Quotient and Power methods for the

Graph Colouring Problem

Author: Istvan Juhos
Ph.D. candidate
Department of Computer Algorithms and Artificial Intelligence

Advisor: Prof. Janos Csirik

Head of the
Department of Computer Algorithms and Artificial Intelligence

Szeged 2009

SUMMARY OF THE DISSERTATION SUBMITTED FOR THE DEGREE OF DOCTOR OF
PHILOSOPHY OF THE UNIVERSITY OF SZEGED

NTIARy),
o Y,

University of Szeged
Ph.D. School in Computer Science

Introduction

This booklet summarises the scientific results of the author of the Ph.D. dissertation entitled
“Quotient and Power methods for the Graph Colouring Problem”. The author developed a gen-
eral framework for graph colouring methods, where the traditional colouring scheme is defined via
special graph homomorphisms motivated by the Zykov theorem [64; 65]. These special homo-
morphisms proved useful in the design of algorithms ([35; 37-43]). This summary is structured
in a similar way to the thesis itself. The results can be separated into different groups according
to the parts of the graph colouring framework. The author defined the problem via certain graph
homomorphisms using quotient and power graphs. The author called these Quotient and Power
methods. Then he described these graphs and homomorphisms by matrix representations with
suitable operations, resulting in his Merge Models with his nomenclature [37; 40; 41]. Merge
Models provide a novel description of the colouring problem. The operations (i.e. the Merge
Operations) subsequently change the state of the model and direct it to a possible solution of
the original graph colouring problem. The author developed strategies in the model called Merge
Strategies [35; 38; 42; 43], which define possible directions to a solution. Furthermore, the au-
thor constructed general frameworks (Merge Frameworks) in which strategies can be embedded
[38; 40]. These frameworks are generalisations of the traditional sequential colouring schemes,
hence existing algorithm strategies can be embedded into one of them. Such an embedding
may considerably decrease the computational efforts. Moreover, the embedding supports the
structural analysis of the algorithms in a common way and makes available a natural extension
of them, which may result in an increase in their performance. Such algorithms generate a se-
quence of model operations according to the strategy. The end of the sequence is a candidate
solution for the original graph colouring problem. The author provided several novel algorithms
in [35; 37-43]. These algorithms proved useful in an experimental analysis and theoretical study.

Graph Colouring Problem

A graph is a pair G = (V| E) of disjoint finite sets, where £ C V' x V. The elements of V' are
the vertices of the graph G, the elements of FE are its edges. Put briefly, graph vertex k-colouring
(or simply graph k-colouring) is an assignment of colours from a colour set C' for each vertex,
where the number of the colours in the colour set C' is k. The problem occurs in the colouring

process when we consider edges as constraints.

Definition 1 (Proper graph vertex k-colouring) A proper graph vertex k-colouring of
G = (V, E), if it exists, is a k-colouring where adjacent vertices are assigned different colours:

sur

c:V—0C , vi—cly) , Y(,v)eE=cl)#clv) , |Cl=k

Definition 2 (Graph minimum vertex colouring) Graph minimum vertex x-colouring is

a proper x-colouring, where x is the smallest integer needed to get a proper colouring.

Here the Graph Colouring Problem is the graph minimum vertex colouring problem. An example
for this can be found in Figure 1. The smallest number of colours that can properly colour vertices

is called the chromatic number of a graph and will be denoted by x. Figure 1(a) shows a

Uy Uy
U1 V2 U3 Vg Us Vg
Vs 03 vu 0 1 1 0 1 Vs Vs
Vo 1 1
vg 1 1 1 1
v V2 vy 0 - 1 1 - Vo V2
vs - - - 1 - 1
v 1 - 1 - 1
U1 U1
(a) A graph (b) Adjacency matrix (¢) A proper colouring

Figure 1: A graph and a proper 3-colouring, which is the minimum.

drawing of a graph, while the corresponding adjacency matrix of the graph ! is illustrated in
Figure 1(b), which describes the edge relation between the vertices and Figure 1(a). Figure 1(c)
shows a proper colouring of the graph, which is a minimum as well, where sets {vy,v4}, {v2, v}
and {v3,v5} are the colour classes. Colour classes must form independent sets? in order to get
a proper colouring. The 0-s in Figure 1(b) represent an independent set.

Lots of algorithms have been created and studied to solve the graph minimum vertex colouring
problem. Actually, these algorithms come in two main types: the exact algorithms where finding
of a solution is guaranteed, but the time involved may be considerable due to the complexity of the
problem (- which is NP-complete [45]); and the non-exact algorithms, that is, the approximation
algorithms where a solution is not guaranteed but one may find a solution or a good approximation
of it in a reasonable time. The latter methods may have stochastic components. Some recent
surveys of these methods can be found in [23; 32; 47; 63] The graph colouring problem can be
solved exactly by an exhaustive search, i.e. systematically exploring a search space [15; 16; 34].
Unfortunately, when the size of the instances grows the running time for an exhaustive search
soon become prohibitively large, even for instances of fairly small search space. To improve the
efficiency of the search, several heuristics were developed to generate a 'good’ starting candidate
solution which may be close to an optimal solution [4; 17; 26-28; 46; 49; 55; 58; 60-62]. Then
starting the exploration process with the generated candidate solution, a systematic search can
considerably improve the performance. Usually, the exploration is based on an examination of
the local environment of the generated solution and it assumes that a neighbourhood relation
is defined on the elements of the search space. This approach led to the development of local
search methods [1; 8; 10; 23; 29; 31]. These methods usually apply some heuristic to generate
a new candidate solution from an existing one in its local environment. But though a heuristic

can considerably improve a solution they do not always provide an optimal solution, hence these

! The 0-s have been replaced by dots for the sake of clarity.
2There is no edge between the vertices.

