Quantum Interference in Semiconductor
Rings

PhD Thesis

written by

Orsolya Kalman

Supervisors:
Dr. Mihaly Benedict
Dr. Péter Foldi

Doctoral School of Physics

Department of Theoretical Physics
Faculty of Science and Informatics
University of Szeged
Szeged, Hungary
2009






CONTENTS

Contents
Part 1
Introduction 1
1 Transport in mesoscopic systems 5
1.1 Semiconductor heterostructures . . . . . .. .. .. ... ... .. .. ... 5
1.2 Effective mass equation, transverse modes . . . . . . .. .. .. ... ... 7
1.3 Experimental characterization . . . . . . . . .. ... ... ... ... 11
1.3.1 Hall measurement . . . . . . . ... ... ... ... ... ..., 12
1.3.2 High-field magnetoresistance . . . . . . . . ... ... ... ... 14
1.4 Transport characteristics . . . . . . . . . .. ... L 15
1.5 The Landauer formula . . . . . . . .. ... .. ... ... ... 17
1.6 Spin-orbit interaction . . . . . .. ..o 21
2 Models of quantum rings 23
2.1 Interference effects in quantum rings . . . . . . . . ... L. 23
2.1.1 Quantum rings . . . . . ... 24
2.1.2  The effect of magnetic field . . . .. ... ... ... ... ... 24
2.1.3 Spin-dependent interference . . . . . . . .. ... L. 25
2.2 Model of a quantum ring with elastic scatterers . . . . . . . . ... .. .. 26
2.2.1 Closed ring with Aharonov-Bohm flux . . . . ... ... ... ... 28
2.2.2  The scattering matrix method to couple leads to the ring . . . . . . 29
2.2.3 Transmission probability through the ring . . . . . . ... ... .. 31
2.3 Spin-dependent propagation in quantum rings . . . . .. . ... ... ... 32
2.3.1 The one-dimensional Hamiltonian of the ring . . . . . . . . ... .. 33
2.3.2 Two-terminal ring with Aharonov-Bohm flux . . . . . . . . ... .. 34
2.3.3 Two-terminal ring with Rashba spin-orbit interaction . . . . . . . . 37
2.4 Conclusions . . . . . . ... 40
*kk
Part 11
3 Asymmetric injection 43
3.1 Introduction of arm-dependent asymmetry into the scattering matrix . . . 43
3.2 Solution of the scattering problem with arm-dependent asymmetry . . . . 46
3.2.1 No scatterersinthearms. . . . . .. .. ... ... .. ....... 47
3.2.2 Scatterer inthearm . . . .. ... ... ... ... ... ... .. 50

3.3 Conclusions . . . . . . . 52



CONTENTS

4 Three-terminal quantum ring with spin-dependent propagation

4.1 Formal solution of the problem . . . . . . . ... ... ... ... ...,
4.2 The three-terminal quantum ring as an electron spin beam splitter . . . . .
4.2.1 One input, two outputs . . . . . . . . . .. ...
4.2.2 The condition for spin polarization . . . . .. ... ... ... ...
4.2.3 Polarization in a symmetricring . . . . . . .. ...
4.2.4 Polarization with asymmetric configurations . . . . . . . . .. . ..
4.2.5 Conclusions . . . . . . . ...
The physical background of spin polarization:spatial interference . . . . . .
4.3.1 Spin probability currents in the ring . . . . . .. .. .. ... ...
4.3.2 Visualization of the effect . . . . . . . .. .. ... ... ... ...
4.3.3 Conclusions . . . . . . . . . ..
Spatial-spin correlations: intertwining . . . . . . . . .. ... ...
4.4.1 Mathematical formulation of the problem . . . . . . .. .. ... ..
4.4.2 The nature of spatial-spin correlations . . . . . .. ... ... ...
4.4.3 Conclusions . . . . . . . . . ..

4.3

4.4

Two-dimensional quantum ring arrays

Building blocks . . . . . ..o
Properties of the conductance . . . . . . .. .. ... ... ... .. ...,
Spin transformational properties . . . . . . . ... ...
The effect of point-like scatterers . . . . . . . . . . . ... ... ... ...

5

5.1

5.2

5.3

5.4

5.5 Conclusions
Summary
ésszefoglalés

List of publications

Acknowlegdement

Appendix

Bibliography

i

55
26
61
61
63
64
67
68
68
68
70
72
72
73
74
76

7
77
80
84
86
38

88

92

102

104

106

108



Part |






Introduction

In most of the commonly used conductors the electric current is carried by electrons. Al-
though electrons have a discrete charge, diffraction experiments also have demonstrated
that they propagate as waves. The wave properties of individual electrons are hardly im-
portant in usual conductors the width of which is about ten million times the wavelength
corresponding to an electron. The conductance of such a conductor is inversely propor-
tional to its length and scales linearly with its cross-sectional area. The proportionality
coefficient, or conductivity, characterizes the material the conductor is made of, and is
independent of its dimensions. One may ask: What happens with this simple scaling law
when one makes a conductor thinner and shorter so that the wave property of electrons
becomes relevant? This question has been in the center of interest of scientists for a
long time. Due to the development in miniaturization, it became possible to fabricate
conductors whose dimensions are small enough not to follow the mentioned scaling law,
but still much larger than microscopic objects like atoms. These are called mesoscopic
conductors ("meso” stands for the mentioned intermediate length scale) [1,2]. The scaling
law breaks down when the conductor size is small enough to allow coherent propagation
of an electron across it in the given material. This happens when the dimensions of the
conductor are comparable to the relevant wavelength, the mean free path and the phase
relaxation length of the electrons. (These latter two notions describe the distance that
an electron travels before its initial momentum or the phase of its wave function is de-
stroyed, respectively.) The conductance of such small conductors is quantized in universal,
material-independent units [3], and they operate as electron waveguides.

Although some of the pioneering experiments with mesoscopic conductors were per-
formed using metallic conductors [4], recent works are mostly based on semiconductor
heterostructures, such as AlGaAs/GaAs, or InGaAs/InAlAs. In these systems a highly
mobile two-dimensional electron gas is present at the interface of the two semiconductor
layers, which provides a good basis for the fabrication of mesoscopic conductors of various
structure. Among these, ring shaped devices (often called quantum rings) are intensely
studied due to their ability to show various types of quantum interference phenomena,
such as the well-known Aharonov-Bohm effect [5], when the wave function of a charged
particle passing around a magnetic flux experiences a phase shift as a result of the enclosed

magnetic field.



INTRODUCTION

Electrons — besides their wave nature — possess another quantum property, called spin.
The idea of investigating, and possibly utilizing this additional feature in electronic trans-
port led to the development of a new field of research: spintronics [6-9]. Devices, based
on early results of spintronics are already commercially available, e.g., giant magnetoresis-
tance (GMR) [10,11] led to computer hard drives that can store data with unprecedented
surface density. An important common feature of these spintronic devices is that they use
spin degree of freedom as a classical resource, quantum mechanical features play no role.
In other words, spin states are "up” and "down” with respect to a certain quantization
direction but their superpositions (preferably) play no role. The idea of utilizing spin
as a quantum resource is a more recent direction in this field and may be related to the
birth of quantum computing [12-15], which has attracted a lot of attention because of
its potential to offer an exponential speedup over classical computation for certain prob-
lems [16,17]. A quantum computational algorithm uses quantum bits (qubits), which
are two-level quantum systems represented by a two-dimensional Hilbert space, i.e., their
state is an arbitrary superposition of the logical up” and ”down” states. Among a variety
of other possibilities, electron spin has been proposed as the qubit in a quantum computa-
tional system. From a practical point of view, using spin instead of charge in information
processing applications may lead to less energy consumption, as spin flips require less
energy than usual charge based operations. However, in order to achieve the ambitious
goal of spin based computing, several problems have to be solved. Quantum information
processing protocols [18] require coherent behavior, superpositions of the quantum bits
must be available. From the transport point view, when the quantum mechanical infor-
mation is being delivered by (spin) currents, the question whether these ”flying qubits”
are practically useful is related to the nature of the transport. In the diffusive regime,
when the size of the device exceeds the (spin) coherence length, no coherent behavior can
be expected. Coherent manipulation of spins is possible only if the coherence length is
larger than the size of the device. Currently, high mobility samples have become available
such that at cryogenic temperatures spin coherence lengths [19-21] of 100 um have been
found, which mean a promising perspective in the fabrication of devices of a few microns
that are capable of coherent manipulation of spins.

Semiconductor heterostructures, which have an internal electric field perpendicular to
the interface between the two layers, have found great interest in spintronic research. This
is due to the fact that in such systems, the manipulation of the electron spin is possible
via an effect of relativistic origin. This is called Rashba spin-orbit interaction [22]: in
the particle’s rest frame there is a magnetic field perpendicular to the electric field and
the direction of movement. The spin direction precesses around the axis parallel to this
magnetic field and the precession rate depends on the spin-orbit interaction strength,
which can be controlled by an external gate voltage [23,24].

A pioneering example of spintronic devices that make use of Rashba spin-orbit in-
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teraction [25-28] is the spin field-effect transistor proposed by Datta and Das [25]. In
this proposal, a spin-polarized electron is injected from a ferromagnetic source contact
into a two-dimensional electron gas. The electron then undergoes spin precession due to
the Rashba effect before it is collected by a ferromagnetic drain contact. By varying the
strength of the spin-orbit coupling with an applied gate voltage, one can alter the degree
of spin precession and thus modulate the current through the device. Another device that
has received considerable attention is the spin-interference device proposed in Ref. [29].
This is a small ring (with a diameter of a micron) connected with two external leads fabri-
cated in a semiconductor heterostructure with Rashba spin-orbit interaction. The key idea
is that the phase difference between electrons traveling clockwise and counterclockwise
would produce interference effects in the spin-sensitive electron transport. The conduc-
tance oscillations of such a ring, fabricated in InGaAs/InAlAs and in HgTe/HgCdTe, has
been experimentally demonstrated in Refs. [30] and [31], respectively. Rectangular arrays
of such rings have also been realized and measured experimentally [32,33]. Of the theoret-
ical results concerning quantum rings with Rashba spin-orbit interaction here we mention
Ref. [34] where it has been shown that the interference effects lead to the modification of
the spin properties of the incoming electron by the spin-orbit interaction, resulting in a
transformation of the qubit state carried by the spin [34], which can be varied by tuning
the strength of the Rashba interaction, by changing the relative position of the leads, or
the size of the ring.

The ongoing intensive experimental [31-33] and theoretical [35-37] interest in quantum
rings with Rashba spin-orbit interaction and/or magnetic field motivated us to carry
out further investigations regarding such rings. We wished to describe a quantum ring
connected to two current-carrying leads, in which the probabilities for the electron to
enter the two arms of the ring are not equal. We also wished to explore whether it is
possible to polarize the spin of the electron by a quantum ring in which Rashba coupling
is present. Additionally, we intended to calculate the conductance of rectangular arrays
with Rashba spin-orbit interaction and a perpendicular magnetic field.

This dissertation is organized as follows. In Part I we summarize the results known
form the literature: in Chapter 1 we give an introduction to the basic properties of
transport in mesoscopic systems. Then, in Chapter 2 we overview interference effects
that may be present in quantum rings and introduce one-dimensional models that are
used in their theoretical description, which are based on the fact that when the width
of the rings is much smaller than their radii, then, at low enough temperatures only the
lowest radial mode takes part in the conduction. One of the models (Sec. 2.2) is able to
take into account the imperfectness of the coupling between the current-carrying leads
and the ring. It is also inherently able to account for scatterers in the arms of the ring.
The other model (Sec. 2.3) considers no additional reflections at the junctions of the

leads with the ring (when no scatterers are placed there directly), it simply fits the wave
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functions and the currents at a given junction, and considers no scatterers in the arms of
the ring. We will use this latter model to take into account spin-orbit interaction in the
ring.

In Part II we present our own results: We extend the use of the above mentioned
models in several aspects. In Chapter 3, we modify the model presented in Sec. 2.2 in
order to be able to take into account asymmetric injection into the arms of a ring, in
the presence of a magnetic field, and a scatterer in the ring. Chapter 4 is dedicated
to the investigation of the effects related to a three-terminal quantum ring with Rashba
spin-orbit coupling. In Section 4.1 we solve the scattering problem of such a ring with
the model presented in Section 2.3. Then, in Section 4.2 we discuss our proposal for
its utilisation, namely, spin-polarization: we show that the incoming electrons are forced
to split into two different spatial parts and due to spin-sensitive quantum interference,
electrons that are initially in a totally unpolarized spin state become polarized at the
outputs with different spin directions. In Section 4.3 we analyze the physical origin of
this spin polarizational effect, and demonstrate that it is due to spatial interference.
In Section 4.4 we investigate the correlations between the spatial degree of freedom of
the electron and its spin when leaving a three-terminal ring. We show that quantum
intertwining between the spin direction and the output path can be present. In Chapter 5
we study electron transport through multi-terminal rectangular arrays of quantum rings
in the presence of Rashba spin-orbit interaction and of a perpendicular magnetic field.
We show that due to destructive and constructive interferences, the conductance shows
oscillations as a function of the wave vector, the spin-orbit coupling strength, and the

magnetic field.



Chapter 1
Transport in mesoscopic systems

In recent years miniaturization led to a dramatic increase of interest in the physics and
applications of structures which can be described as ”low-dimensional”. In the case of
electronic transport, this term refers to a system in which electrons are constrained by
potential barriers so that they lose one or more degrees of freedom for motion; the system
becomes two, one or even zero dimensional. Although a large variety of systems has
been proposed, the majority of work on two- (and lower- ) dimensional systems has been
performed on semiconductor structures.

In this chapter we summarize the basic transport properties of low-dimensional sys-
tems relying mainly on Ref. [1]. We note that here we do not deal with zero-dimensional
systems as they were not part of our investigations. In Section 1.1 we give an overview of
the systems that are most frequently used as a basis for the fabrication of low-dimensional
nanostructures. In Section 1.2 we present a simple theoretical description of two- and one-
dimensional conductors, and then, in Section 1.3 we show the most important experimen-
tal measurements that are used for the characterization of these devices. In Section 1.4 we
describe the characteristics of transport and then, in Section 1.5 we present the Landauer
formula which relates the experimentally measurable conductance to the transmission
probability through the conductor which can be obtained from its quantum mechanical

description.

1.1 Semiconductor heterostructures

Currently, semiconductor heterostructures provide a good perspective for investigations
of electrical conduction on short length scales. This was made possible by the availability
of semiconducting materials of unprecedented purity and crystalline perfection. Such
materials can be structured to contain a thin layer of highly mobile electrons. Motion
perpendicular to the layer is quantized, and the electrons are constrained to move in a

plane. This system combines a number of desirable properties, not shared by thin metal
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films. It has a low electron density, which may be varied by means of an electric field.
As we will see in Section 1.2 the low density implies a large wavelength corresponding
to conduction electrons, that is comparable to the dimensions of the nanostructures that
can be fabricated today. Additionally, compared to bulk samples, the electron mean free
path can be quite large in these systems. As a result, quantum effects are manifested in

the experimentally measurable quantities, such as the conductance.

spacer
(a)

Surface

T
n-AlGaAs i-GaAs
e z

Figure 1.1: Conduction and valence band line-up at a junction between an n-type AlGaAs and intrinsic
GaAs, (a) before and (b) after charge transfer has taken place. Note that this is a cross-sectional view.

One of the heterostructures that were first used for two-dimensional transport is com-
posed of the two semiconductors, GaAs and Al,Ga;_,As which have nearly the same lat-
tice parameter. In the latter material, a fraction = (commonly z ~ 0.3) of the Ga atoms
in the GaAs lattice is replaced by Al atoms. For x < 0.45 the semiconductor Al,Ga;_,As
has a direct band gap, larger than that of GaAs, being approximately proportional to the
Al content. Let us now consider the conduction and valence band line-up perpendicular
to the interface (z-direction) when we first bring the layers in contact (Fig. 1.1(a)). The
Fermi energy Fr in the widegap AlGaAs layer is higher than that in the narrowgap GaAs
layer. Consequently, some of the electrons introduced by the donors in the n-AlGaAs are
transferred into the lower-lying conduction band of the GaAs, leaving behind positively
charged donors. This space charge gives rise to an electrostatic potential that causes the
bands to bend as shown in Fig. 1.1(b), forming a nearly triangular well. At equilibrium
the Fermi level is constant everywhere. The electron density is sharply peaked near the

GaAs-AlGaAs interface (where the Fermi level is inside the conduction band) forming
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a thin conducting layer which is usually referred to as the two-dimensional electron gas
(2-DEG in short). In the narrow (~ 5 nm) well formed at the heterojunction, the energy
spectrum for motion perpendicular to the interface is discrete (and in most cases only one
electric subband is populated), whereas the motion along the interface is free-electron-like
with an effective mass close to that of bulk GaAs conduction band electrons.

The carrier mobility of semiconductor heterostructures can be considerably larger than
that of the corresponding bulk semiconductor; this is achieved by a technique generally
referred to as "modulation doping”. Modulation-doped heterostructures are obtained by
introducing n-type dopant impurities (e.g., Si) into the wide-band-gap material, AlGaAs
at some distance from the interface (the undoped AlGaAs is called the spacer), whereas
the narrow-band-gap material (GaAs) remains free from intentional doping, as shown
in Fig 1.1(a). Due to modulation doping, the mobile carriers in the heterostructure
are spatially separated from their parent impurities [38] which leads to a reduction of
scattering. Thus, high carrier mobilities can be obtained.

Although AlGaAs/GaAs has served as a model system for the majority of investiga-
tions of transport in low-dimensional structures, other material combinations have also
received considerable attention. Important among these have been heterojunctions in
InGaAs/InAlAs and HgTe/HgCdTe [39]. The InGaAs/InAlAs system has a number of
potential technological advantages over AlGaAs/GaAs, such as a lower electron effective
mass and a larger energy separation between conduction band minima in InGaAs/InAlAs
compared with AlGaAs/GaAs, however, the presence of alloy scattering results in rela-
tively low mobilities at low temperatures [40]. Work on HgTe/CdHgTe has indicated that
many more subbands are occupied than what are usually observed in other heterojunction

systems [41].

1.2 Effective mass equation, transverse modes

In order to determine theoretically the electronic states in solids, approximations of dif-
ferent accuracy have been developed. In this dissertation we will use the approximation
that electrons are independent. In the single-electron picture it is also assumed that each
electron feels the same periodic potential. Then, the wave function of an electron is a
Bloch wave: the product of a plane wave and a lattice periodic function. For a given wave
number (it is sufficient to consider only those in the first Brillouin zone) one can determine
the corresponding energies. For bulk semiconductors these energies form bands, the two
uppermost being the conduction and the valence band, which are separated by a band
gap. As the Fermi level is inside the band gap, the valence band is full and the conduc-
tion band is empty. Conduction may only happen when valence electrons gain energy

from thermal excitation. Only those electrons take part in the conduction, which have
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an energy close to the minimum of the conduction band. For these conduction electrons
the Hamiltonian can be approximated by an effective free-electron-like operator that is
the sum of the energy corresponding to the conduction band edge and a kinetic term that
incorporates the effect of the periodic lattice potential through the effective mass. The

eigenfunctions of this Hamiltonian no longer reflect the periodicity of the crystal.

When two semiconductor crystals are placed adjacent to each other to form a het-
erojunction, then similar eigenvalue equations are valid in each, remembering that the
effective mass could be a function of position. Thus, the dynamics of electrons in the
conduction band can be described by an equation of the form

2
E.+

o T Ulr)| ¥(r) = EY(r) (1.1)
where P is the momentum operator of the electron, U(r) is a model potential energy due
to space-charge and confinement, F. is the energy corresponding to the conduction band
edge, and m* is the effective mass. As we have already mentioned, the lattice potential,
which is periodic on an atomic scale, does not appear explicitly in Eq. (1.1); its effect
is incorporated through the effective mass m* which we assumed here to be spatially
constant. Any band discontinuity AFE, at heterojunctions is incorporated by letting F.
be position-dependent. We note that in the presence of a magnetic field P has to be
replaced by P — eA, where e is the charge of the electron, which is the negative of the
elementary charge, and A is the vector potential. Equation (1.1) is called a single-band

effective mass equation.

In a 2-DEG shown in Fig.1.1(b), the electrons are free to propagate in the x — y plane
but are confined by some potential U(z) in the z-direction. The electronic wave functions

in such a structure can be written e.g., in the form
U(r) = ¢y(2)ek=mehvy, (1.2)

with the dispersion relation:

2

E:EC+EZ+2—W(

K2+ k). (1.3)
The index [ labels the different subbands each having a different wave function ¢;(z) in
the z-direction and a cut-off energy ¢;. Usually at low temperatures with low carrier
densities only the lowest subband with [ = 1 is occupied and the higher subbands do
not play any significant role. We can then ignore the z-dimension altogether and simply
treat the conductor as a two-dimensional system in the x — y plane. For a free electron

gas the eigenfunctions are obtained from Eq. (1.1) by setting U = 0. The eigenfunctions
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normalized to an area S have the form

1 . .
U(z,y) = —=ckaelbvy 14
(@) = (14)
with eigenenergies given by
E:E+h—2(k2+k2) (1.5)
Soomx VT Y )

where E, = E. + ¢1.

At equilibrium the available states in a conductor are filled up according to the Fermi

function X
fo(B) = ——5—= (1.6)
1+e kT

where Er is the Fermi level, which, at 7' = 0 K, coincides with the Fermi energy. (We note
that in the literature, instead of Fermi level often the terminology ”chemical potential”
is used, here however, the sample properties do not change significantly, therefore we will
continue using ”"Fermi level”.) In the low temperature limit (e% < 1), the Fermi

function inside the band (F > E) can be approximated by
fo(E) = ©(Er - E). (1.7)

where © is the unit step function. We note that throughout this thesis we will remain

within this limit.

At low temperatures the conductance is determined entirely by electrons with energy
close to the Fermi level. The wavenumber of such electrons is referred to as the Fermi

wavenumber (kp):

As Eg — Ej is proportional to the number of occupied states in two dimensions, and

kr (1.8)

consequently to the equilibrium electron density ng, we can express the Fermi wavenumber

as:

]CF =V 27ms. (19)

In narrow conductors, besides the z-direction, electrons are also confined in a second
direction. Let us consider a rectangular conductor that is uniform in the z-direction,
which has some transverse confining potential U(y) (see Fig. 1.2(a)). Then, the solutions
of the effective mass equation (1.1) can be expressed in the form of plane waves

U(z,y) = X (), (1.10)

1
—e
VL
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where L is the length of the conductor over which the wavefunctions are normalized.

In general, for arbitrary confining potentials x(y) can not be determined analytically.
1
2
of the actual potential in narrow conductors, analytic solutions can be written down.

However, for a parabolic potential U(y) = im*w2y?, which is often a good description

The eigenenergies and eigenfunctions are well-known from the theory of the harmonic
oscillator [42].

(a) (b)

n=012

yT . Uly)

T

A
\4

k

Figure 1.2: (a) A rectangular conductor assumed to be uniform in the z-direction and having some
transverse confining potential U(y). (b) Dispersion relation, E(k) as a function of k for electric subbands
arising from parabolic confinement. The different subbands are indexed by n.

The dispersion relation is sketched in Fig. 1.2(b). States with different index n are said
to belong to different subbands just like the subbands that arise from the confinement
in the z-direction. The spacing between two subbands is equal to hwy. The tighter
the confinement, the larger wy is, and the further apart the subbands are. Usually the
confinement in the z-direction is very tight (electrons are confined into a layer of width
of ~ 5 — 10 nm) so that the corresponding subband spacing is large (~ 100 meV) and
only one or two subbands are customarily occupied. In all our discussions we will assume
that only one z-subband is occupied. The y-confinement is relatively weaker and the
corresponding subband spacing is smaller so that a number of these may be occupied
under normal operating conditions. The subbands are called transverse modes in analogy
with the modes of an electromagnetic waveguide, and such conductors are often referred
to as electron wavequides.

As a simple estimation for the number of transverse modes in a narrow quantum wire
of width W, one may also consider the transverse confining potential as an infinite well,
the discrete energies of which are given as n,h*m?/(2m*W?) (nw = 1,2,...). Then, the
energy difference between the first and second energy levels in the case of a narrow wire
of width W = 50 nm, is approximately twice as much as the Fermi energy (for a Fermi
energy of 11.13 meV in case of an effective mass m* = 0.023m of InGaAs), however, as
W is increased, this ratio is decreased, so that in the case of W = 100 nm, two of these

modes may be occupied.
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1.3 Experimental characterization

In this section we summarize some of the experimental tools which are used to determine
the characteristic parameters of the two-dimensional electron gas formed at the interface
of semiconductor heterostructures. We will describe magnetoresistance measurements in
low and high magnetic fields, from which the mobility and the carrier concentration in

the sample can be derived.

The mobility (at low temperatures) provides a direct measure of the momentum re-
laxation time, which is limited by impurities and defects. Let us first briefly explain the
meaning of mobility. In equilibrium the conduction electrons move in a random way, not
producing any current in any direction. An applied electric field E gives them a drift
velocity vq in the direction of the force eE. In order to relate the drift velocity to the
electric field we note that, at steady-state, the rate at which the electrons receive momen-
tum from the external field is exactly equal to the rate at which they lose momentum due

to scattering processes:

d d
l—p} - {—p} . (1.11)
dt scattering dt field
From this follows that i}
TU_ R, (1.12)
Tm

where 7, is the momentum relaxation time. The drift velocity of electrons is thus given
by

€Tm

E. (1.13)

Vg = oo

The mobility is defined as the ratio of the drift velocity to the electric field:

_ |6|Tm

V4
=|=|=—— 1.14
=gl = (114)
Mobility measurement using the Hall effect (see Section 1.3.1) is a basic characterization
tool for semiconductor samples, since, if the mobility is known, the momentum relaxation

time can easily be deduced from Eq. (1.14).

In bulk semiconductors as we decrease the temperature, at first, the momentum re-
laxation time increases due to the suppression of scattering on phonons. However, it does
not increase any further when the scattering on phonons becomes weak enough so that
scattering on impurities becomes the dominant mechanism. In undoped samples, the mo-
bilities are higher, but these are less useful since there are very few conduction electrons.
In a 2-DEG, on the other hand, mobilities may be two orders of magnitude larger than in
undoped samples. This is due to modulation doping, i.e., the spatial separation between
the donor atoms in the AlGaAs layer and the conduction electrons in the GaAs layer,

which reduces the scattering on impurities.

