Ph.D. ÉRTEKEZÉS

A FOTOAKUSZTIKUS SPEKTROSZKÓPIA SZÉLESKÖRŰ ALKALMAZHATÓSÁGÁNAK ALÁTÁMASZTÁSA AZ IPARBAN, A BIOLÓGIÁBAN ÉS A KÖRNYEZETVÉDELEMBEN

Írta:
Hegedis Veres Anikó

Témavezetők:

Dr. Szabó Gábor
Egyetemi tanár, az MTA tagja

Dr. Bozóki Zoltán
Tudományos főmunkatárs

Fizika Doktori Iskola
Optikai és Kvantumelektronikai Tanszék
SZTE TTIK
2010
Szeged
Tartalomjegyzék

I. BEVEZETÉS ...1

II. A FOTOAKUSZTIKUS SPEKTROSZKÓPIA ALAPJAI ...3
 II.1. Történeti áttekintés ...3
 II.2. A fotoakusztikus jelkeltés alapjai ...4
 II.3. A fotoakusztikus jelkeltés matematikai leírása ...6
 II.3.a. Hűkeltés ...7
 II.3.b. Hanghullám generálása ...9
 II.4. A fényforrás ..12
 II.4.a. Gázlézek ...14
 II.4.b. Szilárdtest lézek ..18
 II.4.c. Félvezető lézek ..22
 II.5. A fotoakusztikus kamra ...24
 II.6. A detektáló egység ...29
 II.6.a. Multikomponens analízis ..31

III. TUDOMÁNYOS ELŐZMÉNYEK, CÉLKITŰZÉSEK...33
 III.1. A molekuláris relaxáció hatása a fotoakusztikus jelkeltésre33
 III.2. Fotoakusztikus módszer alkalmazása rizsnövények alkoholos erjedésének vizsgálatához ..35
 III.3. Ózon mérése fotoakusztikus módszerrel ..41
 III.4. Aeroszolok optikai abszorpciójának mérése fotoakusztikus módszerrel45

IV. CO₂ MÉRÉSE 1,43 μm HULLÁMHOSZON KÜLSŐ DIÓDALÉZERES FÉNYFORRÁSSAL; A MOLEKULÁRIS RELAXÁCIÓ ...48
 IV.1. A molekuláris relaxáció hatása a CO₂ fotoakusztikus jelére48
 IV.2. A rendszer kalibrációja ...49
 IV.3. Vízgőz hatása a molekuláris relaxációra ...52
 IV.4. Nedves gázminták kiérítelési módszere ...54
 IV.5. A CO₂ mérés gyakorlati alkalmazhatósága 1431,4 nm hullámhosszon57
 IV.6. Összefoglalás ...58

V. ÁRADÁSRA REZISZTENS ÉS ÉRZÉKENY RIZSPALÁNTÁK ANYAGCSERÉJÉNEK (ALKOHOLOS ERJEDÉSÉNEK) VIZSGÁLATA ANAEROB ÉS MIKRO-AEROB KÖRÜLMÉNYEK KÖZÖTT ..60
 V.1. Anyagok és módszerek ...60
 V.1.a. A méréshez használt növényi minták (csíráztatás, nevelés, előkészítés és utónevelés) ..60
 V.1.b. A mérési eljárás ...61
 V.1.c. A mérési elrendezés ..63
 V.2. Mérési eredmények és következtetések ...65
 V.2.a. Gázcseré aerob körülmények között ..65
I. BEVEZETÉS

Az egyre dinamikusabban fejlődő világunkban előforduló mennyiségét is érzékelő, szelektív és megbízható módszerek iránt. Napjainkig számos különböző technikát alkalmazó módszert fejlesztettek ki gázok érzékeny detektálására pl.: kromatográfok, spektrométerek, különböző gázszenzorok. Egyik közkedvelt módszer az infravörös spektroszkópia, mivel alkalmazása során nincs szükség fogyóeszközökre és vegyszerekre, tehát a fenntartási költségek és a felügyelet szükséglete is nagymértékben csökken. A fotoakusztikus spektroszkópia – az infravörös spektroszkópia egy speciális változata – mint módszer megállja helyét valamennyi gázdetektálási területen. Legegyen szó akár a gyors, automatikus és hosszú távú stabil működést igénylő megoldásra az iparban, a nagy érzékenységet megkövető módszerre a biológiában, vagy az egyre nagyobb szerephez jutó környezetvédelemi alkalmazásokban.

Disszertációm elején (II. fejezet) áttekintést adok a fotoakusztikus spektroszkópia rövid történetéről, a fotoakusztikus effektusról és a jelleltés alapjairól. Ismertetem a fotoakusztikus rendszer legfontosabb elemeit, részletesebben kitérve azokra az eszközökre, amelyeket a munkám során használtam. A III. fejezet tartalmazza a célkitűzéseimet. Ezek után konkrét példákon keresztül igazolom a fotoakusztikus spektroszkópia sokoldalú alkalmazhatóságát és fejlesztési lehetőségeit. Ennek megfelelően a IV. fejezetben szén-dioxid koncentráció 1431,4 nm hullámhosszon történő fotoakusztikus méréséről lesz szó. Ezen belül ismertetem a molekuláris relaxációt, ami ezen a hullámhosszon nitrogén jelenléteben lép fel, és amelynek mértéke függ a vízgőz koncentrációjától is. Megmutatom, hogy megfelelő méréstechnikával a relaxációs effektus zavaró hatása kiküszöböthető, azaz a szén-dioxid lényegében olyan pontossággal mérhető, mintha nem lenne molekuláris relaxáció. Ezáltal olyan

A két utolsó fejezetben a fotoakusztikus spektroszkópia két lehetséges környezetvédelmi alkalmazását mutatom be. Ismertetem az általam megépített több (három) hullámhosszú fényforrást, valamint a fényforráson alapuló ózonmérő készüléket (VI. fejezet). Áttekintést adok a készülék továbbfejlesztésével megépített, az aeroszol részecskék megkülönböztetését lehetővé tévő, azok optikai abszorpcióját meghatározó három hullámhosszon működő fotoakusztikus rendszerről (VII. fejezet).
II. A FOTOAKUSZTIKUS SPEKTROSZKÓPIA ALAPJAI

II.1. Történeti áttékenység

használták fel a fotoakusztikus effektust. Az 50-es éveket követően a spektrafont felváltotta az infravörös spektrofotométer [9]. A lézeres fotoakusztikus spektroszkópia megteremtői Kerr és Atwood [10], akik rubínlézer alkalmazásával levegő nedveségtartalmát mérték, illetve Kreuzer [11], aki a 3,39 μm hullámhosszon emittáló He-Ne lézer felhasználásával 10 ppb érzékenységgel tudott nitrogén vívőgázban levő metánt mérni. A nagyteljesítményű fényforrásoknak és az érzékeny detektoroknak köszönhetően a fotoakusztikus spektroszkópia méltó ellenfele lett a gázkromatográfiának.