Vg

Us U3
Ve U2
. N
e P S
G /vgve vy . G +vyus
o' ‘5
.
o‘ ’Q
U4 B S Uy
» Y
Us U3 Us U3

{vg, va}

Vg vy

U1 U1

Figure 2: Connection and contraction steps in a Zykov-tree. Assigning the same colour for
vy and vs must be avoided, because this always results in a non-optimal colouring, hence
vou5 edge addition is reasonable, but the same colour assignment for vy and vg supports the
minimum colouring, therefore they can be contracted.

methods belong to the class of approximate algorithms. Many algorithms studied today employ
a stochastic process in the local search to guide a candidate solution to a suboptimal solution or,
hopefully, to an optimal solution. Several of these approaches maintain a population of candidate
solutions. Examples of such methods include tabu-search [3; 31], simulated annealing [9; 33]
and ant colony optimisation [5; 12]. One popular approach for dealing with graph colouring is
evolutionary computation [2; 13; 14; 19; 20; 22; 25; 30; 48; 56; 59]. In the development of
algorithms for graph colouring, various integer programming formulations of the problem could
be used. Several such formulations, usually involving binary variables, have been proposed. These
variables can identify different structures: e.g. independent sets [50]; a variable for each possible
colour and vertex [11; 51; 53]; acyclic orientations of a graph [21]. In several formulations
an optimal solution can be represented as a binary vector of the variables. These binary vectors
constitute a polytope, a colouring polytope. These polytopes are the central topics of the analysis
of the problem based on integer programming approaches [6; 24]. Several relaxed versions of
these integer programmes have been developed to approximate a face of a colouring polytope
[18; 44; 50; 52; 57]. Different techniques may improve the efficiency of these methods e.g. column
generation with branch-and-bound [7; 50; 57] or branch-and-cut [53]. Actually the branch-and-
bound technique implicitly uses Zykov's idea (see [57]). In the middle of the last century Zykov
came up with the idea of applying an edge addition or vertex contraction instead of a colour
assignment in the colouring problem (see Figure 2). During these operations new graphs are
created from the original one which may inherit the parent graph's properties.

In the thesis we generalise Zykov's approach by introducing different models (Merge Models).
We will demonstrate the efficiency of these novel models via a theoretical analysis and experi-

mental study. Merge Models reformulate the original problem. In this reformulated environment
three different general frameworks will be introduced to describe an abstraction for algorithms
based on the Merge Models. They provide a uniform and compact way in which algorithms can
be defined. Embedding algorithms in the same common framework supports both their struc-
tural and performance comparison, which can be anyway problematic. Traditional colouring
schemes can be identified in one of the frameworks and extended schemes may be provided. The
framework itself generalises the formal sequential colouring approach. With this generalisation
an algorithm can be extended in a natural way, which may result in new algorithms. The novel
aspect of the Merge Models implies the development of novel colouring strategies, i.e. Merge
Strategies. The Merge Models describe special graph homomorphisms, hence their analysis may
reveal connections between strategies and different graph properties. Many novel efficient Merge
Strategies will be provided which outperform several standard benchmark algorithms. In addition
a general strategy design is discussed, which allows the application of machine learning techniques
in the algorithm design.

Quotient and Power Methods

The author defined graph colouring processes as a series of homomorphisms using quotient or
power graphs and multigraphs, where the vertices which get the same colour will be 'glued’ or
‘grouped’ together to form new vertex sets (see Juhos et al. [37; 41]), as illustrated in Figure 3.
The author called the new colouring methods which are based on these principles Quotient and
Power methods. The goal of a Quotient/Power method is to find a suitable homomorphism which
maps the original graph 3 into a complete graph or an appropriate graph which is homomorphic
with a complete graph. The homomorphism obtained defines a colouring of the original graph.
In order to support the design of sequential colouring algorithms a homomorphism is created
as a composition of a series of intermediate homomorphisms. These homomorphisms produce
helpful intermediate graph structures which may be exploited for an efficient colouring and also
help to provide a deeper insight into the colouring procedure. Moreover, they allow us to design
efficient new algorithms or redesign existing graph colouring algorithms in a framework supported
by quotient or power graphs (see Juhos et al. [37-43]).

Merge Models

The relation between the original graph and a quotient or power graph/multigraph is defined by
a graph homomorphism. The author introduced four kinds of matrix operations, called Merge
Operations (or 'merges’ for short) to map the adjacency matrix of the original graph to its four
different homomorphic images: called Binary/Integer Merge Square (A/A) and Binary/Integer
Merge Table (7'/T) matrices [37; 41]. In general they are referred to as a Merge Matrix (M).

30r an equivalent reformulation of the original graph.

Subsequent Merge Operations will produce a composition of the homomorphisms until no further
Merge Operation is possible. The merge condition is defined by M;; = 0; that is, in this case
M; and M; rows (and columns) are mergeable, as can be seen in Figure 1(b). The merge results
in a M/;; Merge Matrix. With the last possible merge, the last homomorphic image defines
a candidate solution for the colouring, where the merged rows and the corresponding vertices
determine the colour classes. Figure 3 shows an example for each Merge Operation, while Table
1 gives an exact description of them via row and matrix-based formulations. Moreover, Table 1
shows a relation between the Binary Merge Matrices (A and T') and their Integer counterparts A

and T. Merge Tables characterise a relation between the original vertices and the neighbouring

ROW-BASED FORMULA MATRIX-BASED FORMULA
TZ[H” —a+b TJ[“” -0 T+ — (I+ W)T[t]
" =avp 7 =0T | 7t = 7l pTl — T
7 =1 —aob T =07 | 70 =TI S (a@b)(I; © L)
AT —a4p AT — o | Al = (1 4 WHAB (T 4+ W)T
Al o7 7 Al _
) J
AT —avp A — oT | Altrt) — Al (PAUPT) — (M AU MT)
AU A _gop Al gr

Table 1: Description of different merge operations when the a and b, the i-th and j-th
mergeable rows of a Merge Matrix are merged. The superscript defines the ¢-th merge
stepand P =1, ®1;, R=1;®1;, W = P — R, where [; is the i-th row of the identity
matrix I. M; stands for the i-th row of a matrix M, while M ; denotes its the column. The
operation o is called the Hadamard-Schur product, while ® is called the dyadic product.

