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1Introdu
tionThis booklet summarises the s
ienti�
 results of the author of the Ph.D. dissertation entitled�Quotient and Power methods for the Graph Colouring Problem�. The author developed a gen-eral framework for graph 
olouring methods, where the traditional 
olouring s
heme is de�ned viaspe
ial graph homomorphisms motivated by the Zykov theorem [64; 65℄. These spe
ial homo-morphisms proved useful in the design of algorithms ([35; 37�43℄). This summary is stru
turedin a similar way to the thesis itself. The results 
an be separated into di�erent groups a

ordingto the parts of the graph 
olouring framework. The author de�ned the problem via 
ertain graphhomomorphisms using quotient and power graphs. The author 
alled these Quotient and Powermethods. Then he des
ribed these graphs and homomorphisms by matrix representations withsuitable operations, resulting in his Merge Models with his nomen
lature [37; 40; 41℄. MergeModels provide a novel des
ription of the 
olouring problem. The operations (i.e. the MergeOperations) subsequently 
hange the state of the model and dire
t it to a possible solution ofthe original graph 
olouring problem. The author developed strategies in the model 
alled MergeStrategies [35; 38; 42; 43℄, whi
h de�ne possible dire
tions to a solution. Furthermore, the au-thor 
onstru
ted general frameworks (Merge Frameworks) in whi
h strategies 
an be embedded[38; 40℄. These frameworks are generalisations of the traditional sequential 
olouring s
hemes,hen
e existing algorithm strategies 
an be embedded into one of them. Su
h an embeddingmay 
onsiderably de
rease the 
omputational e�orts. Moreover, the embedding supports thestru
tural analysis of the algorithms in a 
ommon way and makes available a natural extensionof them, whi
h may result in an in
rease in their performan
e. Su
h algorithms generate a se-quen
e of model operations a

ording to the strategy. The end of the sequen
e is a 
andidatesolution for the original graph 
olouring problem. The author provided several novel algorithmsin [35; 37�43℄. These algorithms proved useful in an experimental analysis and theoreti
al study.Graph Colouring ProblemA graph is a pair G = (V, E) of disjoint �nite sets, where E ⊆ V × V . The elements of V arethe verti
es of the graph G, the elements of E are its edges. Put brie�y, graph vertex k-
olouring(or simply graph k-
olouring) is an assignment of 
olours from a 
olour set C for ea
h vertex,where the number of the 
olours in the 
olour set C is k. The problem o

urs in the 
olouringpro
ess when we 
onsider edges as 
onstraints.De�nition 1 (Proper graph vertex k-
olouring) A proper graph vertex k-
olouring of
G = (V, E), if it exists, is a k-
olouring where adja
ent verti
es are assigned di�erent 
olours:

c : V
sur
−−→ C , vi 7→ c(vi) , ∀(vi, vj) ∈ E ⇒ c(vi) 6= c(vj) , |C| = kDe�nition 2 (Graph minimum vertex 
olouring) Graph minimum vertex χ-
olouring isa proper χ-
olouring, where χ is the smallest integer needed to get a proper 
olouring.



2Here the Graph Colouring Problem is the graph minimum vertex 
olouring problem. An examplefor this 
an be found in Figure 1. The smallest number of 
olours that 
an properly 
olour verti
esis 
alled the 
hromati
 number of a graph and will be denoted by χ. Figure 1(a) shows a
v1

v2

v3

v4

v5

v6 (a) A graph
v1 v2 v3 v4 v5 v6

v1 0 1 1 0 · 1
v2 1 · 1 · · ·
v3 1 1 · 1 · 1
v4 0 · 1 0 1 ·
v5 · · · 1 · 1
v6 1 · 1 · 1 ·(b) Adja
en
y matrix v1

v2

v3

v4

v5

v6(
) A proper 
olouringFigure 1: A graph and a proper 3-
olouring, whi
h is the minimum.drawing of a graph, while the 
orresponding adja
en
y matrix of the graph 1 is illustrated inFigure 1(b), whi
h des
ribes the edge relation between the verti
es and Figure 1(a). Figure 1(
)shows a proper 
olouring of the graph, whi
h is a minimum as well, where sets {v1, v4}, {v2, v6}and {v3, v5} are the 
olour 
lasses. Colour 
lasses must form independent sets2 in order to geta proper 
olouring. The 0-s in Figure 1(b) represent an independent set.Lots of algorithms have been 
reated and studied to solve the graph minimum vertex 
olouringproblem. A
tually, these algorithms 
ome in two main types: the exa
t algorithms where �ndingof a solution is guaranteed, but the time involved may be 
onsiderable due to the 
omplexity of theproblem (- whi
h is NP-
omplete [45℄); and the non-exa
t algorithms, that is, the approximationalgorithms where a solution is not guaranteed but one may �nd a solution or a good approximationof it in a reasonable time. The latter methods may have sto
hasti
 
omponents. Some re
entsurveys of these methods 
an be found in [23; 32; 47; 63℄ The graph 
olouring problem 
an besolved exa
tly by an exhaustive sear
h, i.e. systemati
ally exploring a sear
h spa
e [15; 16; 34℄.Unfortunately, when the size of the instan
es grows the running time for an exhaustive sear
hsoon be
ome prohibitively large, even for instan
es of fairly small sear
h spa
e. To improve thee�
ien
y of the sear
h, several heuristi
s were developed to generate a 'good' starting 
andidatesolution whi
h may be 
lose to an optimal solution [4; 17; 26�28; 46; 49; 55; 58; 60�62℄. Thenstarting the exploration pro
ess with the generated 
andidate solution, a systemati
 sear
h 
an
onsiderably improve the performan
e. Usually, the exploration is based on an examination ofthe lo
al environment of the generated solution and it assumes that a neighbourhood relationis de�ned on the elements of the sear
h spa
e. This approa
h led to the development of lo
alsear
h methods [1; 8; 10; 23; 29; 31℄. These methods usually apply some heuristi
 to generatea new 
andidate solution from an existing one in its lo
al environment. But though a heuristi

