (with a diameter of a micron) connected with two external leads fabri-

cated in a semiconductor heterostructure with Rashba spin-orbit interaction. The key idea

is that the phase difference between electrons traveling clockwise and counterclockwise

would produce interference effects in the spin-sensitive electron transport. The conduc-

tance oscillations of such a ring, fabricated in InGaAs/InAlAs and in HgTe/HgCdTe, has

been experimentally demonstrated in Refs. [30] and [31], respectively. Rectangular arrays

of such rings have also been realized and measured experimentally [32,33]. Of the theoret-

ical results concerning quantum rings with Rashba spin-orbit interaction here we mention

Ref. [34] where it has been shown that the interference effects lead to the modification of

the spin properties of the incoming electron by the spin-orbit interaction, resulting in a

transformation of the qubit state carried by the spin [34], which can be varied by tuning

the strength of the Rashba interaction, by changing the relative position of the leads, or

the size of the ring.

The ongoing intensive experimental [31–33] and theoretical [35–37] interest in quantum

rings with Rashba spin-orbit interaction and/or magnetic field motivated us to carry

out further investigations regarding such rings. We wished to describe a quantum ring

connected to two current-carrying leads, in which the probabilities for the electron to

enter the two arms of the ring are not equal. We also wished to explore whether it is

possible to polarize the spin of the electron by a quantum ring in which Rashba coupling

is present. Additionally, we intended to calculate the conductance of rectangular arrays

with Rashba spin-orbit interaction and a perpendicular magnetic field.

This dissertation is organized as follows. In Part I we summarize the results known

form the literature: in Chapter 1 we give an introduction to the basic properties of

transport in mesoscopic systems. Then, in Chapter 2 we overview interference effects

that may be present in quantum rings and introduce one-dimensional models that are

used in their theoretical description, which are based on the fact that when the width

of the rings is much smaller than their radii, then, at low enough temperatures only the

lowest radial mode takes part in the conduction. One of the models (Sec. 2.2) is able to

take into account the imperfectness of the coupling between the current-carrying leads

and the ring. It is also inherently able to account for scatterers in the arms of the ring.

The other model (Sec. 2.3) considers no additional reflections at the junctions of the

leads with the ring (when no scatterers are placed there directly), it simply fits the wave

3
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functions and the currents at a given junction, and considers no scatterers in the arms of

the ring. We will use this latter model to take into account spin-orbit interaction in the

ring.

In Part II we present our own results: We extend the use of the above mentioned

models in several aspects. In Chapter 3, we modify the model presented in Sec. 2.2 in

order to be able to take into account asymmetric injection into the arms of a ring, in

the presence of a magnetic field, and a scatterer in the ring. Chapter 4 is dedicated

to the investigation of the effects related to a three-terminal quantum ring with Rashba

spin-orbit coupling. In Section 4.1 we solve the scattering problem of such a ring with

the model presented in Section 2.3. Then, in Section 4.2 we discuss our proposal for

its utilisation, namely, spin-polarization: we show that the incoming electrons are forced

to split into two different spatial parts and due to spin-sensitive quantum interference,

electrons that are initially in a totally unpolarized spin state become polarized at the

outputs with different spin directions. In Section 4.3 we analyze the physical origin of

this spin polarizational effect, and demonstrate that it is due to spatial interference.

In Section 4.4 we investigate the correlations between the spatial degree of freedom of

the electron and its spin when leaving a three-terminal ring. We show that quantum

intertwining between the spin direction and the output path can be present. In Chapter 5

we study electron transport through multi-terminal rectangular arrays of quantum rings

in the presence of Rashba spin-orbit interaction and of a perpendicular magnetic field.

We show that due to destructive and constructive interferences, the conductance shows

oscillations as a function of the wave vector, the spin-orbit coupling strength, and the

magnetic field.

4



Chapter 1

Transport in mesoscopic systems

In recent years miniaturization led to a dramatic increase of interest in the physics and

applications of structures which can be described as ”low-dimensional”. In the case of

electronic transport, this term refers to a system in which electrons are constrained by

potential barriers so that they lose one or more degrees of freedom for motion; the system

becomes two, one or even zero dimensional. Although a large variety of systems has

been proposed, the majority of work on two- (and lower- ) dimensional systems has been

performed on semiconductor structures.

In this chapter we summarize the basic transport properties of low-dimensional sys-

tems relying mainly on Ref. [1]. We note that here we do not deal with zero-dimensional

systems as they were not part of our investigations. In Section 1.1 we give an overview of

the systems that are most frequently used as a basis for the fabrication of low-dimensional

nanostructures. In Section 1.2 we present a simple theoretical description of two- and one-

dimensional conductors, and then, in Section 1.3 we show the most important experimen-

tal measurements that are used for the characterization of these devices. In Section 1.4 we

describe the characteristics of transport and then, in Section 1.5 we present the Landauer

formula which relates the experimentally measurable conductance to the transmission

probability through the conductor which can be obtained from its quantum mechanical

description.

1.1 Semiconductor heterostructures

Currently, semiconductor heterostructures provide a good perspective for investigations

of electrical conduction on short length scales. This was made possible by the availability

of semiconducting materials of unprecedented purity and crystalline perfection. Such

materials can be structured to contain a thin layer of highly mobile electrons. Motion

perpendicular to the layer is quantized, and the electrons are constrained to move in a

plane. This system combines a number of desirable properties, not shared by thin metal
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films. It has a low electron density, which may be varied by means of an electric field.

As we will see in Section 1.2 the low density implies a large wavelength corresponding

to conduction electrons, that is comparable to the dimensions of the nanostructures that

can be fabricated today. Additionally, compared to bulk samples, the electron mean free

path can be quite large in these systems. As a result, quantum effects are manifested in

the experimentally measurable quantities, such as the conductance.

y
z

x

Surface

n-AlGaAs i-GaAs

spacer

z

E

Ec

EF

Ev

z

E

2-DEG

EF

Ec

Ev

(a)

(b)

Figure 1.1: Conduction and valence band line-up at a junction between an n-type AlGaAs and intrinsic
GaAs, (a) before and (b) after charge transfer has taken place. Note that this is a cross-sectional view.

One of the heterostructures that were first used for two-dimensional transport is com-

posed of the two semiconductors, GaAs and AlxGa1−xAs which have nearly the same lat-

tice parameter. In the latter material, a fraction x (commonly x ' 0.3) of the Ga atoms

in the GaAs lattice is replaced by Al atoms. For x < 0.45 the semiconductor AlxGa1−xAs

has a direct band gap, larger than that of GaAs, being approximately proportional to the

Al content. Let us now consider the conduction and valence band line-up perpendicular

to the interface (z-direction) when we first bring the layers in contact (Fig. 1.1(a)). The

Fermi energy EF in the widegap AlGaAs layer is higher than that in the narrowgap GaAs

layer. Consequently, some of the electrons introduced by the donors in the n-AlGaAs are

transferred into the lower-lying conduction band of the GaAs, leaving behind positively

charged donors. This space charge gives rise to an electrostatic potential that causes the

bands to bend as shown in Fig. 1.1(b), forming a nearly triangular well. At equilibrium

the Fermi level is constant everywhere. The electron density is sharply peaked near the

GaAs-AlGaAs interface (where the Fermi level is inside the conduction band) forming

6
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a thin conducting layer which is usually referred to as the two-dimensional electron gas

(2-DEG in short). In the narrow (∼ 5 nm) well formed at the heterojunction, the energy

spectrum for motion perpendicular to the interface is discrete (and in most cases only one

electric subband is populated), whereas the motion along the interface is free-electron-like

with an effective mass close to that of bulk GaAs conduction band electrons.

The carrier mobility of semiconductor heterostructures can be considerably larger than

that of the corresponding bulk semiconductor; this is achieved by a technique generally

referred to as ”modulation doping”. Modulation-doped heterostructures are obtained by

introducing n-type dopant impurities (e.g., Si) into the wide-band-gap material, AlGaAs

at some distance from the interface (the undoped AlGaAs is called the spacer), whereas

the narrow-band-gap material (GaAs) remains free from intentional doping, as shown

in Fig 1.1(a). Due to modulation doping, the mobile carriers in the heterostructure

are spatially separated from their parent impurities [38] which leads to a reduction of

scattering. Thus, high carrier mobilities can be obtained.

Although AlGaAs/GaAs has served as a model system for the majority of investiga-

tions of transport in low-dimensional structures, other material combinations have also

received considerable attention. Important among these have been heterojunctions in

InGaAs/InAlAs and HgTe/HgCdTe [39]. The InGaAs/InAlAs system has a number of

potential technological advantages over AlGaAs/GaAs, such as a lower electron effective

mass and a larger energy separation between conduction band minima in InGaAs/InAlAs

compared with AlGaAs/GaAs, however, the presence of alloy scattering results in rela-

tively low mobilities at low temperatures [40]. Work on HgTe/CdHgTe has indicated that

many more subbands are occupied than what are usually observed in other heterojunction

systems [41].

1.2 Effective mass equation, transverse modes

In order to determine theoretically the electronic states in solids, approximations of dif-

ferent accuracy have been developed. In this dissertation we will use the approximation

that electrons are independent. In the single-electron picture it is also assumed that each

electron feels the same periodic potential. Then, the wave function of an electron is a

Bloch wave: the product of a plane wave and a lattice periodic function. For a given wave

number (it is sufficient to consider only those in the first Brillouin zone) one can determine

the corresponding energies. For bulk semiconductors these energies form bands, the two

uppermost being the conduction and the valence band, which are separated by a band

gap. As the Fermi level is inside the band gap, the valence band is full and the conduc-

tion band is empty. Conduction may only happen when valence electrons gain energy

from thermal excitation. Only those electrons take part in the conduction, which have

7
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an energy close to the minimum of the conduction band. For these conduction electrons

the Hamiltonian can be approximated by an effective free-electron-like operator that is

the sum of the energy corresponding to the conduction band edge and a kinetic term that

incorporates the effect of the periodic lattice potential through the effective mass. The

eigenfunctions of this Hamiltonian no longer reflect the periodicity of the crystal.

When two semiconductor crystals are placed adjacent to each other to form a het-

erojunction, then similar eigenvalue equations are valid in each, remembering that the

effective mass could be a function of position. Thus, the dynamics of electrons in the

conduction band can be described by an equation of the form

[
Ec +

P 2

2m∗ + U(r)

]
Ψ(r) = EΨ(r) (1.1)

where P is the momentum operator of the electron, U(r) is a model potential energy due

to space-charge and confinement, Ec is the energy corresponding to the conduction band

edge, and m∗ is the effective mass. As we have already mentioned, the lattice potential,

which is periodic on an atomic scale, does not appear explicitly in Eq. (1.1); its effect

is incorporated through the effective mass m∗ which we assumed here to be spatially

constant. Any band discontinuity ∆Ec at heterojunctions is incorporated by letting Ec

be position-dependent. We note that in the presence of a magnetic field P has to be

replaced by P − eA, where e is the charge of the electron, which is the negative of the

elementary charge, and A is the vector potential. Equation (1.1) is called a single-band

effective mass equation.

In a 2-DEG shown in Fig.1.1(b), the electrons are free to propagate in the x− y plane

but are confined by some potential U(z) in the z-direction. The electronic wave functions

in such a structure can be written e.g., in the form

Ψ(r) = φl(z)eikxxeikyy, (1.2)

with the dispersion relation:

E = Ec + εl +
~2

2m∗
(
k2

x + k2
y

)
. (1.3)

The index l labels the different subbands each having a different wave function φl(z) in

the z-direction and a cut-off energy εl. Usually at low temperatures with low carrier

densities only the lowest subband with l = 1 is occupied and the higher subbands do

not play any significant role. We can then ignore the z-dimension altogether and simply

treat the conductor as a two-dimensional system in the x − y plane. For a free electron

gas the eigenfunctions are obtained from Eq. (1.1) by setting U = 0. The eigenfunctions

8
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normalized to an area S have the form

Ψ(x, y) =
1√
S

eikxxeikyy, (1.4)

with eigenenergies given by

E = Es +
~2

2m∗
(
k2

x + k2
y

)
, (1.5)

where Es = Ec + ε1.

At equilibrium the available states in a conductor are filled up according to the Fermi

function

f0(E) =
1

1 + e
E−EF
kBT

, (1.6)

where EF is the Fermi level, which, at T = 0 K, coincides with the Fermi energy. (We note

that in the literature, instead of Fermi level often the terminology ”chemical potential”

is used, here however, the sample properties do not change significantly, therefore we will

continue using ”Fermi level”.) In the low temperature limit (e
Es−EF

kBT ¿ 1), the Fermi

function inside the band (E > Es) can be approximated by

f0(E) = Θ (EF − E) . (1.7)

where Θ is the unit step function. We note that throughout this thesis we will remain

within this limit.

At low temperatures the conductance is determined entirely by electrons with energy

close to the Fermi level. The wavenumber of such electrons is referred to as the Fermi

wavenumber (kF):

kF =

√
2m∗ (EF − Es)

~
. (1.8)

As EF − Es is proportional to the number of occupied states in two dimensions, and

consequently to the equilibrium electron density ns, we can express the Fermi wavenumber

as:

kF =
√

2πns. (1.9)

In narrow conductors, besides the z-direction, electrons are also confined in a second

direction. Let us consider a rectangular conductor that is uniform in the x-direction,

which has some transverse confining potential U(y) (see Fig. 1.2(a)). Then, the solutions

of the effective mass equation (1.1) can be expressed in the form of plane waves

Ψ(x, y) =
1√
L

eikxχ(y), (1.10)

9
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where L is the length of the conductor over which the wavefunctions are normalized.

In general, for arbitrary confining potentials χ(y) can not be determined analytically.

However, for a parabolic potential U(y) = 1
2
m∗ω2

0y
2, which is often a good description

of the actual potential in narrow conductors, analytic solutions can be written down.

The eigenenergies and eigenfunctions are well-known from the theory of the harmonic

oscillator [42].

y

x

y

U (y)

L

(a)
E(k)

EF

k

n = 0 12

(b)

Figure 1.2: (a) A rectangular conductor assumed to be uniform in the x-direction and having some
transverse confining potential U(y). (b) Dispersion relation, E(k) as a function of k for electric subbands
arising from parabolic confinement. The different subbands are indexed by n.

The dispersion relation is sketched in Fig. 1.2(b). States with different index n are said

to belong to different subbands just like the subbands that arise from the confinement

in the z-direction. The spacing between two subbands is equal to ~ω0. The tighter

the confinement, the larger ω0 is, and the further apart the subbands are. Usually the

confinement in the z-direction is very tight (electrons are confined into a layer of width

of ∼ 5 − 10 nm) so that the corresponding subband spacing is large (∼ 100 meV) and

only one or two subbands are customarily occupied. In all our discussions we will assume

that only one z-subband is occupied. The y-confinement is relatively weaker and the

corresponding subband spacing is smaller so that a number of these may be occupied

under normal operating conditions. The subbands are called transverse modes in analogy

with the modes of an electromagnetic waveguide, and such conductors are often referred

to as electron waveguides.

As a simple estimation for the number of transverse modes in a narrow quantum wire

of width W , one may also consider the transverse confining potential as an infinite well,

the discrete energies of which are given as n2
W~2π2/(2m∗W 2) (nW = 1, 2, ...). Then, the

energy difference between the first and second energy levels in the case of a narrow wire

of width W = 50 nm, is approximately twice as much as the Fermi energy (for a Fermi

energy of 11.13 meV in case of an effective mass m∗ = 0.023m of InGaAs), however, as

W is increased, this ratio is decreased, so that in the case of W = 100 nm, two of these

modes may be occupied.

10
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1.3 Experimental characterization

In this section we summarize some of the experimental tools which are used to determine

the characteristic parameters of the two-dimensional electron gas formed at the interface

of semiconductor heterostructures. We will describe magnetoresistance measurements in

low and high magnetic fields, from which the mobility and the carrier concentration in

the sample can be derived.

The mobility (at low temperatures) provides a direct measure of the momentum re-

laxation time, which is limited by impurities and defects. Let us first briefly explain the

meaning of mobility. In equilibrium the conduction electrons move in a random way, not

producing any current in any direction. An applied electric field E gives them a drift

velocity vd in the direction of the force eE. In order to relate the drift velocity to the

electric field we note that, at steady-state, the rate at which the electrons receive momen-

tum from the external field is exactly equal to the rate at which they lose momentum due

to scattering processes: [
dp

dt

]

scattering

=

[
dp

dt

]

field

. (1.11)

From this follows that
m∗vd

τm

= eE, (1.12)

where τm is the momentum relaxation time. The drift velocity of electrons is thus given

by

vd =
eτm

m∗ E. (1.13)

The mobility is defined as the ratio of the drift velocity to the electric field:

µ =
∣∣∣vd

E

∣∣∣ =
|e| τm

m∗ . (1.14)

Mobility measurement using the Hall effect (see Section 1.3.1) is a basic characterization

tool for semiconductor samples, since, if the mobility is known, the momentum relaxation

time can easily be deduced from Eq. (1.14).

In bulk semiconductors as we decrease the temperature, at first, the momentum re-

laxation time increases due to the suppression of scattering on phonons. However, it does

not increase any further when the scattering on phonons becomes weak enough so that

scattering on impurities becomes the dominant mechanism. In undoped samples, the mo-

bilities are higher, but these are less useful since there are very few conduction electrons.

In a 2-DEG, on the other hand, mobilities may be two orders of magnitude larger than in

undoped samples. This is due to modulation doping, i.e., the spatial separation between

the donor atoms in the AlGaAs layer and the conduction electrons in the GaAs layer,

which reduces the scattering on impurities.
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1.3.1 Hall measurement

The measurement of conductivity in a weak magnetic field (generally referred to as a

Hall measurement) is one of the basic tools used to characterize semiconductor samples.

This is due to the fact that it allows the determination of the carrier density ns and the

mobility µ individually, while the conductivity measured without a magnetic field only

gives the product of these two.

In a magnetic field at steady-state, the rate at which the electrons receive momentum

from the external field is equal to the rate at which they lose momentum due to scattering

processes:
m∗vd

τm

= e (E + vd ×B) . (1.15)

Assuming B = ẑB and using the fact that the current density J is related to the electron

density ns by the relation J = evdns, we can rewrite Eq. (1.15) in the form

(
Ex

Ey

)
=

1

σ

(
1 −µB

µB 1

) (
Jx

Jy

)
, (1.16)

where σ ≡ |e|nsµ is the conductivity, and µ ≡ |e| τm/m∗. Since the resistivity tensor ρ is

defined by the relation E = ρJ , we can write from Eq. (1.16)

ρxx = ρyy = 1/σ, (1.17)

ρyx = −ρxy = µB/σ = B/ (|e|ns) . (1.18)

Thus this simple Drude model predicts that the longitudinal resistance is constant while

the Hall resistance increases linearly with the magnetic field.

V

x

y

I IW

L
V1 V2

V3

Vx = V1 − V2

VH = V2 − V3

Figure 1.3: Rectangular Hall bar for magnetoresistance measurements. The magnetic field is in the
z-direction, perpendicular to the plane of the conductor.

Experimentally, the resistivity tensor is measured by preparing a rectangular sample,

setting up a uniform current flow along the x-direction and measuring the longitudinal

voltage drop Vx = V1 − V2 and the transverse (or Hall) voltage drop VH = V2 − V3, as

shown in Fig. 1.3. Since Jy = 0, I = JxW , Vx = ExL and VH = EyW , where W is

12
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the width of the sample, the resistivities ρxx and ρyx are related to the longitudinal and

transverse voltages by

ρxx =
Vx

I

W

L
, (1.19)

ρyx =
VH

I
. (1.20)

The carrier density ns and the mobility µ can be obtained from the measured resistivities

ρxx and ρyx using Eqs. (1.17) and (1.18):

ns =

[
|e| dρyx

dB

]−1

=
I

|e| dVH

dB

(1.21)

µ =
1

|e|nsρxx

=
IL

|e|nsVxW
(1.22)

For this reason, Hall measurement is a basic characterization tool for semiconducting

samples.

Figure 1.4: Measured longitudinal and transverse voltages for a modulation-doped GaAs sample at
T = 1.2 K (I = 25.5 µA) [43].

Figure 1.4 shows the measured longitudinal voltage Vx and transverse voltage VH for

a modulation-doped GaAs sample using a rectangular Hall bar with W = 0.38 mm and

L = 1 mm and a current of I = 25.5 µA [43]. At low magnetic fields the longitudinal

voltage is nearly constant while the Hall voltage increases linearly in agreement with the

predictions of the semiclassical Drude model described above. At high fields, however, the

longitudinal resistance shows an oscillatory behavior, referred to as Shubnikov-deHaas (or

SdH) oscillations, while the Hall resistance exhibits plateaus corresponding to the minima

in the longitudinal resistance. These features are usually absent at room temperature but

quite evident at cryogenic temperatures. These features can be understood by taking into

account the formation of Landau levels.

13
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1.3.2 High-field magnetoresistance

As we have mentioned in the previous section the comparison of the experimental data

shown in Fig. 1.4 is in disagreement with the predictions of the Drude model at high

magnetic fields. There are (SdH) oscillations in the longitudinal resistivity ρxx. The

minimum longitudinal resistivity ρxx is very close to zero and plateaus appear in the Hall

resistivity ρyx whenever ρxx goes through a minimum.

As it is well-known from quantum mechanics, at high magnetic fields, the energy of

electrons becomes quantized, forming the so-called Landau levels [44], which have the

same form as those of the quantum harmonic oscillator. In a 2-DEG, which is confined

in the z-direction, they can be written as

Enl
= Es + ~ωc

(
nl +

1

2

)
, nl = 0, 1, 2, ... (1.23)

where ωc = |e|B/m∗ is the cyclotron frequency. Landau levels are degenerate, the number

of electrons per level (N) is directly proportional to the strength of the applied magnetic

field [45]

N =
2 |e|B

h
. (1.24)

The SdH oscillations that can be seen in Fig. 1.4, arise because the step-like density

of states associated with a 2-DEG breaks up into a sequence of peaks spaced by ~ωc,

due to the formation of Landau levels. This is illustrated in Fig. 1.5. The spikes are

ideally delta functions, but in practice scattering processes spread them out in energy. As

the magnetic field B is changed, the spacing of Landau levels increases. The resistivity

ρxx goes through one cycle of oscillation as the Fermi level moves from the center of one

Landau level to the center of the next one. This provides a simple method to calculate

the electron density ns from the oscillations in ρxx.

Es

E1

E2

Energy, E

Density of states, N(E)

Zero magnetic field

Figure 1.5: Density of states as a function of the energy for a 2-DEG in a magnetic field.

As we change the magnetic field B the number of occupied Landau levels changes.

The resistivity ρxx goes through a maximum every time this number is a half-integer and

14
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the Fermi level lies at the center of a Landau level. Therefore, the magnetic field values

B1 and B2 corresponding to two successive peaks must be related by

ns

2 |e|B1/h
− ns

2 |e|B2/h
= 1 (1.25)

so that

ns =
2 |e|
h

1
1

B1
− 1

B2

. (1.26)

We could choose many different values B1 and B2 corresponding to any pair of successive

peaks. They should all yield approximately the same result for the carrier density. The

usual procedure is to plot the positions of the maxima in ρxx as a function of 1/B, then

the slope of the resulting straight line gives the electron density.

1.4 Transport characteristics

We have seen in Sec. 1.3 that for a given sample the electron density ns and the mobility

µ can be measured experimentally, and the momentum relaxation time τm can be de-

rived. Since impurities, lattice vibrations (phonons) or electron-electron interaction lead

to ”collisions” that scatter the electron from one state to another, thereby changing its

momomentum, the momentum relaxation time τm is related to the collision time τc (the

average time between two collisions) by a relation of the form

1

τm

=
1

τc

α, (1.27)

where 0 ≤ α ≤ 1 denotes the ”effectiveness” of an individual collision in destroying

momentum: if the collisions are such that the electrons are scattered only by a small

angle, then very little momentum is lost in an individual collision, i.e., α is very small so

that τm is much longer than τc. The mean free path L is the distance that an electron

travels before its initial momentum is destroyed, that is,

L = vFτm, (1.28)

where vF is the Fermi velocity (the velocity of electrons at the Fermi level), which, for a

free two-dimensional electron gas, can be given in the following way:

vF =
~kF

m∗ =
~

m∗
√

2πns. (1.29)

When estimating L we used the fact that at low temperature, electrons with energies

close to the Fermi level are responsible for the conduction. However, L is usually smaller

than what we can calculate from Eq. (1.28), as the velocity of an electron is generally
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smaller than vF. In high mobility semiconductors at low temperature, the typical value

of the mean free path is 10− 100 µm. In samples, which are smaller than L, electrons are

transported essentially without disturbance, i.e., ballistically.

The mean free path is related to the momentum relaxation of the electrons. If however,

we want to treat the electrons quantum mechanically, there is another characteristic

length, the one that is related to phase relaxation. Let us consider the process, when

the phase of the wave function of the electron is initially well-defined, but becomes more

and more random as a consequence of scattering events. The characteristic time of this

phenomenon is the phase relaxation time τϕ, which can be related to τc by:

1

τϕ

=
1

τc

β. (1.30)

In general, τm and τϕ are not necessarily of the same magnitude. One way to visualize

the destruction of phase is in terms of a thought experiment involving interference. For

example, let us suppose that we split a beam of electrons into two paths of equal length

and then recombine them. In a perfect crystal the two paths would be identical resulting

in constructive interference. By applying a magnetic field perpendicular to the plane con-

taining the paths, one can change their relative phase, thereby changing the interference

alternately from constructive to destructive and back. Now let us suppose that we are

not in a perfect crystal but in a real one with collisions due to impurities, phonons etc.

We would expect the interference amplitude to be reduced by a factor e
− τt

τϕ , where τt is

the transit time that the electron spends in each arm of the interferometer.

Let us investigate what happens if we introduce impurities and defects randomly

into each arm. The two arms are then no longer identical so that the interference may

not be constructive at zero magnetic field. But as long as the impurities and defects are

static, there is a well-defined phase-relationship between the two paths, and as we increase

the magnetic field we would go through alternate cycles of constructive and destructive

interference, whose amplitude is unaffected by the length of each arm. We may thus

conclude that for static scatterers β = 0 in Eq. (1.30).

The situation is different when we take into account the effect of dynamic scatterers,

like lattice vibrations (phonons). The phase-relationship between the scattered waves in

the two arms then varies randomly with time so that there is no stationary interference

pattern. At a fixed value of the magnetic field the scattered waves show random variations

from constructive to destructive interference which time-average to zero. Interference

can only be observed between the unscattered components, whose amplitude decreases

exponentially with the length of each arm.

If the internal state of a scatterer can be changed as a result of a collision with an

electron, then it can ruin the interference. This is related to the fact that interference can

be expected only if there is no way to tell which path the electron took. But if there is a
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high probability that the electron changes the internal state of a scatterer in one arm of

the interferometer, then in principle, one could tell which path it took.

Another important source of phase-randomizing collisions is electron-electron interac-

tion. Electrons are scattered by other electrons due to their mutual Coulomb repulsion.

Interestingly, the mean free path (L) is not affected by such processes. This is because

they do not lead to any loss in the net momentum, as any momentum lost by one electron

is picked up by another. Consequently, the effectiveness factor α is zero for such processes

though β is non-zero.

We have seen that the characteristic time of momentum and phase depend in a different

way on the different type of scattering mechanisms, thus in general, they are not the same.