colour classes. We may associate rows of an adjacency matrix with colour classes or power vertices
and columns with vertices of the original graph. As previously mentioned, there are two subtypes,
namely a weighted type (Integer for power multigraphs) and an unweighted type (Binary for power
graphs), based on whether the number of the multiple edges are taken into account in the merging
process. Hence, there are two basic row operations the addition and the piecewise binary OR
operations. When they are applied on the rows only, we arrive at power multigraphs/graphs, i.e.
Integer/Binary Merge Tables, but applying them on the rows and on the relevant columns as well,
we arrive at a quotient multigraph/graph, i.e. Integer/Binary Merge Squares. In Merge Squares,
the rows and the columns of the matrix correspond to colour classes, and their edges define a
relation between the colour classes. The representations and the operations form new colouring
models, called Merge Models. Each row of a Merge Matrix corresponds to an independent set in
the original graph. Recall that colour classes are independent sets and each vertex constitutes a
one-element independent set in the original graph. Actually, a Merge Operation creates the union
of two independent sets in the traditional sense. Figure 4 shows how the structures of different
Merge Matrices are related to the appropriate graphs. These models support parallel software
and hardware implementations. All the models have their own strong points, and they can assist
each other in different ways. The author obtained significant improvements, both theoretically

s

r—"ﬁ‘
<
—
<
N
N

(a) Power multigraph G/{viva}

Tu)
Vg ..?;:!!z;t. Vo
(c) Power graph G/{v1.va}

U3
Vg V1, Vg } Vo

(e) Quotient graph G J/ {v1,va}

U3

Ve {01704} Vo
(g) Quotient graph G/{v1,vs}

V1 V2 V3 Vg4 Vs Vg

{ri,;4y 0 1 2 0 1 1

7o 1 - 1 :
- 1 1 1 - 1
rs A . |
- 1 -1 -1

(b) Integer Merge Table. Addition is performed on
the r; and r2 rows.

Vi V2 V3 Ug Vs Vg

{ri;m} 001 1 0 1 1

T 1 - 1 . .
Ty 1 1 - 1 - 1
rs S |
re 1 - 1 - 1 -

(d) Binary Merge Table. Piecewise OR. operation is
performed on the r; and ry rows.

{U17U4} Vg V3 Us Vg

{Tl,T’4} 0 1 2 1 1

T2 1 1

s 2 1 1
5 1 . -1
re 1 1 1

(f) Integer Merge Square. Additions are performed
on the r; and r9 rows and v; and v4 columns.

{U17U4} Vg V3 Us Vg

{Tl,T’4} 0 1 1 1 1

T9 1 . 1

r3 1 1 1
5 1 . -1
g 1 1 1

(h) Binary Merge Square. Piecewise OR operations
are performed on the r; and 7o rows and v; and vy
columns.

Figure 3: Results of different merge operations.

: Ht:

U1 | vl Nr /~Lb

U Vg Uz Vg Us Vg U1 U2 ﬁé‘-.@4 vs Vg v1 v {vs, vk v v :
S T | L8111 21 2 Lo8l1 1 2 1272
ry 1 - 1 - -« . Ty 2 .. 1 -1 - 2 ry 2] - 2 . 1
rg 11 - 1 - 1 {rs,rs}[6|1 1 - 2 - 24 [{rs,r} 6|1 1 : 2 24|
rg - - 1 - 1 - 1 111116/ 11 1 1 1|56/
S

Figure 4: The original graph, a sub-Integer Merge Table and then a sub-Integer Merge
Square of coloured vertices when colouring is in progress. Co-structures occur on the sides
of the sub-matrices and they sum and count the non-zero elements. Here y; denotes the sum
of the degree of the vertices in a colour class, p, denotes the number of adjacent vertices of
a colour class, u; denotes the number of adjacent coloured vertices, and u;, stands for the
number of adjacent colour classes.

and via experiment, when an algorithm applied one of these models [40]. Exploiting their benefits,
the author used the models to design powerful graph colouring algorithms in [35; 38-40; 42; 43].

Merge Frameworks

Merge Models provide a model for the graph colouring problem via matrix representations and
operations. The author introduced three general frameworks for graph colouring algorithms
supported by Merge Models in [41; 42]. These are generalisations of the traditional sequential
colouring schemes. Merge Models replace the colour assignment operation with a Merge Op-
eration, and this eliminates the difference between the colour selection and the vertex selection
strategies. Merge Models define these different selection strategies in a common way as a com-
mon row selection strategy. Therefore, a general row selection strategy can operate as a coloured
or uncoloured row selection when we would like to model the traditional selection strategies. Here
the colours only indicate whether a row has already been taken into account in the merge process.
Depending on the order of the selection of the different (coloured/uncoloured) state rows, two
general frameworks can be defined: either we choose an uncoloured row first and then choose a
suitable coloured one (UC Merge Framework) or, conversely, we can choose a coloured first and
then find an appropriate uncoloured row for the merge (CU Merge Framework) [41]. The UC
and the CU frameworks provide a generalisation of the sequential colouring schemes (see Figure
5). The choose-unc and choose-col functions/strategies are not defined precisely here. They
can be replaced by different concrete choice strategies which operate on coloured (M) and un-

UC MERGE FRAMEWORK (A adjacency matrix)

1 M+~ A

2 repeat

3 u «+ arg choose-unc; { M;"*“} //Choose an uncoloured row index

4 ¢ + arg choose-col;{ Mf°'} //Choose a coloured row index,® where M, = 0
5 M « merge(M, {u,c}) //Merge u and c rows/columns °

6 until MY"¢ is empty

7 return M

CU MERGE FRAMEWORK(A adjacency matrix)

1 M~ A

2 repeat

3 ¢ + arg choose-col;{ M¢°'} //Choose a coloured row index

4 u «— arg choose-unc;{ M/} //Choose an uncoloured row index®, where M, =0
5 M «— merge(M,{u,c}) //Merge u and ¢ rows/columns

6 until MY"¢ is empty

7 return M

®Myec = Mg, = 0 is the merge condition, i.e. there is no edge.
bFor Merge Squares, columns are also affected in a Merge Operation.
*Mey = My = 0 is the merge condition, i.e. there is no edge.

Figure 5: The UC and CU Merge Frameworks

coloured (M""¢) sub-merge-matrices, respectively. These sub-merge-matrices consist of coloured
(M!) and uncoloured (M"¢) rows of the original merge matrix. Figure 4 shows examples for
coloured sub-merge-matrices. The choose-unc function selects an uncoloured row/vertex, while
choose-col selects a coloured row/'colour class’ or allocates a new empty row in the coloured
sub-merge-matrix, in order to support the one-operand Merge. In fact, there is no need to
distinguish between the coloured or uncoloured states of the rows; just take the set of rows and
apply a common choose strategy suitable for all of them. After, select an arbitrary row-pair
from the Merge Matrix by a strategy and merge them. This approach is formulated in the CC

Merge Framework [37], as shown in Figure 6. The rows of the Merge Matrix correspond to

CC MERGE FRAMEWORK(A adjacency matrix)

1 M~ A

2 repeat

3 {i,j} « argchoosey; j,{M;, M; : i # j} //Choose two row indices®, where M;; =0
4 M — merge(M,{i,7}) //Merge i and j rows/columns

5 until M is not mergeable

6 return M

*M;; = M;; = 0 is the merge condition, i.e. there is no edge.

