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Introdu
tionThe a
tivity of program sli
ing is similar to what an experimental programmer doesduring debugging in order to understand the behavior of the program at a parti
ularpoint in it. To a
hieve his aim, he divides the program into smaller parts and identi�esthe statements whi
h determine the behavior of the given program point. This redu
edprogram is 
alled a program sli
e, whi
h is exe
utable, and its semanti
s at the givenprogram point is the same as the semanti
s of the full program. Formally speaking, aprogram sli
e is the set of statements whi
h potentially a�e
ts the behavior of a givenprogram point, 
alled a sli
ing 
riterion. This original de�nition of program sli
ing wasintrodu
ed by Mark Weiser in 1979 [26℄.Sin
e the introdu
tion of the original 
on
ept of sli
ing, various notions of programsli
es have been proposed [5; 6; 18; 25℄. The main reason for these di�eren
es is thefa
t that di�erent appli
ations of program sli
ing require sli
es with di�erent features.Many papers and surveys in the �eld of software maintenan
e des
ribe the de�nitionsand modi�
ations of program sli
es and present new appli
ations based on the modi�edde�nitions. The original de�nition of a program sli
e provides one of the greatest 
lassesof program sli
ing, whi
h is referred to as a ba
kward sli
e. It is ba
kward be
ause,starting from a given program point, it identi�es the events and statements in theprogram whi
h may be exe
ute before the given point and may be responsible for itsbad behavior.Of 
ourse, it is also possible that an appli
ation based on program sli
ing has atotally di�erent motivation. If one wants to investigate the e�e
t of a program point ina program, forward sli
ing 
an be of help for redu
ing the size of the set of statementswhi
h are a�e
ted by the given program point. If one examines the program in a
on
rete exe
ution or wishes to determine the general behavior of the program at thegiven program point, we 
an apply te
hniques of dynami
 and stati
 program sli
ing,respe
tively.In the thesis we fo
us on stati
 program sli
ing and one of its potentially appli-
ations, namely an examination of the dependen
ies inside the program. In the �rstpart we use the dependen
e graphs and dependen
e relations to determine the stati
program sli
es of binary exe
utables, then in the se
ond part we apply the results ofprogram sli
ing to validate the dependen
ies determined via a method distin
t fromprogram sli
ing. The topi
s of the thesis 
an be put into two main groups.I/1 Problems and solutions during the determination of the dependen
egraphs of binary programs. The adaptation of dependen
e-based prog-ram sli
ing to binary exe
utables.1



