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Introduction

The characterization of the expressive power of various logics on words, trees and other
structures (the classical logics, e.g. first- or second-order logic as well as several kinds of
temporal logics) has received a lot of attention. The classical case, when one deals with
(finite or infinite) words, is mostly well understood.

Regarding the logic FO(<), i.e., first-order logic equipped with the total ordering of the
positions, a classical result of McNaughton and Papert [23] in conjunction with a result
of Schützenberger [33] states that a language of finite words is first-order definable if
and only if its syntactic monoid is a finite aperiodic monoid, or equivalently, its minimal
automaton is a finite counter-free automaton. Furthermore, this class of languages also
coincides with the class of languages that are definable in the linear temporal logic LTL
[21].

A similar aperiodicity condition characterizes the expressive power of first-order logic and
of LTL on infinite words, cf. [24, 25]. It follows from these results that it is decidable
whether a regular language of finite or infinite words is first-order definable. From the
Krohn-Rhodes theorem [4], it is known that a finite monoid is aperiodic if and only if it
belongs to the least pseudovariety of finite monoids containing a certain 3-element monoid
U2 which is closed under the wreath product, or equivalently, to the least pseudovariety
containing a certain 2-element monoid U1 which is closed under the block product [34].

When formulated on the domain of (say, finite, ranked and ordered) trees, most of the
above questions are still open. The decidability status of the definability problem of first-
order logic on finite trees, equipped with the descendant relation, or with the descendant
relation and all the successor relations, denoted FO(<) and FO(<,Si), respectively, has
been a long standing open problem, cf. [20, 28, 29, 38]. The case of FO(Si), i.e. when
the logic is equipped only with the successor relations, has been solved recently in [2].

Aperiodicity can be generalized to trees in several different ways. One of them was
studied in [20, 38] and shown to be a necessary but not a sufficient condition of first-
order definability. In [11] we have defined an infinite hierarchy of aperiodicity notions and
studied their relations to logical definability.

In [14], it was shown that a language of (ranked and ordered) finite trees is first-order
definable if and only if its “syntactic preclone” belongs to the least pseudovariety of finitary
preclones closed under the “block product” of preclones which is generated by the preclone
canonically associated to a simple two-element algebra. Thus decidability of first-order
definability reduces to the decidability of membership in that specific pseudovariety of
finitary preclones. However the question whether membership in that pseudovariety of
finitary preclones is decidable is left open in [14].

A problem related to first-order definability is the characterization of the expressive power
of CTL and CTL∗ [1, 5, 32]: What tree languages can be defined in CTL, or in CTL∗?
These logics are both generalizations of LTL over words (although a third generalization,
also called LTL is incomparable with CTL). It is shown in [18] that for certain types of
trees first-order definability is equivalent to definability in CTL∗. In [8, 9], a CTL-like logic
FTL(L) was associated to each class L of (regular) languages of finite (ranked and ordered)

1



trees. As a main result, it was shown that when any quotient of each language in L is
definable in FTL(L), and when the “next modalities are expressible”, then a tree language
is definable in FTL(L) if and only if its minimal tree automaton belongs to the least
pseudovariety of finite tree automata containing the minimal automata of the languages
in L and the finite definite tree automata [6, 19], which is closed under the cascade
product. Cascade products of finite tree automata were studied in [6, 10, 15, 16, 31].
This notion is closely related to the wreath product of clones defined in [39].

In [12] we removed from the above mentioned result the assumption that the next modali-
ties are expressible. This was achieved by the introduction of a special case of the cascade
product of tree automata that we called the Moore product. We have shown that under
the assumption that any quotient of each language in L (where L is a class of regular tree
languages) is definable in FTL(L), a tree language is definable in FTL(L) if and only if it
is regular and its minimal tree automaton belongs to the least pseudovariety of finite tree
automata containing the finite 1-definite tree automata and the minimal tree automata of
the languages in L which is closed under the Moore product. An alternative formulation
of this result is as follows. Let K denote a class of finite tree automata, and let FTL(K)
denote the logic FTL(L), where L is the class of (regular) tree languages recognizable
by the tree automata in K. Then a tree language is definable in FTL(K) if and only
if its minimal tree automaton belongs to the least pseudovariety of finite tree automata
containing K and the finite 1-definite tree automata, which is closed under the Moore
product. We call pseudovarieties of finite (connected) tree automata which are closed
under the Moore product (connected) Moore pseudovarieties.