Figure 6: The CC Merge Frameworks

colour classes, i.e. independent sets. An algorithm in a CC Merge Framework selects two colour

classes/independent sets and creates the union of them in the traditional sense. The CC Merge
Framework is the most general. Even though it covers the UC and CU Merge Frameworks, it is
worth defining them separately so as to have the possibility of categorising the algorithms later
Moreover, it is useful in the identification of the traditional schemes. These general frameworks
with the new Merge Models support a common structural analysis of the existing and novel
graph colouring methods, as shown in [38; 40; 42; 43]. The author demonstrated improvements
in the performance of an algorithm after embedding it into a suitable Merge Model. Without
any change in the algorithm steps, the representation of the problem in a Merge Model leads to
a reduction in the computational cost. In [19; 59], Eiben and van Hemert et al. pointed out
that the number of constraint checks is a key factor in the computational cost in most of the
colouring algorithms. In traditional schemes, the adjacency matrix representation plays the key
role in the GCP%. We have two choices when colouring a vertex for constraint checking; either
along the already coloured vertices (A..;), or along all the neighbours of the vertex considered
(Apeign)- In the following we will show how to markedly reduce the number of constraint checks
by applying our proposed Merge Models (A1)

Corollary 1 ([40]) Given a random graph G, , with fixed p edge probability and given a
colouring algorithm A, then the following performance is expected on average based on counting
constraint checks #(.):

1. Checking the coloured vertices: #(Aco)) = O(n?)

2. Checking the neighbours: #(Apeigh) = O(n?)

3. Checking the merged-vertices/colour classes: #(Amm) < O (n)

— logn

As the theorem above tells us the asymptotic performance of the algorithms, we can check the
worst case performance of a colouring algorithm using these different approaches.

Corollary 2 ([40]) Let G be an arbitrary graph, then the following relations hold

1. #(Amm) < #(Acol)
2. #(Amm) < #(Aneigh)

All of these frameworks are defined in a unified manner using the Merge Model scheme. An
algorithm in one of these frameworks applies a subsequent selection of rows of the merge matrices
and merges them to achieve a colouring. None of these frameworks has a concrete strategy for
the choice of rows for merging. A framework with a concrete choice strategy, i.e. Merge Strategy,

forms a particular algorithm.

Merge Strategies

In order to get a colouring algorithm, the algorithm steps must be defined; that is, a sequence
of the Merge Operations. A Merge Operation takes two rows/columns of a Merge Matrix and

4List based or incidence matrix representations require more operations for graph colouring.

10

produces a new Merge Matrix if the merge condition allows it. By repeating Merge Operations
we will end up with a final Merge Matrix where a Merge Operation is no longer possible. The
sequence of the Merge Operations is crucial. It determines the quality of the solution, i.e. the
number of colours used in the colouring of the original graph. The author described various
Merge Strategies in order to generate efficient merge sequences, as described in [35; 37-43].
These strategies proved useful in the theoretical and experimental parts of our analysis. The
novel description of the colouring process provides new aspects which can be exploited in the
design and analysis of Merge Strategies, as described in the following. This strategies assume
Binary Merge Models, but their integer extensions are also available. The importance of the
Integer Models are discussed separately. They support the algorithm design, e.g. backtracking or
tie breaking, as shown in [40]. The following strategies define row-pair selection strategies; that
is, they support the most general strategy, the CC framework choose function. Hence they are
suitable for the UC and CU frameworks as well. Let X be the basis of the row-pair selection,
i.e. the choose function. An)E'ij element of the matrix is proportional to the probability of the
selection of row 7 and j for a merge in the next algorithm step >. The following strategies will
define X values. The choose function applies the following selection {i,j} = arg max;; X,j
The longest merge sequence. Since the Merge Matrix rows (M;-s) represent colour classes,
the main aim is to reduce the number of rows by consecutive merges. The longest merge sequence
produces the fewest rows. The author in [38] introduced two novel strategies to generate the
longest merge sequence. The Dot Product Strategy focuses on the evolution of the number of
non-zero elements during successive merges and attempts to keep them as low as possible, using

Xij = (M;, M) [Mij = 0] (1)
where [M;; = 0] is the Kronecker delta function, where [x = z] := 1, otherwise it is 0 (this
encodes the merge condition) M; and M; are the i-th and j-th rows of a Binary Merge Matrix
6. For a Binary Merge Square A, it can be defined by

X=A4T0 A (2)

Though the non-zero elements in a Merge Matrix frustrate the merges, the number of zeros assist
them. Hence the Cosine Strategy takes the number of non-zero elements into account, but also

considers the number of zeros present, using

. M;, M; M;, M;
argmaxXij:argmaX< i J>[Mij=0]:argm.ax I,)
7 7

I 7[1\1-:0] (3)
J g | M| | M| g || M| || M)

Parallel rows. The Cosine strategy favours the parallel rows in the Merge Matrices. It is
reasonable because the rows of the adjacency matrix which correspond to the same coloured
vertices in an optimal solution are almost parallel. Their parallel behaviour becomes clearer with

X may change during the steps
6For Binary Merge Matrices [M;; = 0] = (1 — M,;).

11

each successive merge. For the Merge Square Model, there is a certain modification of the Merge
Matrices based on a semi-definite optimisation by Karger et al. [44], which further supports
the Cosine strategy. Exploiting this fact, the author in [35; 43] defined the Zykov-tree and
Lovasz-theta strategy.