I/2 Improved sli
ing algorithms for binary exe
utables.I/3 Experimental results of the stati
 program sli
ing of binary exe
uta-bles.II/1 De�ning Stati
 Exe
ute After (SEA) and Stati
 Exe
ute Before (SEB)relations and a suitable program representation for �nding these rela-tions. Algorithms for 
omputing the SEA and SEB relations.II/2 Experimental 
omparison of SEA and SEB relations with relations
omputed by program sli
ing.II/3 Hidden dependen
ies in obje
t-oriented programs; experimental inves-tigation of SEA and SEB relation in obje
t-oriented programs.In the following se
tions, I brie�y des
ribe the above results and I emphasize myown 
ontributions in these at the end of ea
h se
tion.Program sli
ing of binary exe
utablesAlthough the sli
ing of programs written in a high-level language has been extensivelystudied in the literature, very few papers have addressed the issue of the sli
ing of binaryexe
utable programs. The la
k of existing solutions is really hard to understand sin
e theappli
ation domain for sli
ing binaries is similar to that for sli
ing high-level languages.The program sli
ing of binary exe
utables 
an be applied to understand the behaviorof programs without sour
e 
ode like assembly programs, lega
y software, 
ommer
ialo�-the-shelf (COTS) produ
ts, viruses and post-link time modi�ed programs. Althoughsome papers deal with the intrapro
edural program sli
ing of binary exe
utables [9; 20℄,there are only suggestions about how to use dependen
e graph-based interpro
eduralsli
ing to analyze binaries [2℄, but these papers do not dis
uss the handling of theproblems that arise or provide any 
on
rete experimental results. Sin
e binaries havemany features whi
h are not present in high level languages, the methods devised forhigh level languages generally 
annot be adapted to binaries.
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I/1. Problems and solutions during the determination of thedependen
e graphs of binary programs. The adaptation ofdependen
e-based program sli
ing to binary exe
utables.A potential method for determining the interpro
edural sli
es of a program is de�ningthe dependen
e graphs of the program, and with an appropriate traversal we get thewanted sli
es [12℄. During the building of the dependen
e graphs of binary programsmany problems exist whi
h are not present in high level languages.Sin
e the 
ontrol �ow graph � (CFG) is needed in many other appli
ations like
ode analysis, 
ode generation and 
ode 
ompa
tion, there are many papers whi
h dealwith this topi
 [10; 15℄. Depending on the ar
hite
ture employed, di�erent problemsarise during the building of the dependen
e graphs. The determination of the 
ontrol�ow graphs in the 
ase of binary programs in
ludes not only the determination ofthe 
ontrol �ow edges among statements, but the determination of statements andfun
tion boundaries as well.After the determination of the 
ontrol �ow information, we have to 
ompute thedata dependen
e graph � (DDG) and the 
ontrol dependen
e graph � (CDG), whi
htogether 
onstitute the program dependen
e graph � (PDG). Extending the PDG withthe appropriate dependen
e edges, we get the system dependen
e graph � (SDG) whi
his applied to 
ompute the interpro
edural sli
e of the sli
ing 
riterion.The determination of 
ontrol dependen
ies with the 
ontrol �ow information isquite easy, but we have to handle the overlappings and the 
ross-jumping fun
tions.Sin
e binary exe
utables 
an transfer 
ontrol to another fun
tion in a way other thanthe fun
tion 
all, before the 
omputation of the dominan
e relations we have to extendthe program points of a fun
tion with ea
h statements, that is rea
hable without afun
tion 
all from the entry point of the given fun
tion.For binary exe
utables the most di�
ult task is the determination of the datadependen
ies. In high-level languages, the arguments of statements are usually lo
alvariables, global variables or formal parameters, but su
h 
onstru
ts are generally notpresent at the binary level. Low-level instru
tions read and write registers, �ags (onebit units) and memory addresses, hen
e existing approa
hes have to be adapted touse the appropriate terms. In our 
onservative approa
h, we only determine whethera given statement reads or writes any memory lo
ation, thus representing the wholememory as only one argument.Unlike that for high-level programs, in binaries the parameter list of pro
edures isnot expli
itly de�ned, but it has to be found via a suitable interpro
edural analysis. Weintrodu
ed a �x-point iteration method like that shown in Figure 1 to determine the3
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tively. If is the set of instru
tions of f ,

Cf is the set fun
tions 
alled by f , and lastly uj and dj sets are the used and de�nedelements (registers, �ags and memory lo
ations) of the instru
tions j.used and de�ned arguments of ea
h fun
tion.We have to augment the graph representation of the binary program with appro-priate nodes whi
h represent the used or de�ned registers, �ags and memory lo
ations,formal input and output parameters, and the a
tual input and output parameters. Nextthe data dependen
e edges 
an be de�ned via a traversal of the 
ontrol �ow graph. Thesummary edges needed for interpro
edural sli
ing may be 
omputed after implementingthe appropriate algorithm [22℄.I/2. Improved sli
ing algorithms for binary exe
utables.Although the 
omputation of the dependen
e graphs is safe, be
ause we do not ignoreany existing dependen
ies, it is too 
onservative due to the 
onservative approa
h ofthe data dependen
e analysis and the la
k of ar
hite
ture spe
i�
 information use.We 
an improve both the data dependen
ies and the 
ontrol dependen
ies either byre�ning the stati
 analysis or with the help of some dynami
ally gathered information.In the thesis we present two stati
 approa
hes for improving the pre
ision of the DDGand two dynami
 approa
hes for re�ning the 
all graph. While the stati
 approa
hesare safe, the dynami
 approa
hes are impre
ise in both 
ases, so the sli
es may be
omeunsafe. In some situations, su
h as when we are debugging with limited resour
es, thisapproa
h is a

eptable.The �rst stati
 approa
h is based on a heuristi
 analysis of fun
tion prologs and4
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e and the meet operation of the latti
e for improving the handlingof memory use.epilogs. In most 
urrent ar
hite
tures, various fun
tion 
alling 
onventions exist whi
hspe
ify what portions of the register of a fun
tion have to be keep inta
t when 
alled.Using this information we 
an redu
e the number of de�ned registers for ea
h fun
tion,and hen
e redu
e the number of the summary edges and the size of the program sli
es.In the se
ond stati
 approa
h, we attempted to re�ne the 
onservative handlingof data dependen
ies using a more sophisti
ated analysis of the memory a