A 70-es és 80-as években olyan nagy volt az érdeklődés a fotoakusztika iránt, hogy külön folyóirattal (Journal of Photoacoustic) rendelkezett. A CO és CO₂ lézerek bonyolult működése azonban megneheztíti a nagyérzékenységű fotoakusztikus technika alkalmazásának elterjedését. Ebből kifolyólag napjainkban leginkább új lehetőségek keresése zajlik, mind a fényforrások, mind a felhasználás tekintetében. Kutatómunkám során én is használtam CO lézert, de már új fényforrást (diódalézert és Nd:YAG lézert) is alkalmaztam.

II.2. A fotoakusztikus jelkeltés alapjai

Egy foton molekula által történő abszorpciója, a fény hullámhosszától (frekvenciájától) függően, különböző folyamatokat vált-hat ki (lásd II.2. ábra). Abban az esetben, ha az abszorbeált foton energiája elegendően nagy a fotokémiai reakciók lejátszódásához, a gerjesztett molekula ionizálódik, söt disszociálódhat is. A kisebb energiájú fotonok által gerjesztett molekulák sugárzásos relaxációval (mint amilyen a spontán vagy a gerjesztett emisszió), illetve sugárzásmentes relaxációval jutnak vissza alapállapotukba.

Rövid fényimpulzussal vagy modulált fénynyalával besugárzott térrel szélsően a sugárzásmentes relaxáció során lokális hőmérséklet-növekedés alakul ki, ami lokális hőtárgulást idéz elő. Az impulzusserű gerjesztés egy lecsenőnyomásingsadozást, míg a modulált gerjesztő fényforrás a gerjesztés modulációs frekvenciájával megegyező frekvenciájú periodikus nyomásingsadozást eredményez, tehát mindkét

![II.2. ábra. Fény abszorpciója által előidézett lehetséges folyamatok](image-url)
Esetben akusztikus hullám, azaz hang keletkezik, amit mikrofonnal detektálhatunk. Maga a fotoakusztika, mint a módszer elnevezése, a fent említett jelkeltés mechanizmusából ered, ugyanis az abszorbeált fény (foton) energiája hangenergiává (akusztikus hullámmá) alakul át. Gyakorlatilag egy háttér nélküli mérést tesz lehetővé, hiszen a jelkeltés csak abszorpció esetében következik be. Mivel munkám során gáz fázisú méréseket végeztem, a továbbiakban csak a gáz fázisú fotoakusztikus technikával foglalkozom.

![Diagram](image.png)

II.3. ábra. Egy fotoakusztikus rendszer elvi felépítése

A fotoakusztikus effektus által gerjesztett és a mikrofon által mért J [μV] jel alaptávul-dójá egyenesen arányos a gerjesztő fény P [mW] teljesítményével, a mérendő gázok alapján a gerjesztő fény hullámhosszához tartozó a [cm$^{-1}$] abszorpciós együtthatójával, a méromikrofon M [μV/Pa] érzékenységével és az elnyelő gáz c [ppm] koncentrációjával:

$$J = P a M c C,$$ \hspace{1cm} (1)

ahol C [Pa·cm/mW] az ún. kamra-konstans, ami a mérendő gázmintát tartalmazó fotoakusztikus kamra akusztikus tulajdonságaira jellemző arányossági tényező. A kamra-konstans érté-
ke a kamra gondos akusztikus tervezésétől és kivitelezésétől függ. A fenti lineáris összefüggés a foto-akusztikus spektroszkópia esetében 5-6 nagyságrenden keresztül érvényes, ellentétben más módszerekkel, ahol a mérendő koncentráció és a mért jel közötti linearitás csak 1-2 nagyságrenden keresztül áll fenn. Ez a sajátosság széles dinamikus tartományt biztosít a fotoakusztikus módszernek.

II.1. táblázat. Az általam használt fotoakusztikus rendszerek összehasonlítása alapvető felépítés, működési mód és alkalmazási körülmények szempontjából

<table>
<thead>
<tr>
<th>Alkalmazott fényforrás</th>
<th>CO₂ mérő Rendszer (IV. fejezet)</th>
<th>Fermentációt mérő rendszer (V. fejezet)</th>
<th>Ózonmérő rendszer* (VI. fejezet)</th>
<th>Aeroszol mérő rendszer (VII. fejezet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendszerstabilisúlás biztosítás módja</td>
<td>Referencia-kamra</td>
<td>Teljesítmény-mérő</td>
<td>Teljesítmény-mérő</td>
<td>Fényutanként egy teljesítménymérő</td>
</tr>
<tr>
<td>Mért minták</td>
<td>Mesterséges gázkeverékek</td>
<td>Biológiai minták által kibocsátott gázok</td>
<td>Környezeti levegő</td>
<td>Környezeti levegő</td>
</tr>
<tr>
<td>Alkalmazási közölmények</td>
<td>Laboratóriumi</td>
<td>Laboratóriumi</td>
<td>Laboratórium és terepi</td>
<td>Laboratórium és terepi</td>
</tr>
</tbody>
</table>

* a véglegesített változat

II.3. A fotoakusztikus jelkeltés matematikai leírása

A fotoakusztikus jelkeltés többféle gerjesztési módon (fényimpulzussal, Raman effektus révén, folytonos lézer frekvenciájának (hullámhosszának), illetve intenzitásának modulációjával) történhet. Kísérleteim során az impulzus- és az amplitúdó-moduláción alapuló gerjesztési technikákat használtam, ezért a továbbiakban a gáz fázisban keltett fotoakusztikus jel mikroszkopikus leírását ismertetem.
II.3.a. Hőkeltés

A vizsgált minta által elnyelt periodikus intenzitású fényenergia változó hőforrásként jel- lenik meg a gázterében, ami a kialakuló hang forrása. Ez azt jelenti, hogy a fényenergia hangenergiává történő átalakulása egy kétlépcsős folyamat. Az \(I(r,t) \) fényintenzitás és ennek abszorpciójából eredő hőforráz közötti összefüggést a következő egyenlet adja meg [12]:

\[
H(r,t) = \alpha I(r,t),
\]

ahol \(I(r,t) \) [J cm\(^{-2}\) s\(^{-1}\)] a fényintenzitás az \(r \) helyvektorú helyen a \(t \) időpillanatban, \(\alpha [\text{cm}^{-1}] \) a gáz abszorpcióss együttthatója és \(H(r,t) \) [J cm\(^{-3}\) s\(^{-1}\)] a hőmennyiség keletkezési sebessége az \(r \) helyvektorú helyen a \(t \) időpillanatban. A fenti (2) egyenlet két feltétel teljesülése esetében írható csak fel. Egyrészről, ha a gerjesztő fény \(I(r,t) \) intenzitása elegendően kicsi ahhoz, hogy a gáz gerjesztett vibrációs átmenete nem kerül optikai telítődésbe. Másrészről, ha \(I(r,t) \) időbeli változása sokkal lassabb, mint az elnyelt energia hővé történő átalakulási sebessége. Ha a fenti feltételek valamelyike nem teljesül, pl. nagy fényintenzitások alkalmazása esetében, megszűnik a linearitás a hőmennyiség keletkezési sebessége és a fényintenzitás között, illetve a lézer fényintenzitásának nagyon gyors változásainak következtében, \(\alpha \) frekvenciafüggő abszorpcióss együtttható lesz. Abban az esetben, ha a fenti feltételek egyike sem teljesül, a folyamat igen komplexé válik, és fontossá válnak a kvantummechanika koherencia effektusai.