11
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1.3.1 Hall measurement

The measurement of conductivity in a weak magnetic field (generally referred to as a
Hall measurement) is one of the basic tools used to characterize semiconductor samples.
This is due to the fact that it allows the determination of the carrier density ns and the
mobility p individually, while the conductivity measured without a magnetic field only
gives the product of these two.

In a magnetic field at steady-state, the rate at which the electrons receive momentum
from the external field is equal to the rate at which they lose momentum due to scattering

processes:
*

m vq

—¢(E+vyx B). (1.15)

Tm
Assuming B = zB and using the fact that the current density J is related to the electron

density ng by the relation J = evgng, we can rewrite Eq. (1.15) in the form

Gl e
E,)] o\ uB 1 Jy

where o = |e| ngs is the conductivity, and u = |e| 7, /m*. Since the resistivity tensor p is

defined by the relation E = pJ, we can write from Eq. (1.16)

Pzz = Pyy = 1/o, (1.17)
Pye = —pay = pBJ/o =B/ (le[ns). (1.18)

Thus this simple Drude model predicts that the longitudinal resistance is constant while

the Hall resistance increases linearly with the magnetic field.

L
Vi« o 1
| |
I W I
> 1
1% V,=Vi—- 1 T
V=V - V13

Figure 1.3: Rectangular Hall bar for magnetoresistance measurements. The magnetic field is in the
z-direction, perpendicular to the plane of the conductor.

Experimentally, the resistivity tensor is measured by preparing a rectangular sample,
setting up a uniform current flow along the z-direction and measuring the longitudinal
voltage drop V, = V; — V5 and the transverse (or Hall) voltage drop Vi3 = V, — V3, as
shown in Fig. 1.3. Since J, = 0, [ = J,W, V, = E,L and Vg = E,W, where W is
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the width of the sample, the resistivities p,, and p,, are related to the longitudinal and

transverse voltages by

vV, W
= == 1.1
Vi
Pre = TH (1.20)

The carrier density ns and the mobility i can be obtained from the measured resistivities
Pz and py, using Eqgs. (1.17) and (1.18):

dpya ! 1
. _ 1.21
! @ey dB} el T 2
1 IL

(1.22)

Ho= le] ngps - le| ngV, W

For this reason, Hall measurement is a basic characterization tool for semiconducting

samples.
2&) T T T T T T T 10
L 3
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Figure 1.4: Measured longitudinal and transverse voltages for a modulation-doped GaAs sample at
T=12K (I =255 uA) [43].

Figure 1.4 shows the measured longitudinal voltage V, and transverse voltage Vi for
a modulation-doped GaAs sample using a rectangular Hall bar with W = 0.38 mm and
L =1 mm and a current of I = 25.5 pA [43]. At low magnetic fields the longitudinal
voltage is nearly constant while the Hall voltage increases linearly in agreement with the
predictions of the semiclassical Drude model described above. At high fields, however, the
longitudinal resistance shows an oscillatory behavior, referred to as Shubnikov-deHaas (or
SdH) oscillations, while the Hall resistance exhibits plateaus corresponding to the minima
in the longitudinal resistance. These features are usually absent at room temperature but
quite evident at cryogenic temperatures. These features can be understood by taking into

account the formation of Landau levels.
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1.3.2 High-field magnetoresistance

As we have mentioned in the previous section the comparison of the experimental data
shown in Fig. 1.4 is in disagreement with the predictions of the Drude model at high
magnetic fields. There are (SAH) oscillations in the longitudinal resistivity p,. The
minimum longitudinal resistivity p,, is very close to zero and plateaus appear in the Hall
resistivity p,, whenever p,, goes through a minimum.

As it is well-known from quantum mechanics, at high magnetic fields, the energy of
electrons becomes quantized, forming the so-called Landau levels [44], which have the
same form as those of the quantum harmonic oscillator. In a 2-DEG, which is confined

in the z-direction, they can be written as

1
Enl IEs+th <n1—|—§) , Ty 20,1,2,... (123)

where w. = |e| B/m* is the cyclotron frequency. Landau levels are degenerate, the number
of electrons per level (V) is directly proportional to the strength of the applied magnetic

field [45]

2le| B
N

The SdH oscillations that can be seen in Fig. 1.4, arise because the step-like density

N = (1.24)

of states associated with a 2-DEG breaks up into a sequence of peaks spaced by hw,,
due to the formation of Landau levels. This is illustrated in Fig. 1.5. The spikes are
ideally delta functions, but in practice scattering processes spread them out in energy. As
the magnetic field B is changed, the spacing of Landau levels increases. The resistivity
Pz goes through one cycle of oscillation as the Fermi level moves from the center of one
Landau level to the center of the next one. This provides a simple method to calculate

the electron density ng from the oscillations in p,.,.

Energy,
A
B, —:>
<— Zero magnetic field
foie I E——
E;

>
1>

Density of states, N(E)

Figure 1.5: Density of states as a function of the energy for a 2-DEG in a magnetic field.

As we change the magnetic field B the number of occupied Landau levels changes.

The resistivity p,. goes through a maximum every time this number is a half-integer and
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the Fermi level lies at the center of a Landau level. Therefore, the magnetic field values

By and B, corresponding to two successive peaks must be related by

N Mg

— =1 1.25
2le[Bi/h 2]e| Ba/h (1.25)
so that 2l .
e
By By

We could choose many different values By and By corresponding to any pair of successive
peaks. They should all yield approximately the same result for the carrier density. The
usual procedure is to plot the positions of the maxima in p,, as a function of 1/B, then

the slope of the resulting straight line gives the electron density.

1.4 Transport characteristics

We have seen in Sec. 1.3 that for a given sample the electron density ns and the mobility
i can be measured experimentally, and the momentum relaxation time 7, can be de-
rived. Since impurities, lattice vibrations (phonons) or electron-electron interaction lead
to "collisions” that scatter the electron from one state to another, thereby changing its
momomentum, the momentum relaxation time 7, is related to the collision time 7. (the

average time between two collisions) by a relation of the form

— = —q, 1.27
Tm  Te (1.27)
where 0 < a < 1 denotes the effectiveness” of an individual collision in destroying
momentum: if the collisions are such that the electrons are scattered only by a small
angle, then very little momentum is lost in an individual collision, i.e., « is very small so
that 7, is much longer than 7.. The mean free path L is the distance that an electron

travels before its initial momentum is destroyed, that is,
L = vpty, (1.28)
where vp is the Fermi velocity (the velocity of electrons at the Fermi level), which, for a

free two-dimensional electron gas, can be given in the following way:

vp = ik _ D V2, (1.29)

m* m*

When estimating L we used the fact that at low temperature, electrons with energies
close to the Fermi level are responsible for the conduction. However, L is usually smaller

than what we can calculate from Eq. (1.28), as the velocity of an electron is generally
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smaller than vg. In high mobility semiconductors at low temperature, the typical value
of the mean free path is 10 — 100 gm. In samples, which are smaller than L, electrons are
transported essentially without disturbance, i.e., ballistically.

The mean free path is related to the momentum relaxation of the electrons. If however,
we want to treat the electrons quantum mechanically, there is another characteristic
length, the one that is related to phase relaxation. Let us consider the process, when
the phase of the wave function of the electron is initially well-defined, but becomes more
and more random as a consequence of scattering events. The characteristic time of this

phenomenon is the phase relaxation time 7., which can be related to 7. by:

1 1

To

In general, 7, and 7, are not necessarily of the same magnitude. One way to visualize
the destruction of phase is in terms of a thought experiment involving interference. For
example, let us suppose that we split a beam of electrons into two paths of equal length
and then recombine them. In a perfect crystal the two paths would be identical resulting
in constructive interference. By applying a magnetic field perpendicular to the plane con-
taining the paths, one can change their relative phase, thereby changing the interference
alternately from constructive to destructive and back. Now let us suppose that we are
not in a perfect crystal but in a real one with collisions due to impurities, phonons etc.
We would expect the interference amplitude to be reduced by a factor 67%, where 7y is
the transit time that the electron spends in each arm of the interferometer.

Let us investigate what happens if we introduce impurities and defects randomly
into each arm. The two arms are then no longer identical so that the interference may
not be constructive at zero magnetic field. But as long as the impurities and defects are
static, there is a well-defined phase-relationship between the two paths, and as we increase
the magnetic field we would go through alternate cycles of constructive and destructive
interference, whose amplitude is unaffected by the length of each arm. We may thus
conclude that for static scatterers § = 0 in Eq. (1.30).

The situation is different when we take into account the effect of dynamic scatterers,
like lattice vibrations (phonons). The phase-relationship between the scattered waves in
the two arms then varies randomly with time so that there is no stationary interference
pattern. At a fixed value of the magnetic field the scattered waves show random variations
from constructive to destructive interference which time-average to zero. Interference
can only be observed between the unscattered components, whose amplitude decreases
exponentially with the length of each arm.

If the internal state of a scatterer can be changed as a result of a collision with an
electron, then it can ruin the interference. This is related to the fact that interference can

be expected only if there is no way to tell which path the electron took. But if there is a
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high probability that the electron changes the internal state of a scatterer in one arm of
the interferometer, then in principle, one could tell which path it took.

Another important source of phase-randomizing collisions is electron-electron interac-
tion. Electrons are scattered by other electrons due to their mutual Coulomb repulsion.
Interestingly, the mean free path (L) is not affected by such processes. This is because
they do not lead to any loss in the net momentum, as any momentum lost by one electron
is picked up by another. Consequently, the effectiveness factor « is zero for such processes
though /3 is non-zero.

We have seen that the characteristic time of momentum and phase depend in a different
way on the different type of scattering mechanisms, thus in general, they are not the same.
In certain low-mobility semiconductors, often 7, > 7, then, as a result of numerous
elastic scattering events with static scatterers, the corresponding classical motion is quasi-
random, but the phase coherence is kept. In high-mobility samples however, in general

Tm & Ty, and the phase-relaxation length L, is given by
L, = vpT,, (1.31)

and it is essentially equal to the mean free path L. In this case the size of the sample
determines whether the behavior is coherent or incoherent. If the electrons are transported
in samples that are much larger than L, then no quantum effects can be expected. But
if the size of the sample is smaller than L,, then quantum mechanical description is

necessary.

1.5 The Landauer formula

In this section we describe the Landauer formula [46] that has proved to be very useful
in describing mesoscopic transport. In this approach, the current through a conductor is
expressed in terms of the probability that an electron can be transmitted through it.

Let us consider a piece of conductor placed between two large contact pads as shown
in Fig. 1.6(a). If the dimensions of the conductor were large, then its conductance would
be given by G = od/l, where the conductivity ¢ is a parameter characteristic of the
material but independent of the dimensions of the sample. If this ohmic scaling relation
were to hold as the length (I) is reduced, then we would expect the conductance to
grow indefinitely. Experimentally, however, it is found that the measured conductance
approaches a limiting value G, when the length of the conductor becomes much shorter
than the mean free path. This is rather counterintuitive since a ballistic conductor (that
is, a conductor with no scattering) should have zero resistance.

The resistance G_ ' arises from the interface between the conductor and the contact

pads which are very dissimilar materials. For this reason it is referred to as contact
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Figure 1.6: (a) A conductor is placed between two contacts across which an external bias is applied. (b)
Dispersion relations for the different transverse modes (or subbands) in the narrow conductor.

resistance. The current is carried in the contacts by infinitely many transverse modes,
but inside the conductor by only a few modes. This requires a redistribution of the current

among the current-carrying modes at the interface leading to the interface resistance.

To determine the contact resistance G we consider a ballistic conductor and calculate
the current through it for a given applied bias (11 —pus2)/e. It is straightforward to calculate
this current if we assume that the contacts are "reflectionless”, that is, the electrons can
enter them from the conductor without suffering reflections. We use the quotes to remind
that the reflection is negligible only when transmitting from the narrow conductor to the
wide contact. Going the other way from the contact to the conductor, the reflections can

be quite large.

For "reflectionless” contacts, we have a simple situation: +k states in the conductor
are occupied only by electrons originating in the left contact while —k states are occupied
only by electrons originating in the right contact. This is because electrons originating in
the right contact populate the —k states and empty without reflection into the left contact
while electrons originating in the left contact populate the +k£ states and empty without
reflection into the right contact (note that k denotes the wavenumber in the z-direction,
shown in Fig. 1.6(a)).

We will now argue that the Fermi level for the +k states is always equal to p; even
when a bias is applied (Fig. 1.6(b)). Suppose both contacts are at the same potential y.
There is no question then that the Fermi level for the +k states (or any other state) is
equal to the potential 1;. Now if we change the potential at the right contact to o, this
can have no effect on the Fermi level for the 4k states since there is no causal relationship
between the right contact and the +k states. No electron originating from the right
contact ever makes its way to a +k state. Similarly, we can argue that the Fermi level
for the —k states is always equal to ps. Hence at low temperatures the current is equal

to that carried by all the +k states lying between p; and ps.
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To calculate the current we note that the states in the narrow conductor belong to
different transverse modes or subbands, as discussed in Section 1.2. Each mode has a

dispersion relation E(n, k) as sketched in Fig. 1.2(b) with a cut-off energy
en = E(n,k = 0), (1.32)

below which it cannot propagate. The number of transverse modes at an energy FE is

obtained by counting the number of modes having cut-off energies smaller than E':
Z O(E —&,). (1.33)

We can evaluate the current carried by each transverse mode (labeled by n) separately

and add them up.

Let us consider a single transverse mode whose +k states are occupied according to
some function f*(E) (in the low temperature limit this function is given by f*(F) =
O(uy — F)). A uniform electron gas with n, electrons per unit length moving with a

velocity v carries a current equal to en.v. Since the electron density associated with a

single k-state in a conductor of length [ is n, = 1/I, and its velocity is given by v = %%,
we can write the current I carried by the +k states as
10F
A * 1.34
=7 Z ofF(E) =53 35T (E). (1.34)

Assuming periodic boundary conditions and converting the sum over k into an integral

according to the usual prescription
> =2 : / dk
_) —
- 2m ’

where the factor 2 takes into account the spin of the electron, we obtain

[y FH(E)dE, (1.35)

h mazx(en,p2)

where ¢, is the cut-off energy of the waveguide mode. If ¢, < uo, and we are in the

low-temperature limit, then we can easily calculate the integral (1.35):

=2 — ). (1.36)

From this follows that the contact resistance is

Gl = (11 —]Mz)/e = (1.37)
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For a single-moded conductor the contact resistance is ~ 12.9 k2, which is certainly not
negligible. This is the resistance one would measure if a single-moded ballistic conductor

were placed between two conductive contacts.

Assuming that M modes carry the current the contact resistance (which is the resis-

tance of a ballistic waveguide) is given by
h

G.l=——, 1.38

¢ 2e2 M ( )

i.e., it is inversely proportional to the number of modes. This means that in the macro-

scopic limit, when M is very large, the contribution of the contact resistance to the full

resistance is negligible. If however, M is sufficiently small, then the appearance of a new

mode leads to a measurable decrease in the resistance.

It is important to note that the contact resistance arises because on one side the
current is carried by infinitely many modes, while on the other side it is carried only by
a few modes. The details of the geometry are not important as long as the contacts are

"reflectionless” as explained earlier.

Let us now consider the case when there is scattering inside the ballistic conductor (e.g.
due its geometry or impurities). Then those electrons which have entered the conductor
not necessarily exit from it. This leads to a resistance greater than G_'. As we explained

above, the current that enters the conductor is

2e

If, for simplicity, we consider the probability T that an electron transmits the conductor

to be equal for each mode, then the current which flows out of the conductor is

2e
Tour = T%M (1 — p2), (1.40)
from which for the conductance we get
2 2
G = %MT. (1.41)

This is the Landauer formula. The factor T' represents the probability that an electron
injected at one end of the conductor will be transmitted to the other end. If the transmis-
sion probability is unity, we recover the correct expression for the resistance of a ballistic

conductor including the contact resistance (see Eq. (1.38)).
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1.6 Spin-orbit interaction

In this section we recall a relativistic effect, namely, spin-orbit interaction, that is common
in semiconductor heterostructures either due to the inversion asymmetry in the bulk
crystal, or to the asymmetry in the growth direction of the heterostructure. As we will
see in the next chapters, devices with such interactionmay find interesting applications.

Taking an expansion of the Dirac equation up to second order in P?/m?c® [47, 48],
the most important correction to the nonrelativistic (Pauli) limit is the appearance of the
term in the Hamiltonian called the spin-orbit interaction':

Am2e
as it induces a splitting of the energy levels due to spin, even in the absence of an ex-
ternal magnetic field. The other second order corrections are spin independent and in a
perturbative treatment yield only additive constants, and have no effect on the spectrum.

Therefore we have the following effective Hamiltonian for an electron in the potential V:

1
H=_—(P—-cA’+V —uoB —

=5 %a’ (P xVV) (1.43)

4dm?c

and the wave function will be a two-component spinor:

(v
U= (%) . (1.44)

In a single-electron picture of a solid, essentially the same equation can be used to
describe the motion of an electron, replacing m with the effective mass m* in the first and
last terms. One splits the potential V' = Vj(r) 4 Vix () into the periodic crystal potential
Vb and an aperiodic part V., which contains the potential due to impurities, confinement,
boundaries, and external electrical field (e.g. gate voltage). One then tries to eliminate
the crystal potential as much as possible and to describe the charge carriers in terms of
the band structure. The simplest systems of this kind are electrons in cubic direct-gap
semiconductors, where the conduction band and the valence band are separated by a band
gap Ey at k = 0. In a perturbation theory around k = 0 [49] the lowest order terms that

couple to the spin are expected to be linear in k:

HSO = —b(k) - 0. (1.45)

!The terminology is explained by the fact that in an atom, the potential giving rise to the electric
field is central V = V(r) and this term reduces to the form
1 14V

S-L

Heo=——-2"5.
SO = om2e 1 dr

)

with L = R x P being the orbital angular momentum.
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Time reversal symmetry requires b(—k) = —b(k). If, in addition, the system has an
inversion symmetry b(—k) = b(k) then the only possible solution is b(k) = 0. Thus, for
the term (1.45) to be nonzero the inversion symmetry needs to be broken.

For a three-dimensional system, b can only be present if the inversion symmetry of
the host crystal is broken. This is called bulk inversion asymmetry. In the case of a
two-dimensional system, b can also result from an asymmetry in the confinement, or with
other words, from structural inversion asymmetry. Here we focus on electrons confined
to two dimensions.

In zinc blende structures (such as GaAs), the bulk inversion asymmetry leads to the

so-called Dresselhaus SO coupling [50] which manifests itself in a term linear in k:
HDl = 5 (kxgx — kIyO'y) s (]_46)

and a term cubic in k:
HD2 = kak‘y (k’yO'x — k:xay) s (147)

where B ~ 27 eVA®, for both GaAs and InAs [51,52], and 8 ~ —B(w/d)?, with d being
the width of the confinement. For small confinement width d, the main bulk inversion
asymmetry contribution is the Hp; term.

Another spin-orbit coupling term arises if the confinement potential V' (z) along the
z-direction (the growth direction of the heterostructure) is not symmetric, i.e., if there is

a structural inversion asymmetry. This is the so-called Rashba Hamiltonian [22,53-55]:
Hg = a0 - (2 x k) = a(kyo, — ky0,), (1.48)

where the parameter « describes the strength of the spin-orbit coupling. The magnitude
of a depends on the asymmetry of the quantum well potential [54] and it can be modified
by applying an additional field via external gates [23]. In general, the level splitting due
to the Rashba spin-orbit interaction is inversely proportional to the energy gap Fy. It
has been pointed out that the Rashba mechanism becomes dominant in a narrow-gap
semiconductor system [56,57], and it can be particularly large, for example, in n-type
InGaAs heterojunctions or quantum wells [58,59] (with typical values in the range (0.5—
2.0) x107" eVm [23,24]), or in HgTe quantum wells [60].

A very visible manifestation of the spin-orbit spin splitting is a beating pattern in
Shubnikov—de Haas (SAH) oscillations due to two close frequency components with sim-
ilar amplitudes arising from the spin-split levels. These provide in fact an experimental

method for determining the value of the Rashba spin-orbit interaction strength « [60,61].
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Chapter 2
Models of quantum rings

In Section 2.1 of this chapter we give a review of quantum interference effects that emerge
in ballistic rings (i.e., in rings, in which scattering is practically zero), which we will
call quantum rings throughout this dissertation. We will show that the presence of a
magnetic field, or Rashba spin-orbit coupling together with quantum interference leads
to the appearance of oscillations in the conductance of such devices as a function of
the magnetic field, or the external gate voltage, respectively. Then, we introduce two
widely used models in the theoretical description of these rings. Both approaches are
based on the assumption that the ring is formed by narrow leads in which the spacing
between the discrete energy levels produced by the transverse confinement is much larger
than the energy range of the longitudinal transport, so that only one such transverse
mode takes part in the conduction (see Section 1.2). In such leads the single-electron
Schrodinger equation reduces to a one-dimensional equation. Therefore, one often refers
to such models as one-dimensional. First, in Section 2.2 we consider the method [62],
which takes into account elastic scatterers in the arms of the ring and in the junctions of
a lead with the ring. Then, in Section 2.3, we introduce a model, which inherently does
not account for any scatterers in the arms of the ring or at the junctions, however, takes

into account the presence of spin-orbit interaction.

2.1 Interference effects in quantum rings

We have seen in Section 1.4 that in ballistic conductors of multiply connected geometry
interference effects are expected to appear. As these effects manifest themselves in oscil-
lations of measurable quantities, e.g., the conductance, they have been in the center of
interest since the first nanoscale metallic conductors were fabricated. In this section we
give a review of interference effects that emerge as a result of the presence of a magnetic

field or Rashba spin-orbit interaction in quantum rings.
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2.1.1 Quantum rings

The first quantum rings were fabricated from normal metals [4,63]. Later, due to the de-
velopment of semiconductor nanotechnology, it became possible to prepare quantum rings
in semiconductor heterointerfaces e.g. in AlGaAs/GaAs [64-66], InGaAs/InAlAs [32] and
HgTe/HgCdTe [31], by techniques such as etching [32,67], patterning by a scanning force
microscope [68], or optical and electron beam lithography [31]. The usual radii of such
rings range from a hundred nanometers to a few micrometers, while their usual widths

range from a few tens to a few hundreds of nanometers.

Figure 2.1: Scanning electron microscope picture of a quantum ring fabricated in InGaAs/InAlAs. The
radius of the ring is 340 nm, the width of the arms is 200 nm [30].

Figure 2.1 shows a scanning electron microscope picture of an experimentally realized
quantum ring in InGaAs/InAlAs, with a radius of 340 nm, and an arm width of 200 nm.
The ring was fabricated by electron beam lithography and electron cyclotron resonance
dry etching [30].

2.1.2 The effect of magnetic field

In a quantum ring which encloses a well-defined flux ® the conductance has a fundamental
periodicity
G(®) =GP +ndy), (n=1,23,..), (2.1)

as a function of the perpendicular magnetic field B (or the flux & = BS through the area
S enclosed by the conductor), where ®q = h/ |e| is called the magnetic flux quantum.
This is due to the Aharonov-Bohm effect [5,69], which shows how an electron can be
influenced by the presence of a vector potential even if the external B field is exculded
from the region where the electron is moving. In most of the actual experiments however,
the magnetic field penetrates the arms of the ring as well as its interior so that deviations
from Eq. (2.1) can occur. Since in many situations such deviations are small, at least
in a limited field range, these magnetoconductance oscillations are still referred to as
Aharonov-Bohm (AB) oscillations [4,64-66].
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(b)
277(1)—0 A¢ = 2%(1)0/2

Figure 2.2: Illustration of the effect of a magnetic field in a ring geometry. (a) The phase difference
between interfering trajectories responsible for the conductance oscillations Wlth <I>0 = h/ |e| periodicity
in the enclosed flux ®. (b) The phase difference of the pair of time-reversed trajectories which lead to
oscillations with ®4/2 = h/2 |e| periodicity.

The fundamental periodicity

A(I)AB:(I)O:i

B (2.2)

in the magnetic flux is caused by the interference between trajectories which make a half-
revolution around the ring, as shown in Fig. 2.2(a). The first harmonic oscillation, which

pertains to the periodicity
o
Adppg = 70 = (2.3)

results from interference after one complete revolution, as shown in Fig. 2.2(b). The main
difference between these two types of oscillations is that in non-ideally ballistic samples,
the phase of the one with h/|e| periodicity (2.2) is not fixed relative to zero magnetic
field, it is sample-specific. The magnitude of this phase depends on the microscopic
details of the impurity configuration. On the other hand, as the oscillations with h/2 |e|
periodicity (2.3) arise from the interference of trajectories that make a full revolution in
the ring, they always result in a conductance minimum at B = 0, independently of the
sample. Consequently, in a geometry with many rings in series (or in parallel) the i/ |e]
oscillations average out, but the h/2|e| oscillations remain [70]. The oscillations with
h/2 |e| periodicity are often referred to as Al'tshuler-Aronov-Spivak (AAS) [63, 71, 72]
oscillations, as these authors were the first to suggest that such oscillations should survive
when conductors are disordered. Such conductance oscillations have been observed in
metal cylinders [73,74] and honeycomb networks [75,76] as well as square loop and ring

arrays fabricated in semiconductor heterostructures [32,77].

2.1.3 Spin-dependent interference

As we have mentioned in Section 1.6, in certain heterostructures spin-orbit interaction is

present at the heterointerface as a result of the inversion asymmetry of the bulk crystal
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(Dresselhaus coupling), or of the asymmetry of the confining potential in the growth
direction (Rashba coupling), or both. It was found that in most of the cases the dominant
contribution comes from the Rashba term [57,58,78]. Additionally, this type of spin-orbit
interaction is tunable with external gate electrodes [23,24], which makes it very attractive

for applications in spintronics [6,8,9,79,80].