In [13], an application of the above theorem has been elaborated; we provided polynomial
time decidable characterizations of several small connected Moore pseudovarieties. As
a byproduct of these results, we derived decidability of the CTL fragments CTL(EF+)
and CTL(EF∗) equipped respectively only with the strict and non-strict version of the
EF-modality of CTL. The decidability of the expressive power of CTL(EF+) was already
established by Bojańczyk and Walukiewicz in [3] using different methods; the decidability
of the expressive power of the latter fragment was left open there.

Using a different approach, Z. Wu [41] also proved that CTL(EF∗) has a decidable de-
finability problem. His approach is based on an Ehrenfeucht-Fräıssé type game, see e.g.
[22]. One (yet unpublished) contribution of this thesis is that we defined for each class
L of tree languages and number n ≥ 0 of rounds a two-player game called the n-round
L-game, played on a pair of trees between two competing players, Spoiler and Duplicator.
This game has the following property: two trees, s and t satisfy the same set of FTL(L)-
formulas of depth at most n (denoted s ≡n

L t) if and only if Duplicator has a winning
strategy in the n-round L-game, played on the pair (s, t) of trees. Standard arguments
in finite model theory show that when L is a finite class of tree languages, then ≡n

L is
an equivalence relation of finite index for each n. Thus, for any finite class L of tree
languages it holds that a tree language L is definable in FTL(L) if and only if there exists
some number n such that whenever s is a tree contained in L and t is a tree not in L,
then Spoiler has a winning strategy for the n-round L-game, played on the pair (s, t).
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Preliminaries

A rank type R is a finite nonempty set of nonnegative integers; elements of R are called
arities. A signature Σ of rank type R is a union

⋃
n∈R

Σn of finite, pairwise disjoint,

nonempty sets of symbols. We fix once and for all a countably infinite set X = {x1, x2, . . . }
of variables, assumed to be disjoint from any signature. The set {x1, . . . , xn} is denoted
Xn.

Given a signature Σ of rank type R, and an integer n ≥ 0, the set TΣ(Xn) of ΣXn-trees
is the least set satisfying the following conditions:

1. any variable x ∈ Xn is a ΣXn-tree;

2. if 0 ≤ k ∈ R is an arity, σ ∈ Σk is a symbol and t1, . . . , tk are ΣXn-trees, then
σ(t1, . . . , tk) is a ΣXn-tree.

A tree t ∈ TΣ(Xn)−Xn which is not a variable is called proper. TΣ is written for TΣ(X0),
the set of variable-free Σ-trees, whereas the set CTΣ of Σ-contexts is the subset of TΣ(X1)
which contains the trees in which x1 occurs exactly once.

When t ∈ TΣ(Xn) is a tree and t = (t1, . . . , tn) is an n-tuple of ΣXm-trees, then t(t)
denotes the tree resulting from t by substituting ti for each occurrence of xi, i = 1, . . . , n.
If t ∈ TΣ(X1), we write tt1 for t(t1). When t = t1t2, we say that t2 is a subtree of t.

Root(t) denotes the root symbol of the tree t.

A (Σ-)tree language is any set of variable-free Σ-trees. When ζ ∈ CTΣ is a Σ-context
and L ⊆ TΣ is a tree language, the quotient of L with respect to ζ is the language
ζ−1(L) = {t : ζt ∈ L}.
Given a signature Σ and a set A such that A, Σ and X are pairwise disjoint, the set
TΣ,A(Xn) of ΣAXn-polynomial symbols for any n ≥ 0 is the least set satisfying the follow-
ing conditions:

1. any x ∈ Xn is a ΣAXn-polynomial symbol;

2. any a ∈ A is a ΣAXn-polynomial symbol;

3. when 0 ≤ k ∈ R is an arity, σ ∈ Σk is a symbol and p1, . . . , pk are ΣAXn-polynomial
symbols, then σ(p1, . . . , pk) is also a ΣAXn-polynomial symbol.

Polynomial symbols different from the variables are called proper. TΣ,A denotes the set of
the variable-free ΣA-polynomial symbols, whereas the set CTΣ,A of ΣA-polynomial con-
texts consists of the ΣAX1-polynomial symbols in which x1 occurs exactly once. Root(p)
denotes the root symbol of the polynomial symbol p.

When Σ and ∆ are signatures having the same rank type R, and h : Σ → ∆ is a rank-
preserving map, then h induces a literal tree homomorphism from TΣ(X) to T∆(X), also
denoted h: we get h(s) from s ∈ TΣ(X) by relabeling each node of s labeled by some
symbol σ ∈ Σ to the ∆-symbol h(σ). When a node is labeled by a variable, its label does
not change.
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Given a signature Σ of some rank type R, a (Σ-)tree automaton A = (A, Σ) consists of a
nonempty state set A and to each symbol σ ∈ Σn an elementary operation σA : An → A
is associated. When A is finite, A is also called finite.