ess ofthe instru
tions. At the binary level, the high-level 
on
epts of variables and fun
tionparameters do not exist, so the 
ompilers use registers in their pla
e. But be
ause inmost ar
hite
tures the number of available registers is limited, registers are also usedto store the temporary results of 
omputations in the program. The parameters andvariables that 
annot be assigned to registers are usually stored in a spe
i�
 part ofthe memory 
alled the sta
k.In our pro
edure, we mark all registers at a given instru
tion lo
ation by a pair oflatti
e elements to represent stati
ally 
olle
ted information about their 
ontents at theentry and exit points of the instru
tion. Assigning ⊤ to a register means that it may
ontain a referen
e to an (as yet) undetermined sta
k position. The latti
e element

⊥ tells us that it 
annot be stati
ally determined whether the register 
ontains areferen
e in the sta
k or not. Assigning M to a register means that it does not 
ontaina referen
e in the sta
k. The latti
e element S indi
ates that the register 
ontainsa referen
e somewhere in the sta
k, but the exa
t lo
ation 
annot be determined.Assigning Si to a register means that the register 
ontains a referen
e to a known sta
kelement. Figure 2 above shows the latti
e and its meet operation. After an appropriateinitialization, a �x-point iteration algorithm is used to propagate these latti
e elementsthrough the 
ontrol �ow graph. The thesis des
ribes this iteration algorithm in detail.5



In the 
ase of binary exe
utables, espe
ially in larger programs, there are manystati
ally unresolved fun
tion 
alls. In these situations, the target of the 
all may beall the fun
tions, whose addresses were used during the exe
ution of the program.Needless to say, these situations introdu
e many unne
essary edges in the dependen
egraphs. With the dynami
 improvements, we attempted to re�ne the dependen
ies
aused by indire
t fun
tion 
alls.To enable the gathering of dynami
 information, we need to determine the run-timeaddress of ea
h stati
ally unresolved indire
t 
all site when the 
onstru
tion of the CFGis 
ompleted and write ea
h address to the disk. Then the appli
ation 
an be exe
utedin a 
ontrolled environment on some representative input. The previously determinedaddresses are used as breakpoints where dumping the registers to a log �le should beperformed. With the help of the generated log �les, it is possible to determine therealized targets of the stati
ally unresolved indire
t 
all sites.The 
all sites whi
h were not exe
uted during any invo
ation of the appli
ationhave no asso
iated dynami
 information so they 
an be handled in various ways. Oneis to retain the 
all edges where the 
all site was not 
overed by any of the dynami
exe
utions. Another is to rely entirely on dynami
 data and treat them as 
alling nofun
tions, but this solution may result in over-optimisti
 sli
es.I/3. Experimental results of the stati
 program sli
ing of bi-nary exe
utables.We implemented our solutions and evaluated them on programs taken from the SPECCINT2000 [24℄ and Media Ben
h ben
hmark suites [21℄. The sele
ted programs were
ompiled using Texas Instruments' TMS470R1x Optimizing C Compiler version 1.27efor the ARM7T pro
essor 
ore with Thumb instru
tion set. In order to gather dynami
information about the indire
t 
all sites, we exe
uted the sele
ted ben
hmark programsin the emulator of Texas Instruments' TMS470R1x C Sour
e Debugger.Using the 
onservative sli
ing approa
h, we a
hieved interpro
edural sli
es wherethe average sizes were about 52% of all the instru
tions. This means that the sli
ingof binary exe
utables 
an be an e�
ient tool for many appli
ations. With the stati
improvements, we were able to further redu
e the sizes by some 1% - 4 %. Basedon our studies, the moderate improvement in the size of interpro
edural sli
es 
an bemostly be attributed to the 
onservative handling of the memory a

ess of the 
alledfun
tions and the high number of unresolved fun
tion 
alls.The dynami
 improvements revealed the fa
t that there is a high 
orrelation be-tween the redu
tion of the 
all edges and the size of the program sli
es. Where the6