Colour similarities Actually, a "Zykov-tree and Lovasz-theta’ strategy is based on the esti-
mation of the colour similarities of the vertices of the quotient graphs. The adjacency matrix
describes an exact colour dissimilarity relation, where the vertices in a relation defined by the
edges cannot get the same colour. The opposite approach is the colour similarity relation. A
particular colouring can be defined via a colour similarity relation between the vertices, where
only the same coloured vertices are included in the relation. This relation can be represented by
a {0, 1}-matrix, namely a colouring matrix. It describes whether two vertices are coloured with
the same or different colours. Although the optimal solutions can be represented in this form,
they are unknown because they are the solutions of the problem. Despite this, their average can
be approximated by a solution of a semi-definite program (see Karger et al. [44]), which provides
the Lovasz-theta 6:

ézmtin{t:ZtO,ziizt—l,ze:—1Ve€E} (4)

Hence a non-exact (an approximated) colour similarity relation becomes available between the
vertices. This can be described by a real-valued matrix Z,,, which is a solution of Eq. 4 and we
can define a matrix X by

X =(Zopp+1)0(1—1)

where I is the identity matrix. The largest and the smallest values of X contain valuable
information. Using this information and Zykov's work in [64; 65|, the author created the
'Zykov-tree and Lovasz-theta’ strategy in [35; 43|, where quotient graph vertices are connected
(argmin; ;{X;; : Xi; < 0}) or merged (argmax; j X;;) according to their approximated sim-
ilarities (see Figure 2). The approximation becomes more exact with each subsequent merge,
supporting more confident decisions of this strategy. To speed-up the algorithm, multiple edge
additions (X;; < 0) or merges (X;; > 0.5) can be performed.

Norm minimisation in the resulting state. The Dot Product Strategy selects two rows M,
and M which produce the maximum dot product {r,s} = argmax; ; (M;, M;), then merges
them. This introduces a minimisation in the entrywise 1-norm? in the resulting Merge Matrix
| M ys| = |M| — max; j (M;, M) = |M| = (M,, M), thus

arg (1] — max (M 03)) = avgain (3] = (Vs M) = argomin M| 9

A final Merge Matrix which corresponds to an optimal solution has the smallest entrywise norm
among the possible merge matrices (homomorphic images). Hence, the entrywise norm min-
imisation approach is reasonable. In addition such a Merge Matrix has minimal induced norms

"This is valid for all entrywise norms.

12

as well. This observation led us to apply the steepest descent norm minimisation strategy, in
particular the steepest descent Spectral Norm Strategy (induced 2-norm), which was introduced

by the author in [42] and was found to be an efficient strategy with

1 o,

Xy = { o7, s =00 17 (©)
0 i=j

The Spectral Norm Strategy must first make several trial merges. With the resulting trial merge

matrices M ;;, this strategy makes spectral norm calculations HM/inz to create a selection of a

row-pair for merging. Calculating the spectral norm is computationally expensive, but Merikoski

and Kumar once introduced an efficient spectral norm approximation in [54]. Let M = A be a

Binary Merge Square then

l—1 Ai'rae2
HA/z-jHﬁ\/z“ <(l”) : (7)

where [is the number of rows of the 'trial’ Merge Matrix A/;;. Based on Merikoski and Kumar's
results, the author adapted his Spectral Norm Strategy to an approximated spectral norm strategy
[42]. Owing to this, this strategy can exploit an update mechanism where an investigation of the

resulting Merge Matrices is no longer needed as it is just based on the current Merge Matrix
= (Aie) + (4j,e) — (Ai, Ay)

()

((Asij)jre)

<(A/ij)r,e> = (4,e)—1 re’
(Asijre) = (Are) r¢TU{ij}

where 7 is an index set, the set of the common one positions of the rows A; and A;. Hence
Eq. 7 can be directly calculated from the Merge Matrix values without any trial merges. In
addition, this reformulation revealed a connection with the Dot Product strategy. Eq. 7 provides
an efficient strategy with a Merge Table T" as well, but in a direct calculation the third line of
Eq. 8 must be replaced with ((7};;),e) = (T, e). However, in order to get the original form
of the approximated Spectral Norm Strategy for Binary Merge Tables, Eq. 7 must be applied to
the T/Z-jT/];j (symmetric) matrix, which provides an approximation for the square of the spectral

norm of T7;;. In this case a similar direct calculation is available.

Matrix properties — Merge Paths The author introduced the notion of Merge Paths [42].
Certain graph properties like matrix norms may be evaluated during the selection of two rows for
a Merge Operation. Gathering these graph properties into a vector (e.g. eigenvalues), they form
the basis of the decision. The changes of the property vector with each successive merge describe
a path called the Merge Path. This path is responsible for determining the colouring, and the end
of the path defines the quality of the colouring (see Figure 7(a)). Unfortunately, the ideal path
(which results in an optimal solution) is of course unknown; the task of colouring is to find this

13

(12.2,12.4,121.2)

™ ‘ ‘ ‘ ‘ ‘ bptimél ‘
100 ¢ i Minimised - 1 120 =
N 100 random -—---- \

h - Optimal
£ h \\ - - - Random
2 1
g L
3] \
> .
n -

- N
TN 1136)
0 20 40 60 80 100 120 140 160 180 200 20— S ‘ L Z 10
Merge steps 10 o > ¢

(a) Spectral norm steepest descent minimisation.(b) An example 3D Merge Path of the three largest eigen-
The ends of the curves are extended in order to havevalues of a graph during the merges.
clearer comparison (horizontal lines).

Figure 7: Evolution of the eigenvalues along a merge sequence. The graph is a 20—chromatic,
equi-partite graph having 200 vertices with a 0.64 edge density from the peak of the phase
transition. The spectral norm value of the final Binary Merge Square is x —1 = 19 in the
optimal case, otherwise bigger.

path. The author introduced a general strategy which approximates an optimal Merge Path [42].
The start and the end points of the path are usually known and the curve of the path may be
estimated by using preliminary knowledge. In order to build the knowledge base the Merge Path
approach can be combined with artificial intelligence methods, such as instance-based learning
or clustering, in accordance with the results described in [36].

Enhanced heuristics and meta-heuristics A non-merge based colour strategy can be extended
and enhanced by reformulating the strategy in a Merge Model. A Binary Merge Square® is the
adjacency matrix of a quotient graph. Consequently, if a strategy can operate on the adjacency
matrix of the original graph, then the same strategy can cooperate with a merged adjacency
matrix (an intermediate Merge Square) as well. It introduces a dynamic reconsideration process
where previous decisions of a strategy can be revised after each Merge Operation by exploiting
the additional information contained in the intermediate matrices. The author in [38] showed
the efficiency of such an extension.