When A = (A, Σ) and B = (B, Σ) are Σ-tree automata with B ⊆ A such that all elemen-
tary operations σB of B are the restrictions of the corresponding elementary operation σA,
we say that B is a subautomaton of A.

When A = (A, Σ) and B = (B, Σ) are tree automata over the same signature Σ, then
their direct product is the Σ-tree automaton A × B = (A × B, Σ) having the state set
A×B such that the elementary operations are interpreted componentwise.

The ∆-tree automaton B = (B, ∆) is a renaming of the Σ-tree automaton A = (A, Σ)
(here Σ and ∆ both have the same rank type) if B = A and each elementary operation
of B is also an elementary operation of A.

When A = (A, Σ) and B = (B, Σ) are Σ-tree automata, we call a mapping h : A → B
a homomorphism if it is compatible with all elementary operations. The tree automaton
B is called a quotient of the tree automaton A if there exists a surjective homomorphism
from A to B. When B is a quotient of some subautomaton of A, B is called a divisor of
A.

Given a Σ-tree automaton A = (A, Σ), each ΣXm-tree t induces a term function tA :
Am → A, defined as usual. Term functions induced by proper trees are called proper
term functions. Also, any ΣAXm-polynomial symbol p induces a polynomial function
pA : Am → A. Polynomial functions of A induced by (proper) ΣA-polynomial contexts
are called (proper) translations of A.

Thus, when A = (A, Σ) is a Σ-tree automaton, then each tree t ∈ TΣ induces a constant
function tA. We identify this constant function with its value and write tA = a when t
induces the constant function with value a. Then, each set A′ ⊆ A determines a tree
language LA,A′ defined as {t ∈ TΣ : tA ∈ A′}. We say that a tree language L ⊆ TΣ is
recognizable by the tree automaton A = (A, Σ) if L = LA,A′ for some set A′ ⊆ A. A tree
language is called regular if it is recognizable by some finite tree automaton. It is well
known that for any tree language L there exists a minimal tree automaton AL, unique up
to isomorphism, by which L is recognizable and which divides every tree automaton B by
which L is recognizable.

A nonempty class V of finite tree automata is called a pseudovariety of finite tree au-
tomata if it is closed under taking direct products, homomorphic images, subautomata
and renamings. For any class K of finite tree automata there exists a least pseudovari-
ety 〈K〉 containing K. The class K of finite tree automata generates the pseudovariety
〈K〉 of finite tree automata. When K = {A1, . . . ,An} is a finite class, we write simply
〈A1, . . . ,An〉 for 〈K〉.
Since our logics will be defined on variable-free trees, in connection with logical definability
it will suffice to deal with connected tree automata only. We assume that the rank type
R contains 0 and at least one positive integer. The connected part of an automaton
A = (A, Σ) is its subautomaton (A′, Σ), where the set A′ = {tA : t ∈ TΣ} consists of the
accessible states of A. The tree automaton A is connected if each state a of A is accessible.
We define the connected direct product of two connected tree automata as the connected
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part of their direct product; connected renaming is defined analogously. A pseudovariety
of finite connected tree automata is a class Vc of finite connected tree automata, which
is closed under taking connected direct products, homomorphic images and connected
renamings.

A strongly related notion is that of literal varieties. A nonempty class L of regular tree
languages is a literal variety of tree languages if it is closed under taking quotients, Boolean
operations and inverse literal tree homomorphisms. There exists an Eilenberg connection
[4] between literal varieties of tree languages and pseudovarieties of finite connected tree
automata: the mapping that associates to each pseudovariety Vc of finite connected
tree automata the class LVc which contains the tree languages that are recognizable by
some member of V is an order isomorphism between the class of pseudovarieties of finite
connected tree automata and the class of literal varieties of tree languages.

The logic FTL(L) and Moore pseudovarieties

In the first part of the thesis (Chapter 2), following [9], we defined the branching time
temporal logic FTL(L) for each class L of tree languages. We provided an algebraic
characterization of these logics when L consists of regular tree languages and possesses
a natural property. We also showed an application of the characterization theorem and
provided another, game-based description of the logic FTL(L) for any finite class L.

The logic FTL(L)

The branching time future temporal logic FTL, introduced in [9], is defined as follows.