In certain low-mobility semiconductors, often τϕ À τm, then, as a result of numerous

elastic scattering events with static scatterers, the corresponding classical motion is quasi-

random, but the phase coherence is kept. In high-mobility samples however, in general

τm ≈ τϕ, and the phase-relaxation length Lϕ is given by

Lϕ = vFτϕ, (1.31)

and it is essentially equal to the mean free path L. In this case the size of the sample

determines whether the behavior is coherent or incoherent. If the electrons are transported

in samples that are much larger than Lϕ, then no quantum effects can be expected. But

if the size of the sample is smaller than Lϕ, then quantum mechanical description is

necessary.

1.5 The Landauer formula

In this section we describe the Landauer formula [46] that has proved to be very useful

in describing mesoscopic transport. In this approach, the current through a conductor is

expressed in terms of the probability that an electron can be transmitted through it.

Let us consider a piece of conductor placed between two large contact pads as shown

in Fig. 1.6(a). If the dimensions of the conductor were large, then its conductance would

be given by G = σd/l, where the conductivity σ is a parameter characteristic of the

material but independent of the dimensions of the sample. If this ohmic scaling relation

were to hold as the length (l) is reduced, then we would expect the conductance to

grow indefinitely. Experimentally, however, it is found that the measured conductance

approaches a limiting value Gc, when the length of the conductor becomes much shorter

than the mean free path. This is rather counterintuitive since a ballistic conductor (that

is, a conductor with no scattering) should have zero resistance.

The resistance G−1
c arises from the interface between the conductor and the contact

pads which are very dissimilar materials. For this reason it is referred to as contact
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(a)
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contact 1 contact 2
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Ballistic conductor

(b)
E

µ1

k

n = 0 12

µ2

Electrons that
carry a net
current

Figure 1.6: (a) A conductor is placed between two contacts across which an external bias is applied. (b)
Dispersion relations for the different transverse modes (or subbands) in the narrow conductor.

resistance. The current is carried in the contacts by infinitely many transverse modes,

but inside the conductor by only a few modes. This requires a redistribution of the current

among the current-carrying modes at the interface leading to the interface resistance.

To determine the contact resistance G−1
c we consider a ballistic conductor and calculate

the current through it for a given applied bias (µ1−µ2)/e. It is straightforward to calculate

this current if we assume that the contacts are ”reflectionless”, that is, the electrons can

enter them from the conductor without suffering reflections. We use the quotes to remind

that the reflection is negligible only when transmitting from the narrow conductor to the

wide contact. Going the other way from the contact to the conductor, the reflections can

be quite large.

For ”reflectionless” contacts, we have a simple situation: +k states in the conductor

are occupied only by electrons originating in the left contact while −k states are occupied

only by electrons originating in the right contact. This is because electrons originating in

the right contact populate the −k states and empty without reflection into the left contact

while electrons originating in the left contact populate the +k states and empty without

reflection into the right contact (note that k denotes the wavenumber in the x-direction,

shown in Fig. 1.6(a)).

We will now argue that the Fermi level for the +k states is always equal to µ1 even

when a bias is applied (Fig. 1.6(b)). Suppose both contacts are at the same potential µ1.

There is no question then that the Fermi level for the +k states (or any other state) is

equal to the potential µ1. Now if we change the potential at the right contact to µ2, this

can have no effect on the Fermi level for the +k states since there is no causal relationship

between the right contact and the +k states. No electron originating from the right

contact ever makes its way to a +k state. Similarly, we can argue that the Fermi level

for the −k states is always equal to µ2. Hence at low temperatures the current is equal

to that carried by all the +k states lying between µ1 and µ2.
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To calculate the current we note that the states in the narrow conductor belong to

different transverse modes or subbands, as discussed in Section 1.2. Each mode has a

dispersion relation E(n, k) as sketched in Fig. 1.2(b) with a cut-off energy

εn = E(n, k = 0), (1.32)

below which it cannot propagate. The number of transverse modes at an energy E is

obtained by counting the number of modes having cut-off energies smaller than E:

M(E) =
∑

n

Θ(E − εn). (1.33)

We can evaluate the current carried by each transverse mode (labeled by n) separately

and add them up.

Let us consider a single transverse mode whose +k states are occupied according to

some function f+(E) (in the low temperature limit this function is given by f+(E) =

Θ(µ1 − E)). A uniform electron gas with ne electrons per unit length moving with a

velocity v carries a current equal to enev. Since the electron density associated with a

single k-state in a conductor of length l is ne = 1/l, and its velocity is given by v = 1
~

dE
dk

,

we can write the current I carried by the +k states as

I =
e

l

∑

k

vf+(E) =
e

l

∑

k

1

~
∂E

∂k
f+(E). (1.34)

Assuming periodic boundary conditions and converting the sum over k into an integral

according to the usual prescription

∑

k

→ 2
l

2π

∫
dk,

where the factor 2 takes into account the spin of the electron, we obtain

I =
2e

h

∫ ∞

max(εn,µ2)

f+(E)dE, (1.35)

where εn is the cut-off energy of the waveguide mode. If εn < µ2, and we are in the

low-temperature limit, then we can easily calculate the integral (1.35):

I =
2e

h
(µ1 − µ2). (1.36)

From this follows that the contact resistance is

G−1
c =

(µ1 − µ2)/e

I
=

h

2e2
. (1.37)
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For a single-moded conductor the contact resistance is ∼ 12.9 kΩ, which is certainly not

negligible. This is the resistance one would measure if a single-moded ballistic conductor

were placed between two conductive contacts.

Assuming that M modes carry the current the contact resistance (which is the resis-

tance of a ballistic waveguide) is given by

G−1
c =

h

2e2M
, (1.38)

i.e., it is inversely proportional to the number of modes. This means that in the macro-

scopic limit, when M is very large, the contribution of the contact resistance to the full

resistance is negligible. If however, M is sufficiently small, then the appearance of a new

mode leads to a measurable decrease in the resistance.

It is important to note that the contact resistance arises because on one side the

current is carried by infinitely many modes, while on the other side it is carried only by

a few modes. The details of the geometry are not important as long as the contacts are

”reflectionless” as explained earlier.

Let us now consider the case when there is scattering inside the ballistic conductor (e.g.

due its geometry or impurities). Then those electrons which have entered the conductor

not necessarily exit from it. This leads to a resistance greater than G−1
c . As we explained

above, the current that enters the conductor is

Iin =
2e

h
M (µ1 − µ2) . (1.39)

If, for simplicity, we consider the probability T that an electron transmits the conductor

to be equal for each mode, then the current which flows out of the conductor is

Iout = T
2e

h
M (µ1 − µ2) , (1.40)

from which for the conductance we get

G =
2e2

h
MT. (1.41)

This is the Landauer formula. The factor T represents the probability that an electron

injected at one end of the conductor will be transmitted to the other end. If the transmis-

sion probability is unity, we recover the correct expression for the resistance of a ballistic

conductor including the contact resistance (see Eq. (1.38)).
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1.6 Spin-orbit interaction

In this section we recall a relativistic effect, namely, spin-orbit interaction, that is common

in semiconductor heterostructures either due to the inversion asymmetry in the bulk

crystal, or to the asymmetry in the growth direction of the heterostructure. As we will

see in the next chapters, devices with such interactionmay find interesting applications.

Taking an expansion of the Dirac equation up to second order in P 2/m2c2 [47, 48],

the most important correction to the nonrelativistic (Pauli) limit is the appearance of the

term in the Hamiltonian called the spin-orbit interaction1:

HSO = − ~
4m2c2

σ · (P ×∇V ) (1.42)

as it induces a splitting of the energy levels due to spin, even in the absence of an ex-

ternal magnetic field. The other second order corrections are spin independent and in a

perturbative treatment yield only additive constants, and have no effect on the spectrum.

Therefore we have the following effective Hamiltonian for an electron in the potential V :

H =
1

2m
(P − eA)2 + V − µσB − ~

4m2c2
σ (P ×∇V ) (1.43)

and the wave function will be a two-component spinor :

Ψ =

(
ψ1

ψ2

)
. (1.44)

In a single-electron picture of a solid, essentially the same equation can be used to

describe the motion of an electron, replacing m with the effective mass m∗ in the first and

last terms. One splits the potential V = V0(r)+Vext(r) into the periodic crystal potential

V0 and an aperiodic part Vext, which contains the potential due to impurities, confinement,

boundaries, and external electrical field (e.g. gate voltage). One then tries to eliminate

the crystal potential as much as possible and to describe the charge carriers in terms of

the band structure. The simplest systems of this kind are electrons in cubic direct-gap

semiconductors, where the conduction band and the valence band are separated by a band

gap E0 at k = 0. In a perturbation theory around k = 0 [49] the lowest order terms that

couple to the spin are expected to be linear in k:

HSO = −b(k) · σ. (1.45)

1The terminology is explained by the fact that in an atom, the potential giving rise to the electric
field is central V = V (r) and this term reduces to the form

HSO =
1

2m2c2

1
r

dV

dr
S ·L,

with L = R× P being the orbital angular momentum.
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Time reversal symmetry requires b(−k) = −b(k). If, in addition, the system has an

inversion symmetry b(−k) = b(k) then the only possible solution is b(k) = 0. Thus, for

the term (1.45) to be nonzero the inversion symmetry needs to be broken.

For a three-dimensional system, b can only be present if the inversion symmetry of

the host crystal is broken. This is called bulk inversion asymmetry. In the case of a

two-dimensional system, b can also result from an asymmetry in the confinement, or with

other words, from structural inversion asymmetry. Here we focus on electrons confined

to two dimensions.

In zinc blende structures (such as GaAs), the bulk inversion asymmetry leads to the

so-called Dresselhaus SO coupling [50] which manifests itself in a term linear in k:

HD1 = β (kxσx − kyσy) , (1.46)

and a term cubic in k:

HD2 = Bkxky (kyσx − kxσy) , (1.47)

where B ≈ 27 eVÅ
3
, for both GaAs and InAs [51, 52], and β ≈ −B(π/d)2, with d being

the width of the confinement. For small confinement width d, the main bulk inversion

asymmetry contribution is the HD1 term.

Another spin-orbit coupling term arises if the confinement potential V (z) along the

z-direction (the growth direction of the heterostructure) is not symmetric, i.e., if there is

a structural inversion asymmetry. This is the so-called Rashba Hamiltonian [22,53–55]:

HR = ασ · (ẑ × k) = α (kyσx − kxσy) , (1.48)

where the parameter α describes the strength of the spin-orbit coupling. The magnitude

of α depends on the asymmetry of the quantum well potential [54] and it can be modified

by applying an additional field via external gates [23]. In general, the level splitting due

to the Rashba spin-orbit interaction is inversely proportional to the energy gap E0. It

has been pointed out that the Rashba mechanism becomes dominant in a narrow-gap

semiconductor system [56, 57], and it can be particularly large, for example, in n-type

InGaAs heterojunctions or quantum wells [58, 59] (with typical values in the range (0.5–

2.0) ×10−11 eVm [23,24]), or in HgTe quantum wells [60].

A very visible manifestation of the spin-orbit spin splitting is a beating pattern in

Shubnikov–de Haas (SdH) oscillations due to two close frequency components with sim-

ilar amplitudes arising from the spin-split levels. These provide in fact an experimental

method for determining the value of the Rashba spin-orbit interaction strength α [60,61].
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Chapter 2

Models of quantum rings

In Section 2.1 of this chapter we give a review of quantum interference effects that emerge

in ballistic rings (i.e., in rings, in which scattering is practically zero), which we will

call quantum rings throughout this dissertation. We will show that the presence of a

magnetic field, or Rashba spin-orbit coupling together with quantum interference leads

to the appearance of oscillations in the conductance of such devices as a function of

the magnetic field, or the external gate voltage, respectively. Then, we introduce two

widely used models in the theoretical description of these rings. Both approaches are

based on the assumption that the ring is formed by narrow leads in which the spacing

between the discrete energy levels produced by the transverse confinement is much larger

than the energy range of the longitudinal transport, so that only one such transverse

mode takes part in the conduction (see Section 1.2). In such leads the single-electron

Schrödinger equation reduces to a one-dimensional equation. Therefore, one often refers

to such models as one-dimensional. First, in Section 2.2 we consider the method [62],

which takes into account elastic scatterers in the arms of the ring and in the junctions of

a lead with the ring. Then, in Section 2.3, we introduce a model, which inherently does

not account for any scatterers in the arms of the ring or at the junctions, however, takes

into account the presence of spin-orbit interaction.

2.1 Interference effects in quantum rings

We have seen in Section 1.4 that in ballistic conductors of multiply connected geometry

interference effects are expected to appear. As these effects manifest themselves in oscil-

lations of measurable quantities, e.g., the conductance, they have been in the center of

interest since the first nanoscale metallic conductors were fabricated. In this section we

give a review of interference effects that emerge as a result of the presence of a magnetic

field or Rashba spin-orbit interaction in quantum rings.



MODELS OF QUANTUM RINGS

2.1.1 Quantum rings

The first quantum rings were fabricated from normal metals [4,63]. Later, due to the de-

velopment of semiconductor nanotechnology, it became possible to prepare quantum rings

in semiconductor heterointerfaces e.g. in AlGaAs/GaAs [64–66], InGaAs/InAlAs [32] and

HgTe/HgCdTe [31], by techniques such as etching [32,67], patterning by a scanning force

microscope [68], or optical and electron beam lithography [31]. The usual radii of such

rings range from a hundred nanometers to a few micrometers, while their usual widths

range from a few tens to a few hundreds of nanometers.

Figure 2.1: Scanning electron microscope picture of a quantum ring fabricated in InGaAs/InAlAs. The
radius of the ring is 340 nm, the width of the arms is 200 nm [30].

Figure 2.1 shows a scanning electron microscope picture of an experimentally realized

quantum ring in InGaAs/InAlAs, with a radius of 340 nm, and an arm width of 200 nm.

The ring was fabricated by electron beam lithography and electron cyclotron resonance

dry etching [30].

2.1.2 The effect of magnetic field

In a quantum ring which encloses a well-defined flux Φ the conductance has a fundamental

periodicity

G(Φ) = G(Φ + nΦ0), (n = 1, 2, 3, ...) , (2.1)

as a function of the perpendicular magnetic field B (or the flux Φ = BS through the area

S enclosed by the conductor), where Φ0 = h/ |e| is called the magnetic flux quantum.

This is due to the Aharonov-Bohm effect [5, 69], which shows how an electron can be

influenced by the presence of a vector potential even if the external B field is exculded

from the region where the electron is moving. In most of the actual experiments however,

the magnetic field penetrates the arms of the ring as well as its interior so that deviations

from Eq. (2.1) can occur. Since in many situations such deviations are small, at least

in a limited field range, these magnetoconductance oscillations are still referred to as

Aharonov-Bohm (AB) oscillations [4, 64–66].
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(a) (b)

B

∆φ = 2π
Φ

Φ0

∆φ = 2π
Φ

Φ0/2

Figure 2.2: Illustration of the effect of a magnetic field in a ring geometry. (a) The phase difference
between interfering trajectories responsible for the conductance oscillations with Φ0 = h/ |e| periodicity
in the enclosed flux Φ. (b) The phase difference of the pair of time-reversed trajectories which lead to
oscillations with Φ0/2 = h/2 |e| periodicity.

The fundamental periodicity

∆ΦAB = Φ0 =
h

|e| (2.2)

in the magnetic flux is caused by the interference between trajectories which make a half-

revolution around the ring, as shown in Fig. 2.2(a). The first harmonic oscillation, which

pertains to the periodicity

∆ΦAAS =
Φ0

2
=

h

2 |e| , (2.3)

results from interference after one complete revolution, as shown in Fig. 2.2(b). The main

difference between these two types of oscillations is that in non-ideally ballistic samples,

the phase of the one with h/ |e| periodicity (2.2) is not fixed relative to zero magnetic

field, it is sample-specific. The magnitude of this phase depends on the microscopic

details of the impurity configuration. On the other hand, as the oscillations with h/2 |e|
periodicity (2.3) arise from the interference of trajectories that make a full revolution in

the ring, they always result in a conductance minimum at B = 0, independently of the

sample. Consequently, in a geometry with many rings in series (or in parallel) the h/ |e|
oscillations average out, but the h/2 |e| oscillations remain [70]. The oscillations with

h/2 |e| periodicity are often referred to as Al’tshuler-Aronov-Spivak (AAS) [63, 71, 72]

oscillations, as these authors were the first to suggest that such oscillations should survive

when conductors are disordered. Such conductance oscillations have been observed in

metal cylinders [73, 74] and honeycomb networks [75, 76] as well as square loop and ring

arrays fabricated in semiconductor heterostructures [32,77].

2.1.3 Spin-dependent interference

As we have mentioned in Section 1.6, in certain heterostructures spin-orbit interaction is

present at the heterointerface as a result of the inversion asymmetry of the bulk crystal
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(Dresselhaus coupling), or of the asymmetry of the confining potential in the growth

direction (Rashba coupling), or both. It was found that in most of the cases the dominant

contribution comes from the Rashba term [57,58,78]. Additionally, this type of spin-orbit

interaction is tunable with external gate electrodes [23,24], which makes it very attractive

for applications in spintronics [6, 8, 9, 79,80].

vv

Beff

Beff

Figure 2.3: Quantum ring with Rashba spin-orbit interaction [81]. The electric field originating from the
asymmetric confinement potential is perpendicular to the plane of the heterointerface, where the ring
is frabricated. From the rest frame of the electron there is an effective magnetic field in the plane of
the interface, perpendicular to the direction of movement. The precession angles in the left and right
branches are different, leading to spin-dependent interference.

If the electron is restricted to move on a ring within the heterointerface, where Rashba-

type spin-orbit interaction is present – as suggested by Nitta et al. [29, 81] – then the

interference will be spin dependent as a function of the external gate voltage that is

applied by a gate electrode which covers the ring. This can most easily be understood

if we look at the effect of spin-orbit coupling from the rest frame of the electron (see

Fig. 2.3). As a result of the asymmetric confinement potential there is an electric field

perpendicular to the heterointerface. The electron sees this field as an effective magnetic

field Beff that is parallel to the plane of the interface (perpendicular to the electric field)

and perpendicular to the direction of its movement, consequently, its spin will precess

around it with a rate that depends on the strength of the Rashba coupling α. Since the

direction of the magnetic field seen by the electron is different in every point of the ring

(as the direction of the velocity is always tangential) the phases acquired in the left and

right arms of the ring are not the same: they have opposite signs because the precession

orientation is opposite. This leads to the oscillation of the conductance as a function of the

external gate voltage (Rashba coupling strength), which has been verified by experiments

with single rings [31] and ring arrays [32,33].

2.2 Model of a quantum ring with elastic scatterers

We have discussed in Section 1.4 that a scatterer placed in the arm of the ring (or the

local application of a gate that affects the properties of one arm) may introduce phase
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shifts in the electron wave function and change drastically the position and/or amplitude

of the Aharonov-Bohm oscillations [31, 67, 82–85]. The general one-dimensional model of

quantum rings we present here, which was introduced by Büttiker et al. [62], is able to

take into account such elastic scatterers in the arms of the ring as well as in the junctions,

thereby describing the imperfectness of the coupling between the current-carrying leads

and the ring. We will use this model in Section 3 to describe asymmetric injection into

the arms of the ring.

In order to describe elastic scattering in the arms of the ring, the model uses – instead

of a potential V (x) – a transfer matrix t [86], which relates the amplitudes βin, βout of

the wave function to the left of the scatterer, to the amplitudes β̃out, β̃in to the right of

the scatterer (see Fig. 2.4)

t

(
βin

βout

)
=

(
β̃out

β̃in

)
. (2.4)

By taking into account the conservation of probability and time reversal symmetry [87,88],

t is given by

t =

(
1
t∗ − r∗

t∗

− r
t

1
t

)
, (2.5)

where

t =
√

Tse
iχ (2.6)

is the transmission amplitude with Ts being the transmission probability through the

scatterer, and χ the phase change in the transmitted wave.

βin

βout

β̃out

β̃in

Figure 2.4: Schematic representation of the potential V (x) of the scatterer.

An incoming wave from the left of the scatterer of amplitude 1 gives rise to a reflected

wave with amplitude

r = e−iπ
2

√
Rse

iχeiχa , (2.7)

where Rs = 1−Ts is the reflection probability and χa is a possible additional phase differ-

ence between the transmitted and reflected amplitudes (note that in case of a symmetric

potential χa = 0). For an incoming wave to the right of the scatterer,

r′ = e−iπ
2

√
Rse

iχe−iχa (2.8)

is the amplitude of the reflected wave. We note that for the case when the electron is
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scattered on more scatterers in series, one may also determine a transfer matrix of the

form (2.5), which relates the amplitudes on the left of the scatterers to the amplitudes on

their right, thus it is enough to consider one transfer matrix in each arm of the ring.

2.2.1 Closed ring with Aharonov-Bohm flux

Let us consider the ring, shown in Fig. 2.5, which encircles an Aharonov-Bohm flux Φ

(i.e., the magnetic field is zero in the ring). Let us assume that there are two scatterers

in the ring, with transfer matrices denoted by t1 and t2. These transfer matrices give the

amplitudes of the wave functions to the right of the scatterers in terms of the amplitudes

of the wave functions to the left of the scatterers. If we denote the transfer matrix which

yields the amplitudes to the left of the scatterer in terms of the amplitudes to the right

by t′2, the two transfer matrices give rise to the combined scatterer t = t′2t1.

t1, t
′

1

r1, r
′

1

t2, t
′

2

r2, r
′

2

Φ

β′

1
β1 β′

2
β2

Figure 2.5: Closed ring with two elastic scatterers (denoted by the black squares) in the presence of an
Aharonov-Bohm flux Φ.

As we follow the wave function around the ring, its phase changes by 2θ = 2πΦ/Φ0.

Therefore we can describe this closed ring with the following equation

[
t′2t1 − e2iθ

]
(

β′1
β1

)
= 0, (2.9)

which has nontrivial solutions only if

det
[
t′2t1 − e2iθ

]
= 0. (2.10)

This is the eigenvalue equation of the closed ring. If we consider two equal scatterers

t1 = t2 =
√

Tse
iχ, r1 = r2 = r′1 = r′2 = e−iπ

2

√
Rse

iχ, where both χ and Ts are functions of

the energy, then, Eq. (2.10) leads to

cos2 χ = Ts cos2 θ, (2.11)
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from which, for a fixed value of θ, the discrete eigenenergies En of the closed ring can be

determined. We note that when no scattering takes place in the arms of the ring, i.e.,

Ts = 1, then the phase χ is simply the geometrical phase, and the energy E is related to

it by χ =
√

2m∗Eρπ/~ with ρ being the radius of the ring.

2.2.2 The scattering matrix method to couple leads to the ring

Now let us consider the case, when leads are attached to the ring. In the model of

Ref. [62], at a junction of a lead with the ring (shown by the black triangles in Fig. 2.6),

the three outgoing waves with amplitudes (α′, β′, γ′) are related to the three incoming

waves (α, β, γ) by a scattering matrix S:

−→α ′ = S−→α . (2.12)

Current conservation implies that S is unitary, and time-reversal invariance implies, fur-

thermore, that S∗ = S−1 [87, 88]. Consequently, the scattering matrix S has to be

symmetric. As a result, in general, it depends on five independent parameters.

t1, t
′

1

r1, r
′

1

t2, t
′

2

r2, r
′

2

Φ

β′

1

β1 β′

2

β2

γ′

1

γ1

γ2

γ′

2

α1

α′

1

α′

2

α2

Figure 2.6: Ring connected to leads with elastic scatterers in the juctions and in the arms.

Büttiker et al. [62] assumed S to be symmetric with respect to the two arms of the

ring, i.e., the probabilities of transmission from the incoming lead into the two arms and

from the two arms into the incoming lead are considered equal, just as those from one

arm to the other. In this way, the number of independent parameters is reduced to three.

In addition to these, one may also assume that S is real, since the division of the elastic

scattering between the S matrix and the t matrices is arbitrary. Consequently, the S
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matrix can be written in the form

S =



− (a + b)

√
ε
√

ε√
ε a b√
ε b a


 , (2.13)

with the following equations between its elements:

(a + b)2 + 2ε = 1,

a2 + b2 + ε = 1, (2.14)

2ab + ε = 0.

There are two types of solutions to Eqs. (2.14) for the coefficients a and b:

(a1)± = ±1

2

(√
1− 2ε− 1

)
, (2.15)

(b1)± = ±1

2

(√
1− 2ε + 1

)
, (2.16)

and

(a2)± = ±1

2

(√
1− 2ε + 1

)
, (2.17)

(b2)± = ±1

2

(√
1− 2ε− 1

)
. (2.18)

These equations determine all real 3×3 S matrices that are symmetric with respect to

the two arms of the ring as a function of a single parameter ε, where 0 ≤ ε ≤ 1
2
.

Let us first consider the solutions a = (a1)±, b = (b1)±. A wave of unit amplitude

coming from the left lead (see Fig. 2.6) is reflected back with probability (a + b)2 = 1−2ε

and transmitted into the two arms of the ring with equal probability ε. For ε = 1/2, the

junction is completely transparent for incoming electrons and the lead is strongly coupled

to the ring. On the other hand, for ε = 0, electrons are totally reflected and there is no

coupling between the lead and the ring. In this case, the transmission probability from

one arm of the ring into the other is b2 = 1 and electrons in the ring do not see the

junction. Thus ε is a coupling parameter and the solutions a = (a1)±, b = (b1)± describe

the transition from the strong coupling limit ε = 1/2 to the weak or zero coupling limit

ε = 0. The solutions a = (a2)±, b = (b2)± describe a transition from strong coupling

ε = 1/2 to a situation where the leads and the two arms are completely decoupled: For

ε = 0 we find a = (a2)+ = −(a2)− = 1, b = (b2)+ = −(b2)− = 0. These latter two

solutions will not be investigated here.
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2.2.3 Transmission probability through the ring

Let us consider a wave of unit amplitude α1 = 1, incident from the left in Fig. 2.6. In

order to find the transmission probability of the ring T = |α′2|2 we take α2 = 0.

For the amplitudes at the junction to the right, with the help of Eqs. (2.12) and (2.13)

we can express the γ2’s in terms of the β2’s as

(
γ′2
γ2

)
=

1

b

(
(b2 − a2) a

−a 1

)(
β2

β′2

)
= tj

(
β2

β′2

)
. (2.19)

Using Eqs. (2.12) and (2.13) for the amplitudes at the junction to the left, we can

express the β1’s in terms of the γ1’s

(
β′1
β1

)
=

√
ε

b

(
b− a

−1

)
+ tj

(
γ1

γ′1

)
. (2.20)

The flux Φ introduces phase shifts eiθ1 and e−iθ2 in the wave function in the two

arms of the ring where θ1 + θ2 = 2πΦ/Φ0. The phase changes θ1 and θ2, both taken

in a counterclockwise sense, depend on the length of the arms, i.e., the position of the

junctions of the ring with the leads. Thus the amplitudes in the upper and lower arm are

transferred according to

(
β2

β′2

)
= e−iθ1t1

(
β′1
β1

)
,

(
γ1

γ′1

)
= e−iθ2t′2

(
γ′2
γ2

)
. (2.21)

Note that in the second equation we have used the matrix which transfers the amplitudes

from right to left. Using Eqs. (2.19), (2.20) and (2.21) yields an equation for β′1 and β1

alone

Π

(
β′1
β1

)
= −

√
ε

b

(
b− a

−1

)
, (2.22)

with

Π =
(
tje

−iθ2t′2tje
−iθ1t1 − 1

)
. (2.23)

The transmitted amplitude is found by eliminating γ2 from the equations obtained by

using Eqs. (2.12) and (2.13) for the right junction, then using Eq. (4.44) to give β2 and

β′2 in terms of β′1 and β1, and eventually by expressing β′1 and β1 from Eq. (2.22):

α′2 =

√
ε

b
[(b− a) β2 + β′2] = − ε

b2
e−iθ1

h

det (Π)
, (2.24)

where

h = det (Π)
(
±1, 1

)
t1Π

−1

(
±1

−1

)
. (2.25)
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Here we have used the relationship b− a = b± − a± = ±1. The transmission probability

of the ring is thus given by

T (E, Φ, ε) = |α′2|2 =
ε2

b4

|h|2
|det (Π)|2 . (2.26)

Thereby, knowing the specific form of the transfer matrices, which depend on the type

of the scattering potential, one is able to determine the transmission probability through

the ring.