A fotoakusztikus jelkeltés szempontjából tekintsük az \(N \) molekulasűrűségű abszorbeáló gázmolekulákat kétállapotú rendszernek, ahol a gerjesztett és a vibrációs alapállapot molekulasűrűsége rendre \(N'(r,t) \) és \(N-N'(r,t) \), \(h\nu \) a két állapot közötti energia-különbség, \(\Delta \nu \) az átmenet spektrális vonalszélessége, \(S \) az átmenet vonalerőssége, \(\tau_k \) és \(\tau_c \), a gerjesztett állapot sugárzásos (radiation), illetve ütközéses (collision) legerjesztődéséhez tartozó relaxációs idő. A fentiekben bevezetett jelöléseket alkalmazva a vibrációs-rotációs gerjesztett állapotból ütközési relaxációval alapállapotba jutó molekulák által leadott hőmennyiség a következő alakban írható fel:

\[
H(r,t) = N'(r,t)\tau_c^{-1}h\nu.
\]

A gerjesztett állapot populációjának változását leíró egyenlet, amely feltételezi, hogy a gerjesztett állapotú molekulák csak foton kisugárzása, illetve ütközés révén jutnak vissza alap állapotukba, a következő [12]:

\[
\frac{dN'}{dt} = -N'\left[\frac{I}{h\nu} \left(\frac{S}{\pi\Delta\nu} \right) + \tau_c^{-1} + \tau_k^{-1} \right] + (N - N')\left[\frac{I}{h\nu} \left(\frac{S}{\pi\Delta\nu} \right) \right].
\]

A fenti (4) egyenlet megoldása megadja az összefüggést a gerjesztett állapot populációja, a fényintenzitás \(I(r,t) \), az abszorbeáló molekulák sűrűsége \(N \) és az átmenetet leíró különböző
paraméterek között. Harmonikus gerjesztés esetén a beős fényintenzitást leíró egyenlet:

\[I(t) = I_0[1 + \exp(i\omega t)], \] (5)
amelynek csak valós része rendelkezik fizikai jelentéssel. Az (5) egyenlet konstans része elhagyható, hiszen csak a modulált hőforrás képes a fotoakusztikus jelkeltésre. Abban az esetben, ha \(I(t) \) változása kellő képen lassú, a (4) egyenlet megoldása a következő alakban írható fel:

\[\frac{N'}{N} = \frac{(IS / h \nu \Delta \nu)}{(2IS / h \nu \Delta \nu) + \tau^{-1}}, \] (6)
ahol \(\tau^{-1} = \tau_{c}^{-1} + \tau_{R}^{-1} \) jelöli a gerjesztett állapot spontán relaxációs idejét. Nagy fényintenzítás alkalmazása esetén a (6) egyenlet az \(N'/N \approx 1/2 \) eredményt adja, azaz az abszorbeáló molekulák egyenletesen oszlanak el a gerjesztett és alapállapot között (optikai telfődés). Megjegyzendő, hogy munkám során impulzusgerjesztés alkalmazásakor fellépett az optikai telfődés, amit az VI. fejezetben vizsgálni is fogom. Kellően alacsony fényintenzítások alkalmazása esetében a (6) egyenlet a következő alakra egyszerűsödik:

\[\frac{N'}{N} = \frac{IS\tau}{h \nu \Delta \nu}. \] (9)

A (9) egyenlet értelmében, időben állandó és kellően gyenge fényintenzítás használatakor a gerjesztett állapot molekulásürűsége arányos a fény intenzitásával. A (2), (3) és (9) egyenletek összevonásával az \(\alpha \) fotoakusztikus abszorpció

\[\alpha = N \frac{S\tau}{\pi \Delta \nu \tau_c}. \] (10)
kifejezéshez jutunk. A (2) egyenlet és a fotoakusztikus abszorpció (10) egyenlettel megadott kifejezése leírja a fényenergia hővé való alakulásának folyamatát.

Valós körülmények között, atmoszférikus nyomású gázok esetében (gáznyomás \(\approx 10^5 \) Pa), a gerjesztett molekulák sugárzásos átmenetének valószínűsége kicsi, mivel igen rövid a molekulák szabad úthossza. A sugárzáson kívül azonban más relaxációs folyamatok (pl. fotokémiai reakciók vagy másodlagos sugárzás) lejátszódása lehetséges. A hagyományos abszorpciós spektroszkópiával, ami a mintán áthaladó fény intenzitáscsökkenését méri, összehasonlíthat a fotoakusztikus spektroszkópia információt ad az abszorpciós folyamat típusáról és időbeli lefolyásáról is, azaz a vibrációs energiaszintek élettartamáról, valamint a vibrációs és transzlációs szabadsági fokok közötti energiacsere sebességéről. A későbbiekben
II.3.b. Hanghullám generálás

A következőkben tekintsük át a (3) egyenlettel kifejezett hőforrás által keltett akusztikus hullám generálását, amelynek levezetése rezonáns és nem-rezonáns fotoakusztikus kamrák alkalmazása esetében Kreuzer munkásságának köszönhető. Az akusztikus teret jellemző $p(r,t)$ akusztikus nyomás és a $H(r,t)$ hőforrás közötti kapcsolatot az inhomogén (Helmholtz) hul-lámegyenlet írja le [13]:

$$\nabla^2 p - \frac{1}{v^2} \frac{\partial^2 p}{\partial t^2} = -\frac{\gamma - 1}{v^2} \frac{\partial H}{\partial t},$$

ahol v a hang sebessége az adott gázban és γ a gáz állandó nyomásra és térfogatra vonatkozó hőkapacitásainak hányadosa. Ez az egyenlet nem tartalmazza a hővezetésből és viszkozitásból származó akusztikus veszteségeket, azok figyelembe vétele empirikus úton történik. Folytonos fény sugár szinuszos (ω körfrekvenciájú) modulációja esetében a fenti (11) egyenlet megoldása felírható a normál akusztikus módusok (p_j) Fourier transzformáltjainak összegeként a következő módon:

$$p(r, \omega) = \sum_j A_j(\omega) p_j(r).$$

$A_j(\omega)$ jelöli a j-dik normál módushoz tartozó (komplex) amplitúdót. A p_j normál módusok a homogén hullámegyenlet [13, 14]:

$$\left(\nabla^2 + \frac{\omega_j^2}{c^2}\right) p_j(r) = 0$$

megoldásai, amelyek eleget tesznek a peremfeltételnek (merev falú fotoakusztikus kamra esetében az akusztikus sebesség kamra falára merőleges komponense a falnál nulla). A kapott ortogonális módusok hengerszimmetrikus megoldása [13, 14]:

$$p_j(r, \phi, z) = g_j J_m \left(\alpha_{mn} \frac{\pi r}{R_0}\right) \cos(m\phi) \cos\left(\frac{k \pi z}{L}\right),$$

ahol a megfelelő sajátfrekvencia:

$$\omega_j = \pi c \sqrt{\left(\frac{k}{L}\right)^2 + \left(\frac{\alpha_{mn}}{R_0}\right)^2},$$

g_j normálási tényező; L és R_0 a fotoakusztikus kamra hossza és sugara; r, ϕ és z a henger
koordináták; \(k, m \) és \(n \) rendre a longitudinális, azimutális és radiális módusok (II.4. ábra) hulámszáma; \(J_m \) az első fajú, \(m \)-ed rendű Bessel függvény és \(\alpha_{mn} \) a \(dJ_m/dr=0 \) egyenlet \(n \)-dik megoldása \(r = R_0 \)–nál.

II.4. ábra. Az akusztikus normál módusok hengerszimmetrikus kamra esetén: longitudinális, azimutális és radiális módus

A normál módusok amplitúdóját megkapjuk, ha a (12) egyenletet behelyettesítjük a (11) egyenlet Fourier transzformáltjába

\[
\left(\nabla^2 + \frac{\omega^2}{c^2} \right) p(r, \omega) = \frac{\gamma-1}{c^2} i\omega H(r, \omega)
\]

és kihasználjuk a \(p_j \) sajátfüggvények ortogonalitását. Ennek felhasználásával az inhomogén hullámegeyenlet (11) veszteségeket is figyelembe vevő megoldása:

\[
p(r, \omega) = \sum_j \frac{i\omega}{\omega_j} \left(\frac{\gamma-1}{V_0} \right) \int p_j^* H dV \frac{1}{1 - \frac{\omega^2}{\omega_j^2} - \frac{i\omega}{\omega_j Q_j}} p_j(r),
\]

\[
Q_j = \frac{\omega_j}{2g_j},
\]

ahol \(Q_j \) a \(p_j \) akusztikus módus jósági tényezője (gyakorlatilag az akusztikus veszteségeket figyelembe vevő tényező), \(p_j^* \) a (14) egyenlettel megadott \(p_j \) normál akusztikus módusok komplex konjugáltját és \(V_0 \) a teljes kamratérfogatot jelöli. Az integrál a \(H \) hőforrás és a \(p_j \) normálmodus közötti csatolást fejezi ki. Szimmetria okokból kifolyólag előfordulhat, hogy bizonyos módusok nem gerjeszthetők, mivel ez az integrál nulla. Adott módusfrekvenciához \((\omega_j)\) tartozó jósági tényező nem más, mint a módusfrekvencia \((f_0)\) és a fotoakusztikus teljesítményspektrum ezen frekvenciához tartozó félértékszélességének \((\Delta f)\) hányadosa, ami a következő formában írható:

\[
Q = f_0 / \Delta f.
\]
Modulált, folytonos fényforrásból származó fényenergia abszorpciója után kialakuló fotoakusztikus jel a kamra r-rel jelölt helyén a p-re vonatkozó (17) és a normálmódusokat leíró (14) egyenlettel egyértelműen meghatározott.

A Helmholtz (11) egyenlet megoldása impulzusgerjesztés esetében is felfrőható a (12) egyenlet szerint, azonban ekkor a normálmódusok amplitúdói időfüggők lesznek, és a következő alakot öltik fel [15]:

\[p(r,t) = \sum_j \alpha(y-1) D_j V_0 \frac{p_j}{D_j} \exp \left[-\frac{\omega_j}{2Q_j} g_j \left(t-T_H \right) + i\omega_j \left(t-T_H \right) \right], \]

ahol \(D_j \) a normált sajátfüggvényekre vonatkozó térihatós integrál, \(T_H \) a lézerimpulzus időtartama és \(I \) a lézer impulzusának intenzitása. Ez azt jelenti, hogy a hangnyomás jele néhány exponenciálisan csökkenésű szinuszos hullám szuperpozíciója.

A kétféle gerjesztési mód esetén kapott akusztikus nyomások összehasonlításával látható, hogy időben állandó amplitúdójú folytonos szinuszos gerjesztés esetén a keletkező akusztikus nyomás amplitúdója időben állandó lesz, és frekvenciája megegyezik a modulációs frekvenciával. Impulzusgerjesztés esetében – a rezonátor akusztikus módosainak frekvenciától és a hozzájuk tartozó jósági tényezőtől függő mértékben – a keletkező nyomáshullám exponenciálisan csökkenő amplitúdójú.

Gyakran előforduló feladat ugyanazon fotoakusztikus kamrának fényimpulzussal gerjesztett jeléből folytonos lézerrel történő gerjesztés esetében várható válaszának becslése. Ebből a célból érdemes bevezetni az ekvivalens lézer teljesítményt (\(W_{Ekv} \) fogalmát, ami annak az impulzusnak az energiájával ekvivalens lézer teljesítménye, amely modulált jelkeltés esetében ugyanakkora fotoakusztikus jelet eredményez, mint amekkorát az adott energiájú impulsus kelt. Ez az \(E \) energiájú impulsus esetében a következő egyenlettel számolható [15]:

\[W_{Ekv} = \frac{\omega_j E}{Q_j}, \]

ahol \(Q_j \) a rezonátor adott módusához tartozó jósági tényezője és \(\omega_j \) a folytonos gerjesztés modulációs frekvenciája. A (19) egyenlettel megadott jósági tényezőt a (21) egyenletbe helyettesítve az ekvivalens lézeteljesítményt:

\[W_{Ekv} = E\Delta f. \]

Ezt a fogalmat az VI. fejezetben ismertetésre kerülő kétféle (folytonos és impulzusos) gerjesztési technika összehasonlítási vizsgálatánál fog felhasználni.
II.4. A fényforrás

Ez a fejezet áttekintést ad az általam használt koherens fényforrásokról, külön figyelmet fordítva a később ismertetésre kerülő kísérletekben alkalmazott lézertípusokra.

Attól függően, hogy milyen halmazállapotú a lézer fényerősítő közeghe megkülönböztetünk gáz (atom-, ion- és molekula, fémgőz, illetve excímer), folyadék (festék), szilárdtest (kristály, üveg) és félvezető lézereket. A II.2. táblázat áttekintést ad az általam használt fényforrások összehasonlításáról.