The author in [37] applied the structural properties of the Merge Table Models in the meta-
heuristics design. The author introduced a better granular fitness function than the traditional
one for the evolutionary solvers of the colouring problem. This resulted in a smoother landscape
of the objective function, which increased the efficiency of the optimisation process. If (ys(x)
denotes the number of non-zeros in a final Merge Table (see Figure 4), then the (-fitness function
is f(m) = (ka(r) — X)Ca(r), Where M(m) is the final Merge Table corresponding to the 7
permutation and a greedy merge/colouring scheme. This approach follows the entrywise norm
optimisation of a Binary Merge Table (see the Dot Product strategy). Moreover, the author
defined a mutation which forces the difficult vertices by a Merge Table Model (for which the
colouring is problematic) in advance in the merge/colour assignment.

8Usually the extension can be applied on the other Merge Models as well.

14

Merge Algorithms

The author in [35; 37-43] combined various novel Merge Strategies with different Merge Frame-
works and analysed their performance. The algorithms were compared with standard benchmark
algorithms on various benchmark graphs. The experimental analysis showed that the novel Merge
Algorithms perform well in the comparison. They generally outperformed the benchmark algo-
rithms especially in the phase transition region where the problems become hard. Some results
of an extensive study can be found in Figure 8, where some of the novel Merge Strategies are
embedded into different Merge Frameworks and compared with benchmark algorithms and each
other. In order to denote an algorithm in the UC Merge Framework we introduced the following
notation: UCgfggj::ngc where the choose — unc denotes the uncoloured row choice strategy,
while the choose — col denotes the coloured one. We did likewise with the CU Merge Framework
using the C’Uggggj::;‘(gc denotation. In the CC Merge Framework C'C' — CHOOSE, the CHOOSE
denotes the only row-pair choice strategy. The choose functions and the Merge Strategies in-
troduced by the author were denoted by: 'dotprod’ - Dot Product and 'cos’ - Cosine; ¢’ -
approximated spectral norm; "Zykovs' - Zykov-tree and Lovasz-theta? and "EAS" - evolutionary
algorithm with the (-fitness , while some of the selected benchmark algorithms are denoted by:
"dsatur’ - DSatur heuristic and 'Erd6s’ - ErdSs heuristic. Furthermore the 'greedy’ stands for the
greedy strategy. In order to get a fair comparison each 'benchmark’ algorithm was embedded

into a suitable Merge Framework applying a suitable Merge Model.

Conclusions

The new colouring approach presented in this thesis demonstrates that graph colouring can be
effectively modelled by quotient or power graphs. It provides a potential reduction in computa-
tional cost, as well as a uniform and compact way in which algorithms can be defined. Embedding
algorithms in the same common framework supports both their structural and performance com-
parison, as making a comparison is sometimes problematic. The framework itself generalises
a formal colouring approach. With this generalisation an algorithm can be naturally extended,
which may result in new algorithms. The novel problem description yields novel information that
can help us to extract and support a new scheme of the colouring process.

9Superscript 4+ will denote multiple edge additions.

15

Avg. number of colours used

0.3 0.35 0.4 0.45 0.5 0.55 0.6

4 4
EA EA> L 1~EA g -
UCcos Ucdotprod x chreedy * Ucgreedy

Avg. number of colours used

0.3 0.35 0.4 0.45 0.5 0.55 0.6
Pe

greedy greedy .. greedy dsatur __ __ _
CUcos CUdotprod * cUErdos * chreedy o

Avg. number of colours used

CcC-g “~~++ CC-dotprod ----- Hommmmo CC-cos —®&—
d d
CUBERY o uchl, e
22
2 x
= X X
3 18} X % 1
3 xX
S 16 [x¥ pt X, 1
= X & "
g Ry x“"x
g 14 . x 1
c o * X
o 12+ e e
> £ o
< 10 . o+ e oy
02 025 03 035 04 045 05 055 06
Pe
greedy

CCG -+ CUTEW s cC-zykovg CC-Zykovg

Figure 8: Results of the average number of colours used during the phase transition. The
10-chromatic random equi-partite graph set consists of groups with edge probabilities defined
by 0.1 < p. < 0.9. Each group has ten graph instances generated by using the same p,, but
different random seeds {1,2,...,10} in the generation process.

16

THESIS 1 The author, applying certain graph homomorphisms, defined two general con-
cepts to redefine the graph colouring problem, namely the Quotient and Power meth-
ods [37; 40; 41]. He provided a concrete description of the general methods using
matrix representations and Merge Operation of the rows or columns. He called these
descriptions Merge Models. Based on the Merge Models the original problem un-
dergoes an evolution and produces homomorphic graph images. These models can
be a basis of novel and existing algorithms too. Embedding an algorithm into a
Merge Model may considerably decrease its computational efforts. Moreover, such
an embedding supports the structural analysis of the algorithms in a common way
and makes available a natural extension of them, which may result in an increase
in their performance. Traditional colouring schemes distinguish between the colours
and the vertices of the graph. Merge Models integrate them into one single object.
This anticipates a uniform algorithm design, where colour choices do not differ from
the vertex choices.

THESIS 2 Based on the Merge Models of the colouring, the author unified and generalised
the formal sequential colouring model in three different Merge Frameworks [41; 42].
These frameworks provide a uniform and compact description in which algorithms
can be defined and analysed in the same systematic way. Furthermore, exploiting the
uniform description, he sketched some explanations of how the structure of algorithms
can have an influence on the overall performance. Existing sequential colouring
algorithms fit into one of the Merge Frameworks, and the frameworks provide novel

approaches for algorithm design.

THESIS 3 The author provided a way to reduce the computational cost of colouring algo-
rithms after embedding them into a Merge Framework [38; 40]. This improvement
was demonstrated and analysed via experiments as well. In the experiments he anal-
ysed the phase transitions of different algorithms implemented in different Merge
Frameworks. Furthermore, the author provided a natural extension of sequential
colouring algorithms in the Merge Framework, which results in an increase in their

efficiency.