Figure 2.3: Quantum ring with Rashba spin-orbit interaction [81]. The electric field originating from the
asymmetric confinement potential is perpendicular to the plane of the heterointerface, where the ring
is frabricated. From the rest frame of the electron there is an effective magnetic field in the plane of
the interface, perpendicular to the direction of movement. The precession angles in the left and right
branches are different, leading to spin-dependent interference.

If the electron is restricted to move on a ring within the heterointerface, where Rashba-
type spin-orbit interaction is present — as suggested by Nitta et al. [29,81] — then the
interference will be spin dependent as a function of the external gate voltage that is
applied by a gate electrode which covers the ring. This can most easily be understood
if we look at the effect of spin-orbit coupling from the rest frame of the electron (see
Fig. 2.3). As a result of the asymmetric confinement potential there is an electric field
perpendicular to the heterointerface. The electron sees this field as an effective magnetic
field Beg that is parallel to the plane of the interface (perpendicular to the electric field)
and perpendicular to the direction of its movement, consequently, its spin will precess
around it with a rate that depends on the strength of the Rashba coupling . Since the
direction of the magnetic field seen by the electron is different in every point of the ring
(as the direction of the velocity is always tangential) the phases acquired in the left and
right arms of the ring are not the same: they have opposite signs because the precession
orientation is opposite. This leads to the oscillation of the conductance as a function of the
external gate voltage (Rashba coupling strength), which has been verified by experiments

with single rings [31] and ring arrays [32, 33].

2.2 Model of a quantum ring with elastic scatterers

We have discussed in Section 1.4 that a scatterer placed in the arm of the ring (or the

local application of a gate that affects the properties of one arm) may introduce phase
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shifts in the electron wave function and change drastically the position and/or amplitude
of the Aharonov-Bohm oscillations [31,67,82-85]. The general one-dimensional model of
quantum rings we present here, which was introduced by Biittiker et al. [62], is able to
take into account such elastic scatterers in the arms of the ring as well as in the junctions,
thereby describing the imperfectness of the coupling between the current-carrying leads
and the ring. We will use this model in Section 3 to describe asymmetric injection into
the arms of the ring.

In order to describe elastic scattering in the arms of the ring, the model uses — instead
of a potential V (z) — a transfer matrix t [86], which relates the amplitudes (i, Gous Of
the wave function to the left of the scatterer, to the amplitudes Bout, Bin to the right of

the scatterer (see Fig. 2.4)
ﬁin Bout
t = - ]. 2.4
(ﬁout) ( 6in ) ( )

By taking into account the conservation of probability and time reversal symmetry [87,88],

1o
t = ( ror ) , (2.5)
t t

t = /Ty (2.6)

is the transmission amplitude with 7§ being the transmission probability through the

t is given by

where

scatterer, and x the phase change in the transmitted wave.

ﬂin ﬂout
— —_—

sgout /B in
-«— «—

Figure 2.4: Schematic representation of the potential V' (z) of the scatterer.

An incoming wave from the left of the scatterer of amplitude 1 gives rise to a reflected

wave with amplitude
r = e 2 \/RyelXexe (2.7)

where Ry = 1 — T is the reflection probability and x, is a possible additional phase differ-
ence between the transmitted and reflected amplitudes (note that in case of a symmetric

potential y, = 0). For an incoming wave to the right of the scatterer,
' = e7'2\/RyeXe X (2.8)
is the amplitude of the reflected wave. We note that for the case when the electron is
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scattered on more scatterers in series, one may also determine a transfer matrix of the
form (2.5), which relates the amplitudes on the left of the scatterers to the amplitudes on

their right, thus it is enough to consider one transfer matrix in each arm of the ring.

2.2.1 Closed ring with Aharonov-Bohm flux

Let us consider the ring, shown in Fig. 2.5, which encircles an Aharonov-Bohm flux &
(i.e., the magnetic field is zero in the ring). Let us assume that there are two scatterers
in the ring, with transfer matrices denoted by t; and t,. These transfer matrices give the
amplitudes of the wave functions to the right of the scatterers in terms of the amplitudes
of the wave functions to the left of the scatterers. If we denote the transfer matrix which
yields the amplitudes to the left of the scatterer in terms of the amplitudes to the right

by t}, the two transfer matrices give rise to the combined scatterer t = t)t;.

/
t1,ty
/
7"1,7“1

B b1 @ B fBa

to, té

. J
72,72

Figure 2.5: Closed ring with two elastic scatterers (denoted by the black squares) in the presence of an
Aharonov-Bohm flux ®.

As we follow the wave function around the ring, its phase changes by 20 = 27 ®/d,.

Therefore we can describe this closed ring with the following equation

/ . 62i0 ﬁi _
[thty ] (ﬁ) 0, (2.9)

1
which has nontrivial solutions only if
det [tht; — €] = 0. (2.10)

This is the eigenvalue equation of the closed ring. If we consider two equal scatterers
t) =ty = VTeX, 1 = 1y = 1) = 1l = e72\/Ree'X, where both y and T} are functions of
the energy, then, Eq. (2.10) leads to

cos® x = T, cos? 0, (2.11)
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from which, for a fixed value of @, the discrete eigenenergies F, of the closed ring can be
determined. We note that when no scattering takes place in the arms of the ring, i.e.,
T, = 1, then the phase x is simply the geometrical phase, and the energy FE is related to
it by x = v2m*Epr/h with p being the radius of the ring.

2.2.2 The scattering matrix method to couple leads to the ring

Now let us consider the case, when leads are attached to the ring. In the model of
Ref. [62], at a junction of a lead with the ring (shown by the black triangles in Fig. 2.6),
the three outgoing waves with amplitudes (o, 3’,7’) are related to the three incoming

waves (a, 3,7) by a scattering matrix S:
a'=S5a. (2.12)

Current conservation implies that S is unitary, and time-reversal invariance implies, fur-
thermore, that S* = S~! [87,88]. Consequently, the scattering matrix S has to be

symmetric. As a result, in general, it depends on five independent parameters.

t1, 1]

Figure 2.6: Ring connected to leads with elastic scatterers in the juctions and in the arms.

Biittiker et al. [62] assumed S to be symmetric with respect to the two arms of the
ring, i.e., the probabilities of transmission from the incoming lead into the two arms and
from the two arms into the incoming lead are considered equal, just as those from one
arm to the other. In this way, the number of independent parameters is reduced to three.
In addition to these, one may also assume that S is real, since the division of the elastic

scattering between the S matrix and the t matrices is arbitrary. Consequently, the S
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matrix can be written in the form

—(a+b) Ve Ve
S = Ve a b |, (2.13)
Ve b a

with the following equations between its elements:

(a+b)°+2 = 1
ad+b+e = 1, (2.14)
2ab4+€¢ = 0

There are two types of solutions to Egs. (2.14) for the coefficients a and b:

(a1)x = i% (VI—2e—1), (2.15)

(b)) = i% (VI—2e+1), (2.16)
and

(a2)s = i—% (VI—2e+1), (2.17)

(ba)r = j:% (VI—2e—1). (2.18)

These equations determine all real 3x3 S matrices that are symmetric with respect to

the two arms of the ring as a function of a single parameter €, where 0 < e < %

Let us first consider the solutions a = (a1)+, b = (b1)+. A wave of unit amplitude
coming from the left lead (see Fig. 2.6) is reflected back with probability (a + b)* = 1 —2¢
and transmitted into the two arms of the ring with equal probability e. For e = 1/2, the
junction is completely transparent for incoming electrons and the lead is strongly coupled
to the ring. On the other hand, for € = 0, electrons are totally reflected and there is no
coupling between the lead and the ring. In this case, the transmission probability from
one arm of the ring into the other is b = 1 and electrons in the ring do not see the
junction. Thus € is a coupling parameter and the solutions a = (a;)+, b = (by)+ describe
the transition from the strong coupling limit € = 1/2 to the weak or zero coupling limit
¢ = 0. The solutions a = (a2)+, b = (by)+ describe a transition from strong coupling
e = 1/2 to a situation where the leads and the two arms are completely decoupled: For
e =0 we find a = (ag)y = —(az)- =1, b = (ba)y = —(by)— = 0. These latter two

solutions will not be investigated here.
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2.2.3 Transmission probability through the ring

Let us consider a wave of unit amplitude a; = 1, incident from the left in Fig. 2.6. In
order to find the transmission probability of the ring T' = |a4|* we take ay = 0.
For the amplitudes at the junction to the right, with the help of Egs. (2.12) and (2.13)

we can express the ¥5’s in terms of the 35’s as

Y L[ (*—=a*) a B2 B2
R e R

Using Eqs. (2.12) and (2.13) for the amplitudes at the junction to the left, we can

express the 3;’s in terms of the v;’s

(?) = \/TE (b__la> +t; (i}) . (2.20)

The flux ® introduces phase shifts €' and e in the wave function in the two
arms of the ring where 0 + 05 = 27®/®y. The phase changes ¢; and 6, both taken
in a counterclockwise sense, depend on the length of the arms, i.e., the position of the
junctions of the ring with the leads. Thus the amplitudes in the upper and lower arm are

transferred according to

B2 _ it i M) ey % 2.21
(5;) ‘ 1(@)’ (%) ’ 2(%) 2

Note that in the second equation we have used the matrix which transfers the amplitudes
from right to left. Using Eqgs. (2.19), (2.20) and (2.21) yields an equation for 8] and

alone
By Ve b—a
a(3) - () »

IT = (tje ®tht;e "t — 1). (2.23)

with

The transmitted amplitude is found by eliminating ~, from the equations obtained by
using Eqgs. (2.12) and (2.13) for the right junction, then using Eq. (4.44) to give (3 and
B4 in terms of 3 and [, and eventually by expressing ] and ; from Eq. (2.22):

;e

o= Llb—a)py+ ) = — et

b 2¢ et (T)’ (224)

where

h = det (IT) (:I:l, 1) £, 11! (ﬂ) . (2.25)
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Here we have used the relationship b — a = by — a4 = 4+1. The transmission probability

of the ring is thus given by

e |n’

T(E,®¢) == ——" .
( ) | 2| b4|det(H)|2

(2.26)
Thereby, knowing the specific form of the transfer matrices, which depend on the type
of the scattering potential, one is able to determine the transmission probability through
the ring.

The most simple case however, is when there are no scatterers in the arms of the ring,
and the ring is diametric (the two arms are of the same length). In order to be able to
compare the results of the model which we will introduce in the next section, and this
model, here we present the transmission probability for this case. As T; = 1 the transfer
matrices are responsible only for adding the geometrical phase X to the wave function,
ie., t; =ty = eX, ry = ry = r} = rl, = 0. Furthermore, as the ring is diametric the phases
resulting from the flux are equal in the two arms: 6; = 6, = 0 = 7®/P,. Substituting

these into Eq. (2.26) the transmission probability is found to be

4€? sin? y cos?

T s (I), €) = )
(x ) [a2 4 b2 cos 20 — (1 — €) cos 2x]” + €2 sin® 2y

(2.27)

where  is related to the energy E of the electron by x = v2m*Epn/h with p being the

radius of the ring.

2.3 Spin-dependent propagation in quantum rings

In this section we introduce a one-dimensional model for ballistic quantum rings, which
takes into account the presence of spin-orbit interaction, and assumes that there are no
elastic scatterers in the arms of the ring or at the junction of a lead with the ring. We
will use this model in Chapter 4 and Chapter 5, where we consider quantum rings and
ring-arrays in which Rashba-type spin-orbit interaction is present.

The model is based on the assumption that the ring is formed by one-dimensional leads
in which no scatterers are present. Thus, the Hamiltonian of the ring can be easily given
and its eigenvalues and eigenstates can be determined. As transport is assumed to be
ballistic, the energy of the electron has to be conserved, so that when leads are attached
to the ring, the wave functions in the arms of the ring will be given as superpositions of
the eigenstates of the Hamiltonian corresponding to the energy of the incoming electron.
(We note that the introduction of scatterers into the arms of the ring may be carried out
in the same manner as in Section 2.2, i.e., by relating the wave functions on the two sides

of the scatterer by the transfer matrix, which can be determined by solving the scattering
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problem for the actual form of the potential describing the scatterer.)

At an intersection of a lead with the ring the model uses the following boundary
conditions: (1) the wave functions are continuous and (2) the probability currents are
conserved at the junctions. This latter assumption may be considered as an analogue of
the classical Kirchoff’s law. The probability currents in the leads and the ring can be
obtained by determining the continuity equation from the Schrodinger equation. We note
that these boundary conditions are often referred to as Griffith’s conditions [89] in the
literature. Their concrete form will be presented in Secs. 2.3.2 and 2.3.3, corresponding

to the given problem.

As the model is based on solving the time-independent Schrédinger equation, in Section
2.3.1 we start by presenting the one-dimensional Hamiltonian of an electron in a ring.
Then, in Section 2.3.2, in order to compare the results of this model and the one introduced
in the previous section, we will consider a ring, in which only an Aharonov-Bohm flux is
present. Finally, in Section 2.3.3 we present the solution of the scattering problem on a

ring with two external leads, in which Rashba spin-orbit interaction is present.

2.3.1 The one-dimensional Hamiltonian of the ring in the

presence of spin-orbit interaction

In this section we describe the procedure for obtaining the one-dimensional Hamiltonian in
single-electron picture on a ring in the presence of a magnetic field and Rashba spin-orbit

interaction [90].

The Hamiltonian for a single electron of effective mass m* in the presence of Rashba

spin-orbit interaction and a magnetic field B is given by (see Section 1.6 and Refs. [90,91])

1
Com*

H (P —cA)’ + %a [£ % (P —¢A)| — po - B, (2.28)
where A is the vector potential, B = V x A, « is the strength of the Rashba spin-orbit
interaction, e is the charge of the electron (which is the negative of the elementary charge),
and p is the coupling constant of the Zeeman coupling (which is negative for the electron).
The first term in Eq. (2.28) describes the kinetic energy, the second term is the Rashba

Hamiltonian, and the third one is the Zeeman coupling.

Let us assume that B is pointing in the z-direction. This can be modeled, for example,

by choosing the vector potential (in cylindrical coordinates) to be

B.r )
== = 2.29
2 2mr’ ( )

A, =A.=0, A,
where @ is the magnetic flux through the ring. Then, the Hamiltonian (2.28) in cylindrical
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coordinates, with x = r cos ¢ and y = rsin ¢ reads

H(r.o) B 10 1,a+<1>2 @ s ),a+q>
r = — —+-———|im—+—] | ——(o,cosp+0,sinp) [i— + —
s 2m* | 9r2  rdr 12\ dp P r PO dp @y
hw
+ia (o, cos ¢ — 0, sin @) 5 + TB(TZ, (2.30)

where & = h/ |e| is the flux quantum, o,, 0, and o, are the Pauli matrices, and wp =
—2uB, /h (which is positive, as p is negative for the electron).

In order to find the correct form for the one-dimensional Hamiltonian we need to add
a potential V' (r) — that is small in a narrow region around r = p and large outside this
region — which forces the electron wave functions to be localized on the ring in the radial
direction. For a narrow ring (steep confining potential) the confining energy in the radial
direction is much larger than the spin-orbit interaction energy, the Zeeman energy, and
the kinetic energy in the azimuthal direction. This allows us to solve the Hamiltonian
for the radial wave function first, and treat the other terms in the Hamiltonian (2.30) as
a perturbation. Here we do not present the details of such a calculation [90], we only
mention that in the limit of a very narrow ring, electrons will be in the lowest radial mode
Ry(r). By calculating the matrix element of the perturbation Hamiltonian in this radial

state, we are lead to the following Hamiltonian

h2 (a @)2 hwp a

Hip(p) i— + + ( + 0y sin p) 1.2 P2
i— 4+ — ——o0, — — (0, cos o, sin i— 4+ —
1LY 2m*p? \ dp = Py 2 p P OoysnY dp Py
—12g (o, cosp — o, sing). (2.31)
p

This is the form of the one-dimensional Hamiltonian for electrons on a ring, in the presence

of Rashba coupling and a perpendicular magnetic field [90].

2.3.2 Two-terminal ring with Aharonov-Bohm flux

In this section we show how the model we introduced above can be applied to solve the
scattering problem in the case of a quantum ring, which encircles a magnetic flux ®, as
shown in Fig. 2.7. We assume that no spin-orbit interaction is present now, in order to
be able to relate the results obtained with the model of Section 2.2.

Let us suppose, that B = 0 in the region where the electron moves, i.e., no Zeeman

term is present in the Hamiltonian given by Eq. (2.31):

B2 9 P\
H = i) 2.32
2m*/)2( 1090 <I>o> (2:32)

For the sake of simplicity, let us consider the dimensionless Hamiltonian H =
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Figure 2.7: One-dimensional ring with an Aharonov-Bohm flux and the notations used for the wave
functions in the different sections of the ring. The arrows indicate the directions of the local coordinates.

H/ (h?/2m*p*). Then, the eigenfunctions determined from the time-independent Schrodin-
ger equation can be written as plane waves W(yp) = €™, where n is an integer, and the

corresponding energy eigenvalues depend on the flux as

E (n, ) = (n _ 3>2, (ne). (2.33)

i
These are the eigenenergies of the closed ring, which can easily be shown to be the same
as those obtained from Eq. (2.11) of Section 2.2 when no scatterers are present in the
ring.
Now we turn to the case, when leads are attached to the ring. As we have mentioned
in Section 1.2, the wave function of the electron in such narrow conductors can be given

as a plane wave with wave vector k = /2mFE/h?, E being the energy of the electron.

Thus, the wave function in the left lead in Fig. 2.7 can be written in general as:
Wy(zy) = feh™ 4 e ko (2.34)

where the direction of the local coordinate zy in lead I is shown by the arrow, i.e., f (r)
denotes the amplitude of the incoming (reflected) wave. On the other side of the ring, we

assume that no incoming wave is present:

\IIH(xII) = tGiImH. (235)

Conservation of energy requires that the energy of the incoming electron £ = h2k?/2m*
be equal to the eigenenergies (h?/2m*p?)E(n, ®) of the Hamiltonian (2.32), from which

follows that the wave numbers in the ring have two allowed values

ny = il + kp. (2.36)
Do
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Note that the wave numbers ny in the ring are no longer integers.

As we mentioned before, the wave functions ¥;(y), Ws(p) pertaining to the same
energy F in the different domains of the ring are built up as the linear combination of

the eigenstates of H with wave vectors ny determined by Eq. (2.36):
Ui (p) = ai,+ei”+“” + al-,_ei”‘“”, 1=1,2. (2.37)

According to the model, at the junctions of the leads with the ring, the wave functions
have to be fitted and the net probability currents need to vanish. For example, for the

left juction this means that

U1(0) = W1(0) = Wy(27), (2.38)
J1(0) — J1(0) + Jao(27) = 0, (2.39)

where the form of the probability currents

Ji(z) = 2p7ze{qf;<(xl) (_ia%) xplm)}, (I = L,ID), (2.40)

ae) = medwio) (i - g wef, (=12, @

8@ @0
is determined from the continuity equations obtained from the respective Schrodinger

equations.

Solving the set of equations (2.38) and (2.39) that we get for the two junctions, the am-
plitude ¢ of the transmitted wave, and consequently, the transmission probability through
the ring, can be determined. If we assume that the incoming amplitude is f = 1, and the
ring is diametrical (7 = 7) — which we have already examined with the model presented

in Section 2.2 — the transmission probability is given by

4sin” (kpm) cos? (%W)

T — |t|2:

5 : (2.42)
[i + cos <%27r> — 2 cos (2k:p7r)] + sin? (2kpr)

If we compare this to the result (2.27) obtained with the model of Section 2.2, with
Y = V2m*E /hpm = kpr, which is the phase accumulated in one arm, then we can see
that the result (2.42) obtained here without the assumption of scatterers in the juctions,
is equal to (2.27) if the coupling parameter € is 4/9, i.e., it corresponds to a strong, but
not maximal coupling between the leads and the ring. This is due to the property of
the Griffith’s conditions, that they consider the lead and arms joining in a junction to be
completely equivalent, thereby, besides the transmitted amplitude, they lead to a reflected

one as well in each of the wires (corresponding to an .S matrix with € < 1/2). At the same
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time, in the case when a lead is maximally coupled to the arms (which is desrcibed by an
S matrix with € = 1/2), it is treated to be inequivalent from the other wires (the arms of
the ring), as no reflected amplitude results from the incoming one in the lead, there are

only transmitted amplitudes from the arms.

2.3.3 Two-terminal ring with Rashba spin-orbit interaction

In this section we present the solution of the scattering problem in a two-terminal quantum

ring, in which only Rashba-type spin-orbit interaction is present [34].

In this case the one-dimensional Hamiltonian (2.31) derived in Section 2.3.1 (with
¢ /Py =0, wg = 0) can be written in the simplified form [92]:

2

8 2
(—i— + 250 (0, cosp + oy sin gp)) “so

H = Q) _
dp 290 402

, (2.43)

where Q = h/2m*p? and wso = «/hp is the frequency associated with the spin-orbit
interaction. Apart from constants, this Hamiltonian is the square of the sum of the z
component of the orbital angular momentum operator L, = —id/dy, and of (wso/Q)S,,

where S, = 0,./2 is the radial component of the spin (both measured in units of ).

In order to solve the eigenvalue equation of the Hamiltonian (2.43), it is practical to
look for operators that commute with it. It can be shown that H commutes with K =
L.+ S, the z component of the total angular momentum and with Sy, = S, sin 0 cos ¢ +
Sysinfsin ¢ + S, cos ), the spin component in the direction determined by the angles 6,
and ¢, where 6 is given by

wso
tanf = ———==. 2.44
an o ( )

It is easy to prove that the commutator [K, Sp,] = 0, therefore, simultaneous eigenstates
of H, K and Sy, exist. In the {|T),||)} eigenbasis of S, we can find these in the form

. e_igu(lu')
w(/{/’ ()0) = eln(p l£ (u) ) (/’L = ]" 2)7 (2‘45)
ez
obeying
Ky(k,0) = r(k,p), (2.46)
Soph(k,0) = s(k)(k,p), s(k) ==+, (2.47)
where w i
p I R,
= <tan€) _ 1) (2.48)
ul) 2 £50
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and w = 1/1 + (wso/Q)*. The corresponding energy eigenvalues are
1
EW (k) = hQ) (KQ + (=1)"kw + Z) . (p=1,2). (2.49)

In a closed ring k4 1/2 must be an integer (we have seen this in the previous section),
while if one considers leads connected to the ring, there is no such restriction: the energy
E of the incoming electron is a continuous variable, with which, as a result of energy
conservation, the eigenvalues of the ring Halmiltonian (2.49) have to be equal. Thus, the

possible values of k can be written as

e (— + (—1)jq) , (2.50)

where ¢ = \/ (ws0/29)° + E/hQ. We can see, that the energy eigenvalues are fourfold
degenerate: j = 1,2 correspond to two distinct values of \/ﬁ;“ )], while the additional de-
generacy at a given j is resolved by the sign of /1;“). Since (tanf/2)M) = —(cot §/2)@),
we may choose to parametrize the components of the eigenvectors by (tan/2)) =

(1 —w)/(wso/S?) = tan /2. Then, the four eigenstates can be expressed as
(1) (D D (€715 cos g 2,2 W (€7 sin g

,lvbj (K’j 7@) =e ig . ) 77ij (K’j 7SD) =e -% 0] (251)
2

This means that the Hamiltonian has two eigenspinors (determined by the value of p),
and to each of these spinors there are two wave numbers (specified by the value of 7). We
note that in the experimentally achievable range of the parameters (see text below) ¢ is
usually larger than w/2. Thus, for each eigenspinor, j = 1 and 2 results in wave numbers

of different sign, i.e., a clockwise and a counterclockwise direction of rotation.

The wave functions in the upper and lower arms of the ring (using the same notations as
in Fig. 2.7) can be written as linear combinations of the four eigenspinors corresponding

to the given energy
Ti(p) = Y ap(sl g) i=12. (2.52)

pj=1,2
The wave functions in the leads — similarly to Eqs. (2.34) and (2.35) presented in the
previous Section — are built up as linear combinations of plane waves, but in this case

with spin-dependent amplitudes, i.e., f, r, and ¢ denoting two-component spinors:

Uy (zy) = (?) e + (:T> ek Wy(an) = (?) et (2.53)
1 ! i

In order to determine the transmission properties of the ring, we need to apply the
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boundary conditions introduced at the beginning of Section 2.3, i.e., at the junctions of
the leads with the ring we need to fit the wave functions, and require the conservation of
the current densities. If we assume that there are no spin-flip processes at the junctions,
then we can require the spin probability currents to be conserved. These conditions can
be formulated similarly to Egs. (2.38) and (2.39), but now the wave functions being
given by Eqgs. (2.52) and (2.53), and the probability currents being replaced by the spin

probability currents:

J(x) = 2pRe {\If}(xl) (—ia%) \Ifl(xl)} . =111, (2.54)

0
i) = 2me{wl(e) (~igh + 200 ) wia}, 1= 12 (2.55)
which can be found by determining the continuity equation from the Schrodinger equation
[92]. We note that U is the usual two-dimensional Hilbert space inner product.

By solving the set of equations (2.38) and (2.39) that we have for the two junctions,
the spin-dependent amplitude ¢ of the transmitted wave, and consequently, the 2x2 trans-

mission matrix 7" which transforms the incoming spinor as t = T'f can be determined:

o)

T =|T,|e=2U, (2.56)

where the matrix elements of U are given by

0 0

Uy = U= e i3 i gin? 3 + €' cos? 3 (2.57)
* R 20 S 5 .
Uy = —Uj=ie sin 5 sin 6. (2.58)
and the phases ¢y and ¢ are obtained as
T,| and the phases dy and ¢ btained
id. 41kloq +i¥ : iwm L2
|T,| €% = ——¢*"27 [sin (¢ (27 — 7)) — e sin (¢7)] (2.59)
Y
So=04+0_, d=04—0_, (2.60)

where
y = k?p* [cos (2q (1 — 7)) — cos (2q7)] + 4ikpgsin (2q7) — 4q° [cos (wr) + cos (2q7)] .

Let us note that if v = 7 and wgo = 0, i.e., there is no spin-orbit coupling, then the off-
diagonal elements of T are zero, and the diagonal elements are equal to the transmission
probability we get from Eq. (2.42) in the case when ®/®q = 0.