an 
onsiderably improve a solution they do not always provide an optimal solution, hen
e these1The 0-s have been repla
ed by dots for the sake of 
larity.2There is no edge between the verti
es.
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Figure 2: Conne
tion and 
ontra
tion steps in a Zykov-tree. Assigning the same 
olour for
v2 and v5 must be avoided, be
ause this always results in a non-optimal 
olouring, hen
e
v2v5 edge addition is reasonable, but the same 
olour assignment for v2 and v6 supports theminimum 
olouring, therefore they 
an be 
ontra
ted.methods belong to the 
lass of approximate algorithms. Many algorithms studied today employa sto
hasti
 pro
ess in the lo
al sear
h to guide a 
andidate solution to a suboptimal solution or,hopefully, to an optimal solution. Several of these approa
hes maintain a population of 
andidatesolutions. Examples of su
h methods in
lude tabu-sear
h [3; 31℄, simulated annealing [9; 33℄and ant 
olony optimisation [5; 12℄. One popular approa
h for dealing with graph 
olouring isevolutionary 
omputation [2; 13; 14; 19; 20; 22; 25; 30; 48; 56; 59℄. In the development ofalgorithms for graph 
olouring, various integer programming formulations of the problem 
ouldbe used. Several su
h formulations, usually involving binary variables, have been proposed. Thesevariables 
an identify di�erent stru
tures: e.g. independent sets [50℄; a variable for ea
h possible
olour and vertex [11; 51; 53℄; a
y
li
 orientations of a graph [21℄. In several formulationsan optimal solution 
an be represented as a binary ve
tor of the variables. These binary ve
tors
onstitute a polytope, a 
olouring polytope. These polytopes are the 
entral topi
s of the analysisof the problem based on integer programming approa
hes [6; 24℄. Several relaxed versions ofthese integer programmes have been developed to approximate a fa
e of a 
olouring polytope[18; 44; 50; 52; 57℄. Di�erent te
hniques may improve the e�
ien
y of these methods e.g. 
olumngeneration with bran
h-and-bound [7; 50; 57℄ or bran
h-and-
ut [53℄. A
tually the bran
h-and-bound te
hnique impli
itly uses Zykov's idea (see [57℄). In the middle of the last 
entury Zykov
ame up with the idea of applying an edge addition or vertex 
ontra
tion instead of a 
olourassignment in the 
olouring problem (see Figure 2). During these operations new graphs are
reated from the original one whi
h may inherit the parent graph's properties.In the thesis we generalise Zykov's approa
h by introdu
ing di�erent models (Merge Models).We will demonstrate the e�
ien
y of these novel models via a theoreti
al analysis and experi-



4mental study. Merge Models reformulate the original problem. In this reformulated environmentthree di�erent general frameworks will be introdu
ed to des
ribe an abstra
tion for algorithmsbased on the Merge Models. They provide a uniform and 
ompa
t way in whi
h algorithms 
anbe de�ned. Embedding algorithms in the same 
ommon framework supports both their stru
-tural and performan
e 
omparison, whi
h 
an be anyway problemati
. Traditional 
olourings
hemes 
an be identi�ed in one of the frameworks and extended s
hemes may be provided. Theframework itself generalises the formal sequential 
olouring approa
h. With this generalisationan algorithm 
an be extended in a natural way, whi
h may result in new algorithms. The novelaspe
t of the Merge Models implies the development of novel 
olouring strategies, i.e. MergeStrategies. The Merge Models des
ribe spe
ial graph homomorphisms, hen
e their analysis mayreveal 
onne
tions between strategies and di�erent graph properties. Many novel e�
ient MergeStrategies will be provided whi
h outperform several standard ben
hmark algorithms. In additiona general strategy design is dis
ussed, whi
h allows the appli
ation of ma
hine learning te
hniquesin the algorithm design.Quotient and Power MethodsThe author de�ned graph 
olouring pro
esses as a series of homomorphisms using quotient orpower graphs and multigraphs, where the verti
es whi
h get the same 
olour will be 'glued' or'grouped' together to form new vertex sets (see Juhos et al. [37; 41℄), as illustrated in Figure 3.The author 
alled the new 
olouring methods whi
h are based on these prin
iples Quotient andPower methods. The goal of a Quotient/Power method is to �nd a suitable homomorphism whi
hmaps the original graph 3 into a 
omplete graph or an appropriate graph whi
h is homomorphi
with a 
omplete graph. The homomorphism obtained de�nes a 
olouring of the original graph.In order to support the design of sequential 
olouring algorithms a homomorphism is 
reatedas a 
omposition of a series of intermediate homomorphisms. These homomorphisms produ
ehelpful intermediate graph stru
tures whi
h may be exploited for an e�
ient 
olouring and alsohelp to provide a deeper insight into the 
olouring pro
edure. Moreover, they allow us to designe�
ient new algorithms or redesign existing graph 
olouring algorithms in a framework supportedby quotient or power graphs (see Juhos et al. [37�43℄).Merge ModelsThe relation between the original graph and a quotient or power graph/multigraph is de�ned bya graph homomorphism. The author introdu
ed four kinds of matrix operations, 
alled MergeOperations (or 'merges' for short) to map the adja
en
y matrix of the original graph to its fourdi�erent homomorphi
 images: 
alled Binary/Integer Merge Square (A/A) and Binary/IntegerMerge Table (T/T) matri
es [37; 41℄. In general they are referred to as a Merge Matrix (M).3Or an equivalent reformulation of the original graph.