The most simple case however, is when there are no scatterers in the arms of the ring,

and the ring is diametric (the two arms are of the same length). In order to be able to

compare the results of the model which we will introduce in the next section, and this

model, here we present the transmission probability for this case. As Ts = 1 the transfer

matrices are responsible only for adding the geometrical phase eiχ to the wave function,

i.e., t1 = t2 = eiχ, r1 = r2 = r′1 = r′2 = 0. Furthermore, as the ring is diametric the phases

resulting from the flux are equal in the two arms: θ1 = θ2 = θ = πΦ/Φ0. Substituting

these into Eq. (2.26) the transmission probability is found to be

T (χ, Φ, ε) =
4ε2 sin2 χ cos2 θ

[a2 + b2 cos 2θ − (1− ε) cos 2χ]2 + ε2 sin2 2χ
, (2.27)

where χ is related to the energy E of the electron by χ =
√

2m∗Eρπ/~ with ρ being the

radius of the ring.

2.3 Spin-dependent propagation in quantum rings

In this section we introduce a one-dimensional model for ballistic quantum rings, which

takes into account the presence of spin-orbit interaction, and assumes that there are no

elastic scatterers in the arms of the ring or at the junction of a lead with the ring. We

will use this model in Chapter 4 and Chapter 5, where we consider quantum rings and

ring-arrays in which Rashba-type spin-orbit interaction is present.

The model is based on the assumption that the ring is formed by one-dimensional leads

in which no scatterers are present. Thus, the Hamiltonian of the ring can be easily given

and its eigenvalues and eigenstates can be determined. As transport is assumed to be

ballistic, the energy of the electron has to be conserved, so that when leads are attached

to the ring, the wave functions in the arms of the ring will be given as superpositions of

the eigenstates of the Hamiltonian corresponding to the energy of the incoming electron.

(We note that the introduction of scatterers into the arms of the ring may be carried out

in the same manner as in Section 2.2, i.e., by relating the wave functions on the two sides

of the scatterer by the transfer matrix, which can be determined by solving the scattering
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problem for the actual form of the potential describing the scatterer.)

At an intersection of a lead with the ring the model uses the following boundary

conditions: (1) the wave functions are continuous and (2) the probability currents are

conserved at the junctions. This latter assumption may be considered as an analogue of

the classical Kirchoff’s law. The probability currents in the leads and the ring can be

obtained by determining the continuity equation from the Schrödinger equation. We note

that these boundary conditions are often referred to as Griffith’s conditions [89] in the

literature. Their concrete form will be presented in Secs. 2.3.2 and 2.3.3, corresponding

to the given problem.

As the model is based on solving the time-independent Schrödinger equation, in Section

2.3.1 we start by presenting the one-dimensional Hamiltonian of an electron in a ring.

Then, in Section 2.3.2, in order to compare the results of this model and the one introduced

in the previous section, we will consider a ring, in which only an Aharonov-Bohm flux is

present. Finally, in Section 2.3.3 we present the solution of the scattering problem on a

ring with two external leads, in which Rashba spin-orbit interaction is present.

2.3.1 The one-dimensional Hamiltonian of the ring in the

presence of spin-orbit interaction

In this section we describe the procedure for obtaining the one-dimensional Hamiltonian in

single-electron picture on a ring in the presence of a magnetic field and Rashba spin-orbit

interaction [90].

The Hamiltonian for a single electron of effective mass m∗ in the presence of Rashba

spin-orbit interaction and a magnetic field B is given by (see Section 1.6 and Refs. [90,91])

H =
1

2m∗ (P − eA)2 +
α

~
σ · [ẑ × (P − eA)]− µσ ·B, (2.28)

where A is the vector potential, B = ∇×A, α is the strength of the Rashba spin-orbit

interaction, e is the charge of the electron (which is the negative of the elementary charge),

and µ is the coupling constant of the Zeeman coupling (which is negative for the electron).

The first term in Eq. (2.28) describes the kinetic energy, the second term is the Rashba

Hamiltonian, and the third one is the Zeeman coupling.

Let us assume that B is pointing in the z-direction. This can be modeled, for example,

by choosing the vector potential (in cylindrical coordinates) to be

Ar = Az = 0, Aϕ =
Bzr

2
=

Φ

2πr
, (2.29)

where Φ is the magnetic flux through the ring. Then, the Hamiltonian (2.28) in cylindrical
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coordinates, with x = r cos ϕ and y = r sin ϕ reads

H (r, ϕ) = − ~2

2m∗

[
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

(
i

∂

∂ϕ
+

Φ

Φ0

)2
]
−α

r
(σx cos ϕ+σy sin ϕ)

(
i

∂

∂ϕ
+

Φ

Φ0

)

+iα (σy cos ϕ− σx sin ϕ)
∂

∂r
+
~ωB

2
σz, (2.30)

where Φ0 = h/ |e| is the flux quantum, σx, σy and σz are the Pauli matrices, and ωB =

−2µBz/~ (which is positive, as µ is negative for the electron).

In order to find the correct form for the one-dimensional Hamiltonian we need to add

a potential V (r) – that is small in a narrow region around r = ρ and large outside this

region – which forces the electron wave functions to be localized on the ring in the radial

direction. For a narrow ring (steep confining potential) the confining energy in the radial

direction is much larger than the spin-orbit interaction energy, the Zeeman energy, and

the kinetic energy in the azimuthal direction. This allows us to solve the Hamiltonian

for the radial wave function first, and treat the other terms in the Hamiltonian (2.30) as

a perturbation. Here we do not present the details of such a calculation [90], we only

mention that in the limit of a very narrow ring, electrons will be in the lowest radial mode

R0(r). By calculating the matrix element of the perturbation Hamiltonian in this radial

state, we are lead to the following Hamiltonian

H1D(ϕ) =
~2

2m∗ρ2

(
i

∂

∂ϕ
+

Φ

Φ0

)2

+
~ωB

2
σz − α

ρ
(σx cos ϕ + σy sin ϕ)

(
i

∂

∂ϕ
+

Φ

Φ0

)

−i
α

2ρ
(σy cos ϕ− σx sin ϕ) . (2.31)

This is the form of the one-dimensional Hamiltonian for electrons on a ring, in the presence

of Rashba coupling and a perpendicular magnetic field [90].

2.3.2 Two-terminal ring with Aharonov-Bohm flux

In this section we show how the model we introduced above can be applied to solve the

scattering problem in the case of a quantum ring, which encircles a magnetic flux Φ, as

shown in Fig. 2.7. We assume that no spin-orbit interaction is present now, in order to

be able to relate the results obtained with the model of Section 2.2.

Let us suppose, that B = 0 in the region where the electron moves, i.e., no Zeeman

term is present in the Hamiltonian given by Eq. (2.31):

H =
~2

2m∗ρ2

(
−i

∂

∂ϕ
− Φ

Φ0

)2

. (2.32)

For the sake of simplicity, let us consider the dimensionless Hamiltonian H̃ =

34



MODELS OF QUANTUM RINGS

Φ

γ

ΨI(xI)

Ψ1(ϕ)

Ψ2(ϕ)

ΨII(xII)

Figure 2.7: One-dimensional ring with an Aharonov-Bohm flux and the notations used for the wave
functions in the different sections of the ring. The arrows indicate the directions of the local coordinates.

H/ (~2/2m∗ρ2). Then, the eigenfunctions determined from the time-independent Schrödin-

ger equation can be written as plane waves Ψ(ϕ) = einϕ, where n is an integer, and the

corresponding energy eigenvalues depend on the flux as

E (n, Φ) =

(
n− Φ

Φ0

)2

, (n ∈ Z). (2.33)

These are the eigenenergies of the closed ring, which can easily be shown to be the same

as those obtained from Eq. (2.11) of Section 2.2 when no scatterers are present in the

ring.

Now we turn to the case, when leads are attached to the ring. As we have mentioned

in Section 1.2, the wave function of the electron in such narrow conductors can be given

as a plane wave with wave vector k =
√

2mE/~2, E being the energy of the electron.

Thus, the wave function in the left lead in Fig. 2.7 can be written in general as:

ΨI(xI) = feikxI + re−ikxI , (2.34)

where the direction of the local coordinate xI in lead I is shown by the arrow, i.e., f (r)

denotes the amplitude of the incoming (reflected) wave. On the other side of the ring, we

assume that no incoming wave is present:

ΨII(xII) = teikxII . (2.35)

Conservation of energy requires that the energy of the incoming electron E = ~2k2/2m∗

be equal to the eigenenergies (~2/2m∗ρ2)E(n, Φ) of the Hamiltonian (2.32), from which

follows that the wave numbers in the ring have two allowed values

n± =
Φ

Φ0

± kρ. (2.36)
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Note that the wave numbers n± in the ring are no longer integers.

As we mentioned before, the wave functions Ψ1(ϕ), Ψ2(ϕ) pertaining to the same

energy E in the different domains of the ring are built up as the linear combination of

the eigenstates of H̃ with wave vectors n± determined by Eq. (2.36):

Ψi(ϕ) = ai,+ein+ϕ + ai,−ein−ϕ, i = 1, 2. (2.37)

According to the model, at the junctions of the leads with the ring, the wave functions

have to be fitted and the net probability currents need to vanish. For example, for the

left juction this means that

ΨI(0) = Ψ1(0) = Ψ2(2π), (2.38)

JI(0)− J1(0) + J2(2π) = 0, (2.39)

where the form of the probability currents

Jl(xl) = 2ρRe

{
Ψ∗

l (xl)

(
−i

∂

∂xl

)
Ψl(xl)

}
, (l = I,II), (2.40)

Ji(ϕ) = 2Re

{
Ψ∗

i (ϕ)

(
−i

∂

∂ϕ
− Φ

Φ0

)
Ψi(ϕ)

}
, (i = 1,2), (2.41)

is determined from the continuity equations obtained from the respective Schrödinger

equations.

Solving the set of equations (2.38) and (2.39) that we get for the two junctions, the am-

plitude t of the transmitted wave, and consequently, the transmission probability through

the ring, can be determined. If we assume that the incoming amplitude is f = 1, and the

ring is diametrical (γ = π) – which we have already examined with the model presented

in Section 2.2 – the transmission probability is given by

T = |t|2 =
4 sin2 (kρπ) cos2

(
Φ
Φ0

π
)

[
1
4

+ cos
(

Φ
Φ0

2π
)
− 5

4
cos (2kρπ)

]2

+ sin2 (2kρπ)
. (2.42)

If we compare this to the result (2.27) obtained with the model of Section 2.2, with

χ =
√

2m∗E/~ρπ = kρπ, which is the phase accumulated in one arm, then we can see

that the result (2.42) obtained here without the assumption of scatterers in the juctions,

is equal to (2.27) if the coupling parameter ε is 4/9, i.e., it corresponds to a strong, but

not maximal coupling between the leads and the ring. This is due to the property of

the Griffith’s conditions, that they consider the lead and arms joining in a junction to be

completely equivalent, thereby, besides the transmitted amplitude, they lead to a reflected

one as well in each of the wires (corresponding to an S matrix with ε < 1/2). At the same
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time, in the case when a lead is maximally coupled to the arms (which is desrcibed by an

S matrix with ε = 1/2), it is treated to be inequivalent from the other wires (the arms of

the ring), as no reflected amplitude results from the incoming one in the lead, there are

only transmitted amplitudes from the arms.

2.3.3 Two-terminal ring with Rashba spin-orbit interaction

In this section we present the solution of the scattering problem in a two-terminal quantum

ring, in which only Rashba-type spin-orbit interaction is present [34].

In this case the one-dimensional Hamiltonian (2.31) derived in Section 2.3.1 (with

Φ/Φ0 = 0, ωB = 0) can be written in the simplified form [92]:

H = ~Ω

[(
−i

∂

∂ϕ
+

ωSO

2Ω
(σx cos ϕ + σy sin ϕ)

)2

− ω2
SO

4Ω2

]
, (2.43)

where Ω = ~/2m∗ρ2, and ωSO = α/~ρ is the frequency associated with the spin-orbit

interaction. Apart from constants, this Hamiltonian is the square of the sum of the z

component of the orbital angular momentum operator Lz = −i∂/∂ϕ, and of (ωSO/Ω)Sr,

where Sr = σr/2 is the radial component of the spin (both measured in units of ~).

In order to solve the eigenvalue equation of the Hamiltonian (2.43), it is practical to

look for operators that commute with it. It can be shown that H commutes with K =

Lz +Sz, the z component of the total angular momentum and with Sθ,ϕ = Sx sin θ cos ϕ+

Sy sin θ sin ϕ + Sz cos θ, the spin component in the direction determined by the angles θ,

and ϕ, where θ is given by

tan θ = −ωSO

Ω
. (2.44)

It is easy to prove that the commutator [K, Sθ,ϕ] = 0, therefore, simultaneous eigenstates

of H, K and Sθ,ϕ exist. In the {|↑〉 , |↓〉} eigenbasis of Sz we can find these in the form

ψ(κ, ϕ) = eiκϕ

(
e−iϕ

2 u(µ)

eiϕ
2 v(µ)

)
, (µ = 1, 2), (2.45)

obeying

Kψ(κ, ϕ) = κψ(κ, ϕ), (2.46)

Sθ,ϕψ(κ, ϕ) = s(κ)ψ(κ, ϕ), s(κ) = ±1

2
, (2.47)

where
v(µ)

u(µ)
=

(
tan

θ

2

)(µ)

=
1 + (−1)µ w

ωSO

Ω

, (2.48)
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and w =
√

1 + (ωSO/Ω)2. The corresponding energy eigenvalues are

E(µ)(κ) = ~Ω
(

κ2 + (−1)µκw +
1

4

)
, (µ = 1, 2). (2.49)

In a closed ring κ±1/2 must be an integer (we have seen this in the previous section),

while if one considers leads connected to the ring, there is no such restriction: the energy

E of the incoming electron is a continuous variable, with which, as a result of energy

conservation, the eigenvalues of the ring Halmiltonian (2.49) have to be equal. Thus, the

possible values of κ can be written as

κ
(µ)
j = (−1)µ+1

(w

2
+ (−1)jq

)
, (2.50)

where q =
√

(ωSO/2Ω)2 + E/~Ω. We can see, that the energy eigenvalues are fourfold

degenerate: j = 1, 2 correspond to two distinct values of |κ(µ)
j |, while the additional de-

generacy at a given j is resolved by the sign of κ
(µ)
j . Since (tan θ/2)(1) = −(cot θ/2)(2),

we may choose to parametrize the components of the eigenvectors by (tan θ/2)(1) =

(1− w)/(ωSO/Ω) = tan θ/2. Then, the four eigenstates can be expressed as

ψ
(1)
j (κ

(1)
j , ϕ) = eiκ

(1)
j ϕ

(
e−iϕ

2 cos θ
2

eiϕ
2 sin θ

2

)
, ψ

(2)
j (κ

(2)
j , ϕ) = eiκ

(2)
j ϕ

(
e−iϕ

2 sin θ
2

−eiϕ
2 cos θ

2

)
. (2.51)

This means that the Hamiltonian has two eigenspinors (determined by the value of µ),

and to each of these spinors there are two wave numbers (specified by the value of j). We

note that in the experimentally achievable range of the parameters (see text below) q is

usually larger than w/2. Thus, for each eigenspinor, j = 1 and 2 results in wave numbers

of different sign, i.e., a clockwise and a counterclockwise direction of rotation.

The wave functions in the upper and lower arms of the ring (using the same notations as

in Fig. 2.7) can be written as linear combinations of the four eigenspinors corresponding

to the given energy

Ψi(ϕ) =
∑

µ,j=1,2

a
(µ)
ij ψ(κ

(µ)
j , ϕ) i = 1, 2. (2.52)

The wave functions in the leads – similarly to Eqs. (2.34) and (2.35) presented in the

previous Section – are built up as linear combinations of plane waves, but in this case

with spin-dependent amplitudes, i.e., f , r, and t denoting two-component spinors:

ΨI(xI) =

(
f↑
f↓

)
eikxI +

(
r↑
r↓

)
e−ikxI , ΨII(xII) =

(
t↑
t↓

)
eikxII . (2.53)

In order to determine the transmission properties of the ring, we need to apply the
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boundary conditions introduced at the beginning of Section 2.3, i.e., at the junctions of

the leads with the ring we need to fit the wave functions, and require the conservation of

the current densities. If we assume that there are no spin-flip processes at the junctions,

then we can require the spin probability currents to be conserved. These conditions can

be formulated similarly to Eqs. (2.38) and (2.39), but now the wave functions being

given by Eqs. (2.52) and (2.53), and the probability currents being replaced by the spin

probability currents:

J(xl) = 2ρRe

{
Ψ†

l (xl)

(
−i

∂

∂xl

)
Ψl(xl)

}
, l = I, II, (2.54)

Ji(ϕ) = 2Re

{
Ψ†

i (ϕ)

(
−i

∂

∂ϕ
+

ωSO

2Ω
σr

)
Ψi(ϕ)

}
, i = 1, 2, (2.55)

which can be found by determining the continuity equation from the Schrödinger equation

[92]. We note that Ψ†Ψ is the usual two-dimensional Hilbert space inner product.

By solving the set of equations (2.38) and (2.39) that we have for the two junctions,

the spin-dependent amplitude t of the transmitted wave, and consequently, the 2×2 trans-

mission matrix T which transforms the incoming spinor as t = Tf can be determined:

T = |Tγ| ei
δ0
2 U, (2.56)

where the matrix elements of U are given by

U↑↑ = U∗
↓↓ = e−i γ

2

[
e−i δ

2 sin2 θ

2
+ ei δ

2 cos2 θ

2

]
(2.57)

U↑↓ = −U∗
↓↑ = ie−i γ

2 sin
δ

2
sin θ. (2.58)

|Tγ| and the phases δ0 and δ are obtained as

|Tγ| eiδ± =
4ikρq

y
e±iw

2
γ
[
sin (q (2π − γ))− e∓iwπ sin (qγ)

]
(2.59)

δ0 = δ+ + δ−, δ = δ+ − δ−, (2.60)

where

y = k2ρ2 [cos (2q (π − γ))− cos (2qπ)] + 4ikρq sin (2qπ)− 4q2 [cos (wπ) + cos (2qπ)] .

Let us note that if γ = π and ωSO = 0, i.e., there is no spin-orbit coupling, then the off-

diagonal elements of T are zero, and the diagonal elements are equal to the transmission

probability we get from Eq. (2.42) in the case when Φ/Φ0 = 0.

The important fact is that T can be written as the product of a complex number the
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absolute value of which is a non-negative constant with |Tγ| ≤ 1, which can be considered

as the efficiency of the transformation, and a unitary matrix U , which performs a nontrivial

spin transformation.

0

0.2

0.4

0.6

0.8

1

|Tπ|2

19 19.5 20 20.5 21

kρ

Figure 2.8: The transmission probability through a diametric ring (γ = π) as a function of kρ for
|θ| = π/4, where the transformation is a rotation of the spin around the y axis by π/2 (solid curve). The
transmission probability of the same ring for zero spin-orbit coupling (dotted curve).

Figure 2.8 shows the transmission probability |Tπ|2 = 1
2
Tr

(
TT †) through a diametric

ring (γ = π) as a function of kρ around kF ρ = 20.4, corresponding to a ring of radius

0.25 µm and a Fermi energy 11.13 meV of InGaAs, for |θ| = π/4 (solid curve). It can

be seen that for several values of kρ the transformation is strictly unitary, with |Tπ| = 1.

As compared to the case when no spin-orbit interaction is present (dotted curve) one can

see, that for certain values of kρ the ring is completely opaque for the electrons.

Various types of rotations can be realized by tuning the strength of the Rashba

coupling, changing the position of the junctions, or by fabricating rings with different

sizes [34].

2.4 Conclusions

In this chapter we have introduced two widely used models of ballistic quantum rings,

which are based on the assumption that narrow rings, in which only one radial mode

takes part in the conduction, may be considered one-dimensional. One of the models

(see Section 2.2) inherently contained elastic scatterers in the arms of the ring as well

as in the junctions of the leads with the ring, and was able to account for the effect

of a magnetic (Aharonov-Bohm) flux encircled by the ring. This model considered the

injection of the electron from the leads into the two arms of the ring to be symmetric,

by using a scattering matrix, in which the elements corresponding to these probabilities

were equal. In Section 2.3 we have presented another model, which is more appriopriate

for the theoretical description of spin-dependent transport through quantum rings. We

have seen that this model does not account for any scatterers in the arms of the ring or

40



MODELS OF QUANTUM RINGS

at the junctions. Instead of using a scattering matrix at the junctions, this model simply

requires to fit the wave functions and the corresponding probability currents. We have

used this model to solve the scattering problem of a two-terminal quantum ring which

encircled an Aharonov-Bohm flux, and a ring, in which Rashba-type spin-orbit interaction

was present. In the spin-dependent case we have seen that the wave functions in the arms

of the ring are linear superpositions of the four eigenstates of the ring Hamiltonian that

pertain to the fourfold degenerate energy eigenvalue, determined by the energy of the

incoming electron. We have seen that this scattering problem can be solved analytically,

and the transmission probability (or consequently, the conductance) can be determined.

In the following part of the dissertation we will use the first model to take into account the

possibility of asymmetric injection into the two arms of the ring, and the second model

to solve the scattering problem of a ring with three terminals, and an array of rings.

41



MODELS OF QUANTUM RINGS

42



Part II





Chapter 3

Aharonov-Bohm oscillations in a

ring with asymmetric injection

In this chapter we study electron transport in the presence of an Aharonov-Bohm flux

through quantum rings in which the probabilities of transmission from the leads into the

two arms of the ring are different, and we also allow different propagation properties

in the two arms [93]. In order to determine the transmission probability through such

rings we use the model introduced in Section 2.2, i.e., we consider elastic scatterers in

the junctions and in the arms of the ring. First, in Section 3.1 we define an appropriate

scattering matrix to couple the leads to the ring, which is able to take into account the

asymmetry of injection into the two arms. Then, in Section 3.2 we solve the scattering

problem for two cases: when no scatterers are present in the arms of the ring (Section

3.2.1) and when a scatterer is placed in one of the arms of the ring (Section 3.2.2).

3.1 Introduction of arm-dependent asymmetry into

the scattering matrix

In a real quantum ring the coupling between the current-carrying leads and the ring can

be complicated. Reflections may be present at the junctions of the leads with the ring,

and/or the probabilities of transmission from the leads into the two arms of the ring may

be different. This asymmetry can be a consequence of fabrication defects but it can also

be induced by the Lorentz force [35,94].

In Section 2.2 we discussed a model which relates the three outgoing waves with

amplitudes (α′, β′, γ′) and the three incoming waves with amplitudes (α, β, γ) at each

junction of a lead with the ring (indicated by the black triangles in Fig. 3.1) by a 3×3

scattering matrix S
−→α ′ = S −→α , (3.1)
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t1, t
′

1

r1, r
′

1

t2, t
′

2

r2, r
′

2

Φ

β′

1

β1 β′

2

β2

γ′

1

γ1

γ2

γ′

2

α1

α′

1

α′

2

α2

Figure 3.1: Ring connected to leads with elastic scatterers in the junctions and the ring.

which treats the two arms of the ring in a symmetric way, i.e., the matrix elements of

S describing the transmission probability from the lead into the upper and lower arms

being equal.

Based on the general requirements for the scattering matrix [87,88], here we define an

appropriate S matrix, which treats the upper and lower arms of the ring in an asymmet-

rical way. Current conservation requires S to be unitary

S−1 = S†, (3.2)

while time-reversal invariance demands that

S∗ = S−1. (3.3)

As a result, S is necessarily a symmetric matrix. For the sake of simplicity, here we will

further assume that it is real. Then S is given by

S =




a b c

b d e

c e f


 , (3.4)

where the square of the diagonal elements are the reflection probabilities into the re-

spective channels, while the square of the off-diagonal elements give the transmission

probabilities from one channel to the other (e.g., b2 is the transmission probability of the

electron from the lead into the upper arm). The unitarity (3.2) of the S matrix leads to

the following relations between its elements:

a2 + b2 + c2 = 1, (3.5)

b2 + d2 + e2 = 1, (3.6)

c2 + e2 + f 2 = 1, (3.7)
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ab + bd + ce = 0, (3.8)

ac + be + cf = 0, (3.9)

bc + de + ef = 0. (3.10)

In order to introduce an asymmetry between the two arms, for convenience, we assume

b = λc (λ = 1 meaning equivalent arms). Then, from Eqs. (3.9) and (3.10) we find

e = −λ (a + d) , (3.11)

f = −a− d± 1. (3.12)

By using b = λc in Eq. (3.6) we can determine b as a function of λ and a:

b = ±λ
√

1− a2

µ
, (3.13)

where µ =
√

λ2 + 1, and in order for b to be real |a| ≤ 1. Then Eqs. (3.6)-(3.7) and (3.11)

determine d as

d =
λ2a− 1

µ2
. (3.14)

Thus, each element of S can be expressed in terms of a and λ:

S =




a λν ν

λν η − a −λη

ν −λη 1− η


 , (3.15)

where ν =
√

1−a2

µ
, η = a+1

µ2 , and −1 < a < 1.

The above equation for λ = 1 (i.e., symmetric arms) shows that the S matrix is

indeed of the form given by Eq. (2.13). By taking this limit, we can also determine the

realtionship between a and the coupling parameter ε of Section 2.2.2, namely

a2 = 1− 2ε. (3.16)

As a is the element of the S matrix which connects the incoming and outgoing amplitudes

in the lead, the coupling between the lead and the ring is perfect when a = 0, while a = 1

corresponds to no coupling at the junction. These two limits correspond to those of ε in

Section 2.2.2: a = 1 corresponding to ε = 0, and a = 0 to ε = 1/2.
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3.2 Solution of the scattering problem with arm-

dependent asymmetry

In the following, we show the detailed calculation of the transmission probability T = |α′2|2
through the ring when there is an asymmetry between the arms included in the S matrix,

derived in the previous Section. Based on the model of Section 2.2, we describe the

elasctic scattering in each arm (indicated by the black squares in Fig. 3.1) by a transfer

matrix of the form given by Eq. (2.5). For the usual scattering from the left we take

the incoming amplitude α1 = 1, and assume that there is no incoming electron from the

right, i.e., α2 = 0.