The important fact is that T" can be written as the product of a complex number the
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absolute value of which is a non-negative constant with |7%,| < 1, which can be considered
as the efficiency of the transformation, and a unitary matrix U, which performs a nontrivial

spin transformation.

19 19.5 20 205 21

Figure 2.8: The transmission probability through a diametric ring (y = m) as a function of kp for
|§| = /4, where the transformation is a rotation of the spin around the y axis by 7/2 (solid curve). The
transmission probability of the same ring for zero spin-orbit coupling (dotted curve).

Figure 2.8 shows the transmission probability |T,|* = LTr (TTT) through a diametric
ring (v = ) as a function of kp around kpp = 20.4, corresponding to a ring of radius
0.25 pm and a Fermi energy 11.13 meV of InGaAs, for |#| = /4 (solid curve). It can
be seen that for several values of kp the transformation is strictly unitary, with |T,| = 1.
As compared to the case when no spin-orbit interaction is present (dotted curve) one can
see, that for certain values of kp the ring is completely opaque for the electrons.

Various types of rotations can be realized by tuning the strength of the Rashba
coupling, changing the position of the junctions, or by fabricating rings with different
sizes [34].

2.4 Conclusions

In this chapter we have introduced two widely used models of ballistic quantum rings,
which are based on the assumption that narrow rings, in which only one radial mode
takes part in the conduction, may be considered one-dimensional. One of the models
(see Section 2.2) inherently contained elastic scatterers in the arms of the ring as well
as in the junctions of the leads with the ring, and was able to account for the effect
of a magnetic (Aharonov-Bohm) flux encircled by the ring. This model considered the
injection of the electron from the leads into the two arms of the ring to be symmetric,
by using a scattering matrix, in which the elements corresponding to these probabilities
were equal. In Section 2.3 we have presented another model, which is more appriopriate
for the theoretical description of spin-dependent transport through quantum rings. We

have seen that this model does not account for any scatterers in the arms of the ring or
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at the junctions. Instead of using a scattering matrix at the junctions, this model simply
requires to fit the wave functions and the corresponding probability currents. We have
used this model to solve the scattering problem of a two-terminal quantum ring which
encircled an Aharonov-Bohm flux, and a ring, in which Rashba-type spin-orbit interaction
was present. In the spin-dependent case we have seen that the wave functions in the arms
of the ring are linear superpositions of the four eigenstates of the ring Hamiltonian that
pertain to the fourfold degenerate energy eigenvalue, determined by the energy of the
incoming electron. We have seen that this scattering problem can be solved analytically,
and the transmission probability (or consequently, the conductance) can be determined.
In the following part of the dissertation we will use the first model to take into account the
possibility of asymmetric injection into the two arms of the ring, and the second model

to solve the scattering problem of a ring with three terminals, and an array of rings.
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Chapter 3

Aharonov-Bohm oscillations in a

ring with asymmetric injection

In this chapter we study electron transport in the presence of an Aharonov-Bohm flux
through quantum rings in which the probabilities of transmission from the leads into the
two arms of the ring are different, and we also allow different propagation properties
in the two arms [93]. In order to determine the transmission probability through such
rings we use the model introduced in Section 2.2, i.e., we consider elastic scatterers in
the junctions and in the arms of the ring. First, in Section 3.1 we define an appropriate
scattering matrix to couple the leads to the ring, which is able to take into account the
asymmetry of injection into the two arms. Then, in Section 3.2 we solve the scattering
problem for two cases: when no scatterers are present in the arms of the ring (Section

3.2.1) and when a scatterer is placed in one of the arms of the ring (Section 3.2.2).

3.1 Introduction of arm-dependent asymmetry into

the scattering matrix

In a real quantum ring the coupling between the current-carrying leads and the ring can
be complicated. Reflections may be present at the junctions of the leads with the ring,
and/or the probabilities of transmission from the leads into the two arms of the ring may
be different. This asymmetry can be a consequence of fabrication defects but it can also
be induced by the Lorentz force [35,94].

In Section 2.2 we discussed a model which relates the three outgoing waves with
amplitudes (o, #',7') and the three incoming waves with amplitudes (o, 3,7) at each
junction of a lead with the ring (indicated by the black triangles in Fig. 3.1) by a 3x3

scattering matrix S
a'=57, (3.1)
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Figure 3.1: Ring connected to leads with elastic scatterers in the junctions and the ring.

which treats the two arms of the ring in a symmetric way, i.e., the matrix elements of
S describing the transmission probability from the lead into the upper and lower arms
being equal.

Based on the general requirements for the scattering matrix [87,88], here we define an
appropriate S matrix, which treats the upper and lower arms of the ring in an asymmet-

rical way. Current conservation requires S to be unitary

St =g, (3.2)
while time-reversal invariance demands that

S* =51 (3.3)

As a result, S is necessarily a symmetric matrix. For the sake of simplicity, here we will

further assume that it is real. Then S is given by

a b c
S=1b d e |, (3.4)
c e f

where the square of the diagonal elements are the reflection probabilities into the re-
spective channels, while the square of the off-diagonal elements give the transmission
probabilities from one channel to the other (e.g., b? is the transmission probability of the
electron from the lead into the upper arm). The unitarity (3.2) of the S matrix leads to

the following relations between its elements:

a4+ b+ = 1, (3.5)
V4+d*+e* = 1, (3.6)
e+ o= 1, (3.7)
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ab+bd+ce = 0, (3.8)
ac+be+cf = 0, (3.9)
bc+de+ef = 0. (3.10)

In order to introduce an asymmetry between the two arms, for convenience, we assume

b= Ac (A = 1 meaning equivalent arms). Then, from Egs. (3.9) and (3.10) we find

e = —Aa+d), (3.11)
f = —a—d+1. (3.12)

By using b = Ac in Eq. (3.6) we can determine b as a function of A and a:

1— 2
po g VIza (3.13)
]

where p = v/A%2 4 1, and in order for b to be real |a| < 1. Then Eqgs. (3.6)-(3.7) and (3.11)

determine d as

Aa—1
d="2 (3.14)
i
Thus, each element of S can be expressed in terms of a and A:
a v v
S=1 X w n—a —-A\n |, (3.15)

v —=Xn 1-—n

where v = Vl;“Q, n= “M%l, and —1 <a < 1.
The above equation for A = 1 (i.e., symmetric arms) shows that the S matrix is
indeed of the form given by Eq. (2.13). By taking this limit, we can also determine the

realtionship between a and the coupling parameter € of Section 2.2.2, namely
a’?=1—2e. (3.16)

As a is the element of the S matrix which connects the incoming and outgoing amplitudes
in the lead, the coupling between the lead and the ring is perfect when a = 0, while a = 1
corresponds to no coupling at the junction. These two limits correspond to those of € in

Section 2.2.2: a = 1 corresponding to e =0, and a = 0 to e = 1/2.
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3.2 Solution of the scattering problem with arm-

dependent asymmetry

In the following, we show the detailed calculation of the transmission probability T = |4 ]2

through the ring when there is an asymmetry between the arms included in the S matrix,

derived in the previous Section. Based on the model of Section 2.2, we describe the

elasctic scattering in each arm (indicated by the black squares in Fig. 3.1) by a transfer

matrix of the form given by Eq. (2.5). For the usual scattering from the left we take

the incoming amplitude oy = 1, and assume that there is no incoming electron from the

right, i.e., ap = 0.

For the right junction from Eq. (3.1) we obtain

oy = b+ e,
By = dfBs+ ey,
vy = €eba+ frye.

Using Egs. (3.17) and (3.18) we can write

(’Yé) —tj (@) ’
2 By

o1 e—yd g
2me\ a4 1)

For the left junction from Eq. (3.1) we obtain

where the matrix t;; is

o) = a+bB+cm,
ﬁi = b+dﬁ1+€’717
N o= ctefit+fn

Using Egs. (3.23) and (3.24), we can write

B :1 be — dc 1t M
b1 € —c g ")’

where the matrix t;; is given by (3.21) with d and f interchanged.

(3.17)
(3.18)
(3.19)

(3.20)

(3.21)

(3.22)
(3.23)
(3.24)

(3.25)

The connection between the amplitudes in the upper arm of the ring, i.e., the effect
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of the scatterer, and the magnetic field can be written as

Oa) _ g, (P 3.26
()= (3 o

while, for the amplitudes is the lower arm we can write

/
) =gy (2 (3.27)
24! Y2

where t; and t, are the transfer matrices associated with propagation in the upper and
lower arm (see Fig. 3.1), given by Eq. (2.5). ¢, and 60 are the phase shifts introduced by
the flux ® = mp?B in the two arms, B being the perpendicular magnetic field and p the
ring radius. These shifts satisfy the relation 6, + 6y = 27®/®,, where &y = h/ |e| is the
flux quantum.

Combining Eq. (3.20) and Eqgs. (3.25)-(3.27) we can write

By _ 1 [be—dc
()2 () -

IT = t; e ®tht e "1t — 1, (3.29)

with

where 1 is the 2x2 unit matrix. The transmitted amplitude o, can be expressed from

Egs. (3.17) and (3.18):
gy = ! (be — cd, c) <ﬂ2> ) (3.30)

from which, by using Egs. (3.26) and (3.28) it can be determined as

1 . 1\ (be — cd
oy = = (be — ed, c) e, T (—-) ( e ) . (3.31)
e

€ —C

In what follows, we consider two cases: in Section 3.2.1 we suppose that no scatterers
are present in the arms of the ring, then, in Section 3.2.2 we assume that a scatterer
is present in one of the arms. (We note that the case with scatterers in both arms can
be treated in the same way.) For the sake of simplicity, we restrict our calculations to

diametric rings, i.e., rings with arms of equal length.

3.2.1 No scatterers in the arms

When no scatterers are present in the ring, the transfer matrices simply represent the

geometrical phase y attained by the wave function in the arms (which are of equal length),
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ie. t; =ty =X, r; = ry =] =1, = 0. This geometrical phase is related to the energy
E of the electron by y = v2m*Enp/h. (We note that for a ring of radius p = 0.25 pm
in InGaAs, where the Fermi energy is 11.13 meV, x corresponds to 20.47). The phases
due to the encircled magnetic flux are 6, = 6, = 7®/P;. Then, using Eq. (3.31), the
transmitted amplitude is given by

21 (1 — a*) Ae™ (A2 + ¢%?) sin x

ol = . , (3.32)
(14+a)"Ag — A2[F (x,a) + 2d]

where

A = N+,
Ay = M +2\cos(20) +1,

and
F(x,a) = (1+a*) cos(2y) —i(1 — a®)sin (2x).
Then, the transmission probability takes the following form:
4(1 —a2)? A2Agsin® y
[(1+ a)® Ag — Azax}2 + (1 — a2)® Atsin? (2)()7

T = (3.33)

where a, = (14 a?)cos(2x) + 2a. It can be shown that the transmission probability
given by Eq. (3.33) is invariant under the change A — 1/, representing the fact that
asymmetry can favor the arms equally without changing the transmission properties of

the ring.

Figure 3.2: The effect of asymmetric injection on the transmission probability when no scatterers are
present in the ring, and the coupling between the ring and the leads is assumed to be ideal, i.e., a = 0.
Black and red curves correspond to symmetric injection (characterized by A = 1) and asymmetric injection
(characterized by A = 3), respectively. (a) Transmission as a function of x, for /P = 0.1 (solid curve)
and /Py = 0.4 (dashed curve). (b) Transmission as a function of the flux ® (in units of ®g) for x = 20.57
(solid curve) and x = 21.067 (dashed curve).
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Figure 3.2 shows the transmission probability given by Eq. (3.33), as a function of x
for two different values of the flux, and as a function of ®/®, for two different values of y.
In both cases, we assume that the coupling between the leads and the ring is maximal, i.e.,
a = 0. This corresponds to the value 1/2 of € in the case presented in Section 2.2.2. The
figure also shows the effect of asymmetric injection (red curves) with respect to the case
when the arms of the ring are symmetric (black curves). We note that for A = 1 the results
coincide with those of Ref. [62]. It can be seen in Fig. 3.2(a) that the ring is completely
opaque for integer values of 7 irrespective of the value of the flux, even if the coupling
is maximal. Asymmetric injection increases the transmission for both values of the flux
compared to the symmetric case, but is not able to remove the transmission minima. In
Fig. 3.2(b), the transmission probability shows oscillations with period ®y, which is a
manifestation of the Aharonov-Bohm effect. For A > 1 the destructive interferences are
not complete due to the fact that the electron enters one of the arms (in this case the

upper one) with higher probability.
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Figure 3.3: Transmission probability of the ring when an asymmetry characterized by A = 3 is present
between the two arms of the ring: (a) as a function of y for ®/® = 0.4, and (b) as a function of the flux
® (in units of ®g) for x = 20.57, for different strength of the coupling between the ring and the leads.
Solid, dashed and dotted curves correspond to a = 0.25, 0.5 and 0.75, respectively.

Figure 3.3 shows the dependence of the transmission probability on the coupling bet-
ween the ring and the leads, characterized by the parameter a when no scatterer is present,
and there is an asymmetry between the two arms of the ring, corresponding to A = 3. In
Fig. 3.3(a) the value of the flux is set to /Py = 0.4. Even though the asymmetry increases
the transmission compared to the symmetric case (see Fig. 3.2(a)), as the coupling between
the ring and the leads gets weaker, the transmission probability decreases. However,
there are certain values of x, i.e. the energy (or wave number) for which the ring is still
completely transmitting. These transmission peaks get narrower as a is increased. In
the case of symmetric injection and weak coupling it has been pointed out in Ref. [62]

that these resonances in the transmission can be related to the eigenenergies of the closed
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ring. For such a ring with ®/®, = 0.4, one obtains from the eigenvalue equation of the
closed ring (2.11) that the transmission peaks are located at y = (I & ®/®y) m, where [
is an integer. It can be seen that in our case, asymmetric injection shifts the positions
of these peaks, and the eigenstates of the closed ring can not be directly related to the
resonances. In Fig. 3.3(b), where y is set to 20.57, it can be seen that there is an overall
decrease in the transmission probability. The amplitude of the oscillations pertaining to
the non-resonant value of x decreases as the coupling at the lead-ring junctions decreases.
Additionally, the phase of the oscillations are shifted by w. The sinusoidal dependence
of T on ®/P, stems directly from the fact that the transmission probability is given by
(3.33), and especially because of the numerator for A > 1.

3.2.2 Scatterer in the arm

In this section we assume that there is a scatterer in one arm of the ring, e.g., in the
upper arm. Then, the elements of the transfer matrices in the arms of the ring are
determined by the following transmission and reflection amplitudes: t; = /Tye!X ),
ty =X, ry =1 = /Ree 260+ 1y =yl = 0, where Y is the geometrical phase and &y
is the phase difference between the two arms due to the presence of the scatterer. The
phases resulting from the magnetic flux are 6; = 0y = 79/ Py.

In this case the transmission amplitude determined from Eq. (3.31) takes the form

21 (1 — a?) Ae? [sin (x + dx) + A2V/Tee ¥ sin x — /Ry]
(1+a)® Mgy — A2 [F (x, a,0x) + 2a cos 6x] — 2AV/RG (x, a) + H (a, 6X)’

(3.34)

A
()é2—

(1—|—>\4) coséx—i—Z)\Q\/_cos 20),
F(x,a,6x) = (1+a*)cos(2x+dx)—i(1— )sin(2x+5x),
(1-2Xa+a*)siny +1i(1—a)cosy, (3.35)
H(a,6y) = i(1—a*) (1—X")sin(Ay).

In order to save space, we do not present here the explicit form of the transmission
probability T = |a4|?, as it can be easily calculated from Eq. (3.34).

Figure 3.4 shows the transmission probability through the ring as a function of the flux
when a weak scatterer (Ty = 0.95) is present in the upper arm of the ring for x = 20.3.
We assume that the coupling between the ring and the leads is maximal (a = 0). Black
and red curves correspond to A = 1, and A = 1.6, respectively. For clarity, we shifted the
dashed and dashdotted curves by +1 and 42, respectively. Figure 3.4(a) shows how the
oscillations of the transmission are affected by the phase difference caused by the scatterer,
as dx is changed from 0 to /3, and 27/3, and in Fig. 3.4(b) from 7 to 47 /3, and to 57 /3.
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Figure 3.4: Transmission probability through the ring when a scatterer is present in the upper arm of
the ring with strength 7, = 0.95 as a function of the flux ® (in units of ®() for x = 20.37 and maximal
coupling (a = 0). Black and red curves correspond to A = 1, and A = 1.6, respectively. Dashed and
dashdotted curves are shifted by +1 and +2, respectively. Solid, dashed and dashdotted curves in (a)
correspond to dxy = 0, 7/3, and 27/3, while in (b) to 0x = 7, 47 /3, and 57/3, respectively.

It can be seen that as a result of the phase introduced by the scatterer, the phase of the
oscillations are shifted when Jdy is increased from 0 to 57/3. Destructive interference in
the symmetric case is not complete as propagation in the lower arm is free, while in the
upper arm, the scatterer has a probability Ry = 0.05 to reflect the electron. In the case
characterized by A = 1.6 (red curves), when asymmetry favors the upper arm of the ring,
where the weak scatterer is located, the transmission minima shift to higher values. In
this case, complete destructive interference does not take place as propagation through
the upper arm has a higher probability. It can also be seen, that the phase difference dx
also changes the amplitude of the oscillations.

Figure 3.5 shows the transmission probability as a function of the flux for two values of
the geometric phase y, when a strong scatterer (Ty = 0.25) is present in the upper arm of
the ring, and the coupling between the ring and the leads is maximal (a = 0). Black and
red curves correspond to symmetric (A = 1), and asymmetric injection (characterized by
A = 2), respectively. Solid, dashed, dashdotted, and dotted curves correspond to dx = 0,
7/3, 2w /3, and 7, and are shifted by +1, +2, and +3, respectively. It can be seen that —
contrary to the case of a weak scatterer — the difference between the phases acquired in
the two arms of the ring (dx) here does not change the phase of the oscillations. However,
similarly to the previous case, it may slightly modify their amplitude. When injection is
symmetric, then, similarly to the case when a weak scatterer was present in the upper
arm, transmission minima are not zero, as destructive interference is not complete, due to
free propagation in the lower arm. The effect of asymmetric injection (red curves), which
favors the arm in which the scatterer is located, is an overall decrease of the transmission

probability. This may be expected from the fact that the electron is injected towards the
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Figure 3.5: Transmission probability through the ring as a function of the flux when a scatterer is
present in the upper arm with 7y = 0.25, (a) for x = 20.47 and (b) for x = 21.6mr. We assume perfect
coupling (a = 0) between the ring and the leads. Black and red curves correspond to A = 1, and A = 2,
respectively. Solid, dashed, dashdotted, and dotted curves correspond to dx = 0, 7/3, 27/3, and T,
respectively. Dashed, dashdotted, and dotted curves are shifted by +1, +2, and +3, respectively.

scatterer with a higher probability than into the other arm, and the scatterer transmits
the electron with a small probability. It can also be seen that there are certain values
of the phase difference 9y, where asymmetric injection leads to complete destructive

interference.

3.3 Conclusions

We determined the transmission through a one-dimensional ring, in the presence of an
Aharonov-Bohm flux, using a scattering matrix in the junctions of the leads with the
ring, in which the elements describing the probability of transmission from the lead into
the two arms were different. We evaluated the transmission probability through the
ring assuming no scatterers in the arms and showed that asymmetric injection increases
the transmission probability as a function of the geometric phase acquired in the arms
of the ring. We also showed that the asymmetry parameter affects the amplitude of the
transmission oscillations as a function of the magnetic flux: the transmission minima shift
to higher values due to incomplete destructive interference. We investigated the effect of
the coupling between the leads and the ring when asymmerty was present between the
two arms. We found that the probability of transmission is decreased except for certain
values of the geometric phase, where the ring may still be completely transparent for the
electrons. For other values of the geometric phase, an overall reduction of the transmission

could be seen as a function of the magnetic flux. We also investigated the case when
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a scatterer was present in the arm of the ring, which was also favored by asymmetric
injection. We showed that in the case of a weak scatterer the phase of the oscillations
is shifted as the phase introduced by the scatterer is changed. Furthermore, asymmetry
leads to the increase of transmission minima. In the case of a strong scatterer, we showed
that the phase of the oscillations of the transmission probability as a function of the flux
is insensitive to the phase difference resulting from the presence of the scatterer. We
showed that an asymmery, which favors the arm in which the strong scatterer is present,

leads to an overall decrease of the transmission with respect to the symmetric case.
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Chapter 4

Three-terminal quantum ring with

spin-dependent propagation

The realization of spin-polarized transport is an important issue of spintronics. Several
systems have been proposed for this purpose. A four-terminal mesoscopic device similar
to the Mach-Zehnder interferometer with a local Rashba spin-orbit interaction in one arm
and a global magnetic field was shown to be equivalent to the optical polarizing beam
splitter [99]. An electron spin filter based on a branching geometry was proposed in
Ref. [100] for generating spin-polarized currents via Rashba spin-orbit coupling without
the use of spin-dependent interference. In Ref. [101] it was shown that in a narrow gap
semiconductor quantum well or quantum wire, an observable electron spin current can
be generated with a time-dependent gate which modifies the Rashba spin-orbit coupling
constant. A device that achieves spin filtering by momentum-resolved tunneling between
parallel electron waveguides due to Rashba spin-orbit coupling was proposed in Ref. [102].
In Ref. [103] the elastic scattering of unpolarized electrons by a nonuniform Rashba cou-
pling strength in a two-dimensional electron system was shown to lead to almost full
polarization around the forward-scattered beam. In Ref. [104] it was shown that highly
polarized transport can be achieved in a two-dimensional electron gas that is periodically

modulated by ferromagnetic and Schottky metal stripes.

In this chapter we investigate the possiblity of spin-polarization with quantum rings,
which are attached to three current-carrying leads. Fisrt, in Section 4.1, we solve the
scattering problem of such a ring with Rashba spin-orbit interaction and a perpendicular
magnetic field for the most general boundary condition in the terminals [95]. Then, in
Section 4.2, we show that a three-terminal ring with one terminal acting as an input and
two terminals acting as outputs, can operate as a spin beam splitter: different polariza-
tions can be achieved in the two output channels from a totally unpolarized incoming
spin state [96,97]. In Section 4.3, we investigate in detail the physical background of this

polarizing effect, and show that it is a result of an appropriate interference of states that
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carry oppositely directed currents [97]. Finally, in Section 4.4 we show that in a three-
terminal ring the spatial degree of freedom, i.e., the presence of two different possible
output channels, gets intertwined with the spin direction as a consequence of quantum

interference and spin-orbit interaction [98].

4.1 Formal solution of the problem

In this section we solve the scattering problem of a three-terminal quantum ring in which
Rashba-type spin-orbit interaction and a perpendicular magnetic field are present, using
the model presented in Section 2.3. We assume that the magnetic field is weak enough to
be treated as a perturbation. We determine the spinor-valued wavefunctions for the most
general boundary condition, i.e., when there are incoming and outgoing waves in each
terminal [95]. We note that although the results of the following sections of this chapter
are obtained for a less general boundary condition (namely, having only one input) and
zero magnetic field, we chose to start here from this most general case in order to derive

results that are suitable for using in Chapter 5 as well.

Let us consider a quantum ring of radius p located in the x — y plane in the presence
of Rashba spin-orbit coupling [22] and a perpendicular magnetic field B. We have seen
in Section 2.3.1, that the Hamiltonian of a single electron is then given by Eq. (2.31). If
B is relatively weak, then the interaction between the electron spin and the field, i.e. the

Zeeman term can be treated as a perturbation and the relevant dimensionless Hamiltonian

reads [90,92]
. 8 P wso 2 wgo
H= |-t - — 429, ) _%0
[( e T By 29") 102

where ¢ is the azimuthal angle of a point on the ring, ® denotes the magnetic flux encircled

+ Hpa (41)

by the ring, &y = h/ |e| is the flux quantum, and wso = «/hp is the frequency associated
with the spin-orbit interaction. hQ) = h%/2m*p* characterizes the kinetic energy with
m* being the effective mass of the electron, and the radial spin operator is given by

0, = 0, 08¢ + 0, sin . The perturbative Zeeman term H,, is given by [92]
H,=—o,, (4.2)

where wp = —2uB/h = g*eB/4m with g* and m being the effective gyromagnetic ratio

and the free electron mass, respectively.

The energy eigenvalues of the unperturbed Hamiltonian are the same as those of the

case when only Rashba spin-orbit coupling is present, being given by Eq. (2.49) with
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replaced by (k — ®/®y):

where
w=1/1+ == (4.4)

The corresponding eigenvectors in the {| T,),| |.)} eigenbasis of o, have the same form

as the eigenspinors (2.45):

. eiigu(#)
VW (k, @) = e : (4.5)

els )
where
) @) 0
u’ = —v¥=cos, (4.6)
0
u? = oM =sin 2 (4.7)
and 0 0
tan — = — (1 — . 4.8
an >~ o w) (4.8)

In order to treat the perturbation, we need to determine the matrix elements of H}, in

the basis of these eigenstates

W W\ _ (_qyt1 @B _(_qprrwsl
(00| Hy |69 = (-1 <2 cosp = (-1 <21 (1.9

(W] Hy [p?) = < sin. (4.10)

In the first-order approximation one neglects the off-diagonal elements; this is reasonable
if they are small, i.e., if wg/Q < k?p?, where k denotes the wave number of the incident
electron, which, as we have mentioned in Section 2.3, is described as a plane wave. Within
this approximation, the eigenspinors are not perturbed and their direction is still specified
by the angle 6, given by Eq. (4.8). The energy eigenvalues including the first-order

corrections are given by

Wi, 1
EW(r) = E¥(k) + (=1)* oo (4.11)

As we have seen in Section 2.3, the energy of the incoming electron F = h?k*/2m* has
to be conserved, therefore the condition E/hQ = k?p? = EW (k) determines the possible
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values of &: D
W) = (—1y! [E (=) W]+ (4.12)
2 o
where p,7 = 1,2 and
1
W — Jg2 g (—q 2 4.13

with ¢ = /(ws0/2Q)2 + k2p2. To the four different /11;-” ) the following four eigenstates
correspond (j = 1,2):

_ie 0
1 1 it € 2CO0S5
DR, ) = e @( . 92>, (4.14)
e'2 sin 5
—i& . 9
L (2) e 'zsin 2
¢§2)(I€§»2)790) _ 61,.;_7_2 © ( » 29) ‘ (4.15)
—€'2 cos 5

The wave function for a given energy E in the different sections of the ring is the linear

combination of these states.