5Subsequent Merge Operations will produ
e a 
omposition of the homomorphisms until no furtherMerge Operation is possible. The merge 
ondition is de�ned by Mij = 0; that is, in this 
ase
Mi and Mj rows (and 
olumns) are mergeable, as 
an be seen in Figure 1(b). The merge resultsin a M/ij Merge Matrix. With the last possible merge, the last homomorphi
 image de�nesa 
andidate solution for the 
olouring, where the merged rows and the 
orresponding verti
esdetermine the 
olour 
lasses. Figure 3 shows an example for ea
h Merge Operation, while Table1 gives an exa
t des
ription of them via row and matrix-based formulations. Moreover, Table 1shows a relation between the Binary Merge Matri
es (A and T ) and their Integer 
ounterparts Aand T. Merge Tables 
hara
terise a relation between the original verti
es and the neighbouringRow-based formula Matrix-based formulaT[t+1]

i = a + b T[t+1]
j

= 0 T[t+1] = (I + W )T[t]

T
[t+1]
i = a ∨ b T

[t+1]
j = 0

T T [t+1] = T [t] ∨ PT [t] −MT [t]

T
[t+1]
i = T[t+1]

i − a ◦ b T
[t+1]
j = 0

T T [t+1] = T[t+1] −
∑

j(a⊗ b)(Ij ⊗ Ii)A[t+1]
i = a + b A[t+1]

j = 0
T A[t+1] = (I + W )A[t](I + W )TA[t+1]_i = a

T + b
T A[t+1]_j = 0

A
[t+1]
i = a ∨ b A

[t+1]
j = 0

T A[t+1] = A[t] ∨ (PA[t]P T )− (MA[t]MT )

A
[t+1]
i = A[t+1]

i − a ◦ b A
[t+1]
j = 0

T

A
[t+1]_i = (A

[t+1]
i )T A

[t+1]_j = 0Table 1: Des
ription of di�erent merge operations when the a and b, the i-th and j-thmergeable rows of a Merge Matrix are merged. The supers
ript [t] de�nes the t-th mergestep and P = Ii ⊗ Ij, R = Ij ⊗ Ij, W = P − R, where Ii is the i-th row of the identitymatrix I. Mi stands for the i-th row of a matrix M , while M_i denotes its the 
olumn. Theoperation ◦ is 
alled the Hadamard-S
hur produ
t, while ⊗ is 
alled the dyadi
 produ
t.
olour 
lasses. We may asso
iate rows of an adja
en
y matrix with 
olour 
lasses or power verti
esand 
olumns with verti
es of the original graph. As previously mentioned, there are two subtypes,namely a weighted type (Integer for power multigraphs) and an unweighted type (Binary for powergraphs), based on whether the number of the multiple edges are taken into a

ount in the mergingpro
ess. Hen
e, there are two basi
 row operations the addition and the pie
ewise binary oroperations. When they are applied on the rows only, we arrive at power multigraphs/graphs, i.e.Integer/Binary Merge Tables, but applying them on the rows and on the relevant 
olumns as well,we arrive at a quotient multigraph/graph, i.e. Integer/Binary Merge Squares. In Merge Squares,the rows and the 
olumns of the matrix 
orrespond to 
olour 
lasses, and their edges de�ne arelation between the 
olour 
lasses. The representations and the operations form new 
olouringmodels, 
alled Merge Models. Ea
h row of a Merge Matrix 
orresponds to an independent set inthe original graph. Re
all that 
olour 
lasses are independent sets and ea
h vertex 
onstitutes aone-element independent set in the original graph. A
tually, a Merge Operation 
reates the unionof two independent sets in the traditional sense. Figure 4 shows how the stru
tures of di�erentMerge Matri
es are related to the appropriate graphs. These models support parallel softwareand hardware implementations. All the models have their own strong points, and they 
an assistea
h other in di�erent ways. The author obtained signi�
ant improvements, both theoreti
ally
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v1

v2

v3
v4

v5

v6
{v1, v4}(a) Power multigraph G�{v1,v4}

v1 v2 v3 v4 v5 v6

{r1, r4} 0 1 2 0 1 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r5 · · · 1 · 1
r6 1 · 1 · 1 ·(b) Integer Merge Table. Addition is performed onthe r1 and r2 rows.

v1

v2

v3
v4

v5

v6 {v1, v4}(
) Power graph G/{v1,v4}

v1 v2 v3 v4 v5 v6

{r1, r4} 0 1 1 0 1 1
r2 1 · 1 · · ·
r3 1 1 · 1 · 1
r5 · · · 1 · 1
r6 1 · 1 · 1 ·(d) Binary Merge Table. Pie
ewise OR operation isperformed on the r1 and r2 rows.

v2

v3v5

v6
{v1, v4}(e) Quotient graph G � {v1, v4}

{v1, v4} v2 v3 v5 v6

{r1, r4} 0 1 2 1 1
r2 1 · 1 · ·
r3 2 1 · · 1
r5 1 · · · 1
r6 1 · 1 1 ·(f) Integer Merge Square. Additions are performedon the r1 and r2 rows and v1 and v4 
olumns.