For the right junction from Eq. (3.1) we obtain

α′2 = bβ2 + cγ2, (3.17)

β′2 = dβ2 + eγ2, (3.18)

γ′2 = eβ2 + fγ2. (3.19)

Using Eqs. (3.17) and (3.18) we can write

(
γ′2
γ2

)
= tj2

(
β2

β′2

)
, (3.20)

where the matrix tj2 is

tj2 =
1

e

(
e2 − fd f

−d 1

)
. (3.21)

For the left junction from Eq. (3.1) we obtain

α′1 = a + bβ1 + cγ1, (3.22)

β′1 = b + dβ1 + eγ1, (3.23)

γ′1 = c + eβ1 + fγ1. (3.24)

Using Eqs. (3.23) and (3.24), we can write

(
β′1
β1

)
=

1

e

(
be− dc

−c

)
+ tj1

(
γ1

γ′1

)
, (3.25)

where the matrix tj1 is given by (3.21) with d and f interchanged.

The connection between the amplitudes in the upper arm of the ring, i.e., the effect
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of the scatterer, and the magnetic field can be written as

(
β2

β′2

)
= e−iθ1t1

(
β′1
β1

)
, (3.26)

while, for the amplitudes is the lower arm we can write

(
γ1

γ′1

)
= e−iθ2t′2

(
γ′2
γ2

)
, (3.27)

where t1 and t2 are the transfer matrices associated with propagation in the upper and

lower arm (see Fig. 3.1), given by Eq. (2.5). θ1 and θ2 are the phase shifts introduced by

the flux Φ = πρ2B in the two arms, B being the perpendicular magnetic field and ρ the

ring radius. These shifts satisfy the relation θ1 + θ2 = 2πΦ/Φ0, where Φ0 = h/ |e| is the

flux quantum.

Combining Eq. (3.20) and Eqs. (3.25)-(3.27) we can write

Π

(
β′1
β1

)
= −1

e

(
be− dc

−c

)
, (3.28)

with

Π = tj1e
−iθ2t′2tj2e

−iθ1t1 − 1, (3.29)

where 1 is the 2×2 unit matrix. The transmitted amplitude α′2 can be expressed from

Eqs. (3.17) and (3.18):

α′2 =
1

e
(be− cd, c)

(
β2

β′2

)
, (3.30)

from which, by using Eqs. (3.26) and (3.28) it can be determined as

α′2 =
1

e
(be− cd, c) e−iθ1t1Π

−1

(
−1

e

) (
be− cd

−c

)
. (3.31)

In what follows, we consider two cases: in Section 3.2.1 we suppose that no scatterers

are present in the arms of the ring, then, in Section 3.2.2 we assume that a scatterer

is present in one of the arms. (We note that the case with scatterers in both arms can

be treated in the same way.) For the sake of simplicity, we restrict our calculations to

diametric rings, i.e., rings with arms of equal length.

3.2.1 No scatterers in the arms

When no scatterers are present in the ring, the transfer matrices simply represent the

geometrical phase χ attained by the wave function in the arms (which are of equal length),
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i.e. t1 = t2 = eiχ, r1 = r2 = r′1 = r′2 = 0. This geometrical phase is related to the energy

E of the electron by χ =
√

2m∗Eπρ/~. (We note that for a ring of radius ρ = 0.25 µm

in InGaAs, where the Fermi energy is 11.13 meV, χ corresponds to 20.4π). The phases

due to the encircled magnetic flux are θ1 = θ2 = πΦ/Φ0. Then, using Eq. (3.31), the

transmitted amplitude is given by

α′2 =
2i (1− a2) Λe−iθ

(
λ2 + e2iθ

)
sin χ

(1 + a)2 Λθ − Λ2 [F (χ, a) + 2a]
, (3.32)

where

Λ = λ2 + 1,

Λθ = λ4 + 2λ2 cos (2θ) + 1,

and

F (χ, a) =
(
1 + a2

)
cos (2χ)− i

(
1− a2

)
sin (2χ) .

Then, the transmission probability takes the following form:

T =
4 (1− a2)

2
Λ2Λθ sin2 χ[

(1 + a)2 Λθ − Λ2aχ

]2
+ (1− a2)2 Λ4 sin2 (2χ)

, (3.33)

where aχ = (1 + a2) cos (2χ) + 2a. It can be shown that the transmission probability

given by Eq. (3.33) is invariant under the change λ → 1/λ, representing the fact that

asymmetry can favor the arms equally without changing the transmission properties of

the ring.
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Figure 3.2: The effect of asymmetric injection on the transmission probability when no scatterers are
present in the ring, and the coupling between the ring and the leads is assumed to be ideal, i.e., a = 0.
Black and red curves correspond to symmetric injection (characterized by λ = 1) and asymmetric injection
(characterized by λ = 3), respectively. (a) Transmission as a function of χ, for Φ/Φ0 = 0.1 (solid curve)
and Φ/Φ0 = 0.4 (dashed curve). (b) Transmission as a function of the flux Φ (in units of Φ0) for χ = 20.5π
(solid curve) and χ = 21.06π (dashed curve).
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Figure 3.2 shows the transmission probability given by Eq. (3.33), as a function of χ

for two different values of the flux, and as a function of Φ/Φ0 for two different values of χ.

In both cases, we assume that the coupling between the leads and the ring is maximal, i.e.,

a = 0. This corresponds to the value 1/2 of ε in the case presented in Section 2.2.2. The

figure also shows the effect of asymmetric injection (red curves) with respect to the case

when the arms of the ring are symmetric (black curves). We note that for λ = 1 the results

coincide with those of Ref. [62]. It can be seen in Fig. 3.2(a) that the ring is completely

opaque for integer values of π irrespective of the value of the flux, even if the coupling

is maximal. Asymmetric injection increases the transmission for both values of the flux

compared to the symmetric case, but is not able to remove the transmission minima. In

Fig. 3.2(b), the transmission probability shows oscillations with period Φ0, which is a

manifestation of the Aharonov-Bohm effect. For λ > 1 the destructive interferences are

not complete due to the fact that the electron enters one of the arms (in this case the

upper one) with higher probability.
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Figure 3.3: Transmission probability of the ring when an asymmetry characterized by λ = 3 is present
between the two arms of the ring: (a) as a function of χ for Φ/Φ0 = 0.4, and (b) as a function of the flux
Φ (in units of Φ0) for χ = 20.5π, for different strength of the coupling between the ring and the leads.
Solid, dashed and dotted curves correspond to a = 0.25, 0.5 and 0.75, respectively.

Figure 3.3 shows the dependence of the transmission probability on the coupling bet-

ween the ring and the leads, characterized by the parameter a when no scatterer is present,

and there is an asymmetry between the two arms of the ring, corresponding to λ = 3. In

Fig. 3.3(a) the value of the flux is set to Φ/Φ0 = 0.4. Even though the asymmetry increases

the transmission compared to the symmetric case (see Fig. 3.2(a)), as the coupling between

the ring and the leads gets weaker, the transmission probability decreases. However,

there are certain values of χ, i.e. the energy (or wave number) for which the ring is still

completely transmitting. These transmission peaks get narrower as a is increased. In

the case of symmetric injection and weak coupling it has been pointed out in Ref. [62]

that these resonances in the transmission can be related to the eigenenergies of the closed
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ring. For such a ring with Φ/Φ0 = 0.4, one obtains from the eigenvalue equation of the

closed ring (2.11) that the transmission peaks are located at χ = (l ± Φ/Φ0) π, where l

is an integer. It can be seen that in our case, asymmetric injection shifts the positions

of these peaks, and the eigenstates of the closed ring can not be directly related to the

resonances. In Fig. 3.3(b), where χ is set to 20.5π, it can be seen that there is an overall

decrease in the transmission probability. The amplitude of the oscillations pertaining to

the non-resonant value of χ decreases as the coupling at the lead-ring junctions decreases.

Additionally, the phase of the oscillations are shifted by π. The sinusoidal dependence

of T on Φ/Φ0 stems directly from the fact that the transmission probability is given by

(3.33), and especially because of the numerator for λ > 1.

3.2.2 Scatterer in the arm

In this section we assume that there is a scatterer in one arm of the ring, e.g., in the

upper arm. Then, the elements of the transfer matrices in the arms of the ring are

determined by the following transmission and reflection amplitudes: t1 =
√

Tse
i(χ+δχ),

t2 = eiχ, r1 = r′1 =
√

Rse
−iπ

2 ei(χ+δχ), r2 = r′2 = 0, where χ is the geometrical phase and δχ

is the phase difference between the two arms due to the presence of the scatterer. The

phases resulting from the magnetic flux are θ1 = θ2 = πΦ/Φ0.

In this case the transmission amplitude determined from Eq. (3.31) takes the form

α′2 =
2i (1− a2) Λeiθ

[
sin (χ + δχ) + λ2

√
Tse

−2iθ sin χ−√Rs

]

(1 + a)2 Λθ,δχ − Λ2 [F (χ, a, δχ) + 2a cos δχ]− 2Λ
√

RsG (χ, a) + H (a, δχ)
, (3.34)

where

Λθ,δχ =
(
1 + λ4

)
cos δχ + 2λ2

√
Ts cos (2θ) ,

F (χ, a, δχ) =
(
1 + a2

)
cos (2χ + δχ)− i

(
1− a2

)
sin (2χ + δχ) ,

G (χ, a) =
(
1− 2λ2a + a2

)
sin χ + i

(
1− a2

)
cos χ, (3.35)

H (a, δχ) = i
(
1− a2

) (
1− λ4

)
sin (∆χ) .

In order to save space, we do not present here the explicit form of the transmission

probability T = |α′2|2, as it can be easily calculated from Eq. (3.34).

Figure 3.4 shows the transmission probability through the ring as a function of the flux

when a weak scatterer (Ts = 0.95) is present in the upper arm of the ring for χ = 20.3π.

We assume that the coupling between the ring and the leads is maximal (a = 0). Black

and red curves correspond to λ = 1, and λ = 1.6, respectively. For clarity, we shifted the

dashed and dashdotted curves by +1 and +2, respectively. Figure 3.4(a) shows how the

oscillations of the transmission are affected by the phase difference caused by the scatterer,

as δχ is changed from 0 to π/3, and 2π/3, and in Fig. 3.4(b) from π to 4π/3, and to 5π/3.
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Figure 3.4: Transmission probability through the ring when a scatterer is present in the upper arm of
the ring with strength Ts = 0.95 as a function of the flux Φ (in units of Φ0) for χ = 20.3π and maximal
coupling (a = 0). Black and red curves correspond to λ = 1, and λ = 1.6, respectively. Dashed and
dashdotted curves are shifted by +1 and +2, respectively. Solid, dashed and dashdotted curves in (a)
correspond to δχ = 0, π/3, and 2π/3, while in (b) to δχ = π, 4π/3, and 5π/3, respectively.

It can be seen that as a result of the phase introduced by the scatterer, the phase of the

oscillations are shifted when δχ is increased from 0 to 5π/3. Destructive interference in

the symmetric case is not complete as propagation in the lower arm is free, while in the

upper arm, the scatterer has a probability Rs = 0.05 to reflect the electron. In the case

characterized by λ = 1.6 (red curves), when asymmetry favors the upper arm of the ring,

where the weak scatterer is located, the transmission minima shift to higher values. In

this case, complete destructive interference does not take place as propagation through

the upper arm has a higher probability. It can also be seen, that the phase difference δχ

also changes the amplitude of the oscillations.

Figure 3.5 shows the transmission probability as a function of the flux for two values of

the geometric phase χ, when a strong scatterer (Ts = 0.25) is present in the upper arm of

the ring, and the coupling between the ring and the leads is maximal (a = 0). Black and

red curves correspond to symmetric (λ = 1), and asymmetric injection (characterized by

λ = 2), respectively. Solid, dashed, dashdotted, and dotted curves correspond to δχ = 0,

π/3, 2π/3, and π, and are shifted by +1, +2, and +3, respectively. It can be seen that –

contrary to the case of a weak scatterer – the difference between the phases acquired in

the two arms of the ring (δχ) here does not change the phase of the oscillations. However,

similarly to the previous case, it may slightly modify their amplitude. When injection is

symmetric, then, similarly to the case when a weak scatterer was present in the upper

arm, transmission minima are not zero, as destructive interference is not complete, due to

free propagation in the lower arm. The effect of asymmetric injection (red curves), which

favors the arm in which the scatterer is located, is an overall decrease of the transmission

probability. This may be expected from the fact that the electron is injected towards the
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Figure 3.5: Transmission probability through the ring as a function of the flux when a scatterer is
present in the upper arm with Ts = 0.25, (a) for χ = 20.4π and (b) for χ = 21.6π. We assume perfect
coupling (a = 0) between the ring and the leads. Black and red curves correspond to λ = 1, and λ = 2,
respectively. Solid, dashed, dashdotted, and dotted curves correspond to δχ = 0, π/3, 2π/3, and π,
respectively. Dashed, dashdotted, and dotted curves are shifted by +1, +2, and +3, respectively.

scatterer with a higher probability than into the other arm, and the scatterer transmits

the electron with a small probability. It can also be seen that there are certain values

of the phase difference δχ, where asymmetric injection leads to complete destructive

interference.

3.3 Conclusions

We determined the transmission through a one-dimensional ring, in the presence of an

Aharonov-Bohm flux, using a scattering matrix in the junctions of the leads with the

ring, in which the elements describing the probability of transmission from the lead into

the two arms were different. We evaluated the transmission probability through the

ring assuming no scatterers in the arms and showed that asymmetric injection increases

the transmission probability as a function of the geometric phase acquired in the arms

of the ring. We also showed that the asymmetry parameter affects the amplitude of the

transmission oscillations as a function of the magnetic flux: the transmission minima shift

to higher values due to incomplete destructive interference. We investigated the effect of

the coupling between the leads and the ring when asymmerty was present between the

two arms. We found that the probability of transmission is decreased except for certain

values of the geometric phase, where the ring may still be completely transparent for the

electrons. For other values of the geometric phase, an overall reduction of the transmission

could be seen as a function of the magnetic flux. We also investigated the case when
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a scatterer was present in the arm of the ring, which was also favored by asymmetric

injection. We showed that in the case of a weak scatterer the phase of the oscillations

is shifted as the phase introduced by the scatterer is changed. Furthermore, asymmetry

leads to the increase of transmission minima. In the case of a strong scatterer, we showed

that the phase of the oscillations of the transmission probability as a function of the flux

is insensitive to the phase difference resulting from the presence of the scatterer. We

showed that an asymmery, which favors the arm in which the strong scatterer is present,

leads to an overall decrease of the transmission with respect to the symmetric case.
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Chapter 4

Three-terminal quantum ring with

spin-dependent propagation

The realization of spin-polarized transport is an important issue of spintronics. Several

systems have been proposed for this purpose. A four-terminal mesoscopic device similar

to the Mach-Zehnder interferometer with a local Rashba spin-orbit interaction in one arm

and a global magnetic field was shown to be equivalent to the optical polarizing beam

splitter [99]. An electron spin filter based on a branching geometry was proposed in

Ref. [100] for generating spin-polarized currents via Rashba spin-orbit coupling without

the use of spin-dependent interference. In Ref. [101] it was shown that in a narrow gap

semiconductor quantum well or quantum wire, an observable electron spin current can

be generated with a time-dependent gate which modifies the Rashba spin-orbit coupling

constant. A device that achieves spin filtering by momentum-resolved tunneling between

parallel electron waveguides due to Rashba spin-orbit coupling was proposed in Ref. [102].

In Ref. [103] the elastic scattering of unpolarized electrons by a nonuniform Rashba cou-

pling strength in a two-dimensional electron system was shown to lead to almost full

polarization around the forward-scattered beam. In Ref. [104] it was shown that highly

polarized transport can be achieved in a two-dimensional electron gas that is periodically

modulated by ferromagnetic and Schottky metal stripes.

In this chapter we investigate the possiblity of spin-polarization with quantum rings,

which are attached to three current-carrying leads. Fisrt, in Section 4.1, we solve the

scattering problem of such a ring with Rashba spin-orbit interaction and a perpendicular

magnetic field for the most general boundary condition in the terminals [95]. Then, in

Section 4.2, we show that a three-terminal ring with one terminal acting as an input and

two terminals acting as outputs, can operate as a spin beam splitter: different polariza-

tions can be achieved in the two output channels from a totally unpolarized incoming

spin state [96,97]. In Section 4.3, we investigate in detail the physical background of this

polarizing effect, and show that it is a result of an appropriate interference of states that
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carry oppositely directed currents [97]. Finally, in Section 4.4 we show that in a three-

terminal ring the spatial degree of freedom, i.e., the presence of two different possible

output channels, gets intertwined with the spin direction as a consequence of quantum

interference and spin-orbit interaction [98].

4.1 Formal solution of the problem

In this section we solve the scattering problem of a three-terminal quantum ring in which

Rashba-type spin-orbit interaction and a perpendicular magnetic field are present, using

the model presented in Section 2.3. We assume that the magnetic field is weak enough to

be treated as a perturbation. We determine the spinor-valued wavefunctions for the most

general boundary condition, i.e., when there are incoming and outgoing waves in each

terminal [95]. We note that although the results of the following sections of this chapter

are obtained for a less general boundary condition (namely, having only one input) and

zero magnetic field, we chose to start here from this most general case in order to derive

results that are suitable for using in Chapter 5 as well.

Let us consider a quantum ring of radius ρ located in the x− y plane in the presence

of Rashba spin-orbit coupling [22] and a perpendicular magnetic field B. We have seen

in Section 2.3.1, that the Hamiltonian of a single electron is then given by Eq. (2.31). If

B is relatively weak, then the interaction between the electron spin and the field, i.e. the

Zeeman term can be treated as a perturbation and the relevant dimensionless Hamiltonian

reads [90,92]

H =

[(
−i

∂

∂ϕ
− Φ

Φ0

+
ωSO

2Ω
σr

)2

− ω2
SO

4Ω2

]
+ Hp, (4.1)

where ϕ is the azimuthal angle of a point on the ring, Φ denotes the magnetic flux encircled

by the ring, Φ0 = h/ |e| is the flux quantum, and ωSO = α/~ρ is the frequency associated

with the spin-orbit interaction. ~Ω = ~2/2m∗ρ2 characterizes the kinetic energy with

m∗ being the effective mass of the electron, and the radial spin operator is given by

σr = σx cos ϕ + σy sin ϕ. The perturbative Zeeman term Hp is given by [92]

Hp =
ωB

Ω
σz, (4.2)

where ωB = −2µB/~ = g∗eB/4m with g∗ and m being the effective gyromagnetic ratio

and the free electron mass, respectively.

The energy eigenvalues of the unperturbed Hamiltonian are the same as those of the

case when only Rashba spin-orbit coupling is present, being given by Eq. (2.49) with κ
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replaced by (κ− Φ/Φ0):

E
(µ)
0 (κ) =

(
κ− Φ

Φ0

)2

+ (−1)µ

(
κ− Φ

Φ0

)
w +

1

4
, (µ = 1, 2) , (4.3)

where

w =

√
1 +

ω2
SO

Ω2
. (4.4)

The corresponding eigenvectors in the {| ↑z〉, | ↓z〉} eigenbasis of σz have the same form

as the eigenspinors (2.45):

ψ(µ)(κ, ϕ) = eiκϕ

(
e−iϕ

2 u(µ)

eiϕ
2 v(µ)

)
, (4.5)

where

u(1) = −v(2) =cos
θ

2
, (4.6)

u(2) = v(1) =sin
θ

2
, (4.7)

and

tan
θ

2
=

Ω

ωSO

(1− w) . (4.8)

In order to treat the perturbation, we need to determine the matrix elements of Hp in

the basis of these eigenstates

〈
ψ(µ)

∣∣ Hp

∣∣ψ(µ)
〉

= (−1)µ+1 ωB

Ω
cos θ = (−1)µ+1 ωB

Ω

1

w
, (4.9)

〈
ψ(1)

∣∣Hp

∣∣ψ(2)
〉

=
ωB

Ω
sin θ. (4.10)

In the first-order approximation one neglects the off-diagonal elements; this is reasonable

if they are small, i.e., if ωB/Ω ¿ k2ρ2, where k denotes the wave number of the incident

electron, which, as we have mentioned in Section 2.3, is described as a plane wave. Within

this approximation, the eigenspinors are not perturbed and their direction is still specified

by the angle θ, given by Eq. (4.8). The energy eigenvalues including the first-order

corrections are given by

E(µ)(κ) = E
(µ)
0 (κ) + (−1)µ+1 ωL

Ω

1

w
. (4.11)

As we have seen in Section 2.3, the energy of the incoming electron E = ~2k2/2m∗ has

to be conserved, therefore the condition E/~Ω = k2ρ2 = E(µ)(κ) determines the possible
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values of κ:

κ
(µ)
j = (−1)µ+1

[w

2
+ (−1)j q(µ)

]
+

Φ

Φ0

, (4.12)

where µ, j = 1, 2 and

q(µ) =

√
q2 + (−1)µ ωL

Ω

1

w
, (4.13)

with q =
√

(ωSO/2Ω)2 + k2ρ2. To the four different κ
(µ)
j the following four eigenstates

correspond (j = 1, 2):

ψ
(1)
j (κ

(1)
j , ϕ) = eiκ

(1)
j ϕ

(
e−iϕ

2 cos θ
2

eiϕ
2 sin θ

2

)
, (4.14)

ψ
(2)
j (κ

(2)
j , ϕ) = eiκ

(2)
j ϕ

(
e−iϕ

2 sin θ
2

−eiϕ
2 cos θ

2

)
. (4.15)

The wave function for a given energy E in the different sections of the ring is the linear

combination of these states.

In the following we will show the detailed solution of the scattering problem for a ring

with three terminals, shown in Fig. 4.1, where we assume that spin-orbit interaction is

only present in the ring, but not in the leads. We consider the most general boundary

condition, when there are incoming and outgoing waves on each terminal, i.e.:

Ψl (xl) =

(
(fl)↑
(fl)↓

)
eikxl +

(
(rl)↑
(rl)↓

)
e−ikxl , (l = I,II,III). (4.16)

The wave functions belonging to the same energy in the different sections of the ring are:

Ψi (ϕ) =
∑
µ,j

a
(µ)
i,j eiκ

(µ)
j ϕ

(
e−iϕ

2 u(µ)

eiϕ
2 v(µ)

)
, (4.17)

where u(µ) and v(µ) are given by Eqs. (4.6)-(4.7), and the subscript i = 1, 2, 3 denotes the

sections of the ring in the counterclockwise direction, starting from the position of the

incoming lead (see Fig. 4.1).

We have seen in Sec. 2.3.3 that at the three junctions the wave functions and the spin

probability currents need to be fitted:

ΨI (0) = Ψ1 (0) = Ψ3 (2π) ,

ΨII (0) = Ψ1 (γ1) = Ψ2 (γ1) ,

ΨIII (0) = Ψ2 (γ2) = Ψ3 (γ2) , (4.18)

JI (0)− J1 (0) + J3 (2π) = 0,

JII (0) + J1 (γ1)− J2 (γ1) = 0,

JIII (0) + J2 (γ2)− J3 (γ2) = 0.
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Figure 4.1: The notations used for the incoming and outgoing amplitudes in a three-terminal quantum
ring. fI, rI, fII, etc. denote two-component spinors.

By determining the continuity equation, the spin probability currents Ji (ϕ) in the ring

can be shown to be given by [95]:

Ji (ϕ) = 2Re

[
Ψ†

i (ϕ)

(
−i

∂

∂ϕ
+

ωSO

2Ω
σr (ϕ)− Φ

Φ0

)
Ψi (ϕ)

]
. (4.19)

The spin probability currents Jl (xl) in the leads, where no spin-orbit interaction is present,

are given by Eq. (2.54).

From Eqs. (4.18) we can determine the outgoing spinors (rI, rII and rIII) as a function

of the incoming ones (fI, fII and fIII). This connection can be described by 2×2 reflection

and transmission matrices, like the one given by Eq. (2.56), but now we have one reflection

and two transmission matrices for each input:

rI = R̂fIfI + T̂ fII
2 fII + T̂ fIII

1 fIII, (4.20a)

rII = T̂ fI
1 fI + R̂fIIfII + T̂ fIII

2 fIII, (4.20b)

rIII = T̂ fI
2 fI + T̂ fII

1 fII + R̂fIIIfIII. (4.20c)

The R̂fI matrix, which describes the reflected part of the input fI into lead I is given by:

R̂fI

↑↑ = %̂(1) cos2 θ

2
+ %̂(2) sin2 θ

2
− 1,

R̂fI

↑↓ = (%̂(1) − %̂(2)) sin
θ

2
cos

θ

2
,

R̂fI

↓↑ = R̂fI

↑↓, (4.21)

R̂fI

↓↓ = %̂(1) sin2 θ

2
+ %̂(2) cos2 θ

2
− 1,
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where

%̂(µ) =
8kρ

ŷ(µ)

{
ik2ρ2 sin

(
q(µ)γ1

)
sin

(
q(µ)(γ2 − γ1)

)
sin

(
q(µ)(2π − γ2)

)− i(q(µ))2 sin
(
2q(µ)π

)

−kρq(µ)
[
sin

(
q(µ)γ1

)
sin

(
q(µ)(2π − γ1)

)
+ sin

(
q(µ)γ2

)
sin

(
q(µ)(2π − γ2)

)]}
, (4.22)

ŷ(µ) = 8(q(µ))3
{
cos

[(
(−1)µ+1 w + 2φ

)
π
]
+ cos

(
2q(µ)π

)}− 12ikρ(q(µ))2 sin
(
2q(µ)π

)

−2k2ρ2q(µ)
[
cos

(
2q(µ)(π − γ2 + γ1)

)
+ cos

(
2q(µ)(π − γ2)

)
+ cos

(
2q(µ)(π − γ1)

)

−3 cos
(
2q(µ)π

)]
+ ik3ρ3

[
sin

(
2q(µ)(π − γ2 + γ1)

)− sin
(
2q(µ)(π − γ2)

)

+ sin
(
2q(µ)(π − γ1)

)− sin
(
2q(µ)π

)]
. (4.23)

The T̂ fI
1 and T̂ fI

2 matrices, which describe the transmitted part of the input fI into lead

II and III, respectively, are given by:

(
T̂ fI

n

)
↑↑

= e−i γn
2

(
τ̂ (1)
n cos2 θ

2
+τ̂ (2)

n sin2 θ

2

)
,

(
T̂ fI

n

)
↑↓

= e−i γn
2

(
τ̂ (1)
n −τ̂ (2)

n

)
sin

θ

2
cos

θ

2
,

(
T̂ fI

n

)
↓↑

= ei γn
2

(
τ̂ (1)
n −τ̂ (2)

n

)
sin

θ

2
cos

θ

2
, (4.24)

(
T̂ fI

n

)
↓↓

= ei γn
2

(
τ̂ (1)
n sin2 θ

2
+τ̂ (2)

n cos2 θ

2

)
,

where n = 1, 2, indicating the two possible output channels, and

τ̂
(µ)
1 =

8kρq(µ)

ŷ(µ)
ei

γ1
2 ((−1)µ+1w+2φ) {−kρ sin

(
q(µ)(γ2 − γ1)

)
sin

(
q(µ)(2π − γ2)

)

+iq(µ)
[
e−iπ((−1)µ+1w+2φ) sin

(
q(µ)γ1

)− sin
(
q(µ)(2π − γ1)

)]}
, (4.25)

τ̂
(µ)
2 =

8kρq(µ)

ŷ(µ)
ei

γ2
2 ((−1)µ+1w+2φ)

{
kρe−iπ((−1)µ+1w+2φ) sin

(
q(µ)γ1

)
sin

(
q(µ)(γ2 − γ1)

)

+iq(µ)
[
e−iπ((−1)µ+1w+2φ) sin

(
q(µ)γ2

)− sin
(
q(µ)(2π − γ2)

)]}
. (4.26)

It can be shown that the R̂fII (R̂fIII) matrix, which describes the reflected part of

the input fII (fIII) into lead II (III), and the T̂ fII
n (T̂ fIII

n ) matrices, which describe the

transmitted part of the spinor fII (fIII) into leads III and I (I and II), can be given by

transforming the R̂fI and T̂ fI matrices in the following manner

M fII = Uγ1M
fI
γ1↔γ2−γ1
γ2↔2π−γ1

U−1
γ1

, (4.27)

M fIII = Uγ2M
fI

γ1↔2π−γ2
γ2↔2π−γ2+γ1

U−1
γ2

, (4.28)
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where M = R̂, T̂1, T̂2 and

Uγn =

(
e−i γn

2 0

0 ei γn
2

)
, n = 1, 2. (4.29)

This is due to the fact that the matrices corresponding to a given input should also be

able to describe any other input if the angles are changed accordingly. For example, for

the input fI the angles of the outputs II and III are measured from lead I, thus, when

we want to determine the matrices for the input fII, the angles of the output leads III

and I need to be measured from lead II. However, the matrices obtained in this way will

give the reflected and transmitted part of the given input in its own reference frame. In

order to determine the contributions of each input in the same reference frame (here we

chose that of fI) the similarity transformations, given by Eqs. (4.27) and (4.28) need to

be applied.