A fotoakusztikus jelkeltés, mint már említettem, történhet impulsusos vagy modulációs gerjesztéssel. Az impulsusos technikában nagyintenzitású és rövid impulsusú lézereket használnak fényforrásként. A keltett jel analízise általában abban az időtartományban történik, ahol az igen intenzív akusztikus jel (melynek időbeli alakja egy csillapodó oszcillációból felel meg) maximális és minimális amplitudó-különbségéhez rendelhető a mérendő gáz koncentrációja. A zajcsökkentés céljából az egyes impulsusok által keltett jeleket átlagolják. A keltett fotoakusztikus jel sok Fourier komponensből tevődik össze, amelyek egyidőben analizálhatók, azonban rezonáns kamra esetében a kamra rezonancia-frekvenciáján jelentkezik a legerő-
sebb komponens. Az impulzusszerű gerjesztés előnye, hogy a fényenergia akusztikus energiává történő átalakításának hatásfoka nagyobb lehet, mint modulált gerjesztés esetében, ami érzékenyebb detektáláshoz vezethet [21].

II.2. táblázat. Az alkalmazott fényforrások összehasonlítása

<table>
<thead>
<tr>
<th></th>
<th>Diódalézer (CO2 mérő rendszer)</th>
<th>CO lézer (fermentációt mérő rendszer)</th>
<th>Nd:YAG lézer (ózonmérő rendszer*)</th>
<th>Nd:YAG lézer (aeroszol mérő rendszer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A fény hullámhossza</td>
<td>Infravörös (1,43 μm)</td>
<td>Infravörös (6,69 – 5,17 nm)</td>
<td>Ultraibolya (266 nm)</td>
<td>IR, látható és UV (1064, 532 és 266 nm)</td>
</tr>
<tr>
<td>A fényforrás modulációja</td>
<td>A lézer áramnák modulációja</td>
<td>Mechanikus fénszaggató (chopper)</td>
<td>Q-kapcsolás frekvenciája</td>
<td>Kapuzott impulzusrozatok</td>
</tr>
<tr>
<td>Hullámhosszhangolás</td>
<td>Lézer hőmérőséketével</td>
<td>Rács mechanikus hangolása</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A fényforrás teljesítménye</td>
<td>1 mW</td>
<td>40 - 1 W</td>
<td>1,5 mW @266 nm</td>
<td>750 mW @1064 nm, 80 mW @ 532 nm, 4 mW @ 266 nm</td>
</tr>
</tbody>
</table>

a véglegesített változat

Az impulzus üzemmóduakkal szemben a folytonos üzemmódu lézerek külön modulácios technikát igényelnek. Ebből kifolyólag a lézer modulálhatósága is egy fontos paraméter. A moduláció vonatkozhat a lézer amplitúdójára, illetve hullámhosszára, hiszen mindkét esetben időben változik az elnyelés mértéke, ami fotoakusztikus jelkeltéshez vezet. Az amplitúdó-moduláció alkalmazásakor a lézerfény intenzitását változtatjuk mechanikusan egy megfelelő szaggatóval (chopperrel), elektromos úton (a lézer fényének ki-be kapcsolásával), elektro-optikai eljárás segítségével vagy akusztó-optikai módszerrel [21]. Amplitúdómoduláció alkalmazásával a lézer a szaggatásnak megfelelő periódussal gerjeszt a fény útjába eső optikai abszorpcióval rendelkező minden anyagot. Ebből kifolyólag a kamra be- és kilépő ablakain, illetve a kamra falán történő fényelnyelődéskor keletkező háttérjel csökkentésében a fázisérzékeny detektálás nem segít. Hullámhossz-moduláció esetében a lézer hullámhosszát a detektálandó gáz elnyelési vonaláról periodikus módon lehangoljuk a lézerfény intenzitásának minimális változtatásával, tipikusan néhány század nanométerrel, amennyiben keskeny elnyelésű vonallal rendelkező gázokat (CO₂, H₂O, stb.) gerjesztünk. A közeli hullámhossz értékek miatt a környezet fényelnyelése gyakorlatilag egyforma mindkét hullámhosszon, ezért jóval kisebb mértékben jelenik meg az amplitúdó-modulációmellé fellépő zavaró háttérjel. Mivel az
akusztikus energia konverziós hatásfoka alacsony, a folytonos modulációs technika erősen abszorbeáló anyagok mérésénél előnyös [21].

II.4.a. Gázlézerek

A gáz nyomása alapján megkülönböztethetünk csökkentett, atmoszféra-, illetve többszőrös atmoszféranyomású lézereket. A kisnyomású, folytonos gázlézerek viszonylag kis teljesítményűek (1 mW - 10 W), nagy méretűek (0,5 - 2 m) és kis nyalábdivergenciával rendelkeznek. Az impulzus üzemmódú gázlézerekre azonban a nagy nyomás, a nagy hasznos térfo-gat, a nagy teljesítmény (10 kW - 10 MW) és a széles nyalábdivergencia a jellemző. A legismertebb kisnyomású, folytonos gázlézer típus a He-Ne lézer (atom-lézer) vagy a sokkal nagyobb teljesítményű Ar⁺- és Kr⁺-lézer. A gázlézerek jelentős csoportját alkotják a molekulalézerek, a rezgési-rotációs átmeneteken működnek a CO, CO₂, N₂O és a kémiai lézerek, míg az elektronátmeneteket a N₂ és excimer (KrF) lézerek használják ki.

A kísérleteim során alkalmazott CO gázlézer

A gázféle közül egy folyékony nitrogénnel hűtött, csökkentett nyomású CO lézert [23] használtam rizspalánták alkoholos eredési mechanizmusának tanulmányozása során (V. fejezet). Igen közkedvelt lézer a ppb vagy ez alatti gázkoncentrációk kimutatására nagy teljesítménye és széles hangolhatósági tartománya (8,33 és 4,76 μm között 350 CO vonalra hangolható) miatt, ugyanis ezen az infravörös tartományon számos szervetlen és szerves molekula rendelkezik intenzív abszorpciós színképpel. Másodrendű visszaverődés alkalmazása
esetében további nagyjából 300 lézervonal érhető el a 4,08 - 2,63 μm hullámhossz tartományban [24].

A CO gázlézer működése plazmakisülésen alapszik, amely során a CO és N₂ molekulákat rugalmatlan elektronszórás „mozdítja ki” a vibrációs alapállapotukból. A gerjesztett N₂ molekulák ütközések révén átadják energiájukat a CO molekuláknak tovább növelve ezzel az alacsonyabb energiájú vibrációs szintek populációját. A CO molekulák az egymás közötti ütközések révén átadott energia hatására egyre feljebb kerülnek a vibrációs energialépcsőn. Ez a pumpálás annál hatékonyabb, minél alacsonyabb hőmérsékletű a kisülés. Ilyen pumpálás következtében a lézeremisszióban csak a P típusú átmenetek jönnek létre.

A CO lézer multimódusú működése elkerülhető, ha azt a folyékony nitrogén (77 K) hőmérsékletére hőtjük le [25]. Az alacsony hőmérséklet következtében a ro-vibrációs populáció kevesebb és az alacsonyabb energiájú rotációs szinteken oszlik el, ami kisebb mértékű átfedést okoz a szomszédos vibrációs átmenetek között. Az alacsony hőmérséklet következtében a létrehozható populáció inverzió mértéke igencsak megnövekszik, ami maga után vonja a lézer gyenge emissziós vonalainak megjelenését.