Syntax. Let Σ be a signature. The set of FTL-formulas over Σ is defined as the least
set satisfying the following conditions:

1. For each σ ∈ Σ, pσ is an (atomic) formula (of depth 0).

2. When ϕ1 and ϕ2 are formulas (having maximal depth d), (¬ϕ1) and (ϕ1 ∨ ϕ2) are
also formulas (of depth d).

3. If ∆ is a signature, L ⊆ T∆ is a tree language and for each δ ∈ ∆, ϕδ is a formula
(having maximal depth d), then L(δ 7→ ϕδ)δ∈∆ is also a formula (of depth d + 1).

Semantics. Suppose that ϕ is a formula over Σ and t ∈ TΣ is a tree. We say that t
satisfies ϕ, in notation t |= ϕ, if one of the following holds:

1. ϕ = pσ for some σ ∈ Σ and Root(t) = σ;

2. Boolean connectives are treated as usual;

3. ϕ = L(δ 7→ ϕδ)δ∈∆ and the characteristic tree t̂ ∈ T∆ of t determined by the family
(ϕδ)δ∈∆ belongs to L. Here t̂ is a ∆-relabeling of t: a vertex v of t which is labeled
by some σ ∈ Σn is relabeled to δ ∈ ∆n if and only if one of the following holds:
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• either t|v |= ϕδ and δ is the first such element of ∆n;

• or t|v 6|= ϕδ′ for any δ′ ∈ ∆n, and δ is the last element of ∆n.

(We assume here that each signature Σ comes with a lexicographical ordering. How-
ever, it is known from [9] that the particular ordering is not important.)

An FTL-formula ϕ over Σ defines the tree language Lϕ = {t ∈ TΣ : t |= ϕ}.
We consider subsets of formulas associated to classes of tree languages. When L is a class
of tree languages, we let FTL(L) denote the collection of formulas all of whose subformulas
of the form L(δ 7→ ϕδ)δ∈∆ are such that L belongs to L. We define FTL(L) to be the
class of all languages definable by some FTL(L)-formula.

We define the equivalence relation ≡n
L on TΣ for any signature Σ and integer n ≥ 0: let

s ≡n
L t hold for the trees s, t ∈ TΣ if s and t satisfy the same set of FTL(L)-formulas (over

Σ) having depth at most n.

It was shown in [9] that the operator FTL preserves regularity and is a closure operator
on classes of regular languages. Also, for any class L of regular tree languages, FTL(L)
is closed under the Boolean operations and inverse literal homomorphisms. Moreover,
FTL(L) is a literal variety of tree languages if and only if for each quotient L of a
language in L it holds that L ∈ FTL(L).

Products of tree automata

Suppose A = (A, Σ) and B = (B, ∆) are tree automata and γ is a family (γn)n∈R of
functions, γn : An × Σ → ∆n for each n ∈ R. Then the cascade product A×γ B of A and
B determined by γ is the tree automaton (A×B, Σ) with

σA×γB((a1, b1), . . . , (an, bn)
)

=
(
σA(a1, . . . , an), δB(b1, . . . , bn)

)
,

where δ = γn(a1, . . . , an, σ) for all σ ∈ Σn, n ∈ R and (a1, b1), . . . , (an, bn) ∈ A×B.

We call the above cascade product A×γB a Moore product if there exists a rank-preserving
function α : A×Σ → ∆ (i.e. for any σ ∈ Σn, n ∈ R and a ∈ A, α(a, σ) ∈ ∆n holds) with

γn(a1, . . . , an, σ) = α(σA(a1, . . . , an), σ)

for all σ ∈ Σn, n ∈ R and a1, . . . , an ∈ A. Moreover, we call the above Moore product a
strict Moore product if there is a function β : A × R → ∆ with α(a, σ) = β(a, n), for all
a ∈ A and σ ∈ Σn.

Analogously to the connected direct product, the connected cascade product A×γB of the
connected tree automata A and B determined by γ is the connected part of their cascade
product determined by γ. Connected Moore and connected strict Moore products are
defined similarly.

When V and W are pseudovarieties of finite tree automata, let V × W denote the
pseudovariety of finite tree automata generated by all direct products A×B with A ∈ V
and B ∈ W. Similarly, let V ×M W, V ×s W and V ×c W respectively denote the
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pseudovariety of finite tree automata generated by all Moore, strict Moore and cascade
products A×α B with A ∈ V and B ∈ W. These notions are also extended to pseudova-
rieties of finite connected tree automata: when Vc and Wc are pseudovarieties of finite
connected tree automata, let Vc ×Wc denote the pseudovariety of finite connected tree
automata generated by all connected direct products A × B with A ∈ Vc and B ∈ Wc.
The notations Vc ×M Wc, Vc ×s Wc and Vc ×c Wc are defined analogously.