v2

v3v5

v6
{v1, v4}(g) Quotient graph G/{v1, v4}

{v1, v4} v2 v3 v5 v6

{r1, r4} 0 1 1 1 1
r2 1 · 1 · ·
r3 1 1 · · 1
r5 1 · · · 1
r6 1 · 1 1 ·(h) Binary Merge Square. Pie
ewise OR operationsare performed on the r1 and r2 rows and v1 and v4
olumns.Figure 3: Results of di�erent merge operations.
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v1

v2

v3

v4

v5

v6

v1 v2 v3 v4 v5 v6

r1 · 1 1 · · 1

r2 1 · 1 · · ·
r3 1 1 · 1 · 1

r4 · · 1 · 1 ·
r5 · · · 1 · 1

v1 v2 v3 v4 v5 v6

8 1 1 1 2 1 2

r4 2 · · 1 · 1 · 2

{r5, r3} 6 1 1 · 2 · 2 4

1 1 1 1 1 1 6

v1 v2 {v5, v3} v4 v6

8 1 1 2 2 2

r4 2 · · 2 · · 1

{r5, r3} 6 1 1 · 2 2 4

1 1 1 1 1 5

v1

v2

{v5, v3}

v4

v6

µl

µr

µt

µb

µb

µt

µl

µr
v1

v2

v3

v4

v5

v6

{v5, v3}

Figure 4: The original graph, a sub-Integer Merge Table and then a sub-Integer MergeSquare of 
oloured verti
es when 
olouring is in progress. Co-stru
tures o

ur on the sidesof the sub-matri
es and they sum and 
ount the non-zero elements. Here µl denotes the sumof the degree of the verti
es in a 
olour 
lass, µr denotes the number of adja
ent verti
es ofa 
olour 
lass, µt denotes the number of adja
ent 
oloured verti
es, and µb stands for thenumber of adja
ent 
olour 
lasses.and via experiment, when an algorithm applied one of these models [40℄. Exploiting their bene�ts,the author used the models to design powerful graph 
olouring algorithms in [35; 38�40; 42; 43℄.Merge FrameworksMerge Models provide a model for the graph 
olouring problem via matrix representations andoperations. The author introdu
ed three general frameworks for graph 
olouring algorithmssupported by Merge Models in [41; 42℄. These are generalisations of the traditional sequential
olouring s
hemes. Merge Models repla
e the 
olour assignment operation with a Merge Op-eration, and this eliminates the di�eren
e between the 
olour sele
tion and the vertex sele
tionstrategies. Merge Models de�ne these di�erent sele
tion strategies in a 
ommon way as a 
om-mon row sele
tion strategy. Therefore, a general row sele
tion strategy 
an operate as a 
olouredor un
oloured row sele
tion when we would like to model the traditional sele
tion strategies. Herethe 
olours only indi
ate whether a row has already been taken into a

ount in the merge pro
ess.Depending on the order of the sele
tion of the di�erent (
oloured/un
oloured) state rows, twogeneral frameworks 
an be de�ned: either we 
hoose an un
oloured row �rst and then 
hoose asuitable 
oloured one (UC Merge Framework) or, 
onversely, we 
an 
hoose a 
oloured �rst andthen �nd an appropriate un
oloured row for the merge (CU Merge Framework) [41℄. The UCand the CU frameworks provide a generalisation of the sequential 
olouring s
hemes (see Figure5). The choose-unc and choose-col fun
tions/strategies are not de�ned pre
isely here. They
an be repla
ed by di�erent 
on
rete 
hoi
e strategies whi
h operate on 
oloured (Mcol) and un-



8 UC Merge Framework(A adja
en
y matrix )1 M ← A2 repeat3 u← arg choose-unci{M
unc
i } //Choose an un
oloured row index4 c← arg choose-coli{M

col
i } //Choose a 
oloured row index,a where Muc = 05 M ← merge(M, {u, c}) //Merge u and c rows/
olumns b6 until Munc is empty7 return MCU Merge Framework(A adja
en
y matrix )1 M ← A2 repeat3 c← arg choose-coli{M
col
i } //Choose a 
oloured row index4 u← arg choose-unci{M

unc
i } //Choose an un
oloured row index
, where Mcu = 05 M ← merge(M, {u, c}) //Merge u and c rows/
olumns6 until Munc is empty7 return MaMuc = Mcu = 0 is the merge 
ondition, i.e. there is no edge.bFor Merge Squares, 
olumns are also a�e
ted in a Merge Operation.
Mcu = Muc = 0 is the merge 
ondition, i.e. there is no edge.Figure 5: The UC and CU Merge Frameworks
oloured (Munc) sub-merge-matri
es, respe
tively. These sub-merge-matri
es 
onsist of 
oloured(Mcol

i ) and un
oloured (Munc
j ) rows of the original merge matrix. Figure 4 shows examples for
oloured sub-merge-matri
es. The choose-unc fun
tion sele
ts an un
oloured row/vertex, while