In the following we will show the detailed solution of the scattering problem for a ring
with three terminals, shown in Fig. 4.1, where we assume that spin-orbit interaction is
only present in the ring, but not in the leads. We consider the most general boundary

condition, when there are incoming and outgoing waves on each terminal, i.e.:

) = (fl)T eikacl (TZ)T e—ikxl | =
U, (21) ((m) +<(”)1> , (I =LILII). (4.16)

The wave functions belonging to the same energy in the different sections of the ring are:

g, (1)
' . (1) m(_mw e 22U
\I]z (90) - E :ai,j e’ ( ei%fu(”) ) ’ (417)

1]

where u*) and v are given by Eqs. (4.6)-(4.7), and the subscript i = 1,2, 3 denotes the
sections of the ring in the counterclockwise direction, starting from the position of the

incoming lead (see Fig. 4.1).

We have seen in Sec. 2.3.3 that at the three junctions the wave functions and the spin

probability currents need to be fitted:
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I S

Figure 4.1: The notations used for the incoming and outgoing amplitudes in a three-terminal quantum
ring. fi, r1, fi1, etc. denote two-component spinors.

By determining the continuity equation, the spin probability currents J; (¢) in the ring
can be shown to be given by [95]:

3(9) = 2Re [0 ) (i + 200, ) — £ ) el (119)

The spin probability currents J; (x;) in the leads, where no spin-orbit interaction is present,
are given by Eq. (2.54).

From Eqgs. (4.18) we can determine the outgoing spinors (ry, rp and rqpp) as a function
of the incoming ones ( fi, fir and fi1). This connection can be described by 2x2 reflection
and transmission matrices, like the one given by Eq. (2.56), but now we have one reflection

and two transmission matrices for each input:

ri = ROfy + T fy + T fu, (4.20a)
= Tlflfl + anf]l + TQfmf]]I, (420b)
T :TJIfI—FTlfo]I—FRfmf]]I. (420(})

The R matrix, which describes the reflected part of the input f; into lead I is given by:

R 0 6
R{# = W cos? 3 + 0¥ sin? 3 1,
R 6 0
R{Il = (oW — 5®)sin 5 Co8 5,
R = R (421)
Rfl _ A(l) 2 Q + A(2) 2 Q o 1
o= 07sin® g+ 0% cos” 5 — 1,
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where

o = ziﬁ {1629 sin(¢"m) sin (") (2 — 1)) sin(¢" (27 — 72)) — i(¢")? sin(2¢"7)

—kpq(“) [sin(q(“)yl) sin(q(“)(27r — 71)) -+ sin (q(”)%) sin (q(”)(27r - 72))] } , (4.22)

g = 8(gW)? {cos[((—l)’Hl w+2¢) 7] + COS(Qq(“)W)} — 12ikp(q™)? sin(2q(“)7r)
—2k?p*q" [cos(2¢") (1 — 72 + 7)) + cos(2¢%) (1 — 72)) + cos(2¢% (m — 71))
—3cos(2¢" )] + ik3p? [sin(2¢") (7 — 72 + 7)) — sin(2¢") (7 — 7))

+ sin(Zq(“) (m—m)) — sin(2q(“)7r)} . (4.23)

The Tlfl and T 2f " matrices, which describe the transmitted part of the input f; into lead
IT and III, respectively, are given by:

( Af‘) = ¢ % 727(11) cos> Q—l—ﬁ?) sin? Q ,
1 2 2
= n 0 0
( nl) = ¢ % (}(Ll) —%T(f)) sin = cos =,
Tl 2
o - 0 0
o= @ (3 =) sin 5 cos 5 4.24
(n)“ e (7} n)sm2c082, (4.24)

(TAT{I) = % (7D sin2€+ﬁ(f) COSQQ ,
H 2 2

where n = 1, 2, indicating the two possible output channels, and

. 8kpgW i ((_qyut1y, . .
- =75 o 3 (1 lwt2g) {—kpsin(¢" (32 — 7)) sin(¢™ (27 — 7))
g [e—iw((—l)u+1w+2¢) sin (g — sin (¢ (27 — %))} } , (4.25)
A 8]{[)(](‘“) i2((—1) —in (=) tw : :
. e (1"t wt29) {kpe () wt29) sin (q%) sin(¢" (72 — 1))
+igW [efin((*l)#+1w+2¢) sin(q(“)q/g) _ sin(q(“)(27r _ 72))} } . (4.26)

It can be shown that the R/u (}A%f“‘) matrix, which describes the reflected part of
the input fi (fur) into lead II (III), and the T/ (T/i1) matrices, which describe the
transmitted part of the spinor fii (fir) into leads III and I (I and II), can be given by

transforming the R/t and T matrices in the following manner

M =u, MUY (4.27)
V22T —71
M =u, M, UL (4.28)

Yeer2m—y2+71
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where M = R Tl,Tg and

_jdn 0
U%:<6 ’ ) n=12 (4.29)
0 ez

This is due to the fact that the matrices corresponding to a given input should also be
able to describe any other input if the angles are changed accordingly. For example, for
the input fi the angles of the outputs II and III are measured from lead I, thus, when
we want to determine the matrices for the input fi, the angles of the output leads III
and I need to be measured from lead II. However, the matrices obtained in this way will
give the reflected and transmitted part of the given input in its own reference frame. In
order to determine the contributions of each input in the same reference frame (here we
chose that of fi) the similarity transformations, given by Eqgs. (4.27) and (4.28) need to
be applied.

4.2 The three-terminal quantum ring as an electron

spin beam splitter

In this section we show that due to quantum interference and spin-orbit interaction in a
three-terminal ring with one input and two output leads, different polarizations can be
achieved in the two outputs from an originally totally spin-unpolarized incoming state [96].
First, we present the transmission matrices of a three-terminal ring with one input and two
outputs in which only Rashba spin-orbit interaction is present [97]. Then, we determine
the condition for spin-polarization and show, that it can be satisfied for both symmetric

and asymmetric configurations of the leads [96,97].

4.2.1 One input, two outputs

Let us consider the three-terminal quantum ring for which we solved the scattering prob-
lem in the previous section, but let us assume, that the magnetic field is zero, and there
is only one input lead, i.e. fi, fim = 0, using the notations of Fig. 4.1. Then, Eqgs. (4.13)
and (4.23) lead to



THREE-TERMINAL QUANTUM RING WITH SPIN-DEPENDENT PROPAGATION

where

g = 8¢°[cos (wr) + cos (2q7)] — 12ikpq® sin (2q7) + 4k*p*q cos (2qT) (4.32)
—2k?p*q[cos (2q (m — v2 + 1)) — cos (2q7) + cos (2q (m — Y1) + cos (2¢ (7 — 72))]
+ik®p® [sin (2¢ (7 — 72 + 1)) — sin (2g7) + sin (2g (7 —71)) — sin (2 (1 —72))] -

Consequently, equations (4.25) and (4.26) simplify to

) 8k

O gpq [h§“>+g§“)}, (4.33a)
8k

SO gﬂq Wq ggﬂ, (4.33b)

where hY" and g{" are given by

L)kl . .

hg.“‘) — _kpe 21( iblg Sll’l(q<72 — ’71)) Sln(q<27T - 72)) 9
S22 +1w i (— +1w . .

hg”) _ kpeﬂ;( D o=in (1" i (4 — 1)) sin(gm)

gyt) _ iqei%l(—l)”“w [e—iﬂ(—l)uﬂw sin(qy1) — sin(q(2m — 71))] ; (4.34)

(W)

92 g iqei%(_l)pﬁi»lw |:€—i7T(—l)‘u'+

Y sin(gy2) — sin(g(2m — 72))] .
Notice that hg) = <h£ll)> and gff) = — (g’Szl)> .

Using the notations pY = h,, and g,(}) = g, and substituting Eqs. (4.33) into Eqs.

(4.24), the transmission matrices of the two outgoing leads read [97]

(Tn> " = (Tf) = &que_i%n {(hn + gn) cos? g + (hp — gp)" sin? g} ,

T Yy
R R Skpq m . 0 0
(7)., = e [t g0) + (= )] sin 5 cos
. . 8kpq m v . 0 0
1, = T =———c¢72 |(h n hyy — Gn 5 o
(7),, = (T),, = =37 b+ 92) + (ha = gu)]sin g cos 5
. R 8kpq im . 50 . 0
Tn) = (TJI) = _— "¢ {hn—k ) sin? = 4 (hy, — gn)" cos® —] 4.35
(%), L= |t g sin® G (= gu) cos’ | (435)

(Note that since in this case there is only one input fi, for the sake of simplicity, we have

omitted the superscript f; from the notations: 7}, = ﬁ{l)

Let us note here that for a ring that is symmetric with respect to the incoming lead,

i.e., y1 = 2m — 7, it can easily be seen that the two transmission matrices possess the
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following symmetry property [96]

<TI)TT - <A2>ll’ <T1>w - <T2>u’
<TI>1T - <T2>u’ <T1>u B (T2>m'

This is due to the fact that for a symmetric configuration of the leads, a rotation of the

(4.36)

ring together with the external field generating the Rashba coupling around the axis of the
incoming lead by an angle of m, requires the transmission properties to remain unchanged.
For a ring which is not symmetric with respect to the direction of the incoming lead, the

transmission matrices (4.35) do not have this symmetry.

4.2.2 The condition for spin polarization

When the incoming electron is not perfectly spin-polarized, i.e. its spin state is a mixture,
which — instead of a two-component spinor — should be described by a 2x2 density matrix

0O, then we can easily generalize Eq. (4.35) to obtain the output density matrices g; and

02 by

A

Considering a completely unpolarized input, i.e. g;, being proportional to the 2x2 identity

1 1 0
iIl:_ 9 4.38
0 2<0 1) (4.38)

then, in order to get polarized outputs, the output density operators (4.37) should be

matrix

projectors (apart from the possible reflective losses):

~

TTH = o [9n) (Dl (4.39)

N | —

On =

The non-negative numbers 7; and 7, measure the efficiency of the polarizing device, i.e.

M + 12 = 1 means a reflectionless process.

Equation (4.39) is equivalent to requiring the determinants of TnTnT to vanish. Ac-
cording to Egs. (4.35), there are two different conditions for each transmission matrix to
satisfy this requirement:

hntg,=0, (n=12).

However, only the following two cases lead to nonzero transmission at both outputs:
hl + g1 = 0, and hg — (g2 = 0, (440&)
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or
hl — g1 = 0, and hg + g = 0. (440b)

Using Eqs. (4.35) these conditions can be formulated as

kpsin(q (2 —72)) sin(q (y2—7)) kpsin(gy) sin(q (12—m))

sin(wﬂ)::t? Sn(g70) = i? Sn(g (27— 1)) (4.41a)
_sin(g(2m—m1))  sin(gye)
cos(wm) = sngn) | sn(g 2r—2)) (4.41b)

where Eq. (4.41a) with the plus sign together with Eq. (4.41b) correspond to the first
case, given by Eq. (4.40a), while Eq. (4.41a) with the minus sign together with Eq.
(4.41b) correspond to the second case, given by Eq. (4.40b).

From the second equation of (4.41b) and (4.41a) we can find

sin (gy1) = Z£sin(q (27 —12)), (4.42)
sin (¢y2) = =sin(q(2m — 7)), (4.43)

which lead to the following relation between the possible positions of the outgoing leads:
T =27 — v £ mm/q, (4.44)

where m is a nonnegative integer, which ensures 0 < v; < v < 27. Then, we may
consider either v, or 7, as the free parameter together with kp and wso /€2 to find the
solutions of Eqgs. (4.41). In either case, Eq. (4.44) will give the possible positions of the
other output lead.

4.2.3 Polarization in a symmetric ring

The m = 0 case in Eq. (4.44) corresponds to a symmetric configuration of the outgoing
leads with respect to the incoming lead [96]. Taking 72 as the free parameter (i.e. v, =
27 — 73), we find that

hy = —ht, (4.45)
9 = g1 (4.46)

thus the conditions given by Eq. (4.40a) and (4.40b) can be written as
hl + g1 = 0, (447&)
h1 — g1 = 0, (447b)
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respectively. Furthermore, (4.41a) and (4.41b) simplify to
. kp .
sin (wr) = F—sin (2¢ (7 — 72)), (4.48a)
q

sin (g72)

(g @ — 7)) (4.485)

cos (wm) =

W

"4

SN
ZOCONAAN KT
e
X771/

Figure 4.2: Transmission probability through the outputs of a symmetric three-terminal ring (y; = 27/3,
~o = 47/3) and the determination of the parameter values corresponding to spin-polarization: Equation
(4.48a) with the plus and minus sign are satisfied along the red and green curves, respectively, while Eq.
(4.48Db) is satisfied along the blue curves. At each intersection of a red or a green curve with the blue
one, the ring acts as a spin-polarizing device.

Each of these conditions leads to a kp — wgo relation as depicted in Fig. 4.2 for
a representative example corresponding to v2 = 47/3 (71 = 27/3). The parameters
corresponding to the crossing points of the red and green curves [solutions of Eq. (4.48a)]
with the blue curve [solution of Eq. (4.48b)], ensure the formation of polarized outputs.
We note that similar curves can be drawn for arbitrary (symmetric) geometry. This
implies that there are lines in the three-dimensional {72, wso/€2, kp} space along which
the ring polarizes a completely unpolarized input. The figure also shows the transmission
probability |T|2 = Tr(TyT}) = Tr(T5T}) through the outputs of the ring. It can be seen
that there are parameter values where perfect spin-polarization is expected, i.e., where the
transmission probability is practically unity. This property can also be seen in Fig. 4.3,
which shows that along a line defined by h; + g1 = 0 in the space {72, wso/€, kp}, the
efficiency n of the transmission is a quasiperiodic function of 7. (A similar figure can be
drawn for the condition h; — ¢g; = 0.) As can be seen, there are certain points (that is,

parameter combinations), where 7 is unity. Thus, the results of this simple model suggest
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that it is possible to obtain 100% spinpolarized outputs from a perfectly unpolarized

input, even without reflective losses.

1.0

0.8 1

0.6 ~

0.4 ~

0.2 ~

0.0 T . ; , ;
T 1.27 1.4m 1.6

V2

Figure 4.3: Transmission probability of a spin-polarizing ring as a function of 75. The parameter kp
changes in the range of [19.0, 21.0], while 0 < w., /2 < 5, and the plot corresponds to the condition
hi + g1 =0.

Now we turn to the investigation of the outgoing spinors which arise as a consequence
of the polarizing property of the ring. Clearly, these are the eigenstates |¢,) of the
transmitted density matrices corresponding to the nonzero eigenvalues which are given

by

128¢%K2 0% | [
Il

Note that the quasiperiodic behavior of the transmission probability n = 1, + 75 seen in

m =12 (4.49)

Fig. 4.3 is related to the sine and cosine functions in hy; and g. Focusing on the case of
hy 4+ g1 = 0, the eigenstates of the respective transmitted density matrices corresponding

to the nonzero eigenvalues 7; and 7, read

sin ¢ e 2 cog ¢
_ 2 _ 2
|¢1>+ - <—€_i72 cosg 7 ‘¢2>+ B sin ¢ ' (4.:50)

2

These results describe the connection between the strength of the spin-orbit cou-
pling (encoded in 6), the geometry of the device, and its polarizing directions. We note
that these polarizing directions are, in general, not orthogonal, their overlap is given by

1+ (2] ¢1), = isinfsinv,. Similarly, for Ay — g1 = 0, we have

ez cog ¢ sin ¢
1) = ( . g 2) ;o) = ( by 9) : (4.51)
sin ¢ —e2 cos

2 2
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Considering the transmission matrices (4.35) themselves, it is clear that under the
conditions given by Eqs. (4.48a) and (4.48b), their determinants also vanish. That is,
each T}, has a zero eigenvalue, but — due to the nonhermiticity — its eigenspinors are not
orthogonal. It can be verified that the eigenstates corresponding to the nonzero eigenvalue
of the transmission matrices coincide with |¢,), and [¢,)_, while the spinors annulled by

the transmission matrices T}, |¢°) = 0 have the following components:

0 a0
0 . 0 . COS§ 0 - 0 - —sm§
), = |6 = () e, =1 = ( ) S e

where the subscript + and — corresponds to the condition h; + ¢, = 0 and h; — g; = 0,

respectively.

These results show that if the conditions given by Eqs. (4.48a) and (4.48b) are sat-
isfied, the device acts similar to a Stern-Gerlach apparatus in the sense that (1) for an
unpolarized input, we have two different spin directions (4.50) in the outputs, (2) if we
consider one of the eigenstates (4.50) as the input, its spin direction will not change in the
appropriate output, and (3) there are spinors given by Eq. (4.52), for which the trans-
mission probability into a given output lead is zero. The analogy is not perfect though;
the polarized spinors (4.50) are not orthogonal and the spinor which has zero probability
to be transmitted through a given lead is not equal to the eigenstate corresponding to the
nonzero eigenvalue of the other lead: |¢,) # ’¢2L,> for n # n'. From this point of view, an
optical polarizing beam splitter [105,106] with nonorthogonal polarizing directions can be

the closest analog of our device.

4.2.4 Polarization with asymmetric configurations

We have seen in Sec. 4.2, that the polarizing condition is not restricted to symmetric
geometries: there are asymmetric configurations as well, as can be seen from Eq. (4.44).
These positions differ by +mm/q from the symmetric ones. In the previous section (see
Fig. 4.2) we demonstrated that for a given symmetric geometry, with proper combinations
of the parameters wso /€2 and kp the conditions (4.48a) and (4.48b) can be satisfied. This
means that an asymmetric ring, the geometry of which is determined from the symmetric
configuration by Eq. (4.44), is then also able to produce polarized outputs. This is an
important generalization of the previous results: There are several appropriate positions

for the output leads, the symmetric case is just one of them.

When the requirement (4.39) for polarization is satisfied, we have seen in the previ-
ous section, that the output spinors are the eigenstates |¢,) of the transmitted density

matrices, which correspond to the nonzero eigenvalues. For an asymmetric configuration,
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these eigenstates in the two cases (4.40a) and (4.40b) are given by

e~ % sin ¢ e 1% cos ¢
|¢1>a = j L 29 ) |¢2>a = (2 . 02 5 (453&)
—€ 2 COS 5 e 2 SIn 3

e i cosg e i sing
00y ={ . o] 9= e % (4.53b)
ez sin § —€'7 cos §

respectively. The output spin states in both cases are the two types of eigenspinors of
the Hamiltonian taken at the positions of the output junctions. For a given output lead,
the two eigenspinors are interchanged in the two cases (corresponding to Eqgs. (4.40a) and

(4.40b)). Note that the output spinors are still nonorthogonal, their overlap is given by
5 (2| 1)5 = isin (y2 —71) /2, for both 3 = a,b.

4.2.5 Conclusions

We showed that a quantum ring with one input and two output leads in the presence of
Rashba-type spin-orbit interaction has remarkable similarities with the Stern-Gerlach ap-
paratus. Parameter values, within the experimentally feasible range were identified when
the three-terminal ring delivers perfectly polarized output beams of electrons without
reflective losses. We found that appropriate spin-polarized input states are transmitted
without modification, but it is also possible to prepare inputs, for which the transmission

into a given lead is forbidden.

4.3 The physical background of spin polarization:

spatial interference

We have shown in the previous section, that a one-dimensional three-terminal quantum
ring in the presence of Rashba spin-orbit interaction can act as an electron spin beam
splitter. In this section we analyze the physical origin of this polarizing effect, and show
that it is a result of an appropriate interference of states that carry oppositely directed
currents. We visualize the stationary spin directions along the ring for an originally
totally spin-unpolarized electron, revealing the formation of the pure spin states on the
outputs [97].

4.3.1 Spin probability currents in the ring

The mathematical treatment used in the previous section demonstrated the interesting
fact that a three-terminal ring can spin-polarize electrons which are originally unpolarized.

Unfortunately however, it is unable to provide a clear insight into the underlying physics.
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In order to show how polarized spin states are formed on the outputs, let us consider
again a completely unpolarized input, now taken as the following equal weight sum of

pure state orthogonal projectors

1
Oin = 5 < 1(1’})> <¢i(i) (3)> <

Here wi(r‘f) = 1/15”) (0) = ng“) (0) (p = 1,2), given by Eqgs. (4.14) and (4.15), are the
eigenspinors of the Hamiltonian at the position of the incoming lead. The density operator
in the different sections (i = LILIII) of the ring is then

o) =5 (|72 )) (1 @) + [ () (2 (). (4.55)

) (4.54)

where

(2) ®) €% sin §
\Ili (@) = Z \1[7,] - Nz (gp) i£ 0]’ (456)
2

7j=1,2

are the spinor valued wave functions of the electron in the different domains of the ring

respectively, with

=Y aWene =12

7j=1,2

for the pure inputs @Z)l( and ¢

in »

\IIZ(“ ) () consists of two of the four eigenstates of the Hamiltonian, those which have the

same spinor part, but different k.

By examining the spin probability current corresponding to the \Ilff ) (p) states ap-
pearing in (4.56)

2

) . (457)

ij

ne

J

2 [Z/Q(f‘) + (=1 (COSQ — w% sin 9)} = (_1>u+j+1

it can be seen that \Il(“ ) (¢) and \Ifl(g) (p) represent oppositely directed (clockwise and
anticlockwise) spin currents in each section (identified by the index i) of the ring, since
the signs of JZ-({‘ ) and Jz‘(2# ) are opposite. The overall spin current densities which correspond
to the input o)

) .
JW = 2Re {agf) (a%‘)) (i =) e } [/@&“) + R 4 (—1) (cos& ~ 50 g 9)}

i Q
2) =2¢ (—1)" (

2 2 2
a!| — o’ a!| — o’

+ 2q(—1>“( ) = J4 + 4 (4.58)
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that is, the sum of the clockwise and anticlockwise directed currents given by Eq. (4.57).
We note that the cross terms in Eq. (4.58) disappear as a result of the fact that tan6 =
—wso /2.

The output spinors (4.53a) and (4.53b) suggest, that in order to obtain a polarized
(pure) state at a given output, one of the projectors of (4.55) should vanish, and the
other one should remain nonzero at that point of the ring. In order to have different
polarized spin states in both outputs, the two projectors need to vanish at different output
junctions. One of the possible ways to achieve this is to have ¥{" (7) and \Ifgz) (72) zero,

which happens only if the spatial parts of these wave functions are zero (see Eqs. (4.56)):
N =0, NP () =0, (4.59)

indicating destructive interference at the given output. By exchanging y =1 and p = 2,

the other case of polarization can be described. From condition (4.59) follows that

(1)

2
= )%2 v

(2)
5 ar

= ’an,z

, (4.60)

1
of)

which can be shown to be equivalent to Eqs. (4.40a). (Exchanging u = 1 and p = 2
in (4.59) leads to (4.40b)). Equation (4.60) implies that the spin currents Jl(l) and JI(I2 )
given by Eq. (4.58) vanish as a consequence of the interference of the oppositely directed
currents corresponding to the states of the same spinor parts, given by Eq. (4.57). The
requirement for spin-polarization, given by Eq. (4.39), thus has a very clear physical

interpretation in terms of destructive interference and vanishing spin currents.

4.3.2 Visualization of the effect

Fig. 4.4 shows how pure spin states at the outputs (denoted by II and III) of a symmetric
three-terminal ring are formed when the input is completely unpolarized, decomposed as
(4.54). Here, the polarization condition (4.40a) is satisfied with the parameters wgo /€2 =
3.05 and kp = 1.38. (We note that in semiconductor rings, the actual value of kp is
usually an order of magnitude larger. The values used here are intended to provide
a better visualization of the phenomenon.) In the left panel we show the probability
density of the electron at the given azimuthal angle ¢ on the ring. The colors of the
curves correspond to the two spin components of the input shown with the same color in
the right panel. The dotted lines mark the positions of the outgoing leads, where one of
the two probability densities becomes zero, resulting in the output of the other spinor at

that point as a pure state. In the right panel the stationary spin directions of the electron
2

are depicted along the ring. Red and blue arrows correspond to 1. and 12, respectively.
The lengths of the arrows are proportional to the probability densities shown in the left

panel. The two outputs in this case are given by Egs. (4.53a). As it can also be seen
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from the figure, spin transformation in this case is a rotation around the z-axis by an

angle pertaining to the given point on the ring, as can already be seen in case of a closed

ring [36].
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Figure 4.4: Formation of pure spin states at the outputs (II and III) of a symmetric three-terminal ring
(v1 = 27/3, v2 = 47 /3) for a completely unpolarized input decomposed as (4.54) when the parameters
wso /! = 3.05 and kp = 1.38 ensure perfect polarization in the case given by equation (4.40a). Left
panel: The probability densities of the electron at the given point on the ring for the spin component
shown with the same color in the right panel. The dotted lines in the graph mark the positions of the
outgoing leads, where one of the two probability densities becomes zero, resulting in the output of the
other spinor at that point as a pure state. Right panel: The stationary spin directions of the electron
along the ring. Red and blue arrows correspond to 1. and 12, respectively. The lengths of the arrows
are proportional to the probability densities at the given point on the ring, shown in the left panel. The
two outputs in this case are given by Egs. (4.53a).