When K is any class of finite tree automata, let 〈K〉s, 〈K〉M , 〈K〉c respectively denote the
least pseudovariety of finite tree automata containing K which is closed under the strict
Moore product, the Moore product, and the cascade product. We call these classes strict
Moore pseudovarieties, Moore pseudovarieties and cascade pseudovarieties, respectively.

Analogously, when Kc is any class of finite connected tree automata, let 〈Kc〉s, 〈Kc〉M ,
〈Kc〉c respectively denote the least pseudovariety of connected finite tree automata con-
taining Kc which is closed under the connected strict Moore product, the connected
Moore product, and the connected cascade product. We call these pseudovarieties con-
nected strict Moore pseudovarieties, connected Moore pseudovarieties, and connected cas-
cade pseudovarieties, respectively.

Definite tree automata

We say that a Σ-tree automaton A is k-definite, for some k ≥ 1, if for all ΣA-polynomial
symbols p and q, if p and q agree up to depth k − 1, then pA = qA. A tree automaton is
definite if it is k-definite for some k. We let Dk denote the class of all finite k-definite tree
automata and D the class of all finite definite tree automata. When V is a class of finite
tree automata, let Vc denote the class of finite connected tree automata consisting of the
connected parts of members of V. Then, Dc

k is the class of all finite k-definite connected
tree automata and Dc is the class of all finite definite connected tree automata.

The signature Bool contains exactly two symbols, ↑n and ↓n for each arity n ∈ R. The
tree automaton D0 = ({0, 1}, Bool) is defined as follows: for each n ∈ R, ↑D0

n is the
constant function {0, 1}n → {0, 1} with value 1, and similarly, ↓D0

n is the constant function
{0, 1}n → {0, 1} with value 0.

It was shown in [6] that D = 〈D0〉c is a cascade pseudovariety of finite tree automata
generated by D0, thus 〈D1〉c = D. But the class of all finite 1-definite tree automata is
closed under the Moore product:

Proposition 2.1.11. D1 is a Moore pseudovariety of finite tree automata.

Correspondences between the products

We have shown several correspondences between the cascade, the Moore and the strict
Moore products.

Corollary 2.2.15. For any Moore pseudovariety V of finite tree automata,

〈D1 ∪V〉M = D1 ×V.
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Corollary 2.2.17. For any pseudovariety V of finite tree automata,

D1 ⊆ V implies 〈V〉M = 〈V〉s.

Corollary 2.2.28. For any class K of finite tree automata,

〈D2 ∪K〉M = 〈D ∪K〉M = 〈D ∪K〉c.

Corollary 2.2.29. The following conditions are equivalent for any class V of finite tree
automata.

1. V is a Moore pseudovariety containing D2.

2. V is a Moore pseudovariety containing D.

3. V is a cascade pseudovariety containing D.

Definability and membership

Following [9], we also associate a logic FTL(Kc) to each class Kc of finite connected tree
automata. First let LKc denote the class of regular tree languages recognizable by the
members of Kc. Then we let FTL(Kc) be the logic FTL(LKc) and define FTL(Kc) =
FTL(LKc). In [9] it was shown that for any class L of regular tree languages, FTL(L) is
a literal variety if and only if FTL(L) = FTL(Kc) for some class Kc of finite connected
tree automata. We proved the following characterization theorem:

Theorem 2.3.4. For any class Kc of finite connected tree automata, a language L belongs
to FTL(Kc) if and only if its minimal tree automaton AL belongs to 〈Dc

1 ∪Kc〉M if and
only if L is recognizable by an automaton in 〈Dc

1 ∪Kc〉M .

Corollary 2.3.5. Assume that L is a class of regular tree languages such that any
quotient of each language in L belongs to FTL(L). Then a language L is in FTL(L) if
and only if AL is contained in the least connected (strict) Moore pseudovariety of finite
connected tree automata containing Dc

1 and the minimal tree automata of the languages
in L.

Corollary 2.3.5. For every connected Moore pseudovariety Vc of finite connected
tree automata containing Dc

1 it holds that LVc = FTL(Vc). Moreover, the map
Vc 7→ FTL(Vc) is an order isomorphism between the lattice of all connected Moore
pseudovarieties of finite connected tree automata containing Dc

1 and the lattice of all
literal varieties of regular tree languages V with FTL(V) = V .