THESIS 4 In each Merge Model the colouring operation is replaced by a Merge Operation.
Several Merge Strategies were developed by the author. Since the models use matrix
representations, he was able to define some of his strategies by applying special matrix
row operations as well as matrix norms. The novel strategies of the author are listed
below:

— Extended Hajnal; Extended Welsh-Powell (co—norm) [38]
— Spectral norm[42]
— Spectral norm approximations [42]

— Dot product (entrywise norms) [38]

— Cosine [38]
— Zykov-tree and Lovasz-theta [35; 43]

These strategies can be combined with different Merge Models and Merge Frame-
works to form different algorithms. The performance analysis of these strategies
are given. The novel algorithms are compared with several well-known benchmark
algorithms. The novel algorithms outperformed the well-known algorithms in a stan-
dard benchmark set of graph instances. Moreover, their efficiency revealed in a
more difficult-to-solve graph instance set, where the graphs are generated during the
phase transition region, where finding a solution becomes really hard. In this case,
the comparison is fair; that is, it cannot be manipulated by a good choice of the
benchmark instances since the generated instances represent well all instances from

difficult-to-solve graph classes.

THESIS 5 The author introduced the notion of a Merge Path in [42]. A Merge Path arises
from the properties of the dynamically changing model during its evolution. Elements
of such a path are associated with colouring steps. He was able to describe an abstract
graph colouring approach based on Merge Paths, which allows the application of

artificial intelligence methods in graph colouring e.g.:

— Using a training set of known graphs, a supervised learning algorithm [36] can
learn certain optimal Merge Paths that are associated with optimal colouring steps.
Then using the learnt knowledge, colouring steps for an unknown graph instance can
be predicted.

— In an unsupervised learning task optimal Merge Paths of known graphs are
clustered. Then unknown graphs, which are not involved in the clustering, can be

classified in order to predict their properties such as their chromatic number.

THESIS 6 He embedded his colouring strategies into a meta heuristic, an evolutionary

algorithm and created the following evolutionary operators for colouring [37-39; 42]

— A mutation operator by acquiring difficult vertices in a candidate solution and

forcing their early colouring
— A fitness function which solves the fitness granularity problem of the colouring

These novel meta heuristic algorithms performed well in an experimental comparison
with different benchmark algorithms, on different benchmark graphs and difficult-to-

solve generated problem sets as well.

18

Bibliography

[1] Avanthay C, Hertz A, Zufferey N: A variable neighborhood search for graph coloring.
European Journal of Operational Research 2003, 151:379-388.

[2] Back T: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York
1996.

[3] Blochliger I, Zufferey N: A graph coloring heuristic using partial solutions and a
reactive tabu scheme. Computers & Operations Research 2008, 35:960-975.

[4] Brélaz D: New methods to color the vertices of a graph. Communications of the ACM
1979, 22:251-256.

[5] Bui TN, Patel CM: An ant system algorithm for coloring graphs. In Proceedings of
the Computational Symposium on Graph Coloring and its Generalizations 2002:83-91.

[6] Campelo M, Correa R, Frota Y: Cliques, holes and the vertex coloring polytope.
Information Processing Letters 2004, 89:159-164.

[7] Caramia M, Dell'Olmo P: Bounding vertex coloring by truncated multistage branch
and bound. Networks 2004, 44:231-242.

[8] Caramia M, Dell'Olmo P: Coloring graphs by iterated local search traversing feasible
and infeasible solutions. Discrete Applied Mathematics 2008, 156:201-217.

[9] Chams M, Hertz A, de Werra D: Some experiments with simulated annealing for
coloring graphs. European Journal of Operational Research 1987, 32:260-266.

[10] Chiarandini M, Dumitrescu |, Stiitzle T: Very large-scale neighborhood search:
Overview and case studies on coloring problems. In European Journal of Operational
Research 2008.

[11] Coll P, Marenco J, Méndez Diaz |, P Z: Facets of the graph coloring polytope. Annals
of Operations Research 2002, 116:79-90.

[12] Costa D, Hertz A: Ants Can Colour Graphs. Journal of the Operations Research Society
1997, 48:295-305.

19

20

Bibliography

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Costa D, Hertz A, Dubuis C: Embedding a sequential procedure within an evolution-
ary algorithm for coloring problems in graphs. Journal of Heuristics 1995, 1:105-128.

Craenen B, Eiben A, van Hemert J: Comparing Evolutionary Algorithms on Binary
Constraint Satisfaction Problems. |EEE Transactions on Evolutionary Computation
2003, 7(5):424-444.

Culberson J, Gent I: Frozen development in graph coloring. Theor. Comput. Sci. 2001,
265(1-2):227-264.

Culberson J: Iterated Greedy Graph Coloring and the Difficulty Landscape. Tech.
Rep. TR 92-07 1992.

de Werra D: Heuristics for Graph Coloring. Computational Graph Theory 1990, Com-
put. Suppl. 7:191-208.

Dukanovic I, Rendl F: Semidefinite programming relaxations for graph coloring and
maximal clique problems. Mathematical Programming, Serie B 2007, 109:345-365.

Eiben AE, van Der Hauw JK, van Hemert JI: Graph Coloring with Adaptive Evolu-
tionary Algorithms. Journal of Heuristics 1998, 4:25-46.

Falkenauer E: Genetic Algorithms and Grouping Problems. John Wiley 1998.

Figueiredo R, Barbosa V, Maculan N, de Souza C: New 0 — 1 integer formulations of
the graph coloring problem. In Proceedings of XI CLAIO 2002.

Galinier P, Hao JK: Hybrid evolutionary algorithms for graph coloring. Journal of
Combinatorial Optimization 1999, 3:379-397.

Galinier P, Hertz A: A survey of local search methods for graph coloring. Computers
& Operations Research 2006, 33:2547-2562.

Gintaras P: On the Graph Coloring Polytope. Information technology and control 2008,
37:7-11.

Glass CA, Priigel-Bennett A: Genetic algorithms for graph colouring: Exploration of
Galinier and Hao's algorithm. Journal of Combinatorial Optimization 2003, 7:229-236.

Graham R, Grétschel M, Lovasz L (Eds): Handbook of Combinatorics. North-Holland 2005.

Hajnal P: Eigenvalues of graphs: Graph colouring and the Perron-Frobenius eigen-
vector. Péter Hajnal’s Combinatorics seminars. University of Szeged. 2004.

Halldérsson MM: A Still Better Performance Guarantee for Approximate Graph
Coloring. Inf. Process. Lett. 1993, 45:19-23.