number of indire
t fun
tion 
alls 
ould be determined and a big redu
tion of the 
alledges 
ould be a
hieved, the 
omputed sli
es were mu
h smaller than in the 
onser-vative 
ase.My own 
ontributionThe results of our studies introdu
ed in the �rst part of the thesis was motivated by thefa
t that although there are many potential appli
ations of the interpro
edural programsli
ing of binary exe
utables, there were no previous studies whi
h satisfa
torily 
overedthis topi
. We presented the interpro
edural sli
es of binary exe
utables with the helpof dependen
e graphs, where the detailed des
ription of building the 
ontrol-, data- andsystem dependen
e graphs are the author's own 
ontribution. The author's own workis an improved data �ow analysis based on the latti
e, while the design of this latti
eis not the work of the author. The improvements of the 
all graph with dynami
allygathered information are the joint work of the author and her 
o-authors, as are thedesign and evaluation of the experimental results. Ex
ept for the implementations ofthe 
ontrol �ow graph, all implementations of the methods presented in the thesis andexperiments performed are the sole work of the author.Stati
 Exe
ute After and Stati
 Exe
ute Before re-lationsThough program sli
ing is potentially suitable for determining the dependen
ies amongthe program 
omponents, the general solutions for program sli
ing are not e�e
tivelyusable for large programs. The reason is twofold: �rstly the program representation ofa program with millions of lines of 
ode 
an be extremely huge; se
ondly in many 
asesit is not ne
essary to determine dependen
ies at the same level as that for sli
ing.Many appli
ations determine the dependen
ies among the pro
edures of the givenprogram just with the 
all graph [7℄, and the dependen
ies among the 
lasses just withsome 
ohesion metri
s [8; 27℄. Although these methods are quite simple, they are notsafe and it is not hard to show that they do not always identify real dependen
ies.In the se
ond part of the thesis we present a te
hnique whi
h is not just readily
omputable, but it is a safe approximation of the pro
edure level and 
lass level depen-den
ies of the program. The novel te
hnique has a high pre
ision at the pro
edure leveland the 
lass level 
ompared to the usual results obtained using 
onventional programsli
ing te
hniques. 7



II/1. De�ning Stati
 Exe
ute After (SEA) and Stati
 Exe
uteBefore (SEB) relations and a suitable program representationfor determining these relations. Algorithms for 
omputing theSEA and SEB relations.Our goal was to provide an alternative way of approximating the dependen
ies amongthe pro
edures of the program. Our approa
h was motivated by Apiwattanapong [1℄,who introdu
ed the notion of Exe
ute After relation and applied it in dynami
 impa
tanalysis. A

ording to the de�nition, the pro
edures f and g are in Exe
ute Afterrelation if and only if any part of g is exe
uted after any part of f in any of thesele
ted set of exe
utions of the program.As a stati
 
ounterpart of this approa
h, we de�ne the Stati
 Exe
ute After (SEA)relation. We say that (f, g) ∈ SEA if and only if it is possible that any part of g maybe exe
uted after any part of f 1. As the notion of the ba
kward sli
e is the dual of theforward sli
e, the Stati
 Exe
ute Before (SEB) relation 
an be determined as a dual
ounterpart of the SEA. The pro
edures f and g are in SEB relation if and only if itis possible that any part of g may be exe
uted before any part of f .A

ording to Apiwattanapong et al. [1℄ and Beszédes et al. [3℄, the formal de�nitionof the SEA relation is the following:SEA = CALL ∪ SEQ ∪ RET[∪ID],where
(f, g) ∈ CALL ⇐⇒ f (transitively) 
alls g,

(f, g) ∈ SEQ ⇐⇒ ∃h : f (transitively) returns into
h, and after that h (transitively)
alls g

(f, g) ∈ RET ⇐⇒ f (transitively) returns into gor rather the ID is the identity relation that 
an optionally be a part of SEA, sin
e asli
e also 
ontains the 
riterion itself and every 
hange in a fun
tion f 
an a�e
t anypart of f from an impa
t analysis point of view.We have to build a suitable program representation in order to determine the sets ofSEA relations. With the traditional 
all graph representation [23℄ this is not su�
ient,1Entering a pro
edure and leaving a pro
edure are also 
alled the events of the pro
edure.8