4.2 The three-terminal quantum ring as an electron

spin beam splitter

In this section we show that due to quantum interference and spin-orbit interaction in a

three-terminal ring with one input and two output leads, different polarizations can be

achieved in the two outputs from an originally totally spin-unpolarized incoming state [96].

First, we present the transmission matrices of a three-terminal ring with one input and two

outputs in which only Rashba spin-orbit interaction is present [97]. Then, we determine

the condition for spin-polarization and show, that it can be satisfied for both symmetric

and asymmetric configurations of the leads [96,97].

4.2.1 One input, two outputs

Let us consider the three-terminal quantum ring for which we solved the scattering prob-

lem in the previous section, but let us assume, that the magnetic field is zero, and there

is only one input lead, i.e. fII, fIII = 0, using the notations of Fig. 4.1. Then, Eqs. (4.13)

and (4.23) lead to

q(1) = q(2) = q, (4.30)

ŷ(1) = ŷ(2) = ŷ, (4.31)
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where

ŷ = 8q3 [cos (wπ) + cos (2qπ)]− 12ikρq2 sin (2qπ) + 4k2ρ2q cos (2qπ) (4.32)

−2k2ρ2q [cos (2q (π − γ2 + γ1))− cos (2qπ) + cos (2q (π − γ1)) + cos (2q (π − γ2))]

+ik3ρ3 [sin (2q (π − γ2 + γ1))− sin (2qπ) + sin (2q (π − γ1))− sin (2q (π − γ2))] .

Consequently, equations (4.25) and (4.26) simplify to

τ̂
(µ)
1 =

8kρq

ŷ

[
h

(µ)
1 + g

(µ)
1

]
, (4.33a)

τ̂
(µ)
2 =

8kρq

ŷ

[
h

(µ)
2 + g

(µ)
2

]
, (4.33b)

where h
(µ)
n and g

(µ)
n are given by

h
(µ)
1 = −kρei

γ1
2

(−1)µ+1w sin(q(γ2 − γ1)) sin(q(2π − γ2)) ,

h
(µ)
2 = kρei

γ2
2

(−1)µ+1we−iπ(−1)µ+1w sin(q(γ2 − γ1)) sin(qγ1) ,

g
(µ)
1 = iqei

γ1
2

(−1)µ+1w
[
e−iπ(−1)µ+1w sin(qγ1)− sin(q(2π − γ1))

]
, (4.34)

g
(µ)
2 = iqei

γ2
2

(−1)µ+1w
[
e−iπ(−1)µ+1w sin(qγ2)− sin(q(2π − γ2))

]
.

Notice that h
(2)
n =

(
h

(1)
n

)∗
and g

(2)
n = −

(
g

(1)
n

)∗
.

Using the notations h
(1)
n = hn and g

(1)
n = gn, and substituting Eqs. (4.33) into Eqs.

(4.24), the transmission matrices of the two outgoing leads read [97]

(
T̂n

)
↑↑

=
(
T̂ fI

n

)
↑↑

=
8kρq

ŷ
e−i γn

2

[
(hn + gn) cos2 θ

2
+ (hn − gn)∗ sin2 θ

2

]
,

(
T̂n

)
↑↓

=
(
T̂ fI

n

)
↑↓

=
8kρq

ŷ
e−i γn

2 [(hn + gn) + (hn − gn)∗] sin
θ

2
cos

θ

2
,

(
T̂n

)
↓↑

=
(
T̂ fI

n

)
↓↑

=
8kρq

ŷ
ei γn

2 [(hn + gn) + (hn − gn)∗] sin
θ

2
cos

θ

2
,

(
T̂n

)
↓↓

=
(
T̂ fI

n

)
↓↓

=
8kρq

ŷ
ei γn

2

[
(hn + gn) sin2 θ

2
+ (hn − gn)∗ cos2 θ

2

]
. (4.35)

(Note that since in this case there is only one input fI, for the sake of simplicity, we have

omitted the superscript fI from the notations: T̂n = T̂ fI
n .)

Let us note here that for a ring that is symmetric with respect to the incoming lead,

i.e., γ1 = 2π − γ2, it can easily be seen that the two transmission matrices possess the
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following symmetry property [96]

(
T̂1

)
↑↑

=
(
T̂2

)
↓↓

,
(
T̂1

)
↑↓

= −
(
T̂2

)
↓↑

,

(
T̂1

)
↓↑

= −
(
T̂2

)
↑↓

,
(
T̂1

)
↓↓

=
(
T̂2

)
↑↑

.

(4.36)

This is due to the fact that for a symmetric configuration of the leads, a rotation of the

ring together with the external field generating the Rashba coupling around the axis of the

incoming lead by an angle of π, requires the transmission properties to remain unchanged.

For a ring which is not symmetric with respect to the direction of the incoming lead, the

transmission matrices (4.35) do not have this symmetry.

4.2.2 The condition for spin polarization

When the incoming electron is not perfectly spin-polarized, i.e. its spin state is a mixture,

which – instead of a two-component spinor – should be described by a 2×2 density matrix

%in, then we can easily generalize Eq. (4.35) to obtain the output density matrices %1 and

%2 by

%n = T̂n%inT̂
†
n. (4.37)

Considering a completely unpolarized input, i.e. %in being proportional to the 2×2 identity

matrix

%in =
1

2

(
1 0

0 1

)
, (4.38)

then, in order to get polarized outputs, the output density operators (4.37) should be

projectors (apart from the possible reflective losses):

%n =
1

2
T̂nT̂ †

n = ηn |φn〉 〈φn| . (4.39)

The non-negative numbers η1 and η2 measure the efficiency of the polarizing device, i.e.

η1 + η2 = 1 means a reflectionless process.

Equation (4.39) is equivalent to requiring the determinants of T̂nT̂ †
n to vanish. Ac-

cording to Eqs. (4.35), there are two different conditions for each transmission matrix to

satisfy this requirement:

hn ± gn = 0, (n = 1, 2) .

However, only the following two cases lead to nonzero transmission at both outputs:

h1 + g1 = 0, and h2 − g2 = 0, (4.40a)
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or

h1 − g1 = 0, and h2 + g2 = 0. (4.40b)

Using Eqs. (4.35) these conditions can be formulated as

sin(wπ)=±kρ

q

sin(q (2π−γ2)) sin(q (γ2−γ1))

sin(qγ1)
= ±kρ

q

sin(qγ1) sin(q (γ2−γ1))

sin(q (2π−γ2))
(4.41a)

cos(wπ)=
sin(q (2π−γ1))

sin(qγ1)
=

sin(qγ2)

sin(q (2π−γ2))
(4.41b)

where Eq. (4.41a) with the plus sign together with Eq. (4.41b) correspond to the first

case, given by Eq. (4.40a), while Eq. (4.41a) with the minus sign together with Eq.

(4.41b) correspond to the second case, given by Eq. (4.40b).

From the second equation of (4.41b) and (4.41a) we can find

sin (qγ1) = ± sin (q (2π − γ2)) , (4.42)

sin (qγ2) = ± sin (q (2π − γ1)) , (4.43)

which lead to the following relation between the possible positions of the outgoing leads:

γ1 = 2π − γ2 ±mπ/q, (4.44)

where m is a nonnegative integer, which ensures 0 < γ1 < γ2 < 2π. Then, we may

consider either γ1 or γ2 as the free parameter together with kρ and ωSO/Ω to find the

solutions of Eqs. (4.41). In either case, Eq. (4.44) will give the possible positions of the

other output lead.

4.2.3 Polarization in a symmetric ring

The m = 0 case in Eq. (4.44) corresponds to a symmetric configuration of the outgoing

leads with respect to the incoming lead [96]. Taking γ2 as the free parameter (i.e. γ1 =

2π − γ2), we find that

h2 = −h∗1, (4.45)

g2 = g∗1, (4.46)

thus the conditions given by Eq. (4.40a) and (4.40b) can be written as

h1 + g1 = 0, (4.47a)

h1 − g1 = 0, (4.47b)
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respectively. Furthermore, (4.41a) and (4.41b) simplify to

sin (wπ) = ∓kρ

q
sin (2q (π − γ2)) , (4.48a)

cos (wπ) =
sin (qγ2)

sin (q (2π − γ2))
. (4.48b)
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Figure 4.2: Transmission probability through the outputs of a symmetric three-terminal ring (γ1 = 2π/3,
γ2 = 4π/3) and the determination of the parameter values corresponding to spin-polarization: Equation
(4.48a) with the plus and minus sign are satisfied along the red and green curves, respectively, while Eq.
(4.48b) is satisfied along the blue curves. At each intersection of a red or a green curve with the blue
one, the ring acts as a spin-polarizing device.

Each of these conditions leads to a kρ − ωSO relation as depicted in Fig. 4.2 for

a representative example corresponding to γ2 = 4π/3 (γ1 = 2π/3). The parameters

corresponding to the crossing points of the red and green curves [solutions of Eq. (4.48a)]

with the blue curve [solution of Eq. (4.48b)], ensure the formation of polarized outputs.

We note that similar curves can be drawn for arbitrary (symmetric) geometry. This

implies that there are lines in the three-dimensional {γ2, ωSO/Ω, kρ} space along which

the ring polarizes a completely unpolarized input. The figure also shows the transmission

probability |T̂ |2 = Tr(T̂1T̂
†
1 ) = Tr(T̂2T̂

†
2 ) through the outputs of the ring. It can be seen

that there are parameter values where perfect spin-polarization is expected, i.e., where the

transmission probability is practically unity. This property can also be seen in Fig. 4.3,

which shows that along a line defined by h1 + g1 = 0 in the space {γ2, ωSO/Ω, kρ}, the

efficiency η of the transmission is a quasiperiodic function of γ2. (A similar figure can be

drawn for the condition h1 − g1 = 0.) As can be seen, there are certain points (that is,

parameter combinations), where η is unity. Thus, the results of this simple model suggest
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that it is possible to obtain 100% spinpolarized outputs from a perfectly unpolarized

input, even without reflective losses.
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Figure 4.3: Transmission probability of a spin-polarizing ring as a function of γ2. The parameter kρ
changes in the range of [19.0, 21.0], while 0 < ωSO/Ω < 5, and the plot corresponds to the condition
h1 + g1 = 0.

Now we turn to the investigation of the outgoing spinors which arise as a consequence

of the polarizing property of the ring. Clearly, these are the eigenstates |φn〉 of the

transmitted density matrices corresponding to the nonzero eigenvalues which are given

by

η1 = η2 =
128q2k2ρ2 |h1|2

|ŷ|2 . (4.49)

Note that the quasiperiodic behavior of the transmission probability η = η1 + η2 seen in

Fig. 4.3 is related to the sine and cosine functions in h1 and ŷ. Focusing on the case of

h1 + g1 = 0, the eigenstates of the respective transmitted density matrices corresponding

to the nonzero eigenvalues η1 and η2 read

|φ1〉+ =

(
sin θ

2

−e−iγ2 cos θ
2

)
, |φ2〉+ =

(
e−iγ2 cos θ

2

sin θ
2

)
. (4.50)

These results describe the connection between the strength of the spin-orbit cou-

pling (encoded in θ), the geometry of the device, and its polarizing directions. We note

that these polarizing directions are, in general, not orthogonal, their overlap is given by

+ 〈φ2| φ1〉+ = i sin θ sin γ2. Similarly, for h1 − g1 = 0, we have

|φ1〉− =

(
eiγ2 cos θ

2

sin θ
2

)
, |φ2〉− =

(
sin θ

2

−eiγ2 cos θ
2

)
. (4.51)
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Considering the transmission matrices (4.35) themselves, it is clear that under the

conditions given by Eqs. (4.48a) and (4.48b), their determinants also vanish. That is,

each T̂n has a zero eigenvalue, but – due to the nonhermiticity – its eigenspinors are not

orthogonal. It can be verified that the eigenstates corresponding to the nonzero eigenvalue

of the transmission matrices coincide with |φn〉+ and |φn〉−, while the spinors annulled by

the transmission matrices T̂n |φ0
n〉 = 0 have the following components:

∣∣φ0
1

〉
+

=
∣∣φ0

2

〉
− =

(
cos θ

2

sin θ
2

)
,

∣∣φ0
2

〉
+

=
∣∣φ0

1

〉
− =

(
− sin θ

2

cos θ
2

)
. (4.52)

where the subscript + and − corresponds to the condition h1 + g1 = 0 and h1 − g1 = 0,

respectively.

These results show that if the conditions given by Eqs. (4.48a) and (4.48b) are sat-

isfied, the device acts similar to a Stern-Gerlach apparatus in the sense that (1) for an

unpolarized input, we have two different spin directions (4.50) in the outputs, (2) if we

consider one of the eigenstates (4.50) as the input, its spin direction will not change in the

appropriate output, and (3) there are spinors given by Eq. (4.52), for which the trans-

mission probability into a given output lead is zero. The analogy is not perfect though;

the polarized spinors (4.50) are not orthogonal and the spinor which has zero probability

to be transmitted through a given lead is not equal to the eigenstate corresponding to the

nonzero eigenvalue of the other lead: |φn〉 6=
∣∣φ0

n′
〉

for n 6= n
′
. From this point of view, an

optical polarizing beam splitter [105,106] with nonorthogonal polarizing directions can be

the closest analog of our device.

4.2.4 Polarization with asymmetric configurations

We have seen in Sec. 4.2, that the polarizing condition is not restricted to symmetric

geometries: there are asymmetric configurations as well, as can be seen from Eq. (4.44).

These positions differ by ±mπ/q from the symmetric ones. In the previous section (see

Fig. 4.2) we demonstrated that for a given symmetric geometry, with proper combinations

of the parameters ωSO/Ω and kρ the conditions (4.48a) and (4.48b) can be satisfied. This

means that an asymmetric ring, the geometry of which is determined from the symmetric

configuration by Eq. (4.44), is then also able to produce polarized outputs. This is an

important generalization of the previous results: There are several appropriate positions

for the output leads, the symmetric case is just one of them.

When the requirement (4.39) for polarization is satisfied, we have seen in the previ-

ous section, that the output spinors are the eigenstates |φn〉 of the transmitted density

matrices, which correspond to the nonzero eigenvalues. For an asymmetric configuration,
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these eigenstates in the two cases (4.40a) and (4.40b) are given by

|φ1〉a =

(
e−i

γ1
2 sin θ

2

−ei
γ1
2 cos θ

2

)
, |φ2〉a =

(
e−i

γ2
2 cos θ

2

ei
γ2
2 sin θ

2

)
, (4.53a)

|φ1〉b =

(
e−i

γ1
2 cos θ

2

ei
γ1
2 sin θ

2

)
, |φ2〉b =

(
e−i

γ2
2 sin θ

2

−ei
γ2
2 cos θ

2

)
, (4.53b)

respectively. The output spin states in both cases are the two types of eigenspinors of

the Hamiltonian taken at the positions of the output junctions. For a given output lead,

the two eigenspinors are interchanged in the two cases (corresponding to Eqs. (4.40a) and

(4.40b)). Note that the output spinors are still nonorthogonal, their overlap is given by

β 〈φ2| φ1〉β = i sin (γ2 − γ1) /2, for both β = a, b.

4.2.5 Conclusions

We showed that a quantum ring with one input and two output leads in the presence of

Rashba-type spin-orbit interaction has remarkable similarities with the Stern-Gerlach ap-

paratus. Parameter values, within the experimentally feasible range were identified when

the three-terminal ring delivers perfectly polarized output beams of electrons without

reflective losses. We found that appropriate spin-polarized input states are transmitted

without modification, but it is also possible to prepare inputs, for which the transmission

into a given lead is forbidden.

4.3 The physical background of spin polarization:

spatial interference

We have shown in the previous section, that a one-dimensional three-terminal quantum

ring in the presence of Rashba spin-orbit interaction can act as an electron spin beam

splitter. In this section we analyze the physical origin of this polarizing effect, and show

that it is a result of an appropriate interference of states that carry oppositely directed

currents. We visualize the stationary spin directions along the ring for an originally

totally spin-unpolarized electron, revealing the formation of the pure spin states on the

outputs [97].

4.3.1 Spin probability currents in the ring

The mathematical treatment used in the previous section demonstrated the interesting

fact that a three-terminal ring can spin-polarize electrons which are originally unpolarized.

Unfortunately however, it is unable to provide a clear insight into the underlying physics.
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In order to show how polarized spin states are formed on the outputs, let us consider

again a completely unpolarized input, now taken as the following equal weight sum of

pure state orthogonal projectors

%in =
1

2

(∣∣∣ψ(1)
in

〉〈
ψ

(1)
in

∣∣∣ +
∣∣∣ψ(2)

in

〉〈
ψ

(2)
in

∣∣∣
)

. (4.54)

Here ψ
(µ)
in = ψ

(µ)
1 (0) = ψ

(µ)
2 (0) (µ = 1, 2), given by Eqs. (4.14) and (4.15), are the

eigenspinors of the Hamiltonian at the position of the incoming lead. The density operator

in the different sections (i = I,II,III) of the ring is then

%i (ϕ) =
1

2

(∣∣∣Ψ(1)
i (ϕ)

〉〈
Ψ

(1)
i (ϕ)

∣∣∣ +
∣∣∣Ψ(2)

i (ϕ)
〉〈

Ψ
(2)
i (ϕ)

∣∣∣
)

, (4.55)

where

Ψ
(1)
i (ϕ) =

∑
j=1,2

Ψ
(1)
i,j (ϕ) = N

(1)
i (ϕ)

(
e−iϕ

2 cos θ
2

eiϕ
2 sin θ

2

)
,

Ψ
(2)
i (ϕ) =

∑
j=1,2

Ψ
(2)
i,j (ϕ) = N

(2)
i (ϕ)

(
e−iϕ

2 sin θ
2

−eiϕ
2 cos θ

2

)
, (4.56)

are the spinor valued wave functions of the electron in the different domains of the ring

for the pure inputs ψ
(1)
in and ψ

(2)
in , respectively, with

N
(µ)
i (ϕ) =

∑
j=1,2

a
(µ)
i,j eiκ

(µ)
j ϕ, µ = 1, 2.

Ψ
(µ)
i (ϕ) consists of two of the four eigenstates of the Hamiltonian, those which have the

same spinor part, but different κ.

By examining the spin probability current corresponding to the Ψ
(µ)
ij (ϕ) states ap-

pearing in (4.56)

J
(µ)
ij =

∣∣∣a(µ)
ij

∣∣∣
2 [

2κ
(µ)
j + (−1)µ

(
cos θ − ωSO

Ω
sin θ

)]
= (−1)µ+j+1 2q

∣∣∣a(µ)
ij

∣∣∣
2

, (4.57)

it can be seen that Ψ
(µ)
i1 (ϕ) and Ψ

(µ)
i2 (ϕ) represent oppositely directed (clockwise and

anticlockwise) spin currents in each section (identified by the index i) of the ring, since

the signs of J
(µ)
i1 and J

(µ)
i2 are opposite. The overall spin current densities which correspond

to the input ψ
(µ)
in are

J
(µ)
i = 2Re

{
a

(µ)
i1

(
a

(µ)
i2

)∗
e
i
(
κ
(µ)
1 −κ

(µ)
2

)
ϕ

} [
κ

(µ)
1 + κ

(µ)
2 + (−1)µ

(
cos θ − ωSO

Ω
sin θ

)]

+ 2q (−1)µ

(∣∣∣a(µ)
i1

∣∣∣
2

−
∣∣∣a(µ)

i2

∣∣∣
2
)

= 2q (−1)µ

(∣∣∣a(µ)
i1

∣∣∣
2

−
∣∣∣a(µ)

i2

∣∣∣
2
)

= J
(µ)
i1 + J

(µ)
i2 , (4.58)
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that is, the sum of the clockwise and anticlockwise directed currents given by Eq. (4.57).

We note that the cross terms in Eq. (4.58) disappear as a result of the fact that tan θ =

−ωSO/Ω.

The output spinors (4.53a) and (4.53b) suggest, that in order to obtain a polarized

(pure) state at a given output, one of the projectors of (4.55) should vanish, and the

other one should remain nonzero at that point of the ring. In order to have different

polarized spin states in both outputs, the two projectors need to vanish at different output

junctions. One of the possible ways to achieve this is to have Ψ
(1)
1 (γ1) and Ψ

(2)
2 (γ2) zero,

which happens only if the spatial parts of these wave functions are zero (see Eqs. (4.56)):

N
(1)
I (γ1) = 0, N

(2)
II (γ2) = 0, (4.59)

indicating destructive interference at the given output. By exchanging µ = 1 and µ = 2,

the other case of polarization can be described. From condition (4.59) follows that

∣∣∣a(1)
I,1

∣∣∣ =
∣∣∣a(1)

I,2

∣∣∣ ,
∣∣∣a(2)

II,1

∣∣∣ =
∣∣∣a(2)

II,2

∣∣∣ , (4.60)

which can be shown to be equivalent to Eqs. (4.40a). (Exchanging µ = 1 and µ = 2

in (4.59) leads to (4.40b)). Equation (4.60) implies that the spin currents J
(1)
I and J

(2)
II

given by Eq. (4.58) vanish as a consequence of the interference of the oppositely directed

currents corresponding to the states of the same spinor parts, given by Eq. (4.57). The

requirement for spin-polarization, given by Eq. (4.39), thus has a very clear physical

interpretation in terms of destructive interference and vanishing spin currents.

4.3.2 Visualization of the effect

Fig. 4.4 shows how pure spin states at the outputs (denoted by II and III) of a symmetric

three-terminal ring are formed when the input is completely unpolarized, decomposed as

(4.54). Here, the polarization condition (4.40a) is satisfied with the parameters ωSO/Ω =

3.05 and kρ = 1.38. (We note that in semiconductor rings, the actual value of kρ is

usually an order of magnitude larger. The values used here are intended to provide

a better visualization of the phenomenon.) In the left panel we show the probability

density of the electron at the given azimuthal angle ϕ on the ring. The colors of the

curves correspond to the two spin components of the input shown with the same color in

the right panel. The dotted lines mark the positions of the outgoing leads, where one of

the two probability densities becomes zero, resulting in the output of the other spinor at

that point as a pure state. In the right panel the stationary spin directions of the electron

are depicted along the ring. Red and blue arrows correspond to ψ1
in and ψ2

in, respectively.

The lengths of the arrows are proportional to the probability densities shown in the left

panel. The two outputs in this case are given by Eqs. (4.53a). As it can also be seen
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from the figure, spin transformation in this case is a rotation around the z-axis by an

angle pertaining to the given point on the ring, as can already be seen in case of a closed

ring [36].
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Figure 4.4: Formation of pure spin states at the outputs (II and III) of a symmetric three-terminal ring
(γ1 = 2π/3, γ2 = 4π/3) for a completely unpolarized input decomposed as (4.54) when the parameters
ωSO/Ω = 3.05 and kρ = 1.38 ensure perfect polarization in the case given by equation (4.40a). Left
panel: The probability densities of the electron at the given point on the ring for the spin component
shown with the same color in the right panel. The dotted lines in the graph mark the positions of the
outgoing leads, where one of the two probability densities becomes zero, resulting in the output of the
other spinor at that point as a pure state. Right panel: The stationary spin directions of the electron
along the ring. Red and blue arrows correspond to ψ1

in and ψ2
in, respectively. The lengths of the arrows

are proportional to the probability densities at the given point on the ring, shown in the left panel. The
two outputs in this case are given by Eqs. (4.53a).

It is also interesting to see how polarization is produced if we decompose the incoming

perfect mixture as an equal weight sum of the eigenstates of Sz

%in =
1

2
(|↑z〉 〈↑z|+ |↓z〉 〈↓z|) . (4.61)

Figure 4.5 shows how pure spin states at the outputs (II and III) are formed in the

same symmetric ring as in Fig. 4.4, for a completely unpolarized input decomposed as

(4.61). In the left panel the trace of the square of the total spin density matrix %i(ϕ)

at the given azimuthal angle ϕ is shown. Tr [%i(ϕ)]2 = 1 and 0.5 correspond to the spin

state being pure and maximally mixed, respectively. The dotted lines in the graph mark

the positions of the outgoing leads, where – as it can be seen – the total spin state is

pure. In the right panel the stationary spin directions are shown along the ring. Green

and purple arrows correspond to inputs |↑z〉 and |↓z〉, respectively. We can see that for

this decomposition of the completely unpolarized input, polarization is due to the fact

that the spin states |↑z〉 and |↓z〉 are rotated into the same direction at the position of

the output leads. Note that since we only took a different decomposition of the same

input, the resulting polarized states (red and blue arrows) are obviously the same ones as

in Fig. 4.4.
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Figure 4.5: Formation of pure spin states at the outputs (II and III) of the same symmetric ring as in
Fig. 4.4, for a completely unpolarized input decomposed as (4.61). Left panel: The trace of the square of
the total spin density matrix %i(ϕ) at the given point on the ring, Tr [%i(ϕ)]2 = 1 and 0.5 corresponding
to the spin state being pure and maximally mixed, respectively. The dotted lines in the graph mark
the positions of the outgoing leads, where the total spin state is pure. Right panel: The stationary spin
directions along the ring. Green and purple arrows correspond to inputs |↑z〉 and |↓z〉, respectively. These
input spin states are rotated into the same direction at the output leads, resulting in the polarized states
(red and blue arrows) seen in Fig. 4.4.

Figures 4.4 and 4.5 also show additional, asymmetrically situated points on both

branches of the ring where the state of the electron is pure. These points are clearly those

that can be determined from Eqs. (4.44), which give the appropriate ring configurations

for spin polarization. If the output leads are placed into these positions, the outcoming

spin states are the pure ones given by (4.53a) corresponding to these new positions.