It is also interesting to see how polarization is produced if we decompose the incoming

perfect mixture as an equal weight sum of the eigenstates of S,

oin = 5 (IT2) (1= + [12) {L:]) - (4.61)

N —

Figure 4.5 shows how pure spin states at the outputs (II and III) are formed in the
same symmetric ring as in Fig. 4.4, for a completely unpolarized input decomposed as
(4.61). In the left panel the trace of the square of the total spin density matrix g;(¢p)
at the given azimuthal angle ¢ is shown. T [0;(¢)]> = 1 and 0.5 correspond to the spin
state being pure and maximally mixed, respectively. The dotted lines in the graph mark
the positions of the outgoing leads, where — as it can be seen — the total spin state is
pure. In the right panel the stationary spin directions are shown along the ring. Green
and purple arrows correspond to inputs |T,) and |],), respectively. We can see that for
this decomposition of the completely unpolarized input, polarization is due to the fact
that the spin states |1,) and ||,) are rotated into the same direction at the position of
the output leads. Note that since we only took a different decomposition of the same
input, the resulting polarized states (red and blue arrows) are obviously the same ones as
in Fig. 4.4.
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Figure 4.5: Formation of pure spin states at the outputs (II and III) of the same symmetric ring as in
Fig. 4.4, for a completely unpolarized input decomposed as (4.61). Left panel: The trace of the square of
the total spin density matrix o;(¢) at the given point on the ring, T'r [Qi(go)]z =1 and 0.5 corresponding
to the spin state being pure and maximally mixed, respectively. The dotted lines in the graph mark
the positions of the outgoing leads, where the total spin state is pure. Right panel: The stationary spin
directions along the ring. Green and purple arrows correspond to inputs |1,) and || ), respectively. These
input spin states are rotated into the same direction at the output leads, resulting in the polarized states
(red and blue arrows) seen in Fig. 4.4.

Figures 4.4 and 4.5 also show additional, asymmetrically situated points on both
branches of the ring where the state of the electron is pure. These points are clearly those
that can be determined from Eqs. (4.44), which give the appropriate ring configurations
for spin polarization. If the output leads are placed into these positions, the outcoming

spin states are the pure ones given by (4.53a) corresponding to these new positions.

4.3.3 Conclusions

We studied a three-terminal quantum ring with one input and two output leads, which —
for appropriate parameter values — acts as a spin polarizer. We provided an instructive
physical interpretation of the polarization process: for both symmetric and nonsymmetric
geometries, polarization is due to spatial interference. At a given junction this interference
is destructive for a certain spin direction, while constructive for its orthogonal counterpart

which, consequently, is transmitted into the output lead.

4.4 Spatial-spin correlations: intertwining

In this section we investigate what kind of correlations can be present between the spatial
and spin degrees of freedom of the electron at the output of a three-terminal quantum
ring in which Rashba spin-orbit coupling is present. We show that these correlations can
be classical when the possibility of quantum mechanical interference does not play a role,
or that there can be intertwining [107] between the different degrees of freedom, which is

similar to entanglement but in this case we have a single particle [98].
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4.4.1 Mathematical formulation of the problem

Let us consider again a quantum ring, shown in Fig. 4.6 with one input and two output
leads, which is symmetric with respect to the direction of the input lead, i.e., v, = 27 —5».
We note that in all of the following discussions, we will focus on the spinor part of the

wave function and ignore the plane wave part.

The quantum mechanical state of an electron (not necessarily pure) after the ring can
be described by a single-particle density operator, which is defined on the tensorial product
of two two-dimensional Hilbert spaces. The spin degree of freedom can be described on
a Hilbert space spanned by the {|1.),]].)} eigenstates of S,, while a suitable basis in
the other Hilbert space is provided by the states {|1),]2)} corresponding to the different
leads, where the electron can leave the ring. Clearly, there can be correlations between
these degrees of freedom: in the polarizing case described in Sec. 4.2, knowing the path

along which the electron left the ring, we also know the direction of its spin.

02= Tz QinTQT

> Oout = fl@inff fme:J
N ThonT) ToonT)

AL

01= TI QinTlT

J

Figure 4.6: The geometry of the device and the relevant spinor density operators in the different leads.

In order to investigate the nature of these correlations, we need the "total” 4x4 output
density matrix, which, in the {|1,7),|1,1),]2,7),]2, )} basis reads

TQinTT T‘Qmj—‘Jr
Oout = | b T (4.62)
TQQinTl TQQinTQ

where the 2x2 density matrices p; and gy appear in the diagonal (see Fig. 4.6). Note that
(4.62) is a straightforward generalization of the case when the input spin is a pure state

|W,) which is transformed into
o) = 1)@ (T3 19)) + 12) @ (T 93)) (4.63)
and can be represented by a projector having the form of (4.62).
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4.4.2 The nature of spatial-spin correlations

In this section we investigate what kind of spatial-spin correlations can build up as a

consequence of quantum interference and spin-orbit interaction in the ring.

If the incoming state is a complete mixture, and the conditions given by (4.48a) and
(4.48b) are satisfied, it can easily be shown that goy; is block-diagonal. Thus, in this case

we can write

Gout = 1 (|1, 1) (1, 1| + 12, ¢2) (2, da]) = |1) (1] © 01 + [2) (2] @ 02, (4.64)

where the states |¢,),(n = 1,2) in the projectors can be either [¢,), (4.50) or [¢y)_
(4.51), and the parameter 7 takes the reflective losses into account. It can be seen that
although the output density matrices p; and oo represent pure states, globally we have
a mixture and the correlation between the spatial and spin degrees of freedom is purely

classical.

We note that by calculating the partial trace of 9oy, given by (4.64), with respect to
the spin degree of freedom, the result is proportional to the identity matrix: not taking
into account the spin degree of freedom, the electron, if transmitted at all, has the same

probability to leave the ring along either lead.

On the other hand, if the incoming state is pure, then according to Eq. (4.63), the
global outgoing state

Oin = ‘\Ijin> <qjin| — Oout = 1] |qjout> <\Ijout’ 5
as well as the individual output states

01 = Tl |qjin> <\Ilin’ TlJra
02 = T2 |\Ijin> <\Din’ Tgv

will be pure. In order to quantify the possible entanglement of the two different degrees

of freedom contained in g,,; we calculate the entanglement of formation [108,109]

1+\/1—0210g <1+\/1—02> 1—\/1—0210g (1—\/1—02
_# 2 2 - 2\ 5

€= > > ) . (4.65)

where C' is the so-called concurrence
C (Q) = Imax {0, )\1 — )\2 — )\3 — )\4} . (466)
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The A;’s are the eigenvalues (in decreasing order) of the Hermitian matrix

R = \/ @out@out V @outv (467)

where
Oout = (0y ® 0y) Goy (0y @ 0y) (4.68)

and o7, is the complex conjugate of the normalized total outgoing density matrix.
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Figure 4.7: The entanglement of formation given by Eq. (4.65) of the output density matrix gout as a
function of the geometrical angle 5 for kp = 19.8 and wgo /2 = 3.7.

Clearly, for the polarized output, given by Eq. (4.64), £ vanishes, but generally it
is nonzero and strongly depends on the parameters 72, wso /€2, and ka. (Note that we
consider symmetric geometry, i.e., 71 = 27 — ,). Figure 4.7 shows £ as a function of
7, for the input spinor |¥y,) = (|1.) +|1.)) /V2 = [1.), i.e., one of the eigenspinors
of S,. The oscillations seen in this figure are due to the spatial interference inside the
ring: the oppositely traveling electron waves form standing waves the periodicity of which
modulates the behaviour of £.

The entanglement of formation &£, shown in Fig. 4.7 is practically unity around ~, =
37 /2. This means that for the parameter values given in the caption of the figure, the
intertwining between the spatial and spin degrees of freedom is maximal. Interestingly,

in this case the output spinors are (to a very good approximation) eigenstates of .S,

1

V2

We note that with the same parameters we also have

[T2) = [Wour) = —= (11, Ty) +1[2, 1)) - (4.69)
1 .
[le) = [Wour) = E (11, Ly) +112,T4)), (4.70)

and for both processes given by (4.69) and (4.70) the output spinors are orthogonal.
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4.4.3 Conclusions

We investigated a three-terminal quantum ring, where one of the terminals served as
input for the electrons, while the other two terminals were used as outputs. We focused
on the nature of the correlation between the output electron spin and its spatial degree of
freedom. We showed that in the case when quantum interference and spin-orbit coupling
results in perfectly polarized outputs from a complete mixture input, this correlation is
purely classical. On the other hand, when the spin state of the input electron is pure, we

found that entanglement between the spin direction and the output path can be present.
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Chapter 5

Two-dimensional quantum ring

arrays

In this chapter we calculate the conductance and the spin transport properties of two-
dimensional rectangular arrays consisting of quantum rings, in which Rashba-type spin-
orbit interaction and a perpendicular magnetic field are present. Such arrays have already
been fabricated in the heterojunction of InAlAs/InGaAs and studied in a recent exper-
iment [32]. We describe the problem by using an analytically solvable one-dimensional
ballistic model of single rings, which we use as building blocks of the array. By solving
the scattering problem of ring arrays, our aim is to give a general survey of the magneto-
conductance properties of such devices. In Section 5.1 we sketch the analytical solution of
the scattering problem for single rings (given in detail in the Appendix), used as building
blocks of the arrays. Then, in Section 5.2 we describe the building-block method, which
we use to calculate the conductance of such arrays. We present the properties of the
conductance of 3x3, 4x4, and 5x5 rectangular arrays as a function of the magnetic field,
the Rashba spin-orbit coupling strength, and the wave vector. In Section 5.3 we study the
spin-resolved transmission probabilities of the same array geometry with only one input
channel. Finally, in Section 5.4 we investigate to what extent the conductance properties

are modified by the presence of point-like random scattering centers between the rings.

5.1 Building blocks

The rectangular arrays we investigate are closed in the vertical and open in the horizontal
direction, as shown in Fig. 5.1. We consider N x N arrays with N inputs (shown by the
solid and dashed lines), and one input (shown by the solid line only). These consist of
two-, three- and four-terminal rings, where the two- and three-terminal ones are situated
on the boundary of the arrays (see Fig. 5.1). In what follows, we will consider these single

rings as the building blocks of the arrays: first, we solve the scattering problem for the



TWO-DIMENSIONAL QUANTUM RING ARRAYS

different types of rings (we note that we have already done so for the three-terminal ring
in Section 4.1), and then fit the wave functions and their derivatives in the points where
neighboring rings touch each other. Thereby, we obtain a linear set of equations from
which the (spin-dependent) transmission amplitudes can be determined, which can be

used to calculate the conductance of the arrays with the Landauer formula.

Figure 5.1: The geometry of the device in the simplest case of a 3x3 array with three or one (without
leads displayed with dashed lines) input terminals. The notations can easily be generalized to larger
arrays.

In order to be able to take into account every possible transmission and reflection
inside the array, we need to solve the scattering problem of the individual rings for the
most general boundary condition, i.e., when there are both incoming and outgoing spinor
valued wave functions in each terminal: ¥; = f;el*®i + r;e= %% (; = LILIIL, IV), where z;
denotes the local coordinate in terminal 7, as shown in Fig. 5.2. Note that the amplitudes
f1, 71, f11, ... refer to two-component spinors. For the case of a general three-terminal ring
with Rashba spin-orbit interaction and a perpendicular magnetic field (Fig. 4.1), we have
seen in Chapter 4 that the scattering problem can be solved analytically. The case of a
ring with two or four terminals can be treated analogously. Here we do not detail these
calculations as they can be carried out in a straightforward manner following the lines of
Sec. 4. We note that these results are presented in the Appendix.

In a general two-terminal ring (see Fig. 5.2 without terminals IIT and IV) — where
there are two incoming spinors (f; and fi) — the outgoing spin states can be given as the
superposition of the reflected part of the input in the same lead and the transmitted part

of the input in the other lead:

r= ROfi+ T fyy, (5.1a)
ru = RM i+ T fi. (5.1b)

Here R’ and TYi (i = LII) are 2x2 matrices, which can be determined by applying
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e

Figure 5.2: The notations used for the spinor part of the wave functions in the case of a four-terminal
ring.

Griffith’s boundary conditions at the junctions of the leads with the ring (see Section
2.3). As we have seen in the case of the three-terminal ring in Section 4.1, it is sufficient
to determine the reflection and transmission matrices corresponding to the boundary
condition of having only the input f;, as the R/ and T/1" matrices, which describe the
reflected and transmitted part of the input fi, can be given by:
M = U, M{L—QW—% U'}Tll’ (5.2)
where M = R, T, and U,, is given by Eq. (4.29). The form of the matrices R/t and T
is given in the Appendix.
In the case of a four-terminal ring, the outgoing spinors are also given as the super-
position of the reflected part of the input in the respective lead and the transmitted part

of the other inputs:

r = RIS+ T fy + T frg + TV fry, (5.3a)
T = anfu+T1fmf111+Tszflv+f?flfb (5.3b)
rm = R frg + T frv + T o+ T fun, (5.3¢)
riv = RV fry + T fi + T o+ T (5.3d)

Analogously to the case of the three-terminal ring (Section 4.1) and the two-terminal one
presented above, the reflection and transmission matrices corresponding to the inputs fir,
fir and frv, can be given by transforming the respective matrices corresponding to the
input fi:

M =U, M Ut (5.4)

MeY2=YL T 0
V232
V32T —71
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fim fi -1
M = U,YQM 1 y3—o U72’ (5.5)
V22T =2
V32T —y2+71

MY = U, M Ul (5.6)

Y14 2T =73 73
Y2 2m—y3+71

Y3 2m—y3+y1+72

where M = R,T,, (n = 1,2,3) and U, is given by Eq. (4.29). For the detailed form of
the matrices R/T and Tnfl, we refer to the Appendix.

Using Egs. (5.1), (4.20), and (5.3) the wave functions can be given in each terminal
of the single two-, three- and four-terminal rings. By fitting the wave functions and their
derivatives corresponding to the adjacent outputs of neighboring rings, these building
blocks can be attached to each other to form arrays of arbitrary size. (We note that
our method of using single rings as building blocks can easily be used to determine the
conductance of arrays of arbitrary — not necessarily rectangular — configuration as well.)

For the sake of simplicity, we restrict ourselves to N x N arrays, with N = 3, 4 and 5.

5.2 Properties of the conductance

Based on the analytic results presented in Section 4.1, 5.1 and in the Appendix, here we
build two-dimensional rectangular arrays of 3x3, 4x4, and 5x5 quantum rings, where
both Rashba spin-orbit interaction and a perpendicular magnetic field are present, so
that the strength of the former one can be changed by an external gate voltage [23]. We
assume that neighboring rings touch each other, and as we have mentioned in Section
5.1, we limit ourselves to arrays that are closed in the vertical and open in the horizontal

direction, as shown in Fig. 5.1.

We derive the conductance from the linear set of equations resulting from the fit of
the wave functions \I/ZW) and their derivatives 8I(kz>\lffl (¢ = LILIILIV and k,l =1,..., N,
where N is the number of rings along one direction in the array) in the points, where the
rings touch each other. In the junction of ring {11} with ring {12} for example:

(11)

12
II1 \I]( )

I

=0

)
111 x§12):0

0 () \If%l)

111

(5.7)

12)
— 9 U ‘
(11) a:§ ) ¥ .

xpp =0 92):0

Note that the negative sign in Eq. (5.7) is a consequence of the opposite direction of the
local coordinates in leads I1I of ring {11} and I of ring {12}. Equation (5.7) leads to

11 11 12 12
fI(II)"'TI(H) = fI( )+TI( )v

11 11 12 12
I(II)_TI(H) = _fl( )+7’1( )7

80



TWO-DIMENSIONAL QUANTUM RING ARRAYS

from which follows that
11 12
1(11 = 7‘1( )7
11 12
7"1(11 = fl( g (5.8)

i.e., the spinor entering (exiting) ring {11} on terminal III is equal to the spinor exiting
(entering) ring {12} on terminal I. The spinors rgll) and 7‘1(12) can be given with the help
of the reflection and transmission matrices of a three-terminal ring presented in Sec. 4.1

according to Egs. (4.20).

For a small number of rings the resulting set of equations can be solved analyti-
cally; however already for an array of 3x3 rings shown in Fig. 5.1, it consists of 60
equations, which is preferably solved by numerical means, although analytic solutions
exist in principle. (For larger arrays the number of equations scales practically with

the number of rings.) After having determined the output spinor valued wave functions

TI(IIIN), TI(IQIN), . rI(IN M we use the Landauer [1] formula
G=G+Gy,
where

2
2N
+ ‘(TI(H ))T‘

NNy |2
o || )

e (1, .am
Gy = n ‘(THI )T
’ 28y |2 (V) |2
""(7‘111 )l‘ +"'+)(TH )l‘ )

e an)y |2
G, = N (‘(TIII )l’
averaged over the two o, eigenspinor inputs (see also Sec. 1.28) to calculate the conduc-

tance of the arrays.

The left panel of Fig. 5.3 shows a contour plot of the conductance (in units of e?/h)
of rectangular arrays of 3x3, 4x4 and 5x5 quantum rings, for zero magnetic flux as a
function of the Rashba-coupling strength wso/Q2 and kp. The values of kp are varied
around krp = 20.4, corresponding to a Fermi energy of 11.13 meV in case of an effective
mass m* = 0.023m of InGaAs and rings of radius p = 0.25 um. The different arrays
show similar behavior for larger values of the spin-orbit interaction strength: there are
slightly downwards bending stripes (initially around even values of kp), where the devices
are completely opaque for the electrons, and also conducting regions, which are initially
around odd values of kp and have complex internal structure. The bending of the stripes
may be related to the effect of ¢ = \/ k2p2 + (wso/29)° on the transmission probability

of the rings constituting the array, which can be directly seen in the case of a sinlge,

diametric, two-terminal ring from Eq. (A-1). In the range of the values of kp used, the

increasing values of wsp /€2 decrease the dominance of kp in ¢. Further comparing our
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results to the case of a single ring with diametrically coupled leads (Fig. 2.8), it can be seen
that the overall periodicity as a function of kp is determined by single-ring interferences.
The increasing number of the rings causes modulations superimposing on the single-ring
behavior. This is probably the most apparent if we recall [92] that zero conductance areas
are simply lines on the kp — wso /2 plane for a single two-terminal ring, while in our case
there are stripes, the width of which is slightly increasing with the size of the array. This
effect is related to the increasing number of consecutive partially destructive interferences
that finally lead to essentially zero currents at the outputs. Additionally, if we considered
an infinite array, the periodic boundary conditions would allow only discrete values of kp
for a given spin-orbit interaction strength with nonzero conductance. Thus the results
presented in Figs. 5.3(a), (b) and (c) demonstrate a transition between the conductance

properties of a single ring and that of an infinite array.
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Figure 5.3: The conductance G/Gg (Go = €?/h) of rectangular arrays of different sizes. Left panel: The
conductance as a function of the spin-orbit coupling strength wgo /€ and kp for zero magnetic flux of
a (a) 3x3, (b) 4x4 and (c) 5x5 rectangular array with 3, 4, and 5 input terminals, respectively. Right
panel: The conductance as a function of the spin-orbit coupling strength wso /€ and the magnetic flux
® (in units of @g) for ka = 19.6 of a (d) 3x3, (e) 4x4, and (f) 5x5 array with 3, 4,and 5 input terminals,
respectively.
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For small values of wgo /€2, Figs. 5.3(a)-(c) show that the width of the non-conducting
regions narrow until they eventually disappear when no spin-orbit coupling is present.
Here the conductance still depends on kp, but its minimal values are not zeros (similarly
to the transmission probability of a single diametric ring for zero flux and zero spin-orbit
coupling, shown by the dotted curve in Fig. 2.8) and a periodic behavior can be seen: for
an array of N x N rings, there are N minima as the value of kp is increased by 1. This
size-dependent modulation is related to the horizontal extent of the device: If we compare
the conductance of the arrays to that of rings of the same size and number without vertical

connections, the same periodic behavior can be seen around zero Rashba coupling [110].

The right panel of Fig. 5.3 shows the normalized conductance of arrays of 3x3, 4x4
and 5x5 quantum rings for kp = 19.6 as a function of the spin-orbit interaction strength
wso/? and the magnetic flux ® (measured in units of ®y). The conductuance oscillates as
a function of both parameters. The oscillations as a function of the magnetic flux ® are
manifestations of the Aharonov-Bohm effect [5] (Sec. 2.1.2). The oscillations as a function
of the Rashba coupling strength wso /€2 are due to spin-dependent quantum interferences.
The actual value of the transmission in a single ring is determined by the interference
resulting from the interplay between the phases acquired due to the magnetic field and
the Rashba spin-orbit interaction. Therefore, as wgo /€2 is increased, the spin-dependent
phase changes periodically, which leads to the change in phase of the oscillations as a
function of the flux. This can also be seen in the case of arrays, although the interference
in consecutive rings slightly changes the periodicity of the oscillations. As the figures in
the right panel of Fig. 5.3 were plotted at a fixed value of kp, the effect of the bending
non-conducting stripes shown in the left panel can also be seen as the decrease of the
conductance when such a stripe is reached due to the change of the spin-orbit interaction
strength, and its increase again, when the stripe is left. We note that — as we have
mentioned above — for larger values of kp this bending effect is less pronounced, as kp

remains dominant over wgp /{2 in g.
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Figure 5.4: The conductance G/Gy (Go = €2/h) of a 5x5 rectangular array with a single input lead

attached to ring {31} (a) as a function of the spin-orbit coupling strength wso /2 and kp for zero magnetic

flux, and (b) as a function of the spin-orbit coupling strength wso /€ and the magnetic flux ® (in units

of ®g) for kp = 19.57.
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Figure 5.4 shows the conductance of a 5x5 array with a single input lead in the middle,
i.e., attached to ring {31} (using the notations of Fig. 5.1) as a function of kp, and wso /2
(Fig. 5.4(a)), and the magnetic flux and wso/Q (Fig. 5.4(b)). The overall structure of
these plots remains the same as in the case when the current can enter through all the rings

on the left hand side, but the different boundary conditions modify their fine structure.

5.3 Spin transformational properties

Our method allows the calculation of the spin directions for the different output termi-
nals in the arrays. By determining these spin directions we found that spin-dependent

interference in the array results in nontrivial spin transformations.
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Figure 5.5: The probabilities of the (a) |14), (b) |Ty), and (c) |T.) outputs at ring {65} of a 5x5 array
with one input (attached to ring {31}), for kp = 19.6 as a function of the spin-orbit interaction strength
wso /€ and the flux ® (in units of ®p). The incoming spin state is |71.).

Figure 5.5 shows the spin resolved transmission probabilities for a 5x5 ring array with
a single input lead. The incoming spin state is chosen to be |1.,), i.e., the spin-up eigenstate
of 0., and the contour plots show the probabilities of the |1,), |T,) and |T,) outputs at ring
{55} on the right hand side. We note that the degree of the change in the spin directions
in the other output terminals is essentially the same. The fact that the |T,) input spinor
changes its direction — as it is seen in Figs. 5.5(a), and (b), it can be transformed into
|Tz) or |T,)) — is due to the spin rotations induced by the spin-orbit interaction. The
actual values of the spin resolved transmission probabilities are determined by the spin
dependent interference phenomena. The overall dependence of the conductance on the
magnetic flux and the Rashba coupling strength can also be seen in the probabilities of
the spin directions at each output of the array.

Figure 5.6 shows the z component of the normalized output spinors and visualizes that
spin resolved results depend on the input side geometry as well. As we can see, the spin
components change in the whole available range between -1 and 1, and their behavior
is different for the cases when the electron can enter the array through any of the five
terminals, or only through the one attached to ring {31}. Figs. 5.5 and 5.6 suggest that
with a given array geometry, in which the spin-orbit interaction strength wso /€ is tuned

to an appropriate value, the spin of the incoming electron may be rotated to a certain
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Figure 5.6: The spin transformation properties of a 5x5 array with input leads attached to all rings and
only to ring {31} (black and red curves, respectively). The z component of the normalized spin states
transmitted via the output terminals attached to ring {25} (solid line) and ring {45} (dashed line). The
incoming spin state is chosen to be |1,).

direction at a given terminal. This phenomenon together with other spin dependent

interference effects [99,100,111-117] can lead to spin sensitive quantum networks.

We would like to mention here that beyond the case of rectangular ring arrays with
a uniform magnetic field and Rashba spin-orbit coupling, further interesting set-ups can
also be imagined, which could be used for a certain purpose in electron spin manipulation.
A rectangular array of 3 x 3 quantum rings with local (ring by ring) modulation of the
Rashba spin-orbit interaction strength can be used to direct the input current to any of the
output ports, by tuning the spin-orbit coupling strengths in the rings with external gate
voltages. This effect is spin independent: the output port is always the same, regardless
of the input spin direction, while the output spin states are orthogonal for the |1,) and
||.) inputs. Arrays of or 5 x 5 rings with different spin-orbit interaction strengths can be
completely analogous to the Stern-Gerlach device: if the input is one of the eigenstates
of 0., the output will have the same spin direction at a certain output port, while the
orthogonal input is directed toward a different output port, with its final direction being
the same as the initial one [118]. Two-dimensional ring arrays of different geometry,
composed of two- and three-terminal rings of specified spin-transformational operation
(determined by the radius of the ring, the positions of the junctions, and the strength
of the Rashba coupling), may also be utilized to implement the one-dimensional coined
quantum walk with electrons. In this scheme, the coin is represented by the spin of the
electron, while the discrete position of the walker corresponds to the label of the rings
in one of the spatial directions in the array. Two-terminal rings realize the coin toss
i.e., spin flip, while three-terminal rings act either as the step operator of the quantum
walk or ensure the addition of probability amplitudes corresponding to stepping back to

a previous position in the walk [119].
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5.4 The effect of point-like scatterers

In this section we will investigate to what extent the conductance properties are modified
by the presence of random scatterers. Considering such effects provides a more realistic
description for most cases. To this end we introduce point-like scattering centers between
the rings. Note that attaching leads to rings and different rings to each other may lead to
scattering, which is why the scattering centers are chosen to be placed in the junctions.
We note that the point-like scattering centers we consider may also be identified as the
scatterers placed at the junctions in the model presented in Section 2.2.

At each point j where two rings touch each other, we consider an additional Dirac
delta potential of the form U;(D) = n;(D)d. The strength of the potentials n;(D) are
random, they are drawn from independent normal distributions with zero mean and root-
mean-square deviation D. That is, the probability for 7;(D) to have a value in a small

interval around wu is given by p(u)du, where

L
p(u) = D\/%e 207, (5.9)

In this way, by tuning D we can model weak disturbances (small D) as well as the case

when frequent scattering events completely change the character of the transport process

(corresponding to large values of D).
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Figure 5.7: The conductance G (in units of Gy = €?/h) of a 5x5 rectangular array with and without
pointlike random scatterers between the rings as a function of the magnetic flux ® (in units of ®¢) for
kp = 20.2 and WSO/Q = 13.0.