choose-col sele
ts a 
oloured row/'
olour 
lass' or allo
ates a new empty row in the 
olouredsub-merge-matrix, in order to support the one-operand Merge. In fa
t, there is no need todistinguish between the 
oloured or un
oloured states of the rows; just take the set of rows andapply a 
ommon choose strategy suitable for all of them. After, sele
t an arbitrary row-pairfrom the Merge Matrix by a strategy and merge them. This approa
h is formulated in the CCMerge Framework [37℄, as shown in Figure 6. The rows of the Merge Matrix 
orrespond toCC Merge Framework(A adja
en
y matrix )1 M ← A2 repeat3 {i, j} ← arg choose{i,j}{Mi,Mj : i 6= j} //Choose two row indi
esa, where Mij = 04 M ← merge(M, {i, j}) //Merge i and j rows/
olumns5 until M is not mergeable6 return MaMij = Mji = 0 is the merge 
ondition, i.e. there is no edge.Figure 6: The CC Merge Frameworks
olour 
lasses, i.e. independent sets. An algorithm in a CC Merge Framework sele
ts two 
olour
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lasses/independent sets and 
reates the union of them in the traditional sense. The CC MergeFramework is the most general. Even though it 
overs the UC and CU Merge Frameworks, it isworth de�ning them separately so as to have the possibility of 
ategorising the algorithms laterMoreover, it is useful in the identi�
ation of the traditional s
hemes. These general frameworkswith the new Merge Models support a 
ommon stru
tural analysis of the existing and novelgraph 
olouring methods, as shown in [38; 40; 42; 43℄. The author demonstrated improvementsin the performan
e of an algorithm after embedding it into a suitable Merge Model. Withoutany 
hange in the algorithm steps, the representation of the problem in a Merge Model leads toa redu
tion in the 
omputational 
ost. In [19; 59℄, Eiben and van Hemert et al. pointed outthat the number of 
onstraint 
he
ks is a key fa
tor in the 
omputational 
ost in most of the
olouring algorithms. In traditional s
hemes, the adja
en
y matrix representation plays the keyrole in the GCP4. We have two 
hoi
es when 
olouring a vertex for 
onstraint 
he
king; eitheralong the already 
oloured verti
es (Acol), or along all the neighbours of the vertex 
onsidered(Aneigh). In the following we will show how to markedly redu
e the number of 
onstraint 
he
ksby applying our proposed Merge Models (Amm).Corollary 1 ([40℄) Given a random graph Gn,p with �xed p edge probability and given a
olouring algorithm A, then the following performan
e is expe
ted on average based on 
ounting
onstraint 
he
ks #(.):1. Che
king the 
oloured verti
es: #(A
ol) = O(n2)2. Che
king the neighbours: #(Aneigh) = O(n2)3. Che
king the merged-verti
es/
olour 
lasses: #(Amm) ≤ O
(

n2

log n

)As the theorem above tells us the asymptoti
 performan
e of the algorithms, we 
an 
he
k theworst 
ase performan
e of a 
olouring algorithm using these di�erent approa
hes.Corollary 2 ([40℄) Let G be an arbitrary graph, then the following relations hold1. #(Amm) ≤ #(A
ol)2. #(Amm) ≤ #(Aneigh)All of these frameworks are de�ned in a uni�ed manner using the Merge Model s
heme. Analgorithm in one of these frameworks applies a subsequent sele
tion of rows of the merge matri
esand merges them to a
hieve a 
olouring. None of these frameworks has a 
on
rete strategy forthe 
hoi
e of rows for merging. A framework with a 
on
rete 
hoi
e strategy, i.e. Merge Strategy,forms a parti
ular algorithm.Merge StrategiesIn order to get a 
olouring algorithm, the algorithm steps must be de�ned; that is, a sequen
eof the Merge Operations. A Merge Operation takes two rows/
olumns of a Merge Matrix and4List based or in
iden
e matrix representations require more operations for graph 
olouring.



10produ
es a new Merge Matrix if the merge 
ondition allows it. By repeating Merge Operationswe will end up with a �nal Merge Matrix where a Merge Operation is no longer possible. Thesequen
e of the Merge Operations is 
ru
ial. It determines the quality of the solution, i.e. thenumber of 
olours used in the 
olouring of the original graph. The author des
ribed variousMerge Strategies in order to generate e�
ient merge sequen
es, as des
ribed in [35; 37�43℄.These strategies proved useful in the theoreti
al and experimental parts of our analysis. Thenovel des
ription of the 
olouring pro
ess provides new aspe
ts whi
h 
an be exploited in thedesign and analysis of Merge Strategies, as des
ribed in the following. This strategies assumeBinary Merge Models, but their integer extensions are also available. The importan
e of theInteger Models are dis
ussed separately. They support the algorithm design, e.g. ba
ktra
king ortie breaking, as shown in [40℄. The following strategies de�ne row-pair sele
tion strategies; thatis, they support the most general strategy, the CC framework choose fun
tion. Hen
e they aresuitable for the UC and CU frameworks as well. Let X̂ be the basis of the row-pair sele
tion,i.e. the choose fun
tion. An X̂ij element of the matrix is proportional to the probability of thesele
tion of row i and j for a merge in the next algorithm step 5. The following strategies willde�ne X̂ values. The choose fun
tion applies the following sele
tion {i, j} = arg maxij X̂ij .The longest merge sequen
e. Sin
e the Merge Matrix rows (Mi-s) represent 
olour 
lasses,the main aim is to redu
e the number of rows by 
onse
utive merges. The longest merge sequen
eprodu
es the fewest rows. The author in [38℄ introdu
ed two novel strategies to generate thelongest merge sequen
e. The Dot Produ
t Strategy fo
uses on the evolution of the number ofnon-zero elements during su

essive merges and attempts to keep them as low as possible, using
X̂ij = 〈Mi, Mj〉 [Mij = 0] (1)where [Mij = 0] is the Krone
ker delta fun
tion, where [x = x] := 1, otherwise it is 0 (thisen
odes the merge 
ondition) Mi and Mj are the i-th and j-th rows of a Binary Merge Matrix6. For a Binary Merge Square A, it 
an be de�ned by

X̂ = AAT ◦ Ā (2)Though the non-zero elements in a Merge Matrix frustrate the merges, the number of zeros assistthem. Hen
e the Cosine Strategy takes the number of non-zero elements into a

ount, but also
onsiders the number of zeros present, using
arg max

i,j
X̂ij = arg max

i,j

〈Mi, Mj〉

|Mi| |Mj |
[Mij = 0] = arg max

i,j

〈Mi, Mj〉

||Mi|| ||Mj ||
[Mij = 0] (3)Parallel rows. The Cosine strategy favours the parallel rows in the Merge Matri
es. It isreasonable be
ause the rows of the adja
en
y matrix whi
h 
orrespond to the same 
olouredverti
es in an optimal solution are almost parallel. Their parallel behaviour be
omes 
learer with5X̂ may 
hange during the steps6For Binary Merge Matri
es [Mij = 0] ≡ (1 −Mij).