4.3.3 Conclusions

We studied a three-terminal quantum ring with one input and two output leads, which –

for appropriate parameter values – acts as a spin polarizer. We provided an instructive

physical interpretation of the polarization process: for both symmetric and nonsymmetric

geometries, polarization is due to spatial interference. At a given junction this interference

is destructive for a certain spin direction, while constructive for its orthogonal counterpart

which, consequently, is transmitted into the output lead.

4.4 Spatial-spin correlations: intertwining

In this section we investigate what kind of correlations can be present between the spatial

and spin degrees of freedom of the electron at the output of a three-terminal quantum

ring in which Rashba spin-orbit coupling is present. We show that these correlations can

be classical when the possibility of quantum mechanical interference does not play a role,

or that there can be intertwining [107] between the different degrees of freedom, which is

similar to entanglement but in this case we have a single particle [98].
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4.4.1 Mathematical formulation of the problem

Let us consider again a quantum ring, shown in Fig. 4.6 with one input and two output

leads, which is symmetric with respect to the direction of the input lead, i.e., γ1 = 2π−γ2.

We note that in all of the following discussions, we will focus on the spinor part of the

wave function and ignore the plane wave part.

The quantum mechanical state of an electron (not necessarily pure) after the ring can

be described by a single-particle density operator, which is defined on the tensorial product

of two two-dimensional Hilbert spaces. The spin degree of freedom can be described on

a Hilbert space spanned by the {|↑z〉 , |↓z〉} eigenstates of Sz, while a suitable basis in

the other Hilbert space is provided by the states {|1〉 , |2〉} corresponding to the different

leads, where the electron can leave the ring. Clearly, there can be correlations between

these degrees of freedom: in the polarizing case described in Sec. 4.2, knowing the path

along which the electron left the ring, we also know the direction of its spin.

γ1

γ2
%in

%1 = T̂1%inT̂
†
1

%2 = T̂2%inT̂
†
2

%out =

(

T̂1%inT̂
†
1

T̂1%inT̂
†
2

T̂2%inT̂
†
1

T̂2%inT̂
†
2

)

Figure 4.6: The geometry of the device and the relevant spinor density operators in the different leads.

In order to investigate the nature of these correlations, we need the ”total” 4×4 output

density matrix, which, in the {|1, ↑〉 , |1, ↓〉 , |2, ↑〉 , |2, ↓〉} basis reads

%out =

(
T̂1%inT̂

†
1 T̂1%inT̂

†
2

T̂2%inT̂
†
1 T̂2%inT̂

†
2

)
, (4.62)

where the 2×2 density matrices %1 and %2 appear in the diagonal (see Fig. 4.6). Note that

(4.62) is a straightforward generalization of the case when the input spin is a pure state

|Ψin〉 which is transformed into

|Ψout〉 = |1〉 ⊗
(
T̂1 |Ψin〉

)
+ |2〉 ⊗

(
T̂2 |Ψin〉

)
(4.63)

and can be represented by a projector having the form of (4.62).
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4.4.2 The nature of spatial-spin correlations

In this section we investigate what kind of spatial-spin correlations can build up as a

consequence of quantum interference and spin-orbit interaction in the ring.

If the incoming state is a complete mixture, and the conditions given by (4.48a) and

(4.48b) are satisfied, it can easily be shown that %out is block-diagonal. Thus, in this case

we can write

%out = η (|1, φ1〉 〈1, φ1|+ |2, φ2〉 〈2, φ2|) = |1〉 〈1| ⊗ %1 + |2〉 〈2| ⊗ %2, (4.64)

where the states |φn〉 , (n = 1, 2) in the projectors can be either |φn〉+ (4.50) or |φn〉−
(4.51), and the parameter η takes the reflective losses into account. It can be seen that

although the output density matrices %1 and %2 represent pure states, globally we have

a mixture and the correlation between the spatial and spin degrees of freedom is purely

classical.

We note that by calculating the partial trace of %out, given by (4.64), with respect to

the spin degree of freedom, the result is proportional to the identity matrix: not taking

into account the spin degree of freedom, the electron, if transmitted at all, has the same

probability to leave the ring along either lead.

On the other hand, if the incoming state is pure, then according to Eq. (4.63), the

global outgoing state

%in = |Ψin〉 〈Ψin| −→ %out = η |Ψout〉 〈Ψout| ,

as well as the individual output states

%1 = T̂1 |Ψin〉 〈Ψin| T̂ †
1 ,

%2 = T̂2 |Ψin〉 〈Ψin| T̂ †
2 ,

will be pure. In order to quantify the possible entanglement of the two different degrees

of freedom contained in %out we calculate the entanglement of formation [108,109]

E = −1 +
√

1− C2

2
log2

(
1 +

√
1− C2

2

)
− 1−√1− C2

2
log2

(
1−√1− C2

2

)
, (4.65)

where C is the so-called concurrence

C (%) = max {0, λ1 − λ2 − λ3 − λ4} . (4.66)
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The λi’s are the eigenvalues (in decreasing order) of the Hermitian matrix

R =

√√
%̃out%̂out

√
%̃out, (4.67)

where

%̂out = (σy ⊗ σy) %̃∗out (σy ⊗ σy) , (4.68)

and %̃∗out is the complex conjugate of the normalized total outgoing density matrix.

 

 

0

0.2

0.4

0.6

0.8

1

E

π 3π/2 2π
γ2

Figure 4.7: The entanglement of formation given by Eq. (4.65) of the output density matrix %out as a
function of the geometrical angle γ2 for kρ = 19.8 and ωSO/Ω = 3.7.

Clearly, for the polarized output, given by Eq. (4.64), E vanishes, but generally it

is nonzero and strongly depends on the parameters γ2, ωSO/Ω, and ka. (Note that we

consider symmetric geometry, i.e., γ1 = 2π − γ2). Figure 4.7 shows E as a function of

γ2 for the input spinor |Ψin〉 = (|↑z〉+ |↓z〉) /
√

2 = |↑x〉, i.e., one of the eigenspinors

of Sx. The oscillations seen in this figure are due to the spatial interference inside the

ring: the oppositely traveling electron waves form standing waves the periodicity of which

modulates the behaviour of E .

The entanglement of formation E , shown in Fig. 4.7 is practically unity around γ2 =

3π/2. This means that for the parameter values given in the caption of the figure, the

intertwining between the spatial and spin degrees of freedom is maximal. Interestingly,

in this case the output spinors are (to a very good approximation) eigenstates of Sy:

|↑x〉 → |Ψout〉 =
1√
2

(|1, ↑y〉+ i |2, ↓y〉) . (4.69)

We note that with the same parameters we also have

|↓x〉 → |Ψout〉 =
1√
2

(|1, ↓y〉+ i |2, ↑y〉) , (4.70)

and for both processes given by (4.69) and (4.70) the output spinors are orthogonal.
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4.4.3 Conclusions

We investigated a three-terminal quantum ring, where one of the terminals served as

input for the electrons, while the other two terminals were used as outputs. We focused

on the nature of the correlation between the output electron spin and its spatial degree of

freedom. We showed that in the case when quantum interference and spin-orbit coupling

results in perfectly polarized outputs from a complete mixture input, this correlation is

purely classical. On the other hand, when the spin state of the input electron is pure, we

found that entanglement between the spin direction and the output path can be present.
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Chapter 5

Two-dimensional quantum ring

arrays

In this chapter we calculate the conductance and the spin transport properties of two-

dimensional rectangular arrays consisting of quantum rings, in which Rashba-type spin-

orbit interaction and a perpendicular magnetic field are present. Such arrays have already

been fabricated in the heterojunction of InAlAs/InGaAs and studied in a recent exper-

iment [32]. We describe the problem by using an analytically solvable one-dimensional

ballistic model of single rings, which we use as building blocks of the array. By solving

the scattering problem of ring arrays, our aim is to give a general survey of the magneto-

conductance properties of such devices. In Section 5.1 we sketch the analytical solution of

the scattering problem for single rings (given in detail in the Appendix), used as building

blocks of the arrays. Then, in Section 5.2 we describe the building-block method, which

we use to calculate the conductance of such arrays. We present the properties of the

conductance of 3×3, 4×4, and 5×5 rectangular arrays as a function of the magnetic field,

the Rashba spin-orbit coupling strength, and the wave vector. In Section 5.3 we study the

spin-resolved transmission probabilities of the same array geometry with only one input

channel. Finally, in Section 5.4 we investigate to what extent the conductance properties

are modified by the presence of point-like random scattering centers between the rings.

5.1 Building blocks

The rectangular arrays we investigate are closed in the vertical and open in the horizontal

direction, as shown in Fig. 5.1. We consider N ×N arrays with N inputs (shown by the

solid and dashed lines), and one input (shown by the solid line only). These consist of

two-, three- and four-terminal rings, where the two- and three-terminal ones are situated

on the boundary of the arrays (see Fig. 5.1). In what follows, we will consider these single

rings as the building blocks of the arrays: first, we solve the scattering problem for the
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different types of rings (we note that we have already done so for the three-terminal ring

in Section 4.1), and then fit the wave functions and their derivatives in the points where

neighboring rings touch each other. Thereby, we obtain a linear set of equations from

which the (spin-dependent) transmission amplitudes can be determined, which can be

used to calculate the conductance of the arrays with the Landauer formula.

11 12

21 22

13

23

31 32 33

I

I

I

II

II

III

III

II

IV

III

I

I

I

II

II

III

III

II

IV

III

I

I

I

II

II

III

III

II

IV

III

f
(11)
I

r
(11)
I

f
(21)
I

r
(21)
I

f
(31)
I

r
(31)
I

r
(13)
III

r
(23)
III

r
(33)
III

Figure 5.1: The geometry of the device in the simplest case of a 3×3 array with three or one (without
leads displayed with dashed lines) input terminals. The notations can easily be generalized to larger
arrays.

In order to be able to take into account every possible transmission and reflection

inside the array, we need to solve the scattering problem of the individual rings for the

most general boundary condition, i.e., when there are both incoming and outgoing spinor

valued wave functions in each terminal: Ψi = fie
ikxi + rie

−ikxi (i = I,II,III, IV), where xi

denotes the local coordinate in terminal i, as shown in Fig. 5.2. Note that the amplitudes

fI, rI, fII, ... refer to two-component spinors. For the case of a general three-terminal ring

with Rashba spin-orbit interaction and a perpendicular magnetic field (Fig. 4.1), we have

seen in Chapter 4 that the scattering problem can be solved analytically. The case of a

ring with two or four terminals can be treated analogously. Here we do not detail these

calculations as they can be carried out in a straightforward manner following the lines of

Sec. 4. We note that these results are presented in the Appendix.

In a general two-terminal ring (see Fig. 5.2 without terminals III and IV) – where

there are two incoming spinors (fI and fII) – the outgoing spin states can be given as the

superposition of the reflected part of the input in the same lead and the transmitted part

of the input in the other lead:

rI = RfIfI + T fIIfII, (5.1a)

rII = RfIIfII + T fIfI. (5.1b)

Here Rfi and T fi (i = I,II) are 2×2 matrices, which can be determined by applying
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fI
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fII

rII

fIII

rIII

fIVrIV

γ1

γ2

γ3

Φ

Figure 5.2: The notations used for the spinor part of the wave functions in the case of a four-terminal
ring.

Griffith’s boundary conditions at the junctions of the leads with the ring (see Section

2.3). As we have seen in the case of the three-terminal ring in Section 4.1, it is sufficient

to determine the reflection and transmission matrices corresponding to the boundary

condition of having only the input fI, as the RfII and T fII matrices, which describe the

reflected and transmitted part of the input fII, can be given by:

M fII = Uγ1M
fI
γ1↔2π−γ1

U−1
γ1

, (5.2)

where M = R, T , and Uγ1 is given by Eq. (4.29). The form of the matrices R̂fI and T̂ fI

is given in the Appendix.

In the case of a four-terminal ring, the outgoing spinors are also given as the super-

position of the reflected part of the input in the respective lead and the transmitted part

of the other inputs:

rI = R̃fIfI + T̃ fII
1 fII + T̃ fIII

2 fIII + T̃ fIV
3 fIV, (5.3a)

rII = R̃fIIfII + T̃ fIII
1 fIII + T̃ fIV

2 fIV + T̃ fI
3 fI, (5.3b)

rIII = R̃fIIIfIII + T̃ fIV
1 fIV + T̃ fI

2 fI + T̃ fII
3 fII, (5.3c)

rIV = R̃fIVfIV + T̃ fI
1 fI + T̃ fII

2 fII + T̃ fIII
3 fIII. (5.3d)

Analogously to the case of the three-terminal ring (Section 4.1) and the two-terminal one

presented above, the reflection and transmission matrices corresponding to the inputs fII,

fIII and fIV, can be given by transforming the respective matrices corresponding to the

input fI:

M fII = Uγ1M
fI
γ1↔γ2−γ1
γ2↔γ3−γ2
γ3↔2π−γ1

U−1
γ1

, (5.4)
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M fIII = Uγ2M
fI

γ1↔γ3−γ2
γ2↔2π−γ2

γ3↔2π−γ2+γ1

U−1
γ2

, (5.5)

M fIV = Uγ3M
fI

γ1↔2π−γ3
γ2↔2π−γ3+γ1

γ3↔2π−γ3+γ1+γ2

U−1
γ3

, (5.6)

where M = R̃, T̃n (n = 1, 2, 3) and Uγn is given by Eq. (4.29). For the detailed form of

the matrices R̃fI and T̃ fI
n , we refer to the Appendix.

Using Eqs. (5.1), (4.20), and (5.3) the wave functions can be given in each terminal

of the single two-, three- and four-terminal rings. By fitting the wave functions and their

derivatives corresponding to the adjacent outputs of neighboring rings, these building

blocks can be attached to each other to form arrays of arbitrary size. (We note that

our method of using single rings as building blocks can easily be used to determine the

conductance of arrays of arbitrary – not necessarily rectangular – configuration as well.)

For the sake of simplicity, we restrict ourselves to N ×N arrays, with N = 3, 4 and 5.

5.2 Properties of the conductance

Based on the analytic results presented in Section 4.1, 5.1 and in the Appendix, here we

build two-dimensional rectangular arrays of 3×3, 4×4, and 5×5 quantum rings, where

both Rashba spin-orbit interaction and a perpendicular magnetic field are present, so

that the strength of the former one can be changed by an external gate voltage [23]. We

assume that neighboring rings touch each other, and as we have mentioned in Section

5.1, we limit ourselves to arrays that are closed in the vertical and open in the horizontal

direction, as shown in Fig. 5.1.

We derive the conductance from the linear set of equations resulting from the fit of

the wave functions Ψ
(kl)
i and their derivatives ∂

x
(kl)
i

Ψkl
i (i = I,II,III,IV and k, l = 1, ..., N ,

where N is the number of rings along one direction in the array) in the points, where the

rings touch each other. In the junction of ring {11} with ring {12} for example:

Ψ
(11)
III

∣∣∣
x
(11)
III =0

= Ψ
(12)
I

∣∣∣
x
(12)
I =0

,

∂
x
(11)
III

Ψ
(11)
III

∣∣∣
x
(11)
III =0

= −∂
x
(12)
I

Ψ
(12)
I

∣∣∣
x
(12)
I =0

. (5.7)

Note that the negative sign in Eq. (5.7) is a consequence of the opposite direction of the

local coordinates in leads III of ring {11} and I of ring {12}. Equation (5.7) leads to

f
(11)
III + r

(11)
III = f

(12)
I + r

(12)
I ,

f
(11)
III − r

(11)
III = −f

(12)
I + r

(12)
I ,
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from which follows that

f
(11)
III = r

(12)
I ,

r
(11)
III = f

(12)
I , (5.8)

i.e., the spinor entering (exiting) ring {11} on terminal III is equal to the spinor exiting

(entering) ring {12} on terminal I. The spinors r
(11)
III and r

(12)
I can be given with the help

of the reflection and transmission matrices of a three-terminal ring presented in Sec. 4.1

according to Eqs. (4.20).

For a small number of rings the resulting set of equations can be solved analyti-

cally; however already for an array of 3×3 rings shown in Fig. 5.1, it consists of 60

equations, which is preferably solved by numerical means, although analytic solutions

exist in principle. (For larger arrays the number of equations scales practically with

the number of rings.) After having determined the output spinor valued wave functions

r
(1N)
III , r

(2N)
III , ..., r

(NN)
II , we use the Landauer [1] formula

G = G↑ + G↓,

where

G↑ =
e2

h

(∣∣∣(r(1N)
III )↑

∣∣∣
2

+
∣∣∣(r(2N)

III )↑
∣∣∣
2

+ ... +
∣∣∣(r(NN)

II )↑
∣∣∣
2
)

,

G↓ =
e2

h

(∣∣∣(r(1N)
III )↓

∣∣∣
2

+
∣∣∣(r(2N)

III )↓
∣∣∣
2

+ ... +
∣∣∣(r(NN)

II )↓
∣∣∣
2
)

,

averaged over the two σz eigenspinor inputs (see also Sec. 1.28) to calculate the conduc-

tance of the arrays.

The left panel of Fig. 5.3 shows a contour plot of the conductance (in units of e2/h)

of rectangular arrays of 3×3, 4×4 and 5×5 quantum rings, for zero magnetic flux as a

function of the Rashba-coupling strength ωSO/Ω and kρ. The values of kρ are varied

around kF ρ = 20.4, corresponding to a Fermi energy of 11.13 meV in case of an effective

mass m∗ = 0.023m of InGaAs and rings of radius ρ = 0.25 µm. The different arrays

show similar behavior for larger values of the spin-orbit interaction strength: there are

slightly downwards bending stripes (initially around even values of kρ), where the devices

are completely opaque for the electrons, and also conducting regions, which are initially

around odd values of kρ and have complex internal structure. The bending of the stripes

may be related to the effect of q =
√

k2ρ2 + (ωSO/2Ω)2 on the transmission probability

of the rings constituting the array, which can be directly seen in the case of a sinlge,

diametric, two-terminal ring from Eq. (A-1). In the range of the values of kρ used, the

increasing values of ωSO/Ω decrease the dominance of kρ in q. Further comparing our
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results to the case of a single ring with diametrically coupled leads (Fig. 2.8), it can be seen

that the overall periodicity as a function of kρ is determined by single-ring interferences.

The increasing number of the rings causes modulations superimposing on the single-ring

behavior. This is probably the most apparent if we recall [92] that zero conductance areas

are simply lines on the kρ−ωSO/Ω plane for a single two-terminal ring, while in our case

there are stripes, the width of which is slightly increasing with the size of the array. This

effect is related to the increasing number of consecutive partially destructive interferences

that finally lead to essentially zero currents at the outputs. Additionally, if we considered

an infinite array, the periodic boundary conditions would allow only discrete values of kρ

for a given spin-orbit interaction strength with nonzero conductance. Thus the results

presented in Figs. 5.3(a), (b) and (c) demonstrate a transition between the conductance

properties of a single ring and that of an infinite array.
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Figure 5.3: The conductance G/G0 (G0 = e2/h) of rectangular arrays of different sizes. Left panel: The
conductance as a function of the spin-orbit coupling strength ωSO/Ω and kρ for zero magnetic flux of
a (a) 3×3, (b) 4×4 and (c) 5×5 rectangular array with 3, 4, and 5 input terminals, respectively. Right
panel: The conductance as a function of the spin-orbit coupling strength ωSO/Ω and the magnetic flux
Φ (in units of Φ0) for ka = 19.6 of a (d) 3×3, (e) 4×4, and (f) 5×5 array with 3, 4,and 5 input terminals,
respectively.

82



TWO-DIMENSIONAL QUANTUM RING ARRAYS

For small values of ωSO/Ω, Figs. 5.3(a)-(c) show that the width of the non-conducting

regions narrow until they eventually disappear when no spin-orbit coupling is present.

Here the conductance still depends on kρ, but its minimal values are not zeros (similarly

to the transmission probability of a single diametric ring for zero flux and zero spin-orbit

coupling, shown by the dotted curve in Fig. 2.8) and a periodic behavior can be seen: for

an array of N × N rings, there are N minima as the value of kρ is increased by 1. This

size-dependent modulation is related to the horizontal extent of the device: If we compare

the conductance of the arrays to that of rings of the same size and number without vertical

connections, the same periodic behavior can be seen around zero Rashba coupling [110].

The right panel of Fig. 5.3 shows the normalized conductance of arrays of 3×3, 4×4

and 5×5 quantum rings for kρ = 19.6 as a function of the spin-orbit interaction strength

ωSO/Ω and the magnetic flux Φ (measured in units of Φ0). The conductuance oscillates as

a function of both parameters. The oscillations as a function of the magnetic flux Φ are

manifestations of the Aharonov-Bohm effect [5] (Sec. 2.1.2). The oscillations as a function

of the Rashba coupling strength ωSO/Ω are due to spin-dependent quantum interferences.

The actual value of the transmission in a single ring is determined by the interference

resulting from the interplay between the phases acquired due to the magnetic field and

the Rashba spin-orbit interaction. Therefore, as ωSO/Ω is increased, the spin-dependent

phase changes periodically, which leads to the change in phase of the oscillations as a

function of the flux. This can also be seen in the case of arrays, although the interference

in consecutive rings slightly changes the periodicity of the oscillations. As the figures in

the right panel of Fig. 5.3 were plotted at a fixed value of kρ, the effect of the bending

non-conducting stripes shown in the left panel can also be seen as the decrease of the

conductance when such a stripe is reached due to the change of the spin-orbit interaction

strength, and its increase again, when the stripe is left. We note that – as we have

mentioned above – for larger values of kρ this bending effect is less pronounced, as kρ

remains dominant over ωSO/Ω in q.
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Figure 5.4: The conductance G/G0 (G0 = e2/h) of a 5×5 rectangular array with a single input lead
attached to ring {31} (a) as a function of the spin-orbit coupling strength ωSO/Ω and kρ for zero magnetic
flux, and (b) as a function of the spin-orbit coupling strength ωSO/Ω and the magnetic flux Φ (in units
of Φ0) for kρ = 19.57.
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Figure 5.4 shows the conductance of a 5×5 array with a single input lead in the middle,

i.e., attached to ring {31} (using the notations of Fig. 5.1) as a function of kρ, and ωSO/Ω

(Fig. 5.4(a)), and the magnetic flux and ωSO/Ω (Fig. 5.4(b)). The overall structure of

these plots remains the same as in the case when the current can enter through all the rings

on the left hand side, but the different boundary conditions modify their fine structure.

5.3 Spin transformational properties

Our method allows the calculation of the spin directions for the different output termi-

nals in the arrays. By determining these spin directions we found that spin-dependent

interference in the array results in nontrivial spin transformations.
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Figure 5.5: The probabilities of the (a) |↑x〉, (b) |↑y〉, and (c) |↑z〉 outputs at ring {55} of a 5×5 array
with one input (attached to ring {31}), for kρ = 19.6 as a function of the spin-orbit interaction strength
ωSO/Ω and the flux Φ (in units of Φ0). The incoming spin state is |↑z〉.

Figure 5.5 shows the spin resolved transmission probabilities for a 5×5 ring array with

a single input lead. The incoming spin state is chosen to be |↑z〉, i.e., the spin-up eigenstate

of σz, and the contour plots show the probabilities of the |↑x〉, |↑y〉 and |↑z〉 outputs at ring

{55} on the right hand side. We note that the degree of the change in the spin directions

in the other output terminals is essentially the same. The fact that the |↑z〉 input spinor

changes its direction – as it is seen in Figs. 5.5(a), and (b), it can be transformed into

|↑x〉 or |↑y〉) – is due to the spin rotations induced by the spin-orbit interaction. The

actual values of the spin resolved transmission probabilities are determined by the spin

dependent interference phenomena. The overall dependence of the conductance on the

magnetic flux and the Rashba coupling strength can also be seen in the probabilities of

the spin directions at each output of the array.

Figure 5.6 shows the z component of the normalized output spinors and visualizes that

spin resolved results depend on the input side geometry as well. As we can see, the spin

components change in the whole available range between -1 and 1, and their behavior

is different for the cases when the electron can enter the array through any of the five

terminals, or only through the one attached to ring {31}. Figs. 5.5 and 5.6 suggest that

with a given array geometry, in which the spin-orbit interaction strength ωSO/Ω is tuned

to an appropriate value, the spin of the incoming electron may be rotated to a certain
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Figure 5.6: The spin transformation properties of a 5×5 array with input leads attached to all rings and
only to ring {31} (black and red curves, respectively). The z component of the normalized spin states
transmitted via the output terminals attached to ring {25} (solid line) and ring {45} (dashed line). The
incoming spin state is chosen to be |↑z〉.

direction at a given terminal. This phenomenon together with other spin dependent

interference effects [99,100,111–117] can lead to spin sensitive quantum networks.

We would like to mention here that beyond the case of rectangular ring arrays with

a uniform magnetic field and Rashba spin-orbit coupling, further interesting set-ups can

also be imagined, which could be used for a certain purpose in electron spin manipulation.

A rectangular array of 3 × 3 quantum rings with local (ring by ring) modulation of the

Rashba spin-orbit interaction strength can be used to direct the input current to any of the

output ports, by tuning the spin-orbit coupling strengths in the rings with external gate

voltages. This effect is spin independent: the output port is always the same, regardless

of the input spin direction, while the output spin states are orthogonal for the |↑z〉 and

|↓z〉 inputs. Arrays of or 5× 5 rings with different spin-orbit interaction strengths can be

completely analogous to the Stern-Gerlach device: if the input is one of the eigenstates

of σz, the output will have the same spin direction at a certain output port, while the

orthogonal input is directed toward a different output port, with its final direction being

the same as the initial one [118]. Two-dimensional ring arrays of different geometry,

composed of two- and three-terminal rings of specified spin-transformational operation

(determined by the radius of the ring, the positions of the junctions, and the strength

of the Rashba coupling), may also be utilized to implement the one-dimensional coined

quantum walk with electrons. In this scheme, the coin is represented by the spin of the

electron, while the discrete position of the walker corresponds to the label of the rings

in one of the spatial directions in the array. Two-terminal rings realize the coin toss

i.e., spin flip, while three-terminal rings act either as the step operator of the quantum

walk or ensure the addition of probability amplitudes corresponding to stepping back to

a previous position in the walk [119].
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5.4 The effect of point-like scatterers

In this section we will investigate to what extent the conductance properties are modified

by the presence of random scatterers. Considering such effects provides a more realistic

description for most cases. To this end we introduce point-like scattering centers between

the rings. Note that attaching leads to rings and different rings to each other may lead to

scattering, which is why the scattering centers are chosen to be placed in the junctions.

We note that the point-like scattering centers we consider may also be identified as the

scatterers placed at the junctions in the model presented in Section 2.2.

At each point j where two rings touch each other, we consider an additional Dirac

delta potential of the form Uj(D) = ηj(D)δ. The strength of the potentials ηj(D) are

random, they are drawn from independent normal distributions with zero mean and root-

mean-square deviation D. That is, the probability for ηj(D) to have a value in a small

interval around u is given by p(u)du, where

p(u) =
1

D
√

2π
e−

u2

2D2 . (5.9)

In this way, by tuning D we can model weak disturbances (small D) as well as the case

when frequent scattering events completely change the character of the transport process

(corresponding to large values of D).
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Figure 5.7: The conductance G (in units of G0 = e2/h) of a 5×5 rectangular array with and without
pointlike random scatterers between the rings as a function of the magnetic flux Φ (in units of Φ0) for
kρ = 20.2 and ωSO/Ω = 13.0.