As shown in Fig. 5.7, the most general consequence of these random scattering events
is the overall decrease in the conductance. However, for strong enough disturbance,
more interesting effects can be seen, namely, the splitting of the Aharonov-Bohm peaks.
Note that the scattering has the most dramatic effect for the resonances, i.e., ® = n®,
and the least for the antiresonance condition, ie., ® = (n + 1/2)®,. We would like
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to mention that the model we considered (random elastic scattering processes in single-
electron approximation) is similar to the case when the h/2le| = ®/2 oscillations are
expected to survive in a single ring — often referred to as the Al'tshuler-Aronov-Spivak
effect [71]. Our results for a more complex geometry indicate similar physical consequences
of the scattering events: introduction of new peaks in the oscillations as a function of the
flux. In fact, the Fourier spectrum of the conductance shown in Fig. 5.8 clearly indicates
that for strong enough disturbance, the peaks corresponding to oscillations with a period
of ®y/2 (that is, with a period that is half of that of the Aharonov-Bohm oscillations,
or with a frequency that is twice as much) are stronger than the Aharonov-Bohm peaks.
Let us note that phenomena related to the Al'tshuler-Aronov-Spivak effect have recently

been predicted for a single ring [120] and were detected in the case of ring arrays [32].
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Figure 5.8: Fourier spectra of the data shown in Fig. 5.7. Notice that the relative weight of peaks
corresponding to oscillations with ®(/2 period increases when scattering effects are introduced.

Finally, we return to the stripes shown in Fig. 5.3, where the conductance is negligi-
ble. According to Sec. 5.2, destructive interference is responsible for the appearance of
these stripes. Therefore we expect that when scattering events destroy phase coherence,
conductance should increase. This effect can be seen in Fig. 5.9, where the conductance is
plotted as a function of the spin-orbit interaction strength for different root-mean-square
deviations D of the random variables. As it is shown by this figure, for most values of
wso /€, the conductance is significantly increased in this region, although it is negligible
in the exact ballistic case (D = 0). On the other hand, however, G is practically zero
around wgo /€2 = 7.9, independently from the strength of the disturbance. This effect
is related to single-ring interferences: having investigated the currents and spinor valued
wave functions in the array, we found that for this parameter set (kp, wso, and ®), the
input rings ({11} — {51}) are essentially totally opaque for the electrons, i.e., they ba-
sically do not enter the second column of the network. Clearly, in this case scattering
centers in the junctions cannot modify the transmission properties. However, this kind of

effect appears only for certain special parameter sets. We found that the positions of the
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G/Gy

wso /<
Figure 5.9: The conductance G (in units of Go = e2/h) of a 5x5 rectangular array with pointlike random

scatterers between the rings for different root-mean-square deviations D as a function of the spin-orbit
interaction strength for kp = 19.6 and ® = 0.3®,.

scattering centers for a single ring are important, but in a system of two rings this effect
is already remarkably weaker. The transmission properties of larger arrays are usually
determined by global (i.e., involving all the rings) interferences when for strong enough

disturbance the positions of the scattering centers play usually no significant role.

5.5 Conclusions

In this chapter we calculated the spin-dependent transport properties of two-dimensional
rectangular quantum ring arrays. We applied general boundary conditions for the case
of single quantum rings, which allowed the construction of arrays of such rings as build-
ing blocks. The magnetoconductance of two-dimensional arrays of 3x3, 4x4, and 5x5
quantum rings exhibited oscillations as a function of the magnetic flux, the spin-orbit in-
teraction strength and the wave vector. We also determined the spin-resolved transmission
probabilities of the arrays and found significant spin rotations depending on the Rashba
coupling strength. We introduced point-like random scattering centers between the rings,
which, for strong enough disturbance, resulted in the emergence of higher harmonics in
the oscillations as a function of the flux, and led to the increase of the conductance in the

regions of the parameters where the array was otherwise opaque for the electrons.
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Summary

Introduction

The physics of matter on an intermediate scale between the microscopic and the macro-
scopic is an increasingly active area of research, which has come to be known as meso-
scopic solid state physics. Advances in semiconductor technology have made possible the
investigation of artificial structures of reduced dimensionality, which allow the coherent
propagation of electrons, thereby leading to novel phenomena, like the quantization of
the conductance in narrow wires. Mesoscopic devices are usually fabricated in a thin two-
dimensional conducting layer present at the junction of semiconductor heterosrucures,
such as GaAs/GaAlAs, where scattering effects may be weak enough to allow for the
ballistic transport of electrons. Among these, ring shaped devices (or quantum rings) are
intensely studied [31,32,64-68] due to their ability to reveal various types of quantum

interference phenomena, such as the Aharonov-Bohm effect [5].

Electrons possess another inherent quantum property, namely spin. The idea of in-
vestigating, and possibly utilizing this additional feature in electronic transport led to
the development of a new field of research: spintronics [6-9]. The commercially available
spintronic devices use spin degree of freedom as a classical resource. The idea of utilizing
spin as a quantum resource may be related to the birth of quantum computing [12-15],
which suggested the spin of the electron as a possible candidate for the implementation
of the qubit, the basic unit of quantum information. One of the resources of spintronics
for spin manipluation in semiconductors is the Rashba spin-orbit interaction [22], which
has a relativistic origin. This effect is due to the perpendicular electric field present in
certain heterointerfaces with which moving electrons interact. Its significance lies in the

fact that it can be controlled by external gate voltages [23,24].

Numerous devices have been proposed [25-28] to utilize the Rashba effect, one of these
is a quantum ring connected with two leads [29], in which the phase difference between
electron waves traveling clockwise and counterclockwise produces interference effects. It
has been shown that these may result in a rotation of the spin state of the electron, being

variable by tuning the strength of the Rashba interaction [34].

In this dissertation we focused on quantum rings, in which — provided that transport
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is ballistic and phase coherent — the wave function of the electron is able to interfere
with itself. In all our calculations, we assumed that only the lowest radial subband takes
part in the conduction, that is, the ring can be considered essentially one-dimensional.
We used two theoretical models, one of which considers elastic scatterers in the arms of
the ring and in the junctions of the leads with the ring, thereby taking into account the
imperfectness of the coupling between the current-carrying leads and the ring (Sec. 2.2).
The other model (Sec. 2.3) considers the ring to be free from any scatterers and is based
on the solution of the time-independent Schrodinger equation and the fitting of the wave

functions and the probability currents at the junctions.

Two-terminal quantum rings: Asymmetric injection

We solved the scattering problem of a ring with Aharonov-Bohm flux, in which the injec-
tion from the leads into the arms was assumed to be asymmetric [I]. We used the model
introduced in Section 2.2, with an appropiate scattering matrix to couple the leads to the
ring. The elements of this scattering matrix describing the transmission from the lead
into the two arms of the ring were different in order to account for the asymmetry. We de-
termined the transmission probability analitically for a ring with equal length arms, when
no scatterers were present in the ring and showed that asymmetric injection increases the
transmission probability as a function of the geometric phase accumulated in the arms of
the ring. We also showed that the amplitude of the oscillations of the transmission as a
function of the magnetic flux is reduced as a result of the asymmetry, the transmission
minima shift to higher values due to incomplete destructive interference. We determined
the transmission probability analitically through the ring when a scatterer was present
in one arm of the ring. We showed that when the scatterer is weak, then the transmis-
sion oscillations as a function of the magnetic flux change phase as the phase introduced
by the scatterer (relative to the geometric phase acquired in the other arm of the ring)
changes. We also showed that asymmetry favoring the arm where the scatterer is present,
leads to the increase of transmission minima. In the case of a strong scatterer, we showed
that the phase resulting from the presence of the scatterer does not change the phase of
the oscillations. We showed that in this case asymmery, which favors the arm in which
the strong scatterer is located, leads to the decrease of the transmission probability with

respect to the symmetric case.

Three-terminal quantum rings: spin polarization

We presented the solution of the scattering problem in a three-terminal ring, in which

both Rashba-type spin-orbit interaction and a magnetic field is present (Sec. 4) [ILIIL,V].
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We showed that a quantum ring with one input and two output leads in the presence
of Rashba-type spin-orbit interaction can operate as an electron spin beam splitter [II].
We determined the parameter values, for both symmetric and asymmetric configuration
of the leads, within the experimentally feasible range where the ring delivers perfectly
polarized output beams of electrons without reflective losses. We found that appropriate
spin-polarized input states are transmitted without modification, but it is also possible

to prepare inputs, for which the transmission into a given lead is forbidden.

We analyzed the physical origin of the spin polarizational effect, and provided an
instructive physical interpretation of the process: for both symmetric and non-symmetric
geometries, polarization is due to spatial interference of oppositely directed currents [IT1I].
At a given junction this interference is destructive for a certain spin direction, while
constructive for its orthogonal counterpart, which is transmitted into the output lead as

a pure state. (Sec. 4.3).

We investigated the nature of the correlation between the output electron spin and
its spatial degree of freedom in a three-terminal quantum ring [IV]. We showed that
in the case when perfectly polarized outputs are formed from a complete mixture, this
correlation is purely classical. However, when the spin state of the input electron is pure,
we found that quantum intertwining can be present between the spin direction of the
electron and its output path, which is similar to entanglement, but in this case there is
a single particle. By calculating the entanglement of formation of the output state we
showed that for certain value of the parameters it can be close to its maximal value of
unity (Sec. 4.4).

Quantum ring arrays: Conductance properties

We calculated the spin-dependent transport properties of two-dimensional rectangular
quantum ring arrays (Chapter 5), that have also been investigated experimentally [32]. We
applied general boundary conditions for the case of single quantum rings, which allowed
the construction of arrays of such rings as building blocks [V]. The magnetoconductance
of two-dimensional arrays of 3x3, 4x4, and 5x5 quantum rings exhibited oscillations as

a function of the magnetic flux, the spin-orbit interaction strength, and the wave vector.

We also determined the spin-resolved transmission probabilities of the arrays and found
significant spin rotations depending on the strength of the Rashba spin-orbit interaction.
In order to provide a more realistic description we introduced point-like random scattering
centers between the rings, which, for strong enough disturbance, resulted in the emergence
of higher harmonics in the oscillations as a function of the flux, and removed conductance

minima as a function of the spin-orbit coupling.
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Outlook

We would like to mention that besides the results presented in this dissertation, we have
been working on several further questions related to quantum rings with spin-orbit inter-
action. These studies include the investigation of an array of quantum rings with local
(ring by ring) modulation of the Rashba spin-orbit interaction. It turned out that in this
device novel effects of spin state transformation of electrons may be expected [VII]. We
have proposed a scheme to implement the one-dimensional coined quantum walk with
electrons transported through a two-dimensional network of quantum rings [VIII]. We
have also addressed the question: to what extent the ideal behavior and functionality
of the above mentioned network-based devices are modified by random (spin-dependent)
scattering events or finite temperatures [IX]. In a related work a quantum ring with pe-

riodically changing spin-orbit interaction strength has also been investigated [X].
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Osszefoglalés

(Summary in Hungarian)

Ebben a fejezetben a ” Kvantuminterferencia félvezeté gyirikben” cimii doktori disz-
szertaciom részletes magyar nyelvii 6sszefoglalasa talalhato, amely az angol nyelvii 0ssze-
foglalasnal jéval bovebben tekinti at a dolgozatban vizsgalt kérdéseket és a kapott eredmé-

nyeket. A fejezet pontjai a disszertacié fejezeteit kovetik.

Bevezetés

A mindennapi életben hasznalt elektronikai eszk6zok nagy részében az elektromos dramot
elektronok szallitjak. Az elektronok azonban, ahogyan azt az elektroninterferencids kisér-
letekbol tudjuk, nem csak részecske-, hanem hullam természetiiek is egyben. Ez a tulaj-
donség a szokasos vezetékekben, melyek mérete joval meghaladja az elektronokhoz rendel-
het6 hullamhosszat, nem jatszik szerepet. Ha azonban a vezeték vastagsaga és hossziisaga
Osszemérhetd az emlitett hulldimhosszal, akkor az elektronok koherens terjedése megfi-
gyelhetové valik. A fizikdnak azt a teriiletét, amely az ilyen tipusu vezetoket vizsgélja,
melyek elegendéen kicsik ahhoz, hogy rajtuk az elektronok koherensen haladhassanak
at, ugyanakkor még elegendoen sok szamu atombol allnak, mezoszkopikus szilddtestfizikad-
nak nevezziik. Ebben a mérettartomanyban egy vezetd drot vezetoképessége a kisérletek
tanusaga szerint az anyagtol fliggetlen, univerzalis allanddk altal meghatarott egységekben
kvantalt, ezért nem irhaté le a klasszikus fizika torvényeivel. Az ilyen tipusu vezeték
miikodése nagyon hasonlit a mikrohullamu technikaban hasznalatos hullamvezetok miiko-
déséhez, ezért — az angol terminolégiaban — gyakran nevezik 6ket elektron-hullamvezetok-
nek. Mi a tovabbiakban ehelyett a szintén hasznalatos "kvantumdrot” kifejezést részesit-
jiik elényben.

Mezoszképikus eszkozok alapjaként leggyakrabban félvezetd heterostruktirdkban (pél-
ddul GaAS/GaAlAs, InGaAs/InAlAs), a kiilonboz6 félvezet6 rétegek hatarfeliiletén talal-
haté vékony, kétdimenzids vezetd réteg szolgal. Ebben gyakran hoznak létre gytiri alaku
kvantumdrétot (igynevezett kvantumgyirit), mely geometridja révén lehet6vé teszi, hogy

a rajta athalado elektron hullamfiiggvénye onmagaval interferdlhasson, majd mérik az
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eszkoz vezetOképességét a gyirh sikjara meroleges méagneses tér fliggvényében. Az ebben
az elrendezésben mért vezetGképesség ugynevezett Aharonov-Bohm oszcillaciékat mu-
tat, habar a magneses tér a kisérletekben a gytriiben is jelen van, szemben a szigoru
értelemben vett Aharonov-Bohm effektussal, ahol a tér csak a korbejart tartomany belsejé-
ben van jelen és nulla az elektron palyaja mentén.

Az elektron a hullaimtermészetén kiviil egy masik kvantumos tulajdonsaggal is ren-
delkezik, nevezetesen spinnel. Az elektronspin transzportfolyamatokban jatszott szerepé-
nek vizsgalatdval a spin elektronika (vagy roviden spintronika [6-9]) foglalkozik. Szamos
olyan spintronikai eszkoz létezik, amely az elektron spinjét klasszikus ercforrasként hasz-
nositja, ilyenek példaul az ,,0rids magneses ellendllds” jelenségén [10, 11] alapulé ,,spin-
szelep”, amely a merevlemezekben hasznélatos. Azokat a spintronikai kutatasokat, melyek
az elektron spinjét, mint kvantumos eroforrast kivanjak hasznositani, talan leginkdbb
a kvantuminformatika motivalta, mely lehet6séget kindl olyan problémak megoldasara,
amelyek klasszikus szamitogéppel nem oldhatéak meg hatékonyan. Itt az informacié alap-
egysége a klasszikus logikai bit kvantumos analdgja, egy kétallapoti kvantumrendszer, az
ugynevezett qubit valamely allapota. Mivel az elektron spinje is egy kétallapotu kvan-
tumrendszer, ezért alkalmas arra, hogy kvantuminformatikai alkalmazasokban a qubit
szerepét betoltse.

A félvezeto spintronika egyik legfébb | eroforrasa” az a spin-pélya kolcsonhatas, amely
bizonyos félvezeto heterostruktirakban azok felépitése révén eredenddéen jelen van és
amelynek eréssége a félvezetére kapcsolt tigynevezett | kapu” elektréddkkal (az elnevezés
az elektronikdban hasznélatos angol ,,gate” kifejezésre utal) hangolhato [23]. Tébb olyan
javaslat is sziiletett, amely ezt az tgynevezett Rashba-féle spin-pélya kolcsonhatast [22]
igyekszik kiaknazni, az els6k kozott volt példaul a Datta és Das altal felvetett spin tranzisz-
tor [25], illetve Nitta és munkatédrsai javaslata [29], mely ezt a kdlcsonhatést a fentebb
emlitett kvantuminterferenciaval egytittesen egy kvantumgytriiben kivanja felhasznalni az
elektron spinjének forgatasara. Ezen utobbirdl késobb Foldi, Molnar, Benedict és Peeters
[34] meg is mutatték, hogy elviekben valéban lehetséges az elektron spinjének célzott elfor-
gatasa egy kvantumgytiriivel, amelynél a be- és kimend drétok helyzete egymashoz képest
valtoztathatd. Arra is ravilagitottak, hogy a kiilsé kapufesziiltség, a drétok helyzete,
valamint a gylri atmérdje valtoztatasaval a kvantuminformatikdban alapvet6 forgatasok
megvaldsithatok.

A dolgozatban bemutatott sajat kutatasi eredmények létrejottét a — fentebb felvazolt
— kvantumgytrik irdnti intenziv kisérleti és elméleti érdeklodés motivélta. Kutatasaink
soran célul tiztik ki olyan kvantumgytrik leirasat, amelyek esetében az elektron eltéro
valészintiséggel juthat a gytiri két karjaba. A spintronikai alkalmazasi lehetéségekhez
kapcsoloddéan meg kivantuk vizsgalni, hogy lehetséges-e az elektron spinjét polarizalni egy
olyan kvantumgytrtivel, amelyben Rashba-féle spin-paya kolcsonhatds van jelen. Célunk

volt az is, hogy ilyen tipusu gylirtikbl (amelyekben mégneses tér és/vagy spin-palya
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kolesonhatds van jelen) felépiilé racsok vezetdképességét kiszamitsuk.

A dolgozat els6 részében, amely az els6 és masodik fejezetet foglalja magaban, be-
mutattuk a mezoszkopikus rendszerekben lejatszédo transzport alapveto jellemzoit és a
kvantumgytirtik leirdsdra hasznalatos elméleti modelleket. FEzek oOsszefoglalasat tartal-
mazza az alabbi 1. és 2. pont. A sajat kutatési eredményeinket [I-V] a dolgozat masodik
részében részleteztiik, ezeket ismertetjitk réviden itt a magyar nyelvii dsszefoglalé 3., 4.
és 5. pontjaiban. Emellett azota is intenziven kutatjuk a kvantumgytiriikben Rashba-féle
spin-palya kolcsonhatas jelenlétében lejatszodd jelenségeket és azok érdekes spintronikai
felhasznéldsi lehetéségeit [VII-IX].

1. Transzport mezoszképikus rendszerekben

Az utébbi évek technoldgiai fejlédésének koszonhetGen megnétt az érdeklodés az igyneve-
zett alacsony dimenzids struktirdk felhasznalasa irant. Az elnevezés onnan ered, hogy az
ilyen eszkozokben a vezetésben részt vevo elektronok mozgasat potencidlgatak korlatozzak,
ugy, hogy azok ketto-, egy-, illetoleg zérd dimenzidban képesek csak szabadon mozogni.
Ilyen rendszerek létrehozasara foként félvezeték megfeleloen egymasra rétegezett hete-
rostruktirai szolgalnak. Ha példdul GaAs és GaAlAs (vagy InGaAs és InAlAs) rétegeket
illesztliink Ossze, a hatarfeliiletnél potencidlvolgy alakul ki. Itt a Fermi-nivo ,belel6g”
a vezetési savba, igy a kornyezethez képest erésen megné az elektronstiriiség. A po-
tencialvolgy kovetkeztében az elektronok mozgasa a feliiletre merdleges iranyban kvan-
taltta valik. Mivel energetikai okokbdl ezen modusok koziil altalaban csak egy vesz
részt a vezetésben ezért ebben az irdnyban az elektronok lényegében nem, a hatarfeliilet
mentén azonban szabadon mozoghatnak a mintaban. fgy a heteroszerkezet hataran egy
tgynevezett kétdimenzids elektrongdz alakul ki [1]. Az elektronok szabadsagi fokainak
szédma tovabb csokkentheté mesterséges potencidlgataknak példdul maratassal [32,67],
péasztazé atomeré-mikroszképpal [68], vagy pedig litografiai eljardsokkal [31] torténd kiala-
kitasaval. Létrehozhaték példaul keskeny vezetd savok, tgynevezett kvantumdrétok,
melyekben a drét hosszanti irdnyara mercleges, keresztirdnyu mozgas ismét kvantalt.
Amennyiben elérhet6 az, hogy ezek koziil a ”transzverzalis” modusok koziil csak egy
vegyen részt a vezetésben, akkor egydimenzios kvantumdrotrol beszéliink.

Az alacsony dimenziés rendszerek fontos jellemzéi az elektronsiiriiség és a mozgékony-
sdg. Ezeket rendszerint Hall-méréssel hatarozzak meg, amely soran a minta hosszanti
tengelye mentén aramot hoznak létre, majd mérik annak longitudinalis, illetve transz-
verzalis (Hall) ellendllasat egy kiilsé merdleges méagneses tér valtoztatdsa mellett. A
mozgékonysaghodl kovetkeztetni lehet az elektronok impulzus relaxaciés idejére, azaz arra,
hogy az elektronok atlagosan mennyi id6 alatt veszitik el az impulzusukat az elszenvedett

rugalmatlan iitkozések kovetkeztében. A mozgékonysiag a homérséklet csokkenésével
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no, ami a racsrezgések szerepének a gyengiilésével magyarazhaté. Elegendden alacsony
homérsékleten mar lényegében csak a szennyezések csokkentik a mozgékonysag értékét.
Mivel alacsony homérsékleten csak azok az elektronok vesznek részt a vezetésben, ame-
lyek energidja kozel esik a Fermi-nivohoz, az elektronstiriség ismeretében a Fermi-nivéhoz
tartozé Fermi-hulldimszam értéke meghatarozhato [1].

A relaxéciés ido és a Fermi-hullamszam ismerete tovabbi felvilagositast ad az elekt-
ronok atlagos szabad tuthosszara vonatkozdéan a mintaban. Félvezeto heterostrukturak-
ban, ahol a mozgékonysdg jéval nagyobb, mint "bulk”, azaz nagy térfogatu szennyezett
félvezetokben, a szabad uthossz alacsony homérsékleten tipikusan 100 — 1000 nm. Egy
masik fontos fogalom a faziskoherencia-hossz, amely azt jellemzi, hogy az elektron, mint
hullam, mekkora tavolsagon képes megérizni az onmagaval valé interferencia-képességét
a mintaban torténo iitkozések ellenére. Nagy mozgékonysagti mintdk esetén ez altalaban
megegyezik a szabad uthosszal. (Megjegyezziik, hogy hosszabb lehet azonban az igyneve-
zett spinkoherencia-hossz, melynek értéke elérheti a 100 pm-t is [19].) Amennyiben a
vizsgalt eszkoz mérete Osszemérheto a faziskoherencia-hosszal, akkor interferencia-jelensé-
gek megjelenése varhato.

Véges méretti ballisztikus (azaz szérdsmentes) vezetOk vezetéképessége a kisérletek
tantsaga szerint a vezetd hosszéanak csokkenésével egy véges értékhez tart [1]. Ez alapveto-
en annak a kovetkezménye, hogy a vezetésben véges szamu transzverzalis moédus vesz részt.
Arra az esetre, amikor magdban a ballisztikus vezetében is jelen vannak szérécentrumok,
vagy pusztan a vezetd geometridja révén szérédhatnak rajta az elektronok, Landauer
vezetett be egy formulat (dolgozatunkban az (1.41) képlet), amely szerint a vezetOképesség
aranyos a vezetésben részt vevo moédusok szamaval és a vezeton vald atjutas kvantum-
mechanikai valdszintiségével [46].

Bizonyos félvezetd anyagokban fontos szerepet jatszik egy relativisztikus effektus,
a spin-palya kolecsonhatds, amely Osszekapcsolja az elektronok térbeli mozgasat a spin
iranyanak valtozasaval. Ez a kolcsonhatas heterostruktiurakban tobbféle eredetd lehet,
a leggyakrabban vizsgalt fajtdja, az tgynevezett Rashba-féle spin-pdlya csatolds [22,55]
amely a rétegezés irdnyaban létrejott — az elektronokat mozgasukban korldtozé — po-
tencialvolgy aszimmetridjanak kovetkezménye. Az aszimmetrikus potencial ugyanis egy
a hatarfeliiletre meroleges elektromos teret kelt, amely kolcsonhat az ott mozgd elek-
tronok spinjével. A Rashba-csatolas kiilonlegessége, hogy a kolcsonhatas erdssége kiilsé
kapufesziiltség(ek)kel hangolhat6 [23,24], amely nagyon vonz6va teszi felhasznalasat spin-

tronikai eszkozokben [6].
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2. Kvantumgyitrik modelljei

Az el6z6ekben bemutatott félvezeté heterostrukturak hatarrétegében gyakran hoznak
létre gyfir(i alaki kvantumdrétokat, ugynevezett kvantumgyiriket, [31,32,64-66] melyek
mérete Osszemérhetd az elektronok faziskoherencia-hosszaval. Az ilyen kvantumgytirtikkel
lehetoség nyilik kiilonféle interferencia-jelenségek megfigyelésére.

Az egyik gyakran vizsgalt jelenség, amikor a gytlru sikjara merdleges magneses tér
valtoztatasa mellett mérik az eszkoz vezetOképességét. A jelentkezo oszcillacidk a gytri
altal korbevett térrészen athaladdé magneses fluxus fiiggvényében periodikusak. Ez tu-
lajdonképpen az Aharonov-Bohm effektus [5,69] kovetkezménye, de mint emlitettiik, a
félvezeto gytiriikkel végzett kisérletek esetén a magneses mez6 a vezetékekben is jelen
van, ami az Aharonov és Bohm &altal megjosolt oszcillacioktol vald eltérésekhez vezethet.