II.5. ábra. A CO gázlézer elvi felépítése

Az általam használt folyékony nitrogénnel hűtött CO lézer – melynek elvi felépítése az II.5. ábrán látható – „lelkét” alkotó kisülési csővé megegyezett a Bonni egyetem által készített [26]. A cső két végét egy-egy ZnSe (széles transzmissziós tartománnyal rendelkezik az infravörös tartományban) Brewster-ablak zár le, amelyeket kis áramlási sebességű héliumgáz folyamatosan öblít a kisülésből származó szennyeződések lerakódásának elkerülése céljából. Öblítőgázként nitrogén is használható, azonban a hélium alacsony ionizációs potenciálja miatt kis mértékben befolyásolja a lézer működési körülményeit. A lézer gázoltetetének a nagyobb hullámhosszú vonalakra történő optimalizációjával a lézer az 5,00 – 7,94 μm között 250 lézervonalra hangolható (II.6. ábra). A rezonátor belsejében a lézerteljesítmény elérheti akár a
40 W értéket is (5,21 μm hullámhosszon). A hosszabb hullámhosszak tartományában a lézer teljesítménye sokkal kisebb, de az egyes emissziós vonalakon így is eléri az 1 W értéket. A lézerközegként alkalmazott gázkeverék hélium, nitrogén, szén-monoxid és levegő megfelelő arányú keverékéből áll, melynek optimális összetétele mindig az aktuális alkalmazástól függ. A lézer rövidebb hullámhosszakon történő üzemletetése alapjában véve a gázkeverék kisebb CO koncentrációján érhető el. A gázkeverékben a hélium hűtőközegként szolgál, mennyisége nem túl kritikus csakúgy, mint a nitrogéné. Ezzel ellentétben, a lézer teljesítménye a gázkeverék oxigéntartalmára igen érzékeny. Az oxigén, alacsony ionizációs potenciálja miatt, csökkenti a kisülésben keletkező elektronok hőmérsékletét, ezáltal elősegíti a CO és N₂ vibrációs gerjesztését [27]. Túl sok oxigén jelenléte azonban gyorsabb vibrációs-transzlációs relaxációhoz vezet, ami csökkenti az erősítést. Ezen kívül, az oxigén meggátolja a CO molekulák diszszociációját. A diszszociáció eredménye a kisülési cső falán képződő vékony szénréteg, ami néhány napos folyamatos működés után már szabad szemmel is láthatóvá válik. Ez a szennyzeződés ettüntethető a hélium-levegő gázkeverék szobahőmérsékleten (20°C) történő néhány órán át tartó kisülésének fenntartásával.

II.6. ábra. A CO lézer rezonátorából kicsatolt fényteljesítmény hullámhossz függése az 5,00 – 7,94 μm tartományban lévő 250 vonalon. A számozott nyílakkal jelölt piros színű vonalak a későbbiek során (V. fejezet) rendre felhasznált CO₂ (1), acetaldehid (2), H₂O (3), háttérjel (4) és két etanol (5, 6) abszorciós vonalai.

A gázkeverék kisülési csőben való hosszanti (a két szélétől a közepére felé tartó) áramlattatásához egy vákuumpumma (pumpálási kapacitása 8 m³/h) szolgál, amellyel a kisülési cső belsejében lévő gázkeverék megfelelően alacsony nyomáson tartható (a bemutatásra kerülő
mérések esetében ez az érték 75 mbar volt). Fele ekkora kapacitású vákuumpumpa alkalmazása kevesebb lézervonalat és kb. 40 %-os teljesítménycsökkenést eredményezett. Nagyobb kapacitású pumpák tesztelése során csekély teljesítménynyomvádakást tapasztaltak [23].

A lézer adott hullámhosszú vonalra történő hangolása számtógép vezérelt léptetőmotor (Oriel 18512) által irányíttott rács (230 karcolat/mm) megfelelő dölési szögének beállításával történik, amely segítségével a lézert főleg elsőrendű visszaverődésben használják. A lézer végükön lévő piezo elem végzi a kiválasztott emissziós vonal maximumára történő finom hangolását, a lézerrezonátor hosszának optimalizációjával. A rácsról nulladrendben reflektáló lézernyalábot, a lézer teljesítményének vizsgálata céljából, egy konkáv tükrő egy piroelektromos detektorra fókuszálja.

A lézer hosszú távú folyamatos üzemeltetéséhez automatizálni kell a lézersövet körülvevő folyékony nitrogén tartály feltöltését. Ezt három szintmérő különböző magasságban történő elhelyezésével oldották meg [28]. Abban az esetben, amikor a középső érzékelő hőmérséklete meghaladja a folyékony nitrogén hőmérsékletét, megindul a tartály feltöltése folyékony nitrogénnel mindaddig, amíg a felső érzékelő hőmérséklete el nem éri a 77 K fokot. A folyékony nitrogén tartály kiürülését az alsó érzékelő jelzi. Ekkor a rendszer átkapcsol egy új, teli tartályból történő feltöltésre. Ilyen módon a lézer több napon át folyamatosan működhet.

A CO lézer hosszú távú folyamatos üzemeltetéséhez automatizálni kell a lézersövet körülvevő folyékony nitrogén tartály feltöltését. Ezt három szintmérő különböző magasságban történő elhelyezésével oldották meg [28]. Abban az esetben, amikor a középső érzékelő hőmérséklete meghaladja a folyékony nitrogén hőmérsékletét, megindul a tartály feltöltése folyékony nitrogénnel mindaddig, amíg a felső érzékelő hőmérséklete el nem éri a 77 K fokot. A folyékony nitrogén tartály kiürülését az alsó érzékelő jelzi. Ekkor a rendszer átkapcsol egy új, teli tartályból történő feltöltésre. Ilyen módon a lézer több napon át folyamatosan működhet.

A lézerfény modulációját egy aszimmetrikus mechanikai fényszaggató szolgáltatja, amelynek modulációs frekvenciája megegyezik a fotoakusztikus kamrák rezonanciafrekvenciájával. A mechanikus zajok csökkentése érdekében a fényszaggató egy gumiból készült vibrációcsökkentő helyezkedik el. A lézerfény modulációját egy aszimmetrikus mechanikai fényszaggató szolgáltatja, amelynek modulációs frekvenciája megegyezik a fotoakusztikus kamrák rezonanciafrekvenciájával. A mechanikus zajok csökkentése érdekében a fényszaggató egy gumiból készült vibrációcsökkentő helyezkedik el.