Application

We call a property P of tree automata a Moore property if the class of all finite tree
automata having P forms a Moore pseudovariety.

We say that a Σ-tree automaton A is commutative if it satisfies all equations

σA(x1, . . . , xn) = σA(xπ(1), . . . , xπ(n))
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for all σ ∈ Σn, n ∈ R, n > 0 and for all permutations π of the set {1, . . . , n}.
We say that a Σ-tree automaton A is stutter invariant if

σA(a1, . . . , an−1, σ
A(a1, . . . , an)) = σA(a1, . . . , an)

for all σ ∈ Σn, n > 0, a1, . . . , an ∈ A.

When A is a Σ-tree automaton, ¹A denotes the accessibility relation of A, that is, a ¹A b
holds for a, b ∈ A if for some ΣA-polynomial context p we have pA(a) = b. Clearly, ¹A is
a reflexive and transitive relation. The relation ∼A over A is defined by a ∼A b if a ¹A b
and b ¹A a both hold; then, ∼A is an equivalence relation.

A tree automaton A is called monotone if ¹A is a partial order.

We call a tree automaton A = (A, Σ) maximal dependent if for any function symbol
σ ∈ Σn and a1, . . . , an−1, an, a′n ∈ A with an ¹A ai and a′n ¹A aj for some 1 ≤ i, j ≤ n− 1,
we have σA(a1, . . . , an−1, an) = σA(a1, . . . , an−1, a

′
n).

We call a tree automaton A = (A, Σ) component dependent if for any function symbol σ ∈
Σn and states a1 ∼A a′1, . . . , an ∼A a′n ∈ A it holds that σA(a1, . . . , an) = σA(a′1, . . . , a

′
n).

We call a tree automaton A = (A, Σ) componentwise unique if for any a, b ∈ A and proper
ΣA-polynomial contexts p, q such that Root(p) = Root(q), pA(a) = b and qA(b) = a, it
holds that a = b.

We proved that each of the above defined properties are Moore properties; let Com,
Stu, Mon, MaxDep, CompDep and CompUnique denote the class of all finite com-
mutative, stutter invariant, monotone, maximal dependent, component dependent and
componentwise unique automata, respectively. Thus, each of these classes is a Moore
pseudovariety.

The following relations hold:

Proposition 2.4.18.

CompDep ∩Com ∩MaxDep ⊆ CompUnique.

Corollary 2.4.39.

Mon×D1 = CompDep ∩CompUnique.

Let LEF+ ⊆ TBool denote the regular tree language of those trees in TBool having at least
one non-root vertex labeled in {↑n: n ∈ R} and let LEF∗ ⊆ TBool consist of all trees in TBool

with at least one vertex labeled in {↑n: n ∈ R}. Let Σ be a signature and ϕ a fixed formula
over Σ. If (ϕδ)δ∈Bool is such that ϕ↑n = ϕ, for all n ∈ R, then t |= LEF+(δ 7→ ϕδ)δ∈Bool

if and only if s |= ϕ for some proper subtree s of t. And t |= LEF∗(δ 7→ ϕδ)δ∈Bool if and
only if some subtree of t satisfies ϕ. Thus, the modal operators corresponding to these
languages are closely related to the strict and non-strict EF modalities of CTL, cf. [32].

Let E+
EF and E∗EF denote the minimal tree automata of LEF+ and LEF∗ , respectively. We

characterized the Moore pseudovarieties 〈E+
EF〉M , 〈E∗EF〉M , 〈E+

EF,D0〉M and 〈E∗EF,D0〉M in
terms of the above (P-time decidable) properties:
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Theorem 2.4.30.

〈E+
EF〉M = Monc ∩Comc ∩MaxDepc.

Theorem 2.4.36.

〈E∗EF〉M = Monc ∩Comc ∩MaxDepc ∩ Stuc = 〈E+
EF〉M ∩ Stuc.

Theorem 2.4.40. For any pseudovariety V of finite tree automata,

D1 ⊆ V ⊆ Mon×D1 implies (Mon ∩V)×D1 = V.

Using the above facts, we characterized 〈E+
EF,D0〉M and 〈E∗EF,D0〉M effectively:

Corollary 2.4.41. The following equalities hold:

i) 〈E+
EF,D0〉M = 〈E+

EF〉M ×Dc
1 = CompDepc ∩Comc ∩MaxDepc;

ii) 〈E∗EF,D0〉M = 〈E∗EF〉M ×Dc
1 = CompDepc ∩Comc ∩MaxDepc ∩ Stuc.