Ha egy kvantumgytiriben Rashba-féle spin-palya kolcsonhatds van jelen, akkor az
interferencia a spin-pélya csatolds erdsségétol fiigg [29]. Ez annak a kovetkezménye, hogy
a gyuriiben mozgo elektron a sajat vonatkoztatasi rendszerében a hatarfeliiletre merdleges
elektromos mez6 mellett magneses mezot is ,,1at”, ez okozza a spin-palya kolcsonhatast.
A mégneses mezdben az elektronspin precessziot végez, amelynek mértéke ardnyos a spin-
palya csatolas erésségével. Mivel az elektron altal érzékelt magneses tér irdnya merdleges
mind a sebességének, mind pedig az elektromos térnek az iranyara, ezért az a gyuri
minden egyes pontjaban mas és mas, kovetkezésképpen az elektron spinjének elfordulasa
a gyliri két dgaban kiillonbozo lesz (lasd 2.3 abra). A Rashba-kolesonhatés erdsségét kiilsé
kapufesziiltséggel valtoztatva a vezetéképesség a fellépo interferencia miatt oszcillacidt
mutat [92].

A kvantumgytrikben fellép6 interferencia-jelenségek elméleti leirasa soran a gytrit
gyakran egydimenzidsnak tekintik. Ez az egyszertiisités megteheté amennyiben a gytiriiben
valéban egyetlen radialis modus vesz csak részt a vezetésben. Ez a feltétel a kisérletileg
vizsgalt kvantumgytirik egy részénél teljesiil. A dolgozatban két ilyen ;| egydimenzids”
modellt mutattunk be, amelyek alkalmasak a kvantumgytirtin valé athaladas valdszintisé-
gének — igy a Landauer-formula értelmében a gytri vezetoképességének — kiszamitasara.
Az elsé modell a a magneses fluxust koriilolel6 gytirt karjaiban és a drétokkal vald csat-
lakozési pontjaiban rugalmas szérépotencidlokat tételez fel [62], melyekkel az elektront a
gytriibe bevezeto, illetve onnan kivezeto drot és a gyliri kozti csatolds nemidalis voltat
képes figyelembe venni. Sajat kutatasaink soran ezt az dltalanos modellt médositottuk
annak érdekében, hogy figyelembe vegyiik a gytirti két karja kozti aszimmetria lehetoségét
[93].

A masik modell némileg egyszertibb az elsénél és spinfiiggd terjedés esetére is alkal-
mazhaté. A gylrin mozgd elektron Hamilton-operatoranak sajatérték-egyenletét megold-
va a sajatallapotok szuperpoziéjaként irjuk fel a gytirtibeli hullamfiiggvényt tigy, hogy nem

tételezlink fel szoropotencidlt a gytriiben — bar megjegyezziik, hogy a modell altalanosit-
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haté arra az esetre is. A be- és kivezet6 drétokat ugy kapcesoljuk a gytirith6z unitér médon,
hogy a hullamfliggvényeket illesztjiik a csatlakozasi pontokban, az dramokra pedig egy
a klasszikus Kirchhoff-torvénnyel analég feltételt frunk el6: a csatlakozasi pontokban a
valészintiségi daramstiriiségek ereddje zérus legyen. Spinfliggd interferencia esetében an-
nak a Hamilton-operatornak a sajatérték-problémajat kell megoldanunk, mely a Rashba-
féle spin-palya kolcsonhatasi tagot is tartalmazza. Itt lényeges, hogy a gytliri Hamilton-
operatoranak minden energiasajatértéke négyszeresen elfajult. Az aramokra vonatkozo
feltételeket ebben az esetben a valdsziniiségi spin-aramstiriiségekkel kell felirnunk [89,92].
A megoldast az egy bemenettel és egy kimenettel rendelkezé gytlirti esetén be is mutat-
tuk. Lathattuk, hogy alkalmasan megvalasztva a spin-pélya csatolds erésségét, a bemenet
és kimenet egymashoz viszonyitott helyzetét, valamint a gyirt sugardt, kiilonféle spin-

forgatdsok valdsithatok meg [34].

3. Aszimmetrikus injektalas

A kisérletekben vizsgalt kvantumgytiriik esetében az elektront a gytliriithoz és abbdl kiveze-
t6 drotok kapcesolata a gytirtivel nem tokéletesen idedlis. A drotok és a gyuri csatlakozési
pontjaiban reflexié léphet fel, illetoleg nem feltétleniil igaz, hogy a gyurt karjaiba az
elektron azonos valdszintiséggel juthat be. Ez a fajta aszimmetria tébb okbdl is felléphet.
Egyrészt lehet a kovetkezménye annak, hogy a gytirii és a drétok kialakitasa nem tokéletes,
de amiatt is jelentkezhet, hogy az alkalmazott magneses tér hatasara fellépé Lorentz-er6
a gylri véges vastagsaga révén azt eredményezi, hogy a két karba eltérd valdszintiséggel
jut be (injektélodik) az elektron [35,94].

Ebben a fejezetben az aszimmetrikus injektalast egy egydimenzios modell segitségével
irtuk le, melyet a rugalmas szérépotencidlokat tartalmazé modell megfelel6 altalanositasa-
ként kaptunk [I]. A gytirii két karjaba jutds valészintiségei kozti kiilonbséget tigy vettiik
figyelembe, hogy a vezetoé drétok és a gylrli csatlakozasi pontjaban a be- és kimeno
amplituddok kozti kapcsolatot leird unitér métrixban a két karra vonatkozo elemek kozott
egy aranyossagi tényezot vezettiink be. A bemend drét és a gytirti kozti illesztést egy masik
paraméterrel vettiik figyelembe. Az igy kapott matrixrél megmutattuk, hogy hataresetben
visszaadja a szimmetrikus injektalast leird, korabban bemutatott matrixot.

Az emlitett matrix felhasznalasaval analitikusan kiszamitottuk egy olyan két drottal
rendelkez6 kvantumgytiriin valé athaladas valészintiségét, amely altal korbevett térrészen
mégneses fluxus halad 4t és amelynek karjai egyenl6 hosszisdguak [I]. Két esetet vizsgal-
tunk: amikor nincsenek jelen szérocentrumok a gytriiben és amikor az egyik karban
szorocentrum talalhaté. Megmutattuk, hogy ha nincs jelen szérécentrum a gytriiben,
akkor a transzmisszios valdszinliség méagneses fluxus fliggvényében jelentkezo oszcillacioi-

nak amplitudéja a gytiri két karja kozti aszimmetria hatasara csokken, és a minimumai
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magasabbra tolédnak (3.2(b) dbra), mivel ekkor nem teljes a destruktiv interferencia.
Megvizsgdltuk a gytirti és a drotok kozti csatolds csokkentésének hatésat abban az e-
setben, amikor az elektron a gytiri két karjaba aszimmetrikusan injektalodik. Megmu-
tattuk, hogy a transzmissziés valdszinliség a geometriai fazis fiiggvényében lecsokken,
kivéve néhény esetet, amelyekre a gytiri tovabbra is teljesen atlatszé marad az elektronok
szamara (3.3(a) abra). A geometriai fazis egyéb értékei esetén a csatolds romlasaval a
transzmiszios valdszintiség a magneses fluxus fiiggvényében lecsokken, csakigy, mint az
oszcillacidk amplitudéja (3.3(b) dbra). Megvizsgaltuk, hogy mi tapasztalhat6 a transz-
misszios valészinlisag magneses fluxus fliggvényében jelentkezo oszcillacidiban, ha a gytrt
aszimmetria altal kitlintetett karjaban szérocentrum talalhato, amely csak bizonyos valo-
szintiséggel engedi at az elektront és a masik karban szerzett geometriai fazishoz képest
egy tovabbi fazistolast eredményez. Megmutattuk, hogy amennyiben a szérécentrum
gyenge (azaz nagy valdszintliséggel dtengedi az elektront), az oszcillacidk fazisa eltolédik,
amplitudojuk megvaltozik a szérdcentrum altal bevezetett fazis valtoztatasaval, az a-
szimmetria hatdsdra pedig a transzmissziés minimumok magasabbra tolddnak (3.4 dbra).
Azt is megmutattuk, hogy ha az aszimmetria &altal preferalt karban erés (azaz az elekt-
ront kicsiny valdszintiséggel atengedd) szérécentrum van jelen, akkor a transzmisszi6 osz-
cillacidinak fazisa nem érzékeny a szorécentrum &altal okozott fazistolas véltoztatdsara. A
gyluri karjai kozti aszimmetria ekkor — a szimmetrikus esethez képest — a transzmissziés

valoszintiség lecsokkenését eredményezi.

4. Kvantumgytirti harom dréttal

4.1. A feladathoz tartozo szérasprobléma megoldasa

A spintronikai alkalmazasi lehetdségekhez kapcsoloddan kiszamitottuk egy olyan kvan-
tumgytrin vald atjutds valdszintiségét, amelyben Rashba-féle spin-palya kolcsonhatés
— és a késobbi, 5. fejezet témajanak megalapozasa érdekében maéagneses tér is — jelen
van és amelyhez hiarom kvantumdrét kapcesolddik [ILITIV]. Feltettiik, hogy a mégneses
tér elegendden gyenge, és hatasat perturbaciéként vettiik figyelembe. A megoldéast a
legaltalanosabb hatarfeltétel esetére — miszerint minden kvantumdréton megengedett be-
mend és kimené (spinfliggd) hullam is — a 2.3. fejezetben bemutatott egyszerii egy-
dimenziés modell segitségével végeztiik el. Megmutattuk, hogy egy adott drétban a
kimenet meghatarozasahoz a gylirti szimmetridja révén elegendé annak a probléménak
a megoldasa, amikor a drétok koziil az egyik csak bemenetként a masik ketto pedig csak
kimenetként szolgal. Minden bemenet hozzajarul ugyanis minden kimenet létrejottéhez
egymastdl fiiggetlentil. Ha ismerjiik egy adott bemenetre a visszavert allapotot meghata-
rozé reflexios matrixot, illetéleg a két kimenetet meghatarozoé transzmisszids matrixokat,

akkor a tobbi bemenetre vonatkozé reflexids és transzmissziés matrix is meghatarozhato
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olyan médon, hogy az ismert matrixokban a drétok kozti szogeket a megfelelé mdédon
kicseréljiikk. Ahhoz, hogy az igy nyert méatrixok mind ugyanabban a béazisban legyenek
felirva, mint az ismert probléma matrixai, még a megfelel6 hasonlésagi transzformacidkat

(az ismert probléma bemend drétjatdl mért szoggel vals forgatdasokat) el kell végezniink.

4.2. A haromdroétos kvantumgyilirii mint spin-polarizalé eszkoz

A fentiekben ismertetett kvantumgytri esetén részletesebben is megvizsgaltuk azt az
esetet, amikor a gytriibe az elektron csak egy droton keresztiil juthat, de két drét all ren-
delkezére a tavozasra. Megmutattuk, hogy ha a bejovo elektron spin-allapota maximélisan
kevert, akkor ahhoz, hogy a két kimeneten tiszta allapot j6jjon 1étre, a megfelel6 transz-
missziés matrixok determinénsa ell kell t{injék [IT]. Amint azt a 4.2 fejezetben részleteztiik,
ez két esetben is elérheto. Mindkét esetben tobb feltétel egytittes teljesiilését kell elérniink
a drétok egymaéashoz viszonyitott helyzetére, a spin-pédlya kolcsonhatas erdsségére, és a
gylurl sugarara vonatkozoéan. Megmutattuk, hogy az emlitett feltételek egyszerre torténo
teljesitése lehetséges (4.2 dbra) mind szimmetrikus, mind aszimmetrikus helyzetii ki-
meno6 drotok esetén, vagyis a gylirli alkalmas az elektron spinjének polarizdlasara. Meg-
vizsgalva egy ilyen polarizalé gytliri kimenetein a transzmissziés valészintiségeket azt
talaltuk, hogy azok a két kimeneten megegyeznek és elérhet6 az is, hogy értékiik maximalis
legyen, vagyis a gytrin ne keletkezzék reflexios veszteség. A polarizacié mindkét esetében
meghataroztuk a kimeneten 1év6 spin-allapotokat és azt talaltuk, hogy azok megegyeznek
a gyuri ezen pontjaihoz tartozé két sajatspinor egyikével ugy, hogy az egyik kimeneten az
egyik, a masikon a masik jelenik meg (a két esetben felcserélve). Megmutathat, hogy van-
nak olyan spiniranyok, melyek bemenete esetén az egyik kimenetre biztosan nem kertl
az elektron. Mindezek alapjan elmondhatjuk, hogy egy ilyen gyiiri nagyon hasonléan
viselkedik, mint a Stern-Gerlach berendezés, ugyanis polarizalatlan bemenetbdl polarizalt

spinallapotokat hoz létre a kimeneteken.

4.3. A spin-polarizacié fizikai hattere

Ebben a fejezetben a spin-polarizécids effektus fizikai hétterét tartuk fel [ITT]. A maximali-
san spin-polarizalatlan bemen6 allapotot a bemen6 drét helyéhez tartozo gytirtibeli sajat-
spinorokkal felirva meghataroztuk a gytirtiben létrejové allapotot, amely a gytiriiben is a
megfelel sajatspinort hullimok (minden sajatspinorhoz tartozik két ellentétes irdnyu
aramot eredményez6 hulldm) keveréke. Mivel az eléz6 fejezetben lattuk, hogy a po-
larizaciés feltételek teljesiilése esetén az egyik kimeneten az egyik, a masik kimeneten a
masik tipust sajatspinor jelenik meg, megvizsgéaltuk, hogy mikor lesz az adott sajatspinoru
allapotok megtalalasi valészinlisége zérus a kimeneteken, mivel ezekben az esetekben

vérhaté, hogy a gyfirtibeli kevert éllapot tiszta (azaz projektor) legyen. Azt taldltuk,
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hogy egy adott sajatspinoru allapot egy adott kimeneten valé eltiinését ugyanazok a po-
larizacios feltételek irjak le, mint amelyeket az el6z6 fejezetben — mas gondolatmenet
alapjan — frtunk fel. Mindezek alajan konnyen érthetévé valik, hogy a polarizacios effek-
tus azért jon létre, mert az azonos sajatspinori, de ellentétes keringési iranynak megfelelo
hulldmok egyméssal destruktivan interferdlnak a kimeneteken (az egyik kimeneten az
egyik tipusu, a masik kimeneten a mésik tipusu sajatspinorra torténik ez meg).

Abban az esetben, ha a bejové maximalisan kevert spin-dllapotot a z irdnyban |T) és
|1} allapotok keverékeként irjuk fel, a polarizaciés effektus a 4.5 dbra alapjan értheté meg
a legkdnnyebben: a gy(iri minden egyes pontjaban kiilon-kiilén felrajzolva a |T) és |T)
bemenetek esetén 1étrejovo spiniranyokat lathatd, hogy a kimeneteken azért jonnek létre
a polarizalt allapotok, mert a kétfajta bemenet a kimenetekre érve ugyanabba az iranyba
fordul.

4.4. A térbeli- és spin szabadsagi fokok osszefonddasa

Ebben a fejezetben azt vizsgaltuk meg, hogy egy egy bemenettel és két kimenettel ren-
delkez6 gytriiben a kimenet, mint egyik szabadsagi fok és a kimeno spin, mint masik
szabadsagi fok kozotti korrelacidk milyen tipustak lehetnek [IV]. A kérdést a speciélis
spin-polarizalé esetben és altaldban is elemeztiik. Ahhoz, hogy az emlitett korrelacidkat
megvizsgalhassuk, a kimeneteket ,,globalisan” kell tekinteniink, azaz abban a Hilbert-
térben kell dolgoznunk, amely a lehetséges kimenetek, mint térbeli béazis és valamilyen
spin-bazis, példaul a z irdnyu |1) és ||) allapotok altal kifeszitett Hilbert-terek tenzori
szorzataként all elo.

Megmutattuk, hogy abban az esetben, amikor a gytlirii polarizal a két szabadsagi
fok kozott a korrelacié kizardlag klasszikus: a bemend maximalisan kevert allapot a
kimeneteken ugyan kiilon-kiilon tiszta allapotokat eredményez, globélisan mégis maximali-
san kevert az elektron allapota a kimeneten. Akkor azonban, ha a bemené elektron spinje
tiszta allapoti azt taldltuk, hogy a globdlis kimend allapotban lehet Gsszefonddas (azaz
kvantumos korreldcid) a kétféle szabadsagi fok kozott. Megmutattuk, hogy bizonyos be-

menetek esetén az osszefonédas maximaélis is lehet.

5. Kvantumgytrik racsai

Ebben a fejezetben kvantumgytirtikbol képzett négyzetes racsok vezetoképességét hataroz-
tuk meg, melyekrol feltettiik, hogy benniik Rashba-féle spin-palya kolcsonhatés és a
gytrik sikjara megoleges magneses tér is jelen van [V]. Olyan, egymassal érintkezo gytirtik-
bol allé 3x3-as, 4x4-es és Hxbh-Os racsokat vizsgaltunk, melyek a fliggbleges irdnyban
zartak, a vizszintes iranyban viszont lehetové teszik az elektronok terjedését, ahogyan azt

az 5.1 dbra is mutatja. Ilyen tipusi racsokat kisérletileg is el6éllitottak [32].
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Bemutattunk egy olyan moédszert, amelynek a segitségével az egyes gytirtikkel kapcso-
latos problémék megoldasanak ismeretében a racson valé atjutas valdszintisége kiszamitha-
t6. Mivel a racsot olyan gytiriik épitik fel, melyek két, harom, illetve négy masik gytriivel
érintkeznek, a kettd, illetve négy drottal rendelkezo gytirtik problémainak megoldasat is
felvazoltuk (a haromdrétos gytirti problémajat mér a 4.1. fejezetben megoldottuk). A
gyturik érintkezési ponjaiban ezutan eloirtuk a hullamfiiggvények, valamint derivaltjaik
folytonossagat. Az igy kapott (nagyszamu egyenletbdl alld) egyenletrendszer numerikus
megoldasaval meghataroztuk a racs kimenetein fellépd spin-allapotokat, amelyekbol azutan
a Landauer-formula segitségével kiszamitottuk a racs vezetOképességét.

A vezetoképességet a magneses tér, a Rashba-csatolas erdssége és az elektron hullam-
szamabol, valamint a gytri sugarabdl képzett kp paraméter fliggvényében abrazolva
megmutattuk, hogy a kiilonféle méreti rdcsok vezetoképessége mindhdrom paraméter
fliggvényében oszcillacidkat mutat. A kp paraméter bizonyos értékeire a racs teljesen
atlatszatlan az elektronok szdmara (5.3 dbra). Ez az effektus a récsot alkot6 gytirtik szint-
jén lejatszodé tobbszords destruktiv interferencia hatasara kovetkezik be. A spin-pélya
kolesonhatéas nélkiili esetben a nemvezetd savok eltiinnek, a vezetoképességben jelentkezo
oszcillacidk periddusédt a gytrik szama hatarozza meg. Az emlitett nemvezeto savok a
vezetOképességhben a magneses tér és a spin-palya kolcsonhatds erdssége fliggvényében is
megjelentek (5.3 dbra). Megvizsgaltuk az egy bemenettel rendelkez6 ugyanolyan méretii
racsok vezetoképességét is, ahol lényegében ugyanazok az effektusok lépnek fel, mint a
t6bb bemeneti racsok esetén (5.4 dbra).

A vezetOképesség kiszamitasara haszndlt modszerink azt is lehetové tette, hogy a
racsok egyes kimenetein kialakulé spiniranyokat is megvizsgaljuk az alkalmazott magneses
tér és spin-palya erdsség fliggvényében. Megmutattuk, hogy a bemend spinallapot a
kiilonb6z6 kimenetekre érve kiillonbozé mdédon fordul el és a megvaldsithato spin-forgatdsok
széles tartomanyban mozognak (5.5 és 5.6 dbra).

A realisztikusabb leirds érdekében kiszamitottuk a racsok vezetdképességét abban az
esetben is, amikor a gylrik kozott pontszerii szorécentrumok lehetnek jelen, melyek
erosségét egy adott szérassal rendelkez6 normaélis eloszlas hatdrozza meg. Megmutattuk,
hogy a szérécentrumok legfébb hatasa, hogy jelenlétiikben a vezetOképesség atlagosan
lecsokken (5.7 dbra). A mésik fontos hatasuk, hogy a magneses tér fliggvényében az
Aharonov-Bohm (AB) oszcillacidk elsé felharmonikusai (az tigynevezett Al'tshuler-Aronov-
Spivak rezgések) feler6sédnek (5.8 dbra). Azt is megmutattuk, hogy a szérécentrumok
hatasdnak kovetkeztében, az egyébként nem vezetd tartomanyokban a vezetéképesség
megnéhet a szérédasok kovetkeztében (5.9). Ez azért lehetséges, mert a szérécentrumok
képesek elrontani a destruktiv interferenciahoz sziikséges faziskoherenciat. Bizonyos para-
méterek esetén azonban a szorécentrumok hatésara sem novekszik meg a vezetéképesség.
Ezekrol az esetekrol megmutattuk, hogy ilyenkor mar a bejovo oldalon 1évé elsé gytirtik

teljesen reflektaljak az elektront.
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Appendix

Here we present the analytic expressions for the reflection and transmission matrices,
obtained from the solution of the scattering problem of general two- and four-terminal
rings, in which Rashba-type spin-orbit interaction and a perpendicular magnetic field are
present, the latter of which is treated as a perturbation. We have shown in Section 4.1
that it is sufficient to obtain the solution for the boundary condition when only one of the
terminals acts as an input, since the more general boundary condition of having inputs
on all terminals is just a superposition of such cases with an appropriate rotation of the
matrices [see Egs. (4.27) and (4.28)]. Considering f; as the only input [i.e., fixy = 0 in
Fig. 5.2], requiring the continuity of the wave functions, and applying Griffith’s boundary
conditions at the junctions in both cases (see Section 2.3), we can determine the reflection
matrices RT and R’ of the two-terminal ring and of the four-terminal ring, respectively.
Both of these matrices can be written in a form analogous to that of R of the three-

terminal case given by Eq. (4.21) with 9% (u = 1,2) being replaced by

4k
o = y<_£ {kpsin(q"n)sin(q" (2m —m)) +ig" sin(2¢")7) } , (A-1)
and
oW = 2kp {K3p® [cos (2¢")7) + cos(2¢") (m — v3 + 72 — 1)) — cos(2¢") (7 — 73 + 72))
) 3+ —mn 3+ 72
+ cos (2q(“) (m—3+m)) — cos(2q(”)(7r — Y +m)) — cos(2q(“) (m—3))
+ cos (Qq(“) (m— ) — cos(2q(“)(7r —m))] - 8i(qM)3 sin(2q(“)7r) (A-2)

+2ik?p*¢" [sin (26" (1 — 73 + 72)) + sin(2¢% ( — 3 +71)) — 3sin(2¢") )
+sin (20" (7 — 72 + 1))] + 4k 02" [sin (2¢®) (7 — 1)) —sin (2¢%) (7 — 73))]
—4kp(q®)? [cos(24%) (r — 13)) + cos (2 (1 — 7)) + cos (2¢%) (m — 1))

-3 cos(2q(’“‘)7r)} } ,

respectively, where

yW = k% [cos(2q(“) (W—’yl))—cos(Zq(“)ﬂ)} + dikaq™ sin(2¢M )
—4(q(“))2 [cos[((—l)’ﬂrl w+2¢)7r] —|—cos(2q(“)7r)} , (A-3)
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g = 16 (q(”))4 {cos[((—l)”Jrl w + 2¢)7] + cos(2¢"7) } — 32ikp (¢ ) sin(2¢"))
—4k* p? (q(“))2 [cos(2¢") (m — 73)) + cos(2¢") (7 — 72)) + cos(2¢") (7 — 1))
+cos (2¢") (1 — 3+ 71)) + cos(2¢") (T — v3 + 79)) + cos(2¢%) (7 — 72 +71))
—6cos(2¢"m)] + 4ik%p°q" [sin(2¢") (7 — 93 + 72)) + sin (2" (1 — 72 + 1))
—sin(2¢" (7 — 73)) + sin(2¢" (7 — )] - 2sin(2¢Wr) + k*p* [cos (2¢%7)
+ Cos(2q (7r V3 + Yo — ’yl)) — cos(2q( )(7r —¥3 + ’}’2)) — cos(2q(“ (m— 73))

+cos(2¢") (1 — 3 +71)) — cos(2¢" (1 — 72 + 7)) + cos(2¢¥ (7 — 7))

(20" (7 —

)] (A-4)

— cos(2¢™

>]
\g

Here ¢ = ®/®(, w and ¢*) are given by Eq. (4.4) and (4.13), respectively.

The transmission matrices T/t of the two-terminal ring and i{l (n = 1,2,3) of the
four terminal ring can be given in an analogous form to that of the transmission matrices

TAT{I of the three-terminal one given by Eq. (4.24), with 7 o belng replaced by

) ARPLY) (i) [sin(q(")(% — ) — e (D ret20) sin(q(“)’Y)} . (A-5)

y(#)
and
. 4kpg™) 1, ) ) )
Tl(“) = gp(u) i3 (D Hw20) {ik*’ [5111((](“)(27? =293+ 279 — M) —s1n(q(“)(27r — 7))

+sin(¢" (27 — 72 + 7)) —sin(q(“)(27r — 3+ m))] +2kpg) [2cos (q(“)(27r — 7))
—cos(q"(2m — 272 + 1)) — cos(qW (21 — 293 + m1))]

+4i(q(“))2 [efifr((*l)u+1w+2¢>) Sin(q(“)%) _sin (q(")(27r _ 71))} } : (A-6)
4k p+1 . m
%2(“) = yp(g) Z () *wt29) {Qk;pq(“) [cos (q(“)(27r—72)) _ (=D w29 cos(q(")w)

Lemim((=) wt29) cos(q(”)(Q’yl — 7)) — cos(q(“)(27T —2v3+ 72))}

4§ (q(u))2 |:€7i7r((*1)#+1w+2¢) sin (q(u)72> — ¢in (q(”)(271' _ %))} } , (A-7)

Ak pg™ .
%?Eu) _ gp(g) S (1w 26) {ikzpze—m((_l)wle(p) [sin(q(“)yg) +sin(q(“)(271 _73))

— SiIl( (”)(2’)/2 - 73)) + Sin<q(ﬂ)(2,y2 — 2y — 73))}
—2kpgWe (1) w+2¢) [2 coS (q(u)%) —Cos(q(ﬂ) (271 _73)) —COS (q(u)@%_%))}
+4i (Q(M)) |:€*17F((*1)H+1w+2¢) sin<q(“)73) _sin (q(“)(27r _ %))} } 7 (A-8)

respectively.
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