be
ause it tells us nothing about the order of the pro
edure 
alls within a pro
edure.On the other hand, an Interpro
edural Control Flow Graph (ICFG) [19℄ 
ontains a lotof information that is not related to pro
edure 
alls.In our Interpro
edural Component Control Flow Graph (ICCFG), ea
h pro
edure isrepresented by a Component Control Flow Graph � (CCFG) whi
h 
ontains an entrynode and several 
omponent nodes. We get these 
omponent nodes by determining thestrongly 
onne
ted subgraph of the 
ontrol �ow graph of the pro
edure. Moreover, the
omponents are 
onne
ted by 
ontrol �ow edges. We 
an further redu
e this 
omponentgraph if we remove the 
omponents with no 
all sites and insert 
ontrol �ow edgesamong its prede
essor and su

essor 
omponents. The CCFG graphs are 
onne
ted by
all edges.We presented several alternative methods for 
omputing the SEA and SEB relations.These methods have some extreme features. One of these methods depends on tothe ICCFG and its traversals at the 
omputation of the dependen
ies of a parti
ularpro
edure. In the other methods we 
ompute the dependen
ies of ea
h pro
edure atthe same time by 
rossing ea
h node of the ICCFG just on
e.II/2. Experimental 
omparison of SEA and SEB relations withrelations 
omputed by program sli
ing.We used program sli
ing to demonstrate that the SEA and SEB relations are suitablefor approximating the semanti
 dependen
ies among the program pro
edures. In ourexperiments, we 
ompared the 
omputed SEA and SEB relations with the relations
omputed by an appropriate program sli
ing tool, 
alled CodeSurfer [11℄. Naturally,the SEA relations were 
ompared with the forward sli
es, while the SEB relations were
ompared with the ba
kward sli
es. As we de�ned the SEA and SEB relations at thepro
edure level, for a 
omparison we had to extend program sli
ing to the pro
edurelevel. The program sli
e of a parti
ular pro
edure is the set of pro
edures that 
ontainsat least one statement whi
h is an element of one of the program sli
es starting fromany statement of the given pro
edure.For a 
omparison, we used the pre
ision and re
all values. The pre
ision s
ore isde�ned as the ratio of the number of pro
edures whi
h are identi�ed by either thesli
er or the SEA (SEB) relation and the number of pro
edures identi�ed by sli
ing.The re
all s
ore is de�ned as the extent of the properly identi�ed dependen
ies basedon sli
ing.A program sli
e is 
omputable by the appropriate traversal of the system depen-den
e graph, starting from an arbitrary 
riterion [12℄. The traversed edges are the 
on-9



trol dependen
e, the data dependen
e, the parameter and the summary edges. Hen
eea
h dependen
y 
an only o

ur among the program points whi
h are 
onne
ted by a
ontrol �ow path. This means that the pro
edural level program sli
e of a parti
ularpro
edure must be a real subset of its SEA or SEB relations. So the re
all s
ore shouldbe 100% in every 
ase.This assumption was not ful�lled in a 
omparison of the results of the forward sli
esgot via the CodeSurfer program sli
ing tool and the SEA sets, while it was ful�lled inthe ba
kward 
ases. We elaborate on this bug in the Appendix se
tion of the thesis.Be
ause of this bug, we just 
ompared the SEB sets and the relations identi�ed byba
kward sli
ing. In our experiments, we examined 29 C programs. In most 
ases thepre
ision s
ore was around 90%. This high pre
ision arose from the fa
t that the averagedi�eren
e between the SEA (SEB) relations and the sli
ing relations was some 4%.Sin
e both the sli
ing and the determination of the SEA (SEB) relations are the resultsof an appropriate graph traversal, the graph size of the given representation is not amarginal question. To test the e�
ien
y of our method, we identi�ed and 
omparedthe dependen
e graphs of some big C++ programs. Although the di�eren
es in thesizes of these graphs are enough to show that the 
omputation of the SEA (SEB)relations requires fewer resour
es, it is interesting to see that the determination of theICCFG was straightforward, while the determination of the SDG was not possible formozilla, whi
h has over a million lines of 
ode.II/3. Hidden dependen
ies in obje
t-oriented programs; ex-perimental investigation of SEA and SEB relation in obje
t-oriented programs.Hidden dependen
ies are those dependen
ies of a program whi
h are not expli
itlyreadable from the sour
e of the program. In the investigation of the hidden depen-den
ies of the 
lasses of obje
t-oriented programs, our aim was to 
olle
t all potentialrelations among the 
lasses. Many appli
ations, su
h as 
hange propagation or regres-sion testing require the safe determination of the dependen
ies among the 
lasses ofthe obje
t-oriented programs. There are a number of ways of determining the expli
itrelationships in the program. Unfortunately in most 
ases there are many other depen-den
ies among the 
lasses, whose dis
overy is very di�
ult. These dependen
ies are
alled the hidden dependen
ies of the system.In order to determine the dependen
ies among the 
lasses, we extended the SEAand SEB relations to the 
lass level. Of 
ourse, in its basi
 form the SEA and SEBalgorithm has the disadvantage that it 
aptures the data �ow whi
h is realized only10