As shown in Fig. 5.7, the most general consequence of these random scattering events

is the overall decrease in the conductance. However, for strong enough disturbance,

more interesting effects can be seen, namely, the splitting of the Aharonov-Bohm peaks.

Note that the scattering has the most dramatic effect for the resonances, i.e., Φ = nΦ0,

and the least for the antiresonance condition, i.e., Φ = (n + 1/2)Φ0. We would like
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to mention that the model we considered (random elastic scattering processes in single-

electron approximation) is similar to the case when the h/2 |e| = Φ0/2 oscillations are

expected to survive in a single ring – often referred to as the Al’tshuler-Aronov-Spivak

effect [71]. Our results for a more complex geometry indicate similar physical consequences

of the scattering events: introduction of new peaks in the oscillations as a function of the

flux. In fact, the Fourier spectrum of the conductance shown in Fig. 5.8 clearly indicates

that for strong enough disturbance, the peaks corresponding to oscillations with a period

of Φ0/2 (that is, with a period that is half of that of the Aharonov-Bohm oscillations,

or with a frequency that is twice as much) are stronger than the Aharonov-Bohm peaks.

Let us note that phenomena related to the Al’tshuler-Aronov-Spivak effect have recently

been predicted for a single ring [120] and were detected in the case of ring arrays [32].
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Figure 5.8: Fourier spectra of the data shown in Fig. 5.7. Notice that the relative weight of peaks
corresponding to oscillations with Φ0/2 period increases when scattering effects are introduced.

Finally, we return to the stripes shown in Fig. 5.3, where the conductance is negligi-

ble. According to Sec. 5.2, destructive interference is responsible for the appearance of

these stripes. Therefore we expect that when scattering events destroy phase coherence,

conductance should increase. This effect can be seen in Fig. 5.9, where the conductance is

plotted as a function of the spin-orbit interaction strength for different root-mean-square

deviations D of the random variables. As it is shown by this figure, for most values of

ωSO/Ω, the conductance is significantly increased in this region, although it is negligible

in the exact ballistic case (D = 0). On the other hand, however, G is practically zero

around ωSO/Ω = 7.9, independently from the strength of the disturbance. This effect

is related to single-ring interferences: having investigated the currents and spinor valued

wave functions in the array, we found that for this parameter set (kρ, ωSO, and Φ), the

input rings ({11} − {51}) are essentially totally opaque for the electrons, i.e., they ba-

sically do not enter the second column of the network. Clearly, in this case scattering

centers in the junctions cannot modify the transmission properties. However, this kind of

effect appears only for certain special parameter sets. We found that the positions of the
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Figure 5.9: The conductance G (in units of G0 = e2/h) of a 5×5 rectangular array with pointlike random
scatterers between the rings for different root-mean-square deviations D as a function of the spin-orbit
interaction strength for kρ = 19.6 and Φ = 0.3Φ0.

scattering centers for a single ring are important, but in a system of two rings this effect

is already remarkably weaker. The transmission properties of larger arrays are usually

determined by global (i.e., involving all the rings) interferences when for strong enough

disturbance the positions of the scattering centers play usually no significant role.

5.5 Conclusions

In this chapter we calculated the spin-dependent transport properties of two-dimensional

rectangular quantum ring arrays. We applied general boundary conditions for the case

of single quantum rings, which allowed the construction of arrays of such rings as build-

ing blocks. The magnetoconductance of two-dimensional arrays of 3×3, 4×4, and 5×5

quantum rings exhibited oscillations as a function of the magnetic flux, the spin-orbit in-

teraction strength and the wave vector. We also determined the spin-resolved transmission

probabilities of the arrays and found significant spin rotations depending on the Rashba

coupling strength. We introduced point-like random scattering centers between the rings,

which, for strong enough disturbance, resulted in the emergence of higher harmonics in

the oscillations as a function of the flux, and led to the increase of the conductance in the

regions of the parameters where the array was otherwise opaque for the electrons.
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Summary

Introduction

The physics of matter on an intermediate scale between the microscopic and the macro-

scopic is an increasingly active area of research, which has come to be known as meso-

scopic solid state physics. Advances in semiconductor technology have made possible the

investigation of artificial structures of reduced dimensionality, which allow the coherent

propagation of electrons, thereby leading to novel phenomena, like the quantization of

the conductance in narrow wires. Mesoscopic devices are usually fabricated in a thin two-

dimensional conducting layer present at the junction of semiconductor heterosrucures,

such as GaAs/GaAlAs, where scattering effects may be weak enough to allow for the

ballistic transport of electrons. Among these, ring shaped devices (or quantum rings) are

intensely studied [31, 32, 64–68] due to their ability to reveal various types of quantum

interference phenomena, such as the Aharonov-Bohm effect [5].

Electrons possess another inherent quantum property, namely spin. The idea of in-

vestigating, and possibly utilizing this additional feature in electronic transport led to

the development of a new field of research: spintronics [6–9]. The commercially available

spintronic devices use spin degree of freedom as a classical resource. The idea of utilizing

spin as a quantum resource may be related to the birth of quantum computing [12–15],

which suggested the spin of the electron as a possible candidate for the implementation

of the qubit, the basic unit of quantum information. One of the resources of spintronics

for spin manipluation in semiconductors is the Rashba spin-orbit interaction [22], which

has a relativistic origin. This effect is due to the perpendicular electric field present in

certain heterointerfaces with which moving electrons interact. Its significance lies in the

fact that it can be controlled by external gate voltages [23,24].

Numerous devices have been proposed [25–28] to utilize the Rashba effect, one of these

is a quantum ring connected with two leads [29], in which the phase difference between

electron waves traveling clockwise and counterclockwise produces interference effects. It

has been shown that these may result in a rotation of the spin state of the electron, being

variable by tuning the strength of the Rashba interaction [34].

In this dissertation we focused on quantum rings, in which – provided that transport
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is ballistic and phase coherent – the wave function of the electron is able to interfere

with itself. In all our calculations, we assumed that only the lowest radial subband takes

part in the conduction, that is, the ring can be considered essentially one-dimensional.

We used two theoretical models, one of which considers elastic scatterers in the arms of

the ring and in the junctions of the leads with the ring, thereby taking into account the

imperfectness of the coupling between the current-carrying leads and the ring (Sec. 2.2).

The other model (Sec. 2.3) considers the ring to be free from any scatterers and is based

on the solution of the time-independent Schrödinger equation and the fitting of the wave

functions and the probability currents at the junctions.

Two-terminal quantum rings: Asymmetric injection

We solved the scattering problem of a ring with Aharonov-Bohm flux, in which the injec-

tion from the leads into the arms was assumed to be asymmetric [I]. We used the model

introduced in Section 2.2, with an appropiate scattering matrix to couple the leads to the

ring. The elements of this scattering matrix describing the transmission from the lead

into the two arms of the ring were different in order to account for the asymmetry. We de-

termined the transmission probability analitically for a ring with equal length arms, when

no scatterers were present in the ring and showed that asymmetric injection increases the

transmission probability as a function of the geometric phase accumulated in the arms of

the ring. We also showed that the amplitude of the oscillations of the transmission as a

function of the magnetic flux is reduced as a result of the asymmetry, the transmission

minima shift to higher values due to incomplete destructive interference. We determined

the transmission probability analitically through the ring when a scatterer was present

in one arm of the ring. We showed that when the scatterer is weak, then the transmis-

sion oscillations as a function of the magnetic flux change phase as the phase introduced

by the scatterer (relative to the geometric phase acquired in the other arm of the ring)

changes. We also showed that asymmetry favoring the arm where the scatterer is present,

leads to the increase of transmission minima. In the case of a strong scatterer, we showed

that the phase resulting from the presence of the scatterer does not change the phase of

the oscillations. We showed that in this case asymmery, which favors the arm in which

the strong scatterer is located, leads to the decrease of the transmission probability with

respect to the symmetric case.

Three-terminal quantum rings: spin polarization

We presented the solution of the scattering problem in a three-terminal ring, in which

both Rashba-type spin-orbit interaction and a magnetic field is present (Sec. 4) [II,III,V].
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We showed that a quantum ring with one input and two output leads in the presence

of Rashba-type spin-orbit interaction can operate as an electron spin beam splitter [II].

We determined the parameter values, for both symmetric and asymmetric configuration

of the leads, within the experimentally feasible range where the ring delivers perfectly

polarized output beams of electrons without reflective losses. We found that appropriate

spin-polarized input states are transmitted without modification, but it is also possible

to prepare inputs, for which the transmission into a given lead is forbidden.

We analyzed the physical origin of the spin polarizational effect, and provided an

instructive physical interpretation of the process: for both symmetric and non-symmetric

geometries, polarization is due to spatial interference of oppositely directed currents [III].

At a given junction this interference is destructive for a certain spin direction, while

constructive for its orthogonal counterpart, which is transmitted into the output lead as

a pure state. (Sec. 4.3).

We investigated the nature of the correlation between the output electron spin and

its spatial degree of freedom in a three-terminal quantum ring [IV]. We showed that

in the case when perfectly polarized outputs are formed from a complete mixture, this

correlation is purely classical. However, when the spin state of the input electron is pure,

we found that quantum intertwining can be present between the spin direction of the

electron and its output path, which is similar to entanglement, but in this case there is

a single particle. By calculating the entanglement of formation of the output state we

showed that for certain value of the parameters it can be close to its maximal value of

unity (Sec. 4.4).

Quantum ring arrays: Conductance properties

We calculated the spin-dependent transport properties of two-dimensional rectangular

quantum ring arrays (Chapter 5), that have also been investigated experimentally [32]. We

applied general boundary conditions for the case of single quantum rings, which allowed

the construction of arrays of such rings as building blocks [V]. The magnetoconductance

of two-dimensional arrays of 3×3, 4×4, and 5×5 quantum rings exhibited oscillations as

a function of the magnetic flux, the spin-orbit interaction strength, and the wave vector.

We also determined the spin-resolved transmission probabilities of the arrays and found

significant spin rotations depending on the strength of the Rashba spin-orbit interaction.

In order to provide a more realistic description we introduced point-like random scattering

centers between the rings, which, for strong enough disturbance, resulted in the emergence

of higher harmonics in the oscillations as a function of the flux, and removed conductance

minima as a function of the spin-orbit coupling.
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Outlook

We would like to mention that besides the results presented in this dissertation, we have

been working on several further questions related to quantum rings with spin-orbit inter-

action. These studies include the investigation of an array of quantum rings with local

(ring by ring) modulation of the Rashba spin-orbit interaction. It turned out that in this

device novel effects of spin state transformation of electrons may be expected [VII]. We

have proposed a scheme to implement the one-dimensional coined quantum walk with

electrons transported through a two-dimensional network of quantum rings [VIII]. We

have also addressed the question: to what extent the ideal behavior and functionality

of the above mentioned network-based devices are modified by random (spin-dependent)

scattering events or finite temperatures [IX]. In a related work a quantum ring with pe-

riodically changing spin-orbit interaction strength has also been investigated [X].
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Összefoglalás

(Summary in Hungarian)

Ebben a fejezetben a ”Kvantuminterferencia félvezető gyűrűkben” ćımű doktori disz-

szertációm részletes magyar nyelvű összefoglalása található, amely az angol nyelvű össze-

foglalásnál jóval bővebben tekinti át a dolgozatban vizsgált kérdéseket és a kapott eredmé-

nyeket. A fejezet pontjai a disszertáció fejezeteit követik.

Bevezetés

A mindennapi életben használt elektronikai eszközök nagy részében az elektromos áramot

elektronok szálĺıtják. Az elektronok azonban, ahogyan azt az elektroninterferenciás ḱısér-

letekből tudjuk, nem csak részecske-, hanem hullám természetűek is egyben. Ez a tulaj-

donság a szokásos vezetékekben, melyek mérete jóval meghaladja az elektronokhoz rendel-

hető hullámhosszat, nem játszik szerepet. Ha azonban a vezeték vastagsága és hosszúsága

összemérhető az emĺıtett hullámhosszal, akkor az elektronok koherens terjedése megfi-

gyelhetővé válik. A fizikának azt a területét, amely az ilyen t́ıpusú vezetőket vizsgálja,

melyek elegendően kicsik ahhoz, hogy rajtuk az elektronok koherensen haladhassanak

át, ugyanakkor még elegendően sok számú atomból állnak, mezoszkópikus sziládtestfiziká-

nak nevezzük. Ebben a mérettartományban egy vezető drót vezetőképessége a ḱısérletek

tanúsága szerint az anyagtól független, univerzális állandók által meghatárott egységekben

kvantált, ezért nem ı́rható le a klasszikus fizika törvényeivel. Az ilyen t́ıpusú vezetők

működése nagyon hasonĺıt a mikrohullámú technikában használatos hullámvezetők műkö-

déséhez, ezért – az angol terminológiában – gyakran nevezik őket elektron-hullámvezetők-

nek. Mi a továbbiakban ehelyett a szintén használatos ”kvantumdrót” kifejezést résześıt-

jük előnyben.

Mezoszkópikus eszközök alapjaként leggyakrabban félvezető heterostruktúrákban (pél-

dául GaAS/GaAlAs, InGaAs/InAlAs), a különböző félvezető rétegek határfelületén talál-

ható vékony, kétdimenziós vezető réteg szolgál. Ebben gyakran hoznak létre gyűrű alakú

kvantumdrótot (úgynevezett kvantumgyűrűt), mely geometriája révén lehetővé teszi, hogy

a rajta áthaladó elektron hullámfüggvénye önmagával interferálhasson, majd mérik az
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eszköz vezetőképességét a gyűrű śıkjára merőleges mágneses tér függvényében. Az ebben

az elrendezésben mért vezetőképesség úgynevezett Aharonov-Bohm oszcillációkat mu-

tat, habár a mágneses tér a ḱısérletekben a gyűrűben is jelen van, szemben a szigorú

értelemben vett Aharonov-Bohm effektussal, ahol a tér csak a körbejárt tartomány belsejé-

ben van jelen és nulla az elektron pályája mentén.

Az elektron a hullámtermészetén ḱıvül egy másik kvantumos tulajdonsággal is ren-

delkezik, nevezetesen spinnel. Az elektronspin transzportfolyamatokban játszott szerepé-

nek vizsgálatával a spin elektronika (vagy röviden spintronika [6–9]) foglalkozik. Számos

olyan spintronikai eszköz létezik, amely az elektron spinjét klasszikus erőforrásként hasz-

nośıtja, ilyenek például az ,,óriás mágneses ellenállás” jelenségén [10, 11] alapuló ,,spin-

szelep”, amely a merevlemezekben használatos. Azokat a spintronikai kutatásokat, melyek

az elektron spinjét, mint kvantumos erőforrást ḱıvánják hasznośıtani, talán leginkább

a kvantuminformatika motiválta, mely lehetőséget ḱınál olyan problémák megoldására,

amelyek klasszikus számı́tógéppel nem oldhatóak meg hatékonyan. Itt az információ alap-

egysége a klasszikus logikai bit kvantumos analógja, egy kétállapotú kvantumrendszer, az

úgynevezett qubit valamely állapota. Mivel az elektron spinje is egy kétállapotú kvan-

tumrendszer, ezért alkalmas arra, hogy kvantuminformatikai alkalmazásokban a qubit

szerepét betöltse.

A félvezető spintronika egyik legfőbb ,,erőforrása” az a spin-pálya kölcsönhatás, amely

bizonyos félvezető heterostruktúrákban azok feléṕıtése révén eredendően jelen van és

amelynek erőssége a félvezetőre kapcsolt úgynevezett ,,kapu” elektródákkal (az elnevezés

az elektronikában használatos angol ,,gate” kifejezésre utal) hangolható [23]. Több olyan

javaslat is született, amely ezt az úgynevezett Rashba-féle spin-pálya kölcsönhatást [22]

igyekszik kiaknázni, az elsők között volt például a Datta és Das által felvetett spin tranzisz-

tor [25], illetve Nitta és munkatársai javaslata [29], mely ezt a kölcsönhatást a fentebb

emĺıtett kvantuminterferenciával együttesen egy kvantumgyűrűben ḱıvánja felhasználni az

elektron spinjének forgatására. Ezen utóbbiról később Földi, Molnár, Benedict és Peeters

[34] meg is mutatták, hogy elviekben valóban lehetséges az elektron spinjének célzott elfor-

gatása egy kvantumgyűrűvel, amelynél a be- és kimenő drótok helyzete egymáshoz képest

változtatható. Arra is ráviláǵıtottak, hogy a külső kapufeszültség, a drótok helyzete,

valamint a gyűrű átmérője változtatásával a kvantuminformatikában alapvető forgatások

megvalóśıthatók.

A dolgozatban bemutatott saját kutatási eredmények létrejöttét a – fentebb felvázolt

– kvantumgyűrűk iránti intenźıv ḱısérleti és elméleti érdeklődés motiválta. Kutatásaink

során célul tűztük ki olyan kvantumgyűrűk léırását, amelyek esetében az elektron eltérő

valósźınűséggel juthat a gyűrű két karjába. A spintronikai alkalmazási lehetőségekhez

kapcsolódóan meg ḱıvántuk vizsgálni, hogy lehetséges-e az elektron spinjét polarizálni egy

olyan kvantumgyűrűvel, amelyben Rashba-féle spin-páya kölcsönhatás van jelen. Célunk

volt az is, hogy ilyen t́ıpusú gyűrűkből (amelyekben mágneses tér és/vagy spin-pálya
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kölcsönhatás van jelen) felépülő rácsok vezetőképességét kiszámı́tsuk.

A dolgozat első részében, amely az első és második fejezetet foglalja magában, be-

mutattuk a mezoszkópikus rendszerekben lejátszódó transzport alapvető jellemzőit és a

kvantumgyűrűk léırására használatos elméleti modelleket. Ezek összefoglalását tartal-

mazza az alábbi 1. és 2. pont. A saját kutatási eredményeinket [I-V] a dolgozat második

részében részleteztük, ezeket ismertetjük röviden itt a magyar nyelvű összefoglaló 3., 4.

és 5. pontjaiban. Emellett azóta is intenźıven kutatjuk a kvantumgyűrűkben Rashba-féle

spin-pálya kölcsönhatás jelenlétében lejátszódó jelenségeket és azok érdekes spintronikai

felhasználási lehetőségeit [VII-IX].

1. Transzport mezoszkópikus rendszerekben

Az utóbbi évek technológiai fejlődésének köszönhetően megnőtt az érdeklődés az úgyneve-

zett alacsony dimenziós struktúrák felhasználása iránt. Az elnevezés onnan ered, hogy az

ilyen eszközökben a vezetésben részt vevő elektronok mozgását potenciálgátak korlátozzák,

úgy, hogy azok kettő-, egy-, illetőleg zéró dimenzióban képesek csak szabadon mozogni.

Ilyen rendszerek létrehozására főként félvezetők megfelelően egymásra rétegezett hete-

rostruktúrái szolgálnak. Ha például GaAs és GaAlAs (vagy InGaAs és InAlAs) rétegeket

illesztünk össze, a határfelületnél potenciálvölgy alakul ki. Itt a Fermi-ńıvó ,,belelóg”

a vezetési sávba, ı́gy a környezethez képest erősen megnő az elektronsűrűség. A po-

tenciálvölgy következtében az elektronok mozgása a felületre merőleges irányban kvan-

tálttá válik. Mivel energetikai okokból ezen módusok közül általában csak egy vesz

részt a vezetésben ezért ebben az irányban az elektronok lényegében nem, a határfelület

mentén azonban szabadon mozoghatnak a mintában. Így a heteroszerkezet határán egy

úgynevezett kétdimenziós elektrongáz alakul ki [1]. Az elektronok szabadsági fokainak

száma tovább csökkenthető mesterséges potenciálgátaknak például maratással [32, 67],

pásztázó atomerő-mikroszkóppal [68], vagy pedig litográfiai eljárásokkal [31] történő kiala-

ḱıtásával. Létrehozhatók például keskeny vezető sávok, úgynevezett kvantumdrótok,

melyekben a drót hosszanti irányára merőleges, keresztirányú mozgás ismét kvantált.

Amennyiben elérhető az, hogy ezek közül a ”transzverzális” módusok közül csak egy

vegyen részt a vezetésben, akkor egydimenziós kvantumdrótról beszélünk.

Az alacsony dimenziós rendszerek fontos jellemzői az elektronsűrűség és a mozgékony-

ság. Ezeket rendszerint Hall-méréssel határozzák meg, amely során a minta hosszanti

tengelye mentén áramot hoznak létre, majd mérik annak longitudinális, illetve transz-

verzális (Hall) ellenállását egy külső merőleges mágneses tér változtatása mellett. A

mozgékonyságból következtetni lehet az elektronok impulzus relaxációs idejére, azaz arra,

hogy az elektronok átlagosan mennyi idő alatt vesźıtik el az impulzusukat az elszenvedett

rugalmatlan ütközések következtében. A mozgékonyság a hőmérséklet csökkenésével
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nő, ami a rácsrezgések szerepének a gyengülésével magyarázható. Elegendően alacsony

hőmérsékleten már lényegében csak a szennyezések csökkentik a mozgékonyság értékét.

Mivel alacsony hőmérsékleten csak azok az elektronok vesznek részt a vezetésben, ame-

lyek energiája közel esik a Fermi-ńıvóhoz, az elektronsűrűség ismeretében a Fermi-ńıvóhoz

tartozó Fermi-hullámszám értéke meghatározható [1].

A relaxációs idő és a Fermi-hullámszám ismerete további felvilágośıtást ad az elekt-

ronok átlagos szabad úthosszára vonatkozóan a mintában. Félvezető heterostruktúrák-

ban, ahol a mozgékonyság jóval nagyobb, mint ”bulk”, azaz nagy térfogatú szennyezett

félvezetőkben, a szabad úthossz alacsony hőmérsékleten tipikusan 100 − 1000 nm. Egy

másik fontos fogalom a fáziskoherencia-hossz, amely azt jellemzi, hogy az elektron, mint

hullám, mekkora távolságon képes megőrizni az önmagával való interferencia-képességét

a mintában történő ütközések ellenére. Nagy mozgékonyságú minták esetén ez általában

megegyezik a szabad úthosszal. (Megjegyezzük, hogy hosszabb lehet azonban az úgyneve-

zett spinkoherencia-hossz, melynek értéke elérheti a 100 µm-t is [19].) Amennyiben a

vizsgált eszköz mérete összemérhető a fáziskoherencia-hosszal, akkor interferencia-jelensé-

gek megjelenése várható.

Véges méretű ballisztikus (azaz szórásmentes) vezetők vezetőképessége a ḱısérletek

tanúsága szerint a vezető hosszának csökkenésével egy véges értékhez tart [1]. Ez alapvető-

en annak a következménye, hogy a vezetésben véges számú transzverzális módus vesz részt.

Arra az esetre, amikor magában a ballisztikus vezetőben is jelen vannak szórócentrumok,

vagy pusztán a vezető geometriája révén szóródhatnak rajta az elektronok, Landauer

vezetett be egy formulát (dolgozatunkban az (1.41) képlet), amely szerint a vezetőképesség

arányos a vezetésben részt vevő módusok számával és a vezetőn való átjutás kvantum-

mechanikai valósźınűségével [46].

Bizonyos félvezető anyagokban fontos szerepet játszik egy relativisztikus effektus,

a spin-pálya kölcsönhatás, amely összekapcsolja az elektronok térbeli mozgását a spin

irányának változásával. Ez a kölcsönhatás heterostruktúrákban többféle eredetű lehet,

a leggyakrabban vizsgált fajtája, az úgynevezett Rashba-féle spin-pálya csatolás [22, 55]

amely a rétegezés irányában létrejött – az elektronokat mozgásukban korlátozó – po-

tenciálvölgy aszimmetriájának következménye. Az aszimmetrikus potenciál ugyanis egy

a határfelületre merőleges elektromos teret kelt, amely kölcsönhat az ott mozgó elek-

tronok spinjével. A Rashba-csatolás különlegessége, hogy a kölcsönhatás erőssége külső

kapufeszültség(ek)kel hangolható [23,24], amely nagyon vonzóvá teszi felhasználását spin-

tronikai eszközökben [6].
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2. Kvantumgyűrűk modelljei

Az előzőekben bemutatott félvezető heterostruktúrák határrétegében gyakran hoznak

létre gyűrű alakú kvantumdrótokat, úgynevezett kvantumgyűrűket, [31, 32, 64–66] melyek

mérete összemérhető az elektronok fáziskoherencia-hosszával. Az ilyen kvantumgyűrűkkel

lehetőség nýılik különféle interferencia-jelenségek megfigyelésére.

Az egyik gyakran vizsgált jelenség, amikor a gyűrű śıkjára merőleges mágneses tér

változtatása mellett mérik az eszköz vezetőképességét. A jelentkező oszcillációk a gyűrű

által körbevett térrészen áthaladó mágneses fluxus függvényében periodikusak. Ez tu-

lajdonképpen az Aharonov-Bohm effektus [5, 69] következménye, de mint emĺıtettük, a

félvezető gyűrűkkel végzett ḱısérletek esetén a mágneses mező a vezetékekben is jelen

van, ami az Aharonov és Bohm által megjósolt oszcillációktól való eltérésekhez vezethet.

Ha egy kvantumgyűrűben Rashba-féle spin-pálya kölcsönhatás van jelen, akkor az

interferencia a spin-pálya csatolás erősségétől függ [29]. Ez annak a következménye, hogy

a gyűrűben mozgó elektron a saját vonatkoztatási rendszerében a határfelületre merőleges

elektromos mező mellett mágneses mezőt is ,,lát”, ez okozza a spin-pálya kölcsönhatást.

A mágneses mezőben az elektronspin precessziót végez, amelynek mértéke arányos a spin-

pálya csatolás erősségével. Mivel az elektron által érzékelt mágneses tér iránya merőleges

mind a sebességének, mind pedig az elektromos térnek az irányára, ezért az a gyűrű

minden egyes pontjában más és más, következésképpen az elektron spinjének elfordulása

a gyűrű két ágában különböző lesz (lásd 2.3 ábra). A Rashba-kölcsönhatás erősségét külső

kapufeszültséggel változtatva a vezetőképesség a fellépő interferencia miatt oszcillációt

mutat [92].

A kvantumgyűrűkben fellépő interferencia-jelenségek elméleti léırása során a gyűrűt

gyakran egydimenziósnak tekintik. Ez az egyszerűśıtés megtehető amennyiben a gyűrűben

valóban egyetlen radiális módus vesz csak részt a vezetésben. Ez a feltétel a ḱısérletileg

vizsgált kvantumgyűrűk egy részénél teljesül. A dolgozatban két ilyen ,,egydimenziós”

modellt mutattunk be, amelyek alkalmasak a kvantumgyűrűn való áthaladás valósźınűsé-

gének – ı́gy a Landauer-formula értelmében a gyűrű vezetőképességének – kiszámı́tására.

Az első modell a a mágneses fluxust körülölelő gyűrű karjaiban és a drótokkal való csat-

lakozási pontjaiban rugalmas szórópotenciálokat tételez fel [62], melyekkel az elektront a

gyűrűbe bevezető, illetve onnan kivezető drót és a gyűrű közti csatolás nemidális voltát

képes figyelembe venni. Saját kutatásaink során ezt az általános modellt módośıtottuk

annak érdekében, hogy figyelembe vegyük a gyűrű két karja közti aszimmetria lehetőségét

[93].