As a byproduct, we obtained a characterization of two fragments of the temporal logic
CTL:

Corollary 2.4.42. The following hold for any tree language L:

i) L is in CTL(EF+) if and only if its minimal tree automaton AL is contained in
CompDepc ∩Comc ∩MaxDepc;

ii) L is in CTL(EF∗) if and only if its minimal tree automaton AL is contained in
CompDepc ∩Comc ∩MaxDepc ∩ Stuc.

Since membership in the above varieties is clearly decidable, it follows that it is decidable
for a given regular tree language L (given by its minimal tree automaton) whether L is
in CTL(EF+), or in CTL(EF∗); moreover, both problems are decidable in polynomial
time. For the logic CTL(EF+) this was already shown in [3] using different methods.

Ehrenfeucht-Fräıssé type games

We defined the so-called n-round L-game for any class L of tree languages and number
n ≥ 0 of rounds and showed its correspondence to the logic FTL(L). The game is played
on two trees, between two players, Spoiler and Duplicator.

Let L be a class of tree languages, n ≥ 0 an integer, Σ a signature and let t0, t1 ∈ TΣ be
trees. The n-round L-game on (t0, t1) is played as follows.

1. If Root(t0) 6= Root(t1), Spoiler wins. Otherwise, Step 2 follows.

2. If n = 0, Duplicator wins. Otherwise, Step 3 follows.
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3. Spoiler chooses a language L ∈ L over a signature ∆, an index i ∈ {0, 1}, a ∆-
relabeling t̂i ∈ L of ti and a ∆-relabeling t̂j /∈ L of tj, where j = 1 − i is the other
index. If he cannot do so, Duplicator wins. Otherwise, Step 4 follows.

4. Duplicator chooses two nodes, x and y of the pair (t0, t1) of trees, having different
labels according to the relabelings t̂i. If he cannot do so, Spoiler wins. Otherwise,
an (n−1)-round L-game is played on the subtrees rooted in x and y. Whoever wins
the subgame, wins also the game.

Clearly, for any class L of languages, number n ≥ 0 of rounds and trees (s, t), one of the
players has a winning strategy for the n-round L-game on (s, t). We say that the player
having a winning strategy wins the game. Let s ∼n

L t denote that Duplicator wins the
n-round L-game on (s, t). We proved the following correspondence between ∼n

L and the
logic FTL(L):

Corollary 2.5.3. For any class L of tree languages and integer n ≥ 0, the relations ∼n
L

and ≡n
L coincide.

Corollary 2.5.4. The following are equivalent for any finite class L of tree languages
and any language L:

i) L is definable in FTL(L);

ii) there exists an integer n ≥ 0 such that Spoiler wins the n-round L-game on (s, t),
whenever s ∈ L and t /∈ L both hold.

Aperiodicity

In the second part of the thesis (Chapter 3) we introduced and studied several notions of
aperiodicity of finite tree automata.

The notion of n-aperiodicity

Let A = (A, Σ) be a finite tree automaton. Extending the notion of term functions, we let
each m-tuple t = (t1, . . . , tm) of trees ti ∈ TΣ(Xn) induce a vector-valued term function
tA = 〈tA1 , . . . , tAm〉 : An → Am, which is the target tupling of the m functions tAi : An → A,
1 ≤ i ≤ m. When each tAi is proper, tA is also called proper. It is clear that for each n ≥ 1,
the proper term functions An → An form a semigroup, denoted Sn(A) which is finite if
A is a finite tree automaton. In this semigroup, product is function composition. The
subsemigroup of S1(A) consisting of the term functions induced by the proper contexts
will be denoted C(A) if the set of proper Σ-contexts is not empty; otherwise let C(A) be
a trivial semigroup.

Recall that a finite semigroup S is called aperiodic if for some k > 0, sk = sk+1 holds for
every element s of S. We call a finite Σ-tree automaton A n-aperiodic for some n ≥ 1
if the semigroup Sn(A) is aperiodic. By extension, we call A strongly aperiodic if it is
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n-aperiodic for each n ≥ 1. We call a finite Σ-tree automaton A context aperiodic if C(A)
is aperiodic.

We proved the following characterization of strong aperiodicity:

Corollary 3.1.11. A finite tree automaton A is strongly aperiodic if and only if for each
n > 0, no proper term function An → An has two or more different fixed points.