A nagyfeszültségű, áramstabilizált tápegység (FUG, Rosenheim, Németország) szolgál a lézerkisülés fenntartásához. A két ágra osztott negatív nagyfeszültségű kimeneteket, amelyek mindegyikében nagyjából 2,3 MΩ nagyságú ellenállás szolgál a lézerkisülés negatív impedanciájának illesztésére, a kisülési cső közepén egymástól 10 cm-re elhelyezkedő katódokra vezették. A nagy illesztési ellenállás teszi lehetővé a lézer működését alacsony áramerősségén. A központi katódok közötti távolság megakadályozza, hogy a kisülés csak az egyik ágban jöjjön létre. Abban az esetben, ha a gázgeyensúly nem optimális (pl. enyhe gázsivárgás van az egyik ágban), a kisülési körülmények kedvezőtlenné válnak, és a kisülés nem indul meg mind a két ágban. A probléma elkerülése céljából egy nitrogén gázáramot építettek a lézerső közepébe. A nitrogén a kisülést két ágra osztja, mivel ionizációs potenciálja magasabb, mint a lézer gázkeveréké. Miután mindkét ágban létrejön a kisülés a nitrogén gázáram leállítása már semmilyen módon sem befolyásolja a kisülést. A földelt anódokat a lézerső két
végén helyezték el, ami lehetővé teszi egyetlen nagyfeszültségű áramforrás alkalmazását, valamint a fotoakusztikus kamra és a fényszaggató lézerablakhoz közeli elhelyezését. Az egyetlen lézervonalon történő optimális működés megvalósítása az elektromos áram és ennek következetében a plazma (rotációs) hőmérsékletének megfelelő beállításával történik; az alacsony rotációs kvantumszámú értékeken az alacsonyabb elektromos áram eredményez nagyobb teljesítményt.

A CO lézer előnyei, mint a szelektivitás, nagy érzékenység, relativ gyorsaság, pontoság, in vivo alkalmazhatóság lehetővé teszik különböző biológiai minták tanulmányozását, mint például rovarok és egyéb élőlények légzési mechanizmusának és élettani funkcióinak nyomon követését, gyümölcsök érési folyamatának és a betakarítás utáni tárolási hatások vizsgálatát. Továbbá, kiválóan alkalmas az ember anyagcsere-folyamatainak elemzésére. Nagy érzékenysége és közönsége, a megfigyelés alatt tartott minták gázkibocsátása azonnal mérhető, és ezzel a folyamatok dinamikai vizsgálatát teszik lehetővé [33], ellenben egyéb vizsgálati módszereknél, mint például a gázkromatográfiai mérések.

Annak ellenére, hogy a gázlézerek megjelenésével a fotoakusztika az egyik legérzékenyebb laboratóriumi méréseszközvé vált – ugyanis a tömegspektrográfoknak csak 1 ppt koncentráció is kimutatható, amire addig csak az ember anyagcsere-folyamatainak elemzésére lehetett –, nagy érzékenysége és közönsége, a megfigyelés alatt tartott minták gázkibocsátása azonnal mérhető, és ezzel a folyamatok dinamikai vizsgálatát teszik lehetővé [33], ellenben egyéb vizsgálati módszereknél, mint például a gázkromatográfiai mérések.

II.4.b. Szilárdtest lézerek

teljesítmény időbeli alakulását. A lézer pumpálása során, a rezonátoron belüli veszteségek megműködését leromlik a rezonátor jósági tényezője, így késleltethető a lézerhez kötött, miközben a populáció inverzió növekszik. Ezek után a rezonátor veszteségeinek hirtelen lecsökkenése következtében nagyon gyorsan kiépül egy intenzív lézergab, ami egyetlen nagy energiájú impulzus formájában távozik a rezonátorból egy kicsátoló tükrön keresztül kierülve az erősítő közegben felhalmozott erősítési tartalékot. A gyakorlatban Q-kapcsoló lehet egy mechanikusan mozgatott tükr vagy prizma (ez volt a Q-kapcsolás első megvalósítása (1961), amelynek hátránya a nagymértékű optikai veszteségek), elektrooptikai kapcsoló (Pockels-cella), akuszto-optikai kapcsoló (Kerr-cella) vagy valamilyen teltűdő anyag (szerves festék) [37].

A szilárdtest lézerek közül a Nd:YAG lézereket használják a legszélesebb körben. An- nak ellenére, hogy már a 60-as években beszámoltak a neodímiummal szennyezett YAG kristályok lézer működéséről [38], alkalmazásuk csak a 80-as évek vége felé vált elterjedtté. A YAG kristályok készítésekor speciális ittrium-alumínium-gránit (Y₃Al₅O₁₂) üveget szennyeznek neodímium vegyületekkel. Működhetnek folytonos üzemmodban is, de tipikusan Q-kapcsolt üzemmodú lézerek.

Az ózon (VI. fejezet) és az aeroszol mérésekhez (VII. fejezet) megépített fotoakusztikus rendszerben egy nagy ismétlési frekvenciájú, Q-kapcsolású Nd:YAG lézert (Spectra Physics, lézerfej VHP80-106Q, tápegység J20I-8S40-16NSI, Mountain View, USA) használtam fényforrásként. A lézer ismétlési frekvenciája pár Hz értéktől 350 kHz értékiig állítható.
Az efeletti frekvenciákban már folytonos üzemmódban működik. A lézer gerjesztése nagy teljesítményű optikai szálba csatolt diódalézer sorral történik. A diódalézer sor minden kisugárzó-ja különálló multimódusú optikai szálba csatolódik. A szálakat együtt kötegelik és vezetik a lézer erősítő közegébe. Ilyen módon a gerjesztő forrás elszigetelődik a lézerfejtől. Ez a csatolási technika a gyártó által szabadalmaztatott ún. FC bar módszer, amellyel 85 %-ot meghalladó csatolási hatásfok érhető el 0,13 vagy ennél még kisebb numerikus apertúrával.

A szilárdtest lézerek teljesítményének optimalizálása során kulcsfontosságú jelentőséggel bír a pumpáló forrás által gerjesztett aktív közeg és az előállítandó lézermódus által elfoglalt aktív közeg tefogatainak átfedése. Ezen átfedés maximalizálását módisíllesztésnek nevezzük. A longitudinális geometriájú gerjesztés nyújt optimális módusíllesztést, lehetővé téve az optikai szálból kijövő fény fókuszálását az aktív közeg azon tefogatába, amely legjobban megfelel a TEM\textsubscript{00} módus tefogatának (II.9. ábra).

II.9. ábra. A Nd:YAG lézer módisíllesztésének illusztrációja

II.4.c. Félvezető lézerek

A félvezető lézerek annak ellenére, hogy szilárd anyagú erősítési közegekkel rendelkeznek, működési elvük teljes mértékben eltér az eddig tárgyalt szilárdtest lézerekétől. A félvezető lézerek működése nem vezethető vissza az izolált atomok és molekulák energiaszintéinek elméletére. Működésük a szilárdtestek elektronszerkezetét lefrő sávelméleten alapul. Az első félvezető lézert 1962-ben készítették, alapanyaga GaAs volt [40].

A félvezető által emittált fénynyaláb a fényelhajlás miatt divergens (széttartó), ugyanis a kilépő rés mérete a fény hullámhosszának a nagyságrendjébe esik. Növekvő áramerősségéknél a spektrumvonalak száma és a burkológörbe szélessége csökken, ami a diszperzióval (azaz a törésmutató hullámhossz függésével) magyarázható. A diszperzió és diffrakció kívül a félvezető lézer asztigmatikus hibával is rendelkezik, ami hengeres objektív alkalmazásával korrigálható [42].