Bibliography 21

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Hamiez JP, Hao JK: Scatter search for graph coloring. In Artificial Evolution, Volume
2310 2001:168-179.

Harmanani H, Abas H: A method for the minimum coloring problem using ge-
netic algorithms. In MS'06: Proceedings of the 17th IASTED international conference on
Modelling and simulation, Anaheim, CA, USA: ACTA Press 2006:487-492.

Hertz A, de Werra D: Using tabu search techniques for graph coloring. Computing
1987, 39:345-351.

Johnson DS, Mehrotra A, Trick MA: Special issue on computational methods for
graph coloring and its generalizations. Discrete Applied Mathematics 2008, 156:145—
146.

Johnson D, Aragon C, McGeoch L, Schevon C: Optimization by simulated annealing:
an experimental evaluation; part Il, graph coloring and number partitioning.
Operations Research 1991, 39:378-406.

Johnson D, Trick M: Cliques, Coloring, and Satisfiability. American Mathematical Society,
DIMACS 1996.

Juhos I: Graph Colouring through Clustering. Seminar. University of Edinburgh. 2009.

Juhos |, Szarvas G: Intelligent Forecast with Dimension Reduction. In Applied Soft
Computing Technologies: The Challenge of Complexity, Volume 34 of Advances in Soft
Computing. Edited by Abraham A, de Baets B, Képpen M, Nickolay B, Springer 2006:279—
292.

Juhos |, Téth A, van Hemert J: Binary Merge Model Representation of the Graph
Colouring Problem. In Evolutionary Computation in Combinatorial Optimization, Volume
3004 of Lecture Notes in Computer Science. Edited by Gottlieb J, Raidl, Raidl GR, Springer
2004:124-134.

Juhos |, Téth A, van Hemert J: Heuristic Colour Assignment Strategies for Merge
Models in Graph Colouring. In Evolutionary Computation in Combinatorial Optimization,
Volume 3448 of Lecture Notes in Computer Science. Edited by Gottlieb J, Raidl, Raidl GR,
Springer 2005:132-143.

Juhos |, van Hemert J: Improving graph colouring algorithms and heuristics using a
novel representation. In Evolutionary Computation in Combinatorial Optimization, Vol-
ume 3906 of Lecture Notes in Computer Science. Edited by Gottlieb J, Raidl, Raidl GR,
Springer 2006:123-134.

Juhos |, van Hemert J: Increasing the efficiency of graph colouring algorithms with
a representation based on vector operations. Journal of Software 2006, 1(2):24-33.

22

Bibliography

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Juhos |, van Hemert J: Contraction-based heuristics to improve the efficiency of algorithms
solving the graph colouring problem, Springer, Volume 153 of Studies in Computational
Intelligence 2008 chap. Ill, :175-192.

Juhos |, van Hemert J: Graph Colouring Heuristics Guided by Higher Order Graph
Properties. In Evolutionary Computation in Combinatorial Optimization, Volume 4972 of
Lecture Notes in Computer Science. Edited by van Hemert J, Cotta C, Springer 2008:97-109.

Juhos |, van Hemert JI: Graph colouring through clustering by Zykov-tree and
Lovasz-theta. Submitted 2009.

Karger D, Motwani R, Sudan M: Approximate graph coloring by semidefinite pro-
gramming. Journal of the ACM 1998, 45(2):246-265.

Karp RM: Complexity of Computer Computations: Reducibility Among Combinatorial Prob-
lems, New York: Plenum 1972 :85-103.

Leighton F: A graph coloring algorithm for large scheduling problems. Journal of
Reasearch of the National Bureau of Standards 1979, 84:489-506.

Malaguti E, Toth P: A survey on vertex coloring problems. International Transactions
in Operational Research 2009, :1-34.

Marino A, Damper R: Breaking the Symmetry of the Graph Colouring Problem
with Genetic Algorithms. In Late Breaking Papers at the 2000 Genetic and Evolutionary
Computation Conference. Edited by Whitley D 2000:240-245.

Matula D, Marble G, J I: Graph coloring algorithms, Academic Press 1972 :109-122.

Mehrotra A, Trick MA: A column generation approach for graph coloring. INFORMS
Journal on Computing 1996, 8:344-354.

Méndez-Diaz |, Zabala P: A polyhedral approach for graph coloring. Electronic Notes
in Discrete Mathematics 2001, 7:178-181.

Méndez-Diaz IP Zabala: A cutting plane algorithm for graph coloring. Discrete Applied
Mathematics 2008, 156:159-179.

Méndez-Diaz |, Zabala P: A branch-and-cut algorithm for graph coloring. Discrete
Appl. Math. 2006, 154(5):826-847.

Merikoski JK, Kumar R: Lower Bounds for the Spectral Norm. Journal of Inequalities
in Pure and Applied Mathematics 2005, 6(3).

Palubeckis G: On the recursive largest first algorithm for graph colouring. Int. J.
Comput. Math. 2008, 85(2):191-200.

Bibliography 23

[56]

[57]

[58]

[59]

[60]

Porumbel D, Hao JK, Kuntz P: Diversity control and multi-parent recombination for
evolutionary graph coloring algorithms. In LNCS 5482, Springer 2009.

Schindl D: Graph coloring and linear programming. In LNCS 5482, Presentation at
First Joint Operations Research Days, Ecole Polytechnique Fédérale de Lausanne (EPFL),
Available on line 2003.

Sewell E: An improved algorithm for exact graph coloring. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science 2006, 26:359-373.

van Hemert J: Application of Evolutionary Computation to Constraint Satisfaction
and Data Mining. PhD thesis, Leiden University 2002.

Welsh DJA, Powell MB: An upper bound for the chromatic number of a graph and
its application to timetabling problems. The Computer Journal 1967, 10:85-86.

[61] Wigderson A: Improving the performance for approximate graph coloring. Journal

of the ACM 1983, 30:729-735.

[62] Wilf HS: The eigenvalues of a graph and its chromatic number. Journal of London

Math. Soc. 1967, :330-332.

[63] Woeginger G: Exact Algorithms for NP-Hard Problems: A Survey. In Journal of

[64]

[65]

London Math. Soc. 2003:185-207.

Zykov AA: On some properties of linear complexes (in Russian). Math. Shornik
1949, 24:163-188.

Zykov AA: On some properties of linear complexes. American Mathematical Society
Translations 1952, 79:81.