Generalized cascade product

Let A be a Σ-tree automaton, B a ∆-tree automaton and γ a family (γn)n∈R of functions,
where for each n ∈ R, γn maps An × Σ to the set of all proper ∆Xn-trees. Then the
generalized cascade product A ×γ B is defined as the tree automaton on the set A × B
such that for any σ ∈ Σn and (a1, b1), . . . , (an, bn) ∈ A×B,

σA×γB((a1, b1), . . . , (an, bn)) = (σA(a1, . . . , an), tB(b1, . . . , bn))

where t = γn(a1, . . . , an, σ).

We say that a nonempty class of finite tree automata is a generalized cascade pseudovariety
of finite tree automata if it is closed under taking subautomata, homomorphic images,
renamings and the generalized cascade product.

We proved the following two algebraic closure properties:

Theorem 3.2.8. For any integer n > 0, SApern is a generalized cascade pseudovariety
of finite tree automata. Hence, SAper is also a generalized cascade pseudovariety.

Theorem 3.2.9. CAper is a cascade pseudovariety of finite tree automata.

Strict containments and complexity

It is clear that

CAper ⊇ SAper1 ⊇ SAper2 ⊇ . . . ⊇ SAper ⊇ D

is a decreasing chain. It turned out that this hierarchy collapses if R = {0, 1} or R = {1}.
Proposition 3.3.1. When R = {1} or R = {0, 1}, it holds that

CAper = SAper1 ⊃ SAper2 = SAper = D.

However, when R contains an integer k > 1, the hierarchy is proper:

Proposition 3.3.2. If R contains an integer k > 1 then SAper1 ⊂ CAper.

Proposition 3.3.3. Suppose that R contains an integer k > 1. Then for each n > 1
there exists an (n− 1)-aperiodic finite tree automaton which is not n-aperiodic.

Proposition 3.3.4. If R contains an integer k > 1, then D ⊂ SAper.

We also studied the complexity of the membership problems of the classes SApern and
SAper. We obtained the following results:
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Theorem 3.4.3. It is decidable in polynomial time whether a given finite tree automaton
A is strongly aperiodic.

Theorem 3.4.4. For each fixed n, it is PSPACE-hard to decide, given a finite tree
automaton A, whether A is n-aperiodic.

Aperiodicity and logic

We related the aperiodicity notions to the temporal logic CTL and to first-order logic.
The results were the following:

1. If a tree language is definable in CTL, then its minimal tree automaton is 1-
aperiodic.

2. There exists a tree language definable in CTL whose minimal automaton is not
2-aperiodic.

3. There exists a tree language definable in FO(<) whose minimal automaton is not
1-aperiodic.

4. There exists a regular tree language whose minimal automaton is 1-aperiodic but
which is not definable in FO(<,Si).

Aperiodicity for polynomials

We also introduced a slight modification of the aperiodicity notions. When A = (A, Σ) is
a finite tree automaton, and m,n > 0, each m-tuple p = (p1, . . . , pm) of ΣAXn-polynomial

symbols induces a vector-valued polynomial function pA = 〈pA1 , . . . , pAm〉 : An → Am, which

is the target tupling of the functions pA1 , . . . , pAm. When each pi is proper, pA is also called
proper. Clearly, for each n > 0 and finite tree automaton A, the proper polynomial
functions An → An form a semigroup S

(p)
n (A), with function composition as product. For

each n > 0 we define SAper(p)
n as the class of finite tree automata A such that S

(p)
n (A) is

an aperiodic semigroup. SAper(p) and CAper(p) are defined analogously.

It turned out the hierarchy collapses in this polynomial setting:

Theorem 3.7.4.

D = SAper(p) = SAper
(p)
2 ⊂ SAper

(p)
1 ⊂ CAper(p).

Since definiteness is decidable in polynomial time, this characterization of SAper(p) is
effective. Finally, we also studied the relationship of SAper

(p)
1 to the other aperiodicity

classes.

Corollary 3.7.7. The class SAper
(p)
1 nontrivially intersects SAper and each member

of the hierarchy SApern for n ≥ 2.
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[18] T. Hafer and W. Thomas. Computation tree logic CTL∗ and path quantifiers in the monadic
theory of the binary tree. In ICALP 1987, Karlsruhe, pages 269–279, LNCS 267, Springer-
Verlag, 1987.

[19] U. Heuter. Definite tree languages. Bulletin of the EATCS, 35:137–142. 1988.

[20] U. Heuter. First-order properties of trees, star-free expressions, and aperiodicity. RAIRO
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