A másik modell némileg egyszerűbb az elsőnél és spinfüggő terjedés esetére is alkal-

mazható. A gyűrűn mozgó elektron Hamilton-operátorának sajátérték-egyenletét megold-

va a sajátállapotok szuperpoźıójaként ı́rjuk fel a gyűrűbeli hullámfüggvényt úgy, hogy nem

tételezünk fel szórópotenciált a gyűrűben – bár megjegyezzük, hogy a modell általánośıt-
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ható arra az esetre is. A be- és kivezető drótokat úgy kapcsoljuk a gyűrűhöz unitér módon,

hogy a hullámfüggvényeket illesztjük a csatlakozási pontokban, az áramokra pedig egy

a klasszikus Kirchhoff-törvénnyel analóg feltételt ı́runk elő: a csatlakozási pontokban a

valósźınűségi áramsűrűségek eredője zérus legyen. Spinfüggő interferencia esetében an-

nak a Hamilton-operátornak a sajátérték-problémáját kell megoldanunk, mely a Rashba-

féle spin-pálya kölcsönhatási tagot is tartalmazza. Itt lényeges, hogy a gyűrű Hamilton-

operátorának minden energiasajátértéke négyszeresen elfajult. Az áramokra vonatkozó

feltételeket ebben az esetben a valósźınűségi spin-áramsűrűségekkel kell feĺırnunk [89,92].

A megoldást az egy bemenettel és egy kimenettel rendelkező gyűrű esetén be is mutat-

tuk. Láthattuk, hogy alkalmasan megválasztva a spin-pálya csatolás erősségét, a bemenet

és kimenet egymáshoz viszonýıtott helyzetét, valamint a gyűrű sugarát, különféle spin-

forgatások valóśıthatók meg [34].

3. Aszimmetrikus injektálás

A ḱısérletekben vizsgált kvantumgyűrűk esetében az elektront a gyűrűhöz és abból kiveze-

tő drótok kapcsolata a gyűrűvel nem tökéletesen ideális. A drótok és a gyűrű csatlakozási

pontjaiban reflexió léphet fel, illetőleg nem feltétlenül igaz, hogy a gyűrű karjaiba az

elektron azonos valósźınűséggel juthat be. Ez a fajta aszimmetria több okból is felléphet.

Egyrészt lehet a következménye annak, hogy a gyűrű és a drótok kialaḱıtása nem tökéletes,

de amiatt is jelentkezhet, hogy az alkalmazott mágneses tér hatására fellépő Lorentz-erő

a gyűrű véges vastagsága révén azt eredményezi, hogy a két karba eltérő valósźınűséggel

jut be (injektálódik) az elektron [35,94].

Ebben a fejezetben az aszimmetrikus injektálást egy egydimenziós modell seǵıtségével

ı́rtuk le, melyet a rugalmas szórópotenciálokat tartalmazó modell megfelelő általánośıtása-

ként kaptunk [I]. A gyűrű két karjába jutás valósźınűségei közti különbséget úgy vettük

figyelembe, hogy a vezető drótok és a gyűrű csatlakozási pontjában a be- és kimenő

amplitúdók közti kapcsolatot léıró unitér mátrixban a két karra vonatkozó elemek között

egy arányossági tényezőt vezettünk be. A bemenő drót és a gyűrű közti illesztést egy másik

paraméterrel vettük figyelembe. Az ı́gy kapott mátrixról megmutattuk, hogy határesetben

visszaadja a szimmetrikus injektálást léıró, korábban bemutatott mátrixot.

Az emĺıtett mátrix felhasználásával analitikusan kiszámı́tottuk egy olyan két dróttal

rendelkező kvantumgyűrűn való áthaladás valósźınűségét, amely által körbevett térrészen

mágneses fluxus halad át és amelynek karjai egyenlő hosszúságúak [I]. Két esetet vizsgál-

tunk: amikor nincsenek jelen szórócentrumok a gyűrűben és amikor az egyik karban

szórócentrum található. Megmutattuk, hogy ha nincs jelen szórócentrum a gyűrűben,

akkor a transzmissziós valósźınűség mágneses fluxus függvényében jelentkező oszcillációi-

nak amplitúdója a gyűrű két karja közti aszimmetria hatására csökken, és a minimumai
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magasabbra tolódnak (3.2(b) ábra), mivel ekkor nem teljes a destrukt́ıv interferencia.

Megvizsgáltuk a gyűrű és a drótok közti csatolás csökkentésének hatását abban az e-

setben, amikor az elektron a gyűrű két karjába aszimmetrikusan injektálódik. Megmu-

tattuk, hogy a transzmissziós valósźınűség a geometriai fázis függvényében lecsökken,

kivéve néhány esetet, amelyekre a gyűrű továbbra is teljesen átlátszó marad az elektronok

számára (3.3(a) ábra). A geometriai fázis egyéb értékei esetén a csatolás romlásával a

transzmisziós valósźınűség a mágneses fluxus függvényében lecsökken, csakúgy, mint az

oszcillációk amplitúdója (3.3(b) ábra). Megvizsgáltuk, hogy mi tapasztalható a transz-

missziós valósźınűság mágneses fluxus függvényében jelentkező oszcillációiban, ha a gyűrű

aszimmetria által kitüntetett karjában szórócentrum található, amely csak bizonyos való-

sźınűséggel engedi át az elektront és a másik karban szerzett geometriai fázishoz képest

egy további fázistolást eredményez. Megmutattuk, hogy amennyiben a szórócentrum

gyenge (azaz nagy valósźınűséggel átengedi az elektront), az oszcillációk fázisa eltolódik,

amplitúdójuk megváltozik a szórócentrum által bevezetett fázis változtatásával, az a-

szimmetria hatására pedig a transzmissziós minimumok magasabbra tolódnak (3.4 ábra).

Azt is megmutattuk, hogy ha az aszimmetria által preferált karban erős (azaz az elekt-

ront kicsiny valósźınűséggel átengedő) szórócentrum van jelen, akkor a transzmisszió osz-

cillációinak fázisa nem érzékeny a szórócentrum által okozott fázistolás változtatására. A

gyűrű karjai közti aszimmetria ekkor – a szimmetrikus esethez képest – a transzmissziós

valósźınűség lecsökkenését eredményezi.

4. Kvantumgyűrű három dróttal

4.1. A feladathoz tartozó szórásprobléma megoldása

A spintronikai alkalmazási lehetőségekhez kapcsolódóan kiszámı́tottuk egy olyan kvan-

tumgyűrűn való átjutás valósźınűségét, amelyben Rashba-féle spin-pálya kölcsönhatás

– és a későbbi, 5. fejezet témájának megalapozása érdekében mágneses tér is – jelen

van és amelyhez három kvantumdrót kapcsolódik [II,III,V]. Feltettük, hogy a mágneses

tér elegendően gyenge, és hatását perturbációként vettük figyelembe. A megoldást a

legáltalánosabb határfeltétel esetére – miszerint minden kvantumdróton megengedett be-

menő és kimenő (spinfüggő) hullám is – a 2.3. fejezetben bemutatott egyszerű egy-

dimenziós modell seǵıtségével végeztük el. Megmutattuk, hogy egy adott drótban a

kimenet meghatározásához a gyűrű szimmetriája révén elegendő annak a problémának

a megoldása, amikor a drótok közül az egyik csak bemenetként a másik kettő pedig csak

kimenetként szolgál. Minden bemenet hozzájárul ugyanis minden kimenet létrejöttéhez

egymástól függetlenül. Ha ismerjük egy adott bemenetre a visszavert állapotot meghatá-

rozó reflexiós mátrixot, illetőleg a két kimenetet meghatározó transzmissziós mátrixokat,

akkor a többi bemenetre vonatkozó reflexiós és transzmissziós mátrix is meghatározható
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olyan módon, hogy az ismert mátrixokban a drótok közti szögeket a megfelelő módon

kicseréljük. Ahhoz, hogy az ı́gy nyert mátrixok mind ugyanabban a bázisban legyenek

feĺırva, mint az ismert probléma mátrixai, még a megfelelő hasonlósági transzformációkat

(az ismert probléma bemenő drótjától mért szöggel való forgatásokat) el kell végeznünk.

4.2. A háromdrótos kvantumgyűrű mint spin-polarizáló eszköz

A fentiekben ismertetett kvantumgyűrű esetén részletesebben is megvizsgáltuk azt az

esetet, amikor a gyűrűbe az elektron csak egy dróton keresztül juthat, de két drót áll ren-

delkezére a távozásra. Megmutattuk, hogy ha a bejövő elektron spin-állapota maximálisan

kevert, akkor ahhoz, hogy a két kimeneten tiszta állapot jöjjön létre, a megfelelő transz-

missziós mátrixok determinánsa ell kell tűnjék [II]. Amint azt a 4.2 fejezetben részleteztük,

ez két esetben is elérhető. Mindkét esetben több feltétel együttes teljesülését kell elérnünk

a drótok egymáshoz viszonýıtott helyzetére, a spin-pálya kölcsönhatás erősségére, és a

gyűrű sugarára vonatkozóan. Megmutattuk, hogy az emĺıtett feltételek egyszerre történő

teljeśıtése lehetséges (4.2 ábra) mind szimmetrikus, mind aszimmetrikus helyzetű ki-

menő drótok esetén, vagyis a gyűrű alkalmas az elektron spinjének polarizálására. Meg-

vizsgálva egy ilyen polarizáló gyűrű kimenetein a transzmissziós valósźınűségeket azt

találtuk, hogy azok a két kimeneten megegyeznek és elérhető az is, hogy értékük maximális

legyen, vagyis a gyűrűn ne keletkezzék reflexiós veszteség. A polarizáció mindkét esetében

meghatároztuk a kimeneten lévő spin-állapotokat és azt találtuk, hogy azok megegyeznek

a gyűrű ezen pontjaihoz tartozó két sajátspinor egyikével úgy, hogy az egyik kimeneten az

egyik, a másikon a másik jelenik meg (a két esetben felcserélve). Megmutatható, hogy van-

nak olyan spinirányok, melyek bemenete esetén az egyik kimenetre biztosan nem kerül

az elektron. Mindezek alapján elmondhatjuk, hogy egy ilyen gyűrű nagyon hasonlóan

viselkedik, mint a Stern-Gerlach berendezés, ugyanis polarizálatlan bemenetből polarizált

spinállapotokat hoz létre a kimeneteken.

4.3. A spin-polarizáció fizikai háttere

Ebben a fejezetben a spin-polarizációs effektus fizikai hátterét tártuk fel [III]. A maximáli-

san spin-polarizálatlan bemenő állapotot a bemenő drót helyéhez tartozó gyűrűbeli saját-

spinorokkal feĺırva meghatároztuk a gyűrűben létrejövő állapotot, amely a gyűrűben is a

megfelelő sajátspinorú hullámok (minden sajátspinorhoz tartozik két ellentétes irányú

áramot eredményező hullám) keveréke. Mivel az előző fejezetben láttuk, hogy a po-

larizációs feltételek teljesülése esetén az egyik kimeneten az egyik, a másik kimeneten a

másik t́ıpusú sajátspinor jelenik meg, megvizsgáltuk, hogy mikor lesz az adott sajátspinorú

állapotok megtalálási valósźınűsége zérus a kimeneteken, mivel ezekben az esetekben

várható, hogy a gyűrűbeli kevert állapot tiszta (azaz projektor) legyen. Azt találtuk,
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hogy egy adott sajátspinorú állapot egy adott kimeneten való eltűnését ugyanazok a po-

larizációs feltételek ı́rják le, mint amelyeket az előző fejezetben – más gondolatmenet

alapján – ı́rtunk fel. Mindezek alaján könnyen érthetővé válik, hogy a polarizációs effek-

tus azért jön létre, mert az azonos sajátspinorú, de ellentétes keringési iránynak megfelelő

hullámok egymással destrukt́ıvan interferálnak a kimeneteken (az egyik kimeneten az

egyik t́ıpusú, a másik kimeneten a másik t́ıpusú sajátspinorra történik ez meg).

Abban az esetben, ha a bejövő maximálisan kevert spin-állapotot a z irányban |↑〉 és

|↓〉 állapotok keverékeként ı́rjuk fel, a polarizációs effektus a 4.5 ábra alapján érthető meg

a legkönnyebben: a gyűrű minden egyes pontjában külön-külön felrajzolva a |↑〉 és |↑〉
bemenetek esetén létrejövő spinirányokat látható, hogy a kimeneteken azért jönnek létre

a polarizált állapotok, mert a kétfajta bemenet a kimenetekre érve ugyanabba az irányba

fordul.

4.4. A térbeli- és spin szabadsági fokok összefonódása

Ebben a fejezetben azt vizsgáltuk meg, hogy egy egy bemenettel és két kimenettel ren-

delkező gyűrűben a kimenet, mint egyik szabadsági fok és a kimenő spin, mint másik

szabadsági fok közötti korrelációk milyen t́ıpusúak lehetnek [IV]. A kérdést a speciális

spin-polarizáló esetben és általában is elemeztük. Ahhoz, hogy az emĺıtett korrelációkat

megvizsgálhassuk, a kimeneteket ,,globálisan” kell tekintenünk, azaz abban a Hilbert-

térben kell dolgoznunk, amely a lehetséges kimenetek, mint térbeli bázis és valamilyen

spin-bázis, például a z irányú |↑〉 és |↓〉 állapotok által kifesźıtett Hilbert-terek tenzori

szorzataként áll elő.

Megmutattuk, hogy abban az esetben, amikor a gyűrű polarizál a két szabadsági

fok között a korreláció kizárólag klasszikus: a bemenő maximálisan kevert állapot a

kimeneteken ugyan külön-külön tiszta állapotokat eredményez, globálisan mégis maximáli-

san kevert az elektron állapota a kimeneten. Akkor azonban, ha a bemenő elektron spinje

tiszta állapotú azt találtuk, hogy a globális kimenő állapotban lehet összefonódás (azaz

kvantumos korreláció) a kétféle szabadsági fok között. Megmutattuk, hogy bizonyos be-

menetek esetén az összefonódás maximális is lehet.

5. Kvantumgyűrűk rácsai

Ebben a fejezetben kvantumgyűrűkből képzett négyzetes rácsok vezetőképességét határoz-

tuk meg, melyekről feltettük, hogy bennük Rashba-féle spin-pálya kölcsönhatás és a

gyűrűk śıkjára megőleges mágneses tér is jelen van [V]. Olyan, egymással érintkező gyűrűk-

ből álló 3×3-as, 4×4-es és 5×5-ös rácsokat vizsgáltunk, melyek a függőleges irányban

zártak, a v́ızszintes irányban viszont lehetővé teszik az elektronok terjedését, ahogyan azt

az 5.1 ábra is mutatja. Ilyen t́ıpusú rácsokat ḱısérletileg is előálĺıtottak [32].
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Bemutattunk egy olyan módszert, amelynek a seǵıtségével az egyes gyűrűkkel kapcso-

latos problémák megoldásának ismeretében a rácson való átjutás valósźınűsége kiszámı́tha-

tó. Mivel a rácsot olyan gyűrűk éṕıtik fel, melyek két, három, illetve négy másik gyűrűvel

érintkeznek, a kettő, illetve négy dróttal rendelkező gyűrűk problémáinak megoldását is

felvázoltuk (a háromdrótos gyűrű problémáját már a 4.1. fejezetben megoldottuk). A

gyűrűk érintkezési ponjaiban ezután elő́ırtuk a hullámfüggvények, valamint deriváltjaik

folytonosságát. Az ı́gy kapott (nagyszámú egyenletből álló) egyenletrendszer numerikus

megoldásával meghatároztuk a rács kimenetein fellépő spin-állapotokat, amelyekből azután

a Landauer-formula seǵıtségével kiszámı́tottuk a rács vezetőképességét.

A vezetőképességet a mágneses tér, a Rashba-csatolás erőssége és az elektron hullám-

számából, valamint a gyűrű sugarából képzett kρ paraméter függvényében ábrázolva

megmutattuk, hogy a különféle méretű rácsok vezetőképessége mindhárom paraméter

függvényében oszcillációkat mutat. A kρ paraméter bizonyos értékeire a rács teljesen

átlátszatlan az elektronok számára (5.3 ábra). Ez az effektus a rácsot alkotó gyűrűk szint-

jén lejátszódó többszörös destrukt́ıv interferencia hatására következik be. A spin-pálya

kölcsönhatás nélküli esetben a nemvezető sávok eltűnnek, a vezetőképességben jelentkező

oszcillációk periódusát a gyűrűk száma határozza meg. Az emĺıtett nemvezető sávok a

vezetőképességben a mágneses tér és a spin-pálya kölcsönhatás erőssége függvényében is

megjelentek (5.3 ábra). Megvizsgáltuk az egy bemenettel rendelkező ugyanolyan méretű

rácsok vezetőképességét is, ahol lényegében ugyanazok az effektusok lépnek fel, mint a

több bemenetű rácsok esetén (5.4 ábra).

A vezetőképesség kiszámı́tására használt módszerünk azt is lehetővé tette, hogy a

rácsok egyes kimenetein kialakuló spinirányokat is megvizsgáljuk az alkalmazott mágneses

tér és spin-pálya erősség függvényében. Megmutattuk, hogy a bemenő spinállapot a

különböző kimenetekre érve különböző módon fordul el és a megvalóśıtható spin-forgatások

széles tartományban mozognak (5.5 és 5.6 ábra).

A realisztikusabb léırás érdekében kiszámı́tottuk a rácsok vezetőképességét abban az

esetben is, amikor a gyűrűk között pontszerű szórócentrumok lehetnek jelen, melyek

erősségét egy adott szórással rendelkező normális eloszlás határozza meg. Megmutattuk,

hogy a szórócentrumok legfőbb hatása, hogy jelenlétükben a vezetőképesség átlagosan

lecsökken (5.7 ábra). A másik fontos hatásuk, hogy a mágneses tér függvényében az

Aharonov-Bohm (AB) oszcillációk első felharmonikusai (az úgynevezett Al’tshuler-Aronov-

Spivak rezgések) felerősödnek (5.8 ábra). Azt is megmutattuk, hogy a szórócentrumok

hatásának következtében, az egyébként nem vezető tartományokban a vezetőképesség

megnőhet a szóródások következtében (5.9). Ez azért lehetséges, mert a szórócentrumok

képesek elrontani a destrukt́ıv interferenciához szükséges fáziskoherenciát. Bizonyos para-

méterek esetén azonban a szórócentrumok hatására sem növekszik meg a vezetőképesség.

Ezekről az esetekről megmutattuk, hogy ilyenkor már a bejövő oldalon lévő első gyűrűk

teljesen reflektálják az elektront.
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Appendix

Here we present the analytic expressions for the reflection and transmission matrices,

obtained from the solution of the scattering problem of general two- and four-terminal

rings, in which Rashba-type spin-orbit interaction and a perpendicular magnetic field are

present, the latter of which is treated as a perturbation. We have shown in Section 4.1

that it is sufficient to obtain the solution for the boundary condition when only one of the

terminals acts as an input, since the more general boundary condition of having inputs

on all terminals is just a superposition of such cases with an appropriate rotation of the

matrices [see Eqs. (4.27) and (4.28)]. Considering fI as the only input [i.e., fi6=I = 0 in

Fig. 5.2], requiring the continuity of the wave functions, and applying Griffith’s boundary

conditions at the junctions in both cases (see Section 2.3), we can determine the reflection

matrices RfI and R̃fI of the two-terminal ring and of the four-terminal ring, respectively.

Both of these matrices can be written in a form analogous to that of R̂fI of the three-

terminal case given by Eq. (4.21) with %̂(µ) (µ = 1, 2) being replaced by

%(µ) =
4kρ

y(µ)

{
kρ sin(q(µ)γ1) sin(q(µ)(2π − γ1)) + iq(µ) sin(2q(µ)π)

}
, (A-1)

and

%̃(µ) =
2kρ

ỹ(µ)

{
k3ρ3

[
cos

(
2q(µ)π

)
+ cos

(
2q(µ)(π − γ3 + γ2 − γ1)

)− cos
(
2q(µ)(π − γ3 + γ2)

)

+ cos
(
2q(µ)(π − γ3 + γ1)

)− cos
(
2q(µ)(π − γ2 + γ1)

)− cos
(
2q(µ)(π − γ3)

)

+ cos
(
2q(µ)(π − γ2)

)− cos
(
2q(µ)(π − γ1)

)]− 8i(q(µ))3 sin
(
2q(µ)π

)
(A-2)

+2ik2ρ2q(µ)
[
sin

(
2q(µ)(π − γ3 + γ2)

)
+ sin

(
2q(µ)(π − γ3 + γ1)

)− 3 sin
(
2q(µ)π

)

+ sin
(
2q(µ)(π − γ2 + γ1)

)]
+ 4ik2ρ2q(µ)

[
sin

(
2q(µ)(π − γ1)

)−sin
(
2q(µ)(π − γ3)

)]

−4kρ(q(µ))2
[
cos

(
2q(µ)(π − γ3)

)
+ cos

(
2q(µ)(π − γ2)

)
+ cos

(
2q(µ)(π − γ1)

)

−3 cos
(
2q(µ)π

)]}
,

respectively, where

y(µ) = k2ρ2
[
cos(2q(µ)(π−γ1))−cos(2q(µ)π)

]
+ 4ikaq(µ) sin(2q(µ)π)

−4(q(µ))2
[
cos

[
((−1)µ+1 w+2φ)π

]
+cos(2q(µ)π)

]
, (A-3)
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ỹ(µ) = 16
(
q(µ)

)4 {
cos

[
((−1)µ+1 w + 2φ)π

]
+ cos

(
2q(µ)π

)}− 32ikρ
(
q(µ)

)3
sin

(
2q(µ)π

)

−4k2ρ2
(
q(µ)

)2 [
cos

(
2q(µ)(π − γ3)

)
+ cos

(
2q(µ)(π − γ2)

)
+ cos

(
2q(µ)(π − γ1)

)

+ cos
(
2q(µ)(π − γ3 + γ1)

)
+ cos

(
2q(µ)(π − γ3 + γ2)

)
+ cos

(
2q(µ)(π − γ2 + γ1)

)

−6 cos
(
2q(µ)π

)]
+ 4ik3ρ3q(µ)

[
sin

(
2q(µ)(π − γ3 + γ2)

)
+ sin

(
2q(µ)(π − γ2 + γ1)

)

− sin
(
2q(µ)(π − γ3)

)
+ sin

(
2q(µ)(π − γ1)

)]− 2 sin
(
2q(µ)π

)
+ k4ρ4

[
cos

(
2q(µ)π

)

+ cos
(
2q(µ)(π − γ3 + γ2 − γ1)

)− cos
(
2q(µ)(π − γ3 + γ2)

)− cos
(
2q(µ)(π − γ3)

)

+ cos
(
2q(µ)(π − γ3 + γ1)

)− cos
(
2q(µ)(π − γ2 + γ1)

)
+ cos

(
2q(µ)(π − γ2)

)

− cos
(
2q(µ)(π − γ1)

)]
. (A-4)

Here φ = Φ/Φ0, w and q(µ) are given by Eq. (4.4) and (4.13), respectively.

The transmission matrices T fI of the two-terminal ring and T̃ fI
n (n = 1, 2, 3) of the

four terminal ring can be given in an analogous form to that of the transmission matrices

T̂ fI
n of the three-terminal one given by Eq. (4.24), with τ̂

(µ)
n being replaced by

τ (µ) =
4ikρq(µ)

y(µ)
eiγ((−1)µ+1w/2+φ)

[
sin(q(µ)(2π − γ))− e−iπ((−1)µ+1w+2φ) sin(q(µ)γ)

]
, (A-5)

and

τ̃
(µ)
1 =

4kρq(µ)

ỹ(µ)
ei

γ1
2 ((−1)µ+1w+2φ) {

ik2ρ2
[
sin

(
q(µ)(2π − 2γ3 + 2γ2 − γ1)

)−sin
(
q(µ)(2π − γ1)

)

+sin
(
q(µ)(2π − γ2 + γ1)

)−sin
(
q(µ)(2π − γ3 + γ1)

)]
+2kρq(µ)

[
2 cos

(
q(µ)(2π − γ1)

)

−cos
(
q(µ)(2π − 2γ2 + γ1)

)− cos
(
q(µ)(2π − 2γ3 + γ1)

)]

+4i(q(µ))2
[
e−iπ((−1)µ+1w+2φ) sin

(
q(µ)γ1

)− sin
(
q(µ)(2π − γ1)

)]}
, (A-6)

τ̃
(µ)
2 =

4kρq(µ)

ỹ(µ)
ei

γ2
2 ((−1)µ+1w+2φ)

{
2kρq(µ)

[
cos

(
q(µ)(2π−γ2)

)−e−iπ((−1)µ+1w+2φ) cos
(
q(µ)γ2

)

+e−iπ((−1)µ+1w+2φ) cos
(
q(µ)(2γ1 − γ2)

)− cos
(
q(µ)(2π − 2γ3 + γ2)

)]

+4i
(
q(µ)

)2
[
e−iπ((−1)µ+1w+2φ) sin

(
q(µ)γ2

)− sin
(
q(µ)(2π − γ2)

)]}
, (A-7)

τ̃
(µ)
3 =

4kρq(µ)

ỹ(µ)
ei

γ3
2 ((−1)µ+1w+2φ)
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ik2ρ2e−iπ((−1)µ+1w+2φ) [

sin
(
q(µ)γ3
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+ sin

(
q(µ)(2γ1 − γ3)

)

− sin
(
q(µ)(2γ2 − γ3)

)
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(
q(µ)(2γ2 − 2γ1 − γ3)
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−2kρq(µ)e−iπ((−1)µ+1w+2φ) [
2 cos

(
q(µ)γ3

)−cos
(
q(µ)(2γ1−γ3)

)−cos
(
q(µ)(2γ2−γ3)

)]

+4i
(
q(µ)

)2
[
e−iπ((−1)µ+1w+2φ) sin

(
q(µ)γ3

)− sin
(
q(µ)(2π − γ3)

)]}
, (A-8)

respectively.
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[62] M. Büttiker, Y. Imry and M. Y. Azbel, Phys. Rev. A 30, 1982 (1984).

[63] A. D. Stone and Y. Imry, Phys. Rev. Lett. 56, 189 (1986).

111



BIBLIOGRAPHY

[64] G. Timp, A. M. Chang, J. E. Cunningham et al., Phys. Rev. Lett. 58, 2824
(1987).

[65] K. Ismail, S. Washburn and K. Y. Lee, Appl. Phys. Lett. 59, 1998 (1991).

[66] C. J. B. Ford, A. B. Fowler, J. M. Hong et al., Surf. Sci. 229, 307 (1990).

[67] S. Pedersen, A. E. Hansen, A. Kristensen et al., Phys. Rev. B 61, 5457
(2000).

[68] T. Ihn, A. Fuhrer, M. Sigrist et al., Adv. in Solid State Phys. 43, 139 (2003).

[69] M. Peshkin and A. Tonomura, Lecture Notes in Physics 340 (1989).

[70] C. P. Umbach, C. V. Haesendonck, R. B. Laibowitz et al., Phys. Rev.
Lett. 56, 386 (1986).

[71] B. L. Al’tshuler, A. G. Aronov and B. F. Spivak, JETP Lett. 33, 94 (1981).
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