11ea
h su

essive merge. For the Merge Square Model, there is a 
ertain modi�
ation of the MergeMatri
es based on a semi-de�nite optimisation by Karger et al. [44℄, whi
h further supportsthe Cosine strategy. Exploiting this fa
t, the author in [35; 43℄ de�ned the Zykov-tree andLovász-theta strategy.Colour similarities A
tually, a 'Zykov-tree and Lovász-theta' strategy is based on the esti-mation of the 
olour similarities of the verti
es of the quotient graphs. The adja
en
y matrixdes
ribes an exa
t 
olour dissimilarity relation, where the verti
es in a relation de�ned by theedges 
annot get the same 
olour. The opposite approa
h is the 
olour similarity relation. Aparti
ular 
olouring 
an be de�ned via a 
olour similarity relation between the verti
es, whereonly the same 
oloured verti
es are in
luded in the relation. This relation 
an be represented bya {0, 1}-matrix, namely a 
olouring matrix. It des
ribes whether two verti
es are 
oloured withthe same or di�erent 
olours. Although the optimal solutions 
an be represented in this form,they are unknown be
ause they are the solutions of the problem. Despite this, their average 
anbe approximated by a solution of a semi-de�nite program (see Karger et al. [44℄), whi
h providesthe Lovász-theta θ̄:
θ̄ = min

t
{t : Z � 0, zii = t− 1, ze = −1 ∀e ∈ E} (4)Hen
e a non-exa
t (an approximated) 
olour similarity relation be
omes available between theverti
es. This 
an be des
ribed by a real-valued matrix Zopt, whi
h is a solution of Eq. 4 and we
an de�ne a matrix X̂ by

X̂ = (Zopt + 1) ◦ (1− I)where I is the identity matrix. The largest and the smallest values of X̂ 
ontain valuableinformation. Using this information and Zykov's work in [64; 65℄, the author 
reated the'Zykov-tree and Lovász-theta' strategy in [35; 43℄, where quotient graph verti
es are 
onne
ted(arg mini,j{X̂ij : X̂ij < 0}) or merged (arg maxi,j X̂ij) a

ording to their approximated sim-ilarities (see Figure 2). The approximation be
omes more exa
t with ea
h subsequent merge,supporting more 
on�dent de
isions of this strategy. To speed-up the algorithm, multiple edgeadditions (X̂ij < 0) or merges (X̂ij > 0.5θ̄) 
an be performed.Norm minimisation in the resulting state. The Dot Produ
t Strategy sele
ts two rows Mrand Ms whi
h produ
e the maximum dot produ
t {r, s} = arg maxi,j 〈Mi, Mj〉, then mergesthem. This introdu
es a minimisation in the entrywise 1-norm7 in the resulting Merge Matrix
∣

∣M/rs

∣

∣ = |M | −maxi,j 〈Mi, Mj〉 = |M | − 〈Mr, Ms〉, thus
arg

(

|M | −max
i,j
〈Mi, Mj〉

)

= arg min
i,j

(|M | − 〈Mi, Mj〉) = arg min
i,j

∣

∣M/ij

∣

∣ (5)A �nal Merge Matrix whi
h 
orresponds to an optimal solution has the smallest entrywise normamong the possible merge matri
es (homomorphi
 images). Hen
e, the entrywise norm min-imisation approa
h is reasonable. In addition su
h a Merge Matrix has minimal indu
ed norms7This is valid for all entrywise norms.



12as well. This observation led us to apply the steepest des
ent norm minimisation strategy, inparti
ular the steepest des
ent Spe
tral Norm Strategy (indu
ed 2-norm), whi
h was introdu
edby the author in [42℄ and was found to be an e�
ient strategy with
X̂ij =

{

1

||M/ij||
2

[Mij = 0] i 6= j

0 i = j
(6)The Spe
tral Norm Strategy must �rst make several trial merges. With the resulting trial mergematri
es M/ij , this strategy makes spe
tral norm 
al
ulations ∣

∣

∣

∣M/ij

∣

∣

∣

∣

2
to 
reate a sele
tion of arow-pair for merging. Cal
ulating the spe
tral norm is 
omputationally expensive, but Merikoskiand Kumar on
e introdu
ed an e�
ient spe
tral norm approximation in [54℄. Let M = A be aBinary Merge Square then

∣

∣

∣

∣A/ij

∣

∣

∣

∣

2
≈

√

∑l
r=1

〈

(A/ij)r, e
〉2

l
(7)where l is the number of rows of the 'trial' Merge Matrix A/ij . Based on Merikoski and Kumar'sresults, the author adapted his Spe
tral Norm Strategy to an approximated spe
tral norm strategy[42℄. Owing to this, this strategy 
an exploit an update me
hanism where an investigation of theresulting Merge Matri
es is no longer needed as it is just based on the 
urrent Merge Matrix

〈

(A/ij)i, e
〉

= 〈Ai, e〉+ 〈Aj , e〉 − 〈Ai, Aj〉
〈

(A/ij)j, e
〉

= 0
〈

(A/ij)r, e
〉

= 〈Ar, e〉 − 1 r ∈ I
〈

(A/ij)r, e
〉

= 〈Ar, e〉 r /∈ I ∪ {i, j}

(8)
where I is an index set, the set of the 
ommon one positions of the rows Ai and Aj . Hen
eEq. 7 
an be dire
tly 
al
ulated from the Merge Matrix values without any trial merges. Inaddition, this reformulation revealed a 
onne
tion with the Dot Produ
t strategy. Eq. 7 providesan e�
ient strategy with a Merge Table T as well, but in a dire
t 
al
ulation the third line ofEq. 8 must be repla
ed with 〈(T/ij)r, e〉 = 〈Tr, e〉. However, in order to get the original formof the approximated Spe
tral Norm Strategy for Binary Merge Tables, Eq. 7 must be applied tothe T/ijT