through pro
edure 
alls. Data �ows between global variables or dire
t 
lass membervariables are invisible to the algorithm due to the la
k of 
orresponding nodes in theICCFG. In the thesis, we present possible program transformations whi
h 
ould help usto dis
over these dependen
ies.In our experiments where we investigated C++ and Java programs, we showedthat the number of expli
it dependen
ies was mu
h lower than the number of hiddendependen
ies. This means that the appli
ation based only on these metri
s 
annota
hieve a safe result during the sear
h for dependen
ies. On examining the number ofthe dependen
ies 
onne
ted to the individual 
lasses, we found that the dependen
iestend to form 
lusters. The members of a 
luster have the same number of dependen-
ies as the others have in the same 
luster. The high value of the hidden dependen
iesand the existen
e of large 
lusters are not good be
ause they indi
ate that the main-tenan
e of the program 
an be di�
ult and expensive. Sin
e the number of the hiddendependen
ies related to a parti
ular 
lass 
orrelates with the size of the SEA (SEB)set of the 
lass, the determination of the latter relations 
an help us to re
ognize thehard-to-maintain 
lasses of the system and to �nd and eliminate the larger 
lusters.My own 
ontributionThe 
hief goal introdu
ed in the se
ond part of the thesis was to approximate thedependen
ies among the pro
edures and the 
lasses of the programs we analyzed in apre
ise and e�e
tive way. For this reason, we introdu
ed the SEA and SEB relations,and the ICCFG program representation. These results are the joint work of the authorand her 
o-authors. The algorithms for the 
omputation of the SEA and SEB relationsand the related measurements were the sole results of the author. The design and theimplementation of the 
omparison between program sli
ing and the SEA (SEB) methodwere also the sole work of the author. The design of the 
omparison of obje
t-orientedmetri
s and the SEA (SEB) relations was a joint e�ort, while the implementation ofthe experiments related to C/C++ programs and the determination of the SEA (SEB)relations in pra
ti
e were also the sole work of the author.Con
lusionsIn the �rst part of the thesis we fo
used on the interpro
edural program sli
ing of binaryexe
utables. We presented a 
onservative sli
ing method based on the traversal ofdependen
e graphs. We improved this te
hnique via the re�nement of the dependen
e11



[17℄ [16℄ [4℄ [14℄ [13℄I/1 •I/2 • •I/3 • •II/1 • • •II/2 • • •II/3 •Table 1: The relation between the thesis topi
s and the 
orresponding publi
ations.graphs with stati
 and dynami
 information. We implemented all our solutions andevaluated the novel method on some sele
ted examples.In the se
ond part of the thesis, we presented the Stati
 Exe
ute After and theStati
 Exe
ute Before relations and we approximated the dependen
ies of high levellanguages at the pro
edure level and 
lass level with the SEA and SEB relations. Weintrodu
ed one appropriate program representation and several alternative methods todetermine these relations. Although many of these relations are not real dependen
ies,this method is suitable for �nding the dependen
ies where there is only a semanti
dependen
e between two 
omponents.Although Stati
 Exe
ute After and Stati
 Exe
ute Before relations 
ontain manyfalse dependen
ies, we demonstrated via experiments that these relations approximatethe results of stati
 program sli
ing to a high a

ura
y at the pro
edure or 
lass level.Sin
e the determination of these relations is not so expensive as the determinationof program sli
ing, it 
an be a useful tool in appli
ations involving program sli
ing.Our experimental results also revealed the fa
t that there is a signi�
ant 
orrelationbetween the number of SEA and SEB relations and the number of dire
t and indire
t
ouplings of 
lasses in obje
t-oriented programs. Sin
e these relations are suitable forun
overing su
h hidden dependen
ies, whi
h are undete
table when other simple toolsare used, these relations 
an be used to make more reliable appli
ations, su
h as thosefor impa
t analysis, 
hange propagation and testing.Lastly, Table 1 above summarizes whi
h publi
ations 
over whi
h results of thethesis.
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