T
/ij (symmetri
) matrix, whi
h provides an approximation for the square of the spe
tralnorm of T/ij . In this 
ase a similar dire
t 
al
ulation is available.Matrix properties � Merge Paths The author introdu
ed the notion of Merge Paths [42℄.Certain graph properties like matrix norms may be evaluated during the sele
tion of two rows fora Merge Operation. Gathering these graph properties into a ve
tor (e.g. eigenvalues), they formthe basis of the de
ision. The 
hanges of the property ve
tor with ea
h su

essive merge des
ribea path 
alled the Merge Path. This path is responsible for determining the 
olouring, and the endof the path de�nes the quality of the 
olouring (see Figure 7(a)). Unfortunately, the ideal path(whi
h results in an optimal solution) is of 
ourse unknown; the task of 
olouring is to �nd this
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(a) Spe
tral norm steepest des
ent minimisation.The ends of the 
urves are extended in order to have
learer 
omparison (horizontal lines). (b) An example 3D Merge Path of the three largest eigen-values of a graph during the merges.Figure 7: Evolution of the eigenvalues along a merge sequen
e. The graph is a 20−
hromati
,equi-partite graph having 200 verti
es with a 0.64 edge density from the peak of the phasetransition. The spe
tral norm value of the �nal Binary Merge Square is χ − 1 = 19 in theoptimal 
ase, otherwise bigger.path. The author introdu
ed a general strategy whi
h approximates an optimal Merge Path [42℄.The start and the end points of the path are usually known and the 
urve of the path may beestimated by using preliminary knowledge. In order to build the knowledge base the Merge Pathapproa
h 
an be 
ombined with arti�
ial intelligen
e methods, su
h as instan
e-based learningor 
lustering, in a

ordan
e with the results des
ribed in [36℄.Enhan
ed heuristi
s and meta-heuristi
s A non-merge based 
olour strategy 
an be extendedand enhan
ed by reformulating the strategy in a Merge Model. A Binary Merge Square8 is theadja
en
y matrix of a quotient graph. Consequently, if a strategy 
an operate on the adja
en
ymatrix of the original graph, then the same strategy 
an 
ooperate with a merged adja
en
ymatrix (an intermediate Merge Square) as well. It introdu
es a dynami
 re
onsideration pro
esswhere previous de
isions of a strategy 
an be revised after ea
h Merge Operation by exploitingthe additional information 
ontained in the intermediate matri
es. The author in [38℄ showedthe e�
ien
y of su
h an extension.The author in [37℄ applied the stru
tural properties of the Merge Table Models in the meta-heuristi
s design. The author introdu
ed a better granular �tness fun
tion than the traditionalone for the evolutionary solvers of the 
olouring problem. This resulted in a smoother lands
apeof the obje
tive fun
tion, whi
h in
reased the e�
ien
y of the optimisation pro
ess. If ζM(π)denotes the number of non-zeros in a �nal Merge Table (see Figure 4), then the ζ-�tness fun
tionis f(π) = (kM(π) − χ)ζM(π), where M(π) is the �nal Merge Table 
orresponding to the πpermutation and a greedy merge/
olouring s
heme. This approa
h follows the entrywise normoptimisation of a Binary Merge Table (see the Dot Produ
t strategy). Moreover, the authorde�ned a mutation whi
h for
es the di�
ult verti
es by a Merge Table Model (for whi
h the
olouring is problemati
) in advan
e in the merge/
olour assignment.8Usually the extension 
an be applied on the other Merge Models as well.



14Merge AlgorithmsThe author in [35; 37�43℄ 
ombined various novel Merge Strategies with di�erent Merge Frame-works and analysed their performan
e. The algorithms were 
ompared with standard ben
hmarkalgorithms on various ben
hmark graphs. The experimental analysis showed that the novel MergeAlgorithms perform well in the 
omparison. They generally outperformed the ben
hmark algo-rithms espe
ially in the phase transition region where the problems be
ome hard. Some resultsof an extensive study 
an be found in Figure 8, where some of the novel Merge Strategies areembedded into di�erent Merge Frameworks and 
ompared with ben
hmark algorithms and ea
hother. In order to denote an algorithm in the UC Merge Framework we introdu
ed the followingnotation: UCchoose−col
choose−unc , where the choose − unc denotes the un
oloured row 
hoi
e strategy,while the choose− col denotes the 
oloured one. We did likewise with the CU Merge Frameworkusing the CUchoose−unc
choose−col denotation. In the CC Merge Framework CC − 
hoose, the 
hoosedenotes the only row-pair 
hoi
e strategy. The 
hoose fun
tions and the Merge Strategies in-trodu
ed by the author were denoted by: 'dotprod' - Dot Produ
t and '
os' - Cosine; 'σ̃' -approximated spe
tral norm; 'Zykovθ̄' - Zykov-tree and Lovász-theta9 and 'EAζ ' - evolutionaryalgorithm with the ζ-�tness , while some of the sele
ted ben
hmark algorithms are denoted by:'dsatur' - DSatur heuristi
 and 'Erd®s' - Erd®s heuristi
. Furthermore the 'greedy' stands for thegreedy strategy. In order to get a fair 
omparison ea
h 'ben
hmark' algorithm was embeddedinto a suitable Merge Framework applying a suitable Merge Model.Con
lusionsThe new 
olouring approa
h presented in this thesis demonstrates that graph 
olouring 
an bee�e
tively modelled by quotient or power graphs. It provides a potential redu
tion in 
omputa-tional 
ost, as well as a uniform and 
ompa
t way in whi
h algorithms 
an be de�ned. Embeddingalgorithms in the same 
ommon framework supports both their stru
tural and performan
e 
om-parison, as making a 
omparison is sometimes problemati
. The framework itself generalisesa formal 
olouring approa
h. With this generalisation an algorithm 
an be naturally extended,whi
h may result in new algorithms. The novel problem des
ription yields novel information that
an help us to extra
t and support a new s
heme of the 
olouring pro
ess.

9Supers
ript + will denote multiple edge additions.
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ess.



16Thesis 1 The author, applying 
ertain graph homomorphisms, de�ned two general 
on-
epts to rede�ne the graph 
olouring problem, namely the Quotient and Power meth-ods [37; 40; 41℄. He provided a 
on
rete des
ription of the general methods usingmatrix representations and Merge Operation of the rows or 
olumns. He 
alled thesedes
riptions Merge Models. Based on the Merge Models the original problem un-dergoes an evolution and produ
es homomorphi
 graph images. These models 
anbe a basis of novel and existing algorithms too. Embedding an algorithm into aMerge Model may 
onsiderably de
rease its 
omputational e�orts. Moreover, su
han embedding supports the stru
tural analysis of the algorithms in a 
ommon wayand makes available a natural extension of them, whi
h may result in an in
reasein their performan
e. Traditional 
olouring s
hemes distinguish between the 
oloursand the verti
es of the graph. Merge Models integrate them into one single obje
t.This anti
ipates a uniform algorithm design, where 
olour 
hoi
es do not di�er fromthe vertex 
hoi
es.Thesis 2 Based on the Merge Models of the 
olouring, the author uni�ed and generalisedthe formal sequential 
olouring model in three di�erent Merge Frameworks [41; 42℄.These frameworks provide a uniform and 
ompa
t des
ription in whi
h algorithms
an be de�ned and analysed in the same systemati
 way. Furthermore, exploiting theuniform des
ription, he sket
hed some explanations of how the stru
ture of algorithms
an have an in�uen
e on the overall performan
e. Existing sequential 
olouringalgorithms �t into one of the Merge Frameworks, and the frameworks provide novelapproa
hes for algorithm design.Thesis 3 The author provided a way to redu
e the 
omputational 
ost of 
olouring algo-rithms after embedding them into a Merge Framework [38; 40℄. This improvementwas demonstrated and analysed via experiments as well. In the experiments he anal-ysed the phase transitions of di�erent algorithms implemented in di�erent MergeFrameworks. Furthermore, the author provided a natural extension of sequential
olouring algorithms in the Merge Framework, whi
h results in an in
rease in theire�
ien
y.Thesis 4 In ea
h Merge Model the 
olouring operation is repla
ed by a Merge Operation.Several Merge Strategies were developed by the author. Sin
e the models use matrixrepresentations, he was able to de�ne some of his strategies by applying spe
ial matrixrow operations as well as matrix norms. The novel strategies of the author are listedbelow:� Extended Hajnal; Extended Welsh-Powell (∞�norm) [38℄� Spe
tral norm[42℄� Spe
tral norm approximations [42℄� Dot produ
t (entrywise norms) [38℄



17� Cosine [38℄� Zykov-tree and Lovász-theta [35; 43℄These strategies 
an be 
ombined with di�erent Merge Models and Merge Frame-works to form di�erent algorithms. The performan
e analysis of these strategiesare given. The novel algorithms are 
ompared with several well-known ben
hmarkalgorithms. The novel algorithms outperformed the well-known algorithms in a stan-dard ben
hmark set of graph instan
es. Moreover, their e�
ien
y revealed in amore di�
ult-to-solve graph instan
e set, where the graphs are generated during thephase transition region, where �nding a solution be
omes really hard. In this 
ase,the 
omparison is fair; that is, it 
annot be manipulated by a good 
hoi
e of theben
hmark instan
es sin
e the generated instan
es represent well all instan
es fromdi�
ult-to-solve graph 
lasses.Thesis 5 The author introdu
ed the notion of a Merge Path in [42℄. A Merge Path arisesfrom the properties of the dynami
ally 
hanging model during its evolution. Elementsof su
h a path are asso
iated with 
olouring steps. He was able to des
ribe an abstra
tgraph 
olouring approa
h based on Merge Paths, whi
h allows the appli
ation ofarti�
ial intelligen
e methods in graph 
olouring e.g.:� Using a training set of known graphs, a supervised learning algorithm [36℄ 
anlearn 
ertain optimal Merge Paths that are asso
iated with optimal 
olouring steps.Then using the learnt knowledge, 
olouring steps for an unknown graph instan
e 
anbe predi
ted.� In an unsupervised learning task optimal Merge Paths of known graphs are
lustered. Then unknown graphs, whi
h are not involved in the 
lustering, 
an be
lassi�ed in order to predi
t their properties su
h as their 
hromati
 number.Thesis 6 He embedded his 
olouring strategies into a meta heuristi
, an evolutionaryalgorithm and 
reated the following evolutionary operators for 
olouring [37�39; 42℄: � A mutation operator by a
quiring di�
ult verti
es in a 
andidate solution andfor
ing their early 
olouring� A �tness fun
tion whi
h solves the �tness granularity problem of the 
olouringThese novel meta heuristi
 algorithms performed well in an experimental 
omparisonwith di�erent ben
hmark algorithms, on di�erent ben
hmark graphs and di�
ult-to-solve generated problem sets as well.
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