Ez a lézertípus különleges helyet foglal el a lézerek világában, kis mérete, valamint az árammal való közvetlen vezérelhetőségből eredő olcsó és egyszerű működtethetősége miatt.
További előnyt jelent a megbízhatóságuk, hosszú élettartalmuk, valamint a szobahőmérsékleten történő folyamatos üzemnödő működésük. Hangolhatóságuk történhet a hőmérséklet, a gerjesztő áram vagy külső mágneses tér változtatásával, illetve a kristály mechanikus összennymásával. A hétköznapi félvezető lézerek az infravörös, vörös, illetve kék tartományokban sugároznak. Az elektronikai alkalmazásokban a félvezető lézerek tipikus teljesítménye néhány 10 mW, az anyagmégmunkálásra kifejlesztett diódasorok összteljesítménye azonban elérheti az 1 kW értéket is. A félvezető lézerek legismertebb típusa GaAs alapanyagú, amelyet tellúrral (n típus) és cinkkel (p típus) szennyezik. A legegyszerűbb félvezető lézer felépítése a II.10. ábrán látható.

II.10. ábra. Egyszerű félvezető lézer felépítésének sematikus rajza

A diódalézerek amplitúdó-modulációja egyszerűen megvalósítható áramuk periodikus nyitóáram alatti és feletti, megfelelő módon kiválasztott értékek közötti változtatásával. Mivel a DFB diódalézerek hullámhossza a rajtuk átfolyó áram függvényében változik, az áram kis mértékű periodikus változtatásával a lézer hullámhossza modulálható. A fentiek alapján, mivel mind a hullámhossz-, mind az amplitúdó-moduláció a DFB lézerek áramának változtatá-
sával történik, ezért várható, hogy a modulálás közben járulékos amplitúdó-, illetve hullámhossz-moduláció is történik. Ennek eredménye, hogy amplitúdó-moduláció esetén a lézer sávszélessége megnövekszik, illetve hullámhossz-moduláció esetén fellép egy maradék amplitúdó-moduláció. Külső rezonátoros diódalézer hullámhosszát a rácsból, illetve a tükröből és rácsból álló optikai elrendezés határozza meg [47], aminek nagy frekvenciás mozgatása a lézer stabilitását veszélyezteti. Emiatt a külső rezonátoros diódalézerek esetén leginkábban amplitúdó-modulációt alkalmaznak.

A kísérleteim során alkalmazott félvezető lézer

CO₂ mérésére (IV. fejezet) fényforrásként egy Littman-típusú [42] külső rezonátoros diódalézer rendszert (Sacher Lasertechik, Marburg) használtam. A lézer durva hangolása 1 mW modulációs lézerteljesítmény mellett az 1410 – 1490 nm hullámhossz tartományon egy mikrométercsavar segítségével történt. Egy piezo-léptető végezte a lézer finom hangolását 1 nm szélességű hullámhossz tartományon belül. A diódalézer amplitúdó modulálása stabil hullámhosszon egy lock-in (EG&G PARC 5110) erősítő TTL jelével történt a keskeny vonalszélesség megtartása mellett. A lézer finom hangolásáért felelős piezo-léptetőt a lock-in erősítő egyik digitál-analóg kimenete szabályozta.

II.5. A fotoakusztikus kamra

A kísérleteim során alkalmazott félvezető lézer

CO₂ mérésére (IV. fejezet) fényforrásként egy Littman-típusú [42] külső rezonátoros diódalézer rendszert (Sacher Lasertechik, Marburg) használtam. A lézer durva hangolása 1 mW modulációs lézerteljesítmény mellett az 1410 – 1490 nm hullámhossz tartományon egy mikrométercsavar segítségével történt. Egy piezo-léptető végezte a lézer finom hangolását 1 nm szélességű hullámhossz tartományon belül. A diódalézer amplitúdó modulálása stabil hullámhosszon egy lock-in (EG&G PARC 5110) erősítő TTL jelével történt a keskeny vonalszélesség megtartása mellett. A lézer finom hangolásáért felelős piezo-léptetőt a lock-in erősítő egyik digitál-analóg kimenete szabályozta.

II.5. A fotoakusztikus kamra

A rezonáns fotoakusztikus kamra tervezése és megépítése során figyelembe kell venni, hogy a kisebb átmérőjű rezonátor használata nagyobb fotoakusztikus jelet eredményez azonban minél kisebb a rezonátor sugara, annál jelentősébbé válik a falán abszorbeált fényből származó háttérjel ingadozása [49]. A fentiek alapján a gerjesztő fényforrás nyalábparaméterei szabnak határt a rezonátor keresztmetszetének. A rezonátor hossza \(l_{rec} \) határozza meg a kamra rezonancia-frekvenciáját \(f \) (Hz) a következő összefüggés alapján:

\[
f = \frac{v}{2 \cdot l_{rec}}, \tag{23}
\]

ahol \(v \) [m/s] a hang terjedési sebessége az adott gázban. Mivel a fotoakusztikus jel erősítése a rezonátor hosszának gyökével \(\sqrt{2 \cdot l_{rec}} \) arányos [49], a hosszú rezonátor nagyobb fotoakusztikus jelet eredményez azonban megnöveli a rendszer válaszidejét és méretét is. A rezonátorban keltett fotoakusztikus jel érzékelésének hatásfoka a mikrofon rezonátorhoz történő szoros csatlakozásán alapszik.

A kamra belső felületén lejátszódó adszorpciós és deszorpciós folyamatok hatásának kiküszöbölése céljából a méréseket folyamatos gázáramlásban kell elvégezni. A gázáramlást biztosító gáz be- és kivezetéseket oly módon kell a kamrához csatlakoztatni, hogy minél rövidebb legyen a rendszer válaszideje, valamint a lehető legkisebb legyen az okozott áramlási zaj.
A továbbiakban részletesen ismertetem a kísérleteimben felhasznált fotoakusztikus kamrákat, melyek összefoglaló áttekintése a II.3. táblázatban található.

II.3. táblázat. Az általam használt fotoakusztikus kamrák jellemző paraméterei

<table>
<thead>
<tr>
<th></th>
<th>CO₂ mérő rendszer</th>
<th>Fermentációt mérő rendszer *</th>
<th>Özonmérő rendszer ++</th>
<th>Aeroszol mérő rendszer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rezonancia-frekvencia nagyságrendje [kHz]</td>
<td>3 – 4 (gázösszetételtől függően)</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>A kamra optikai ablakai</td>
<td>Antireflexiós bevonatú BK ablakok</td>
<td>Zn-Se anyagú Brewster-ablakok</td>
<td>Kvarcablakok</td>
<td>Antireflexiós bevonatú BK, ill. kvarcablakok</td>
</tr>
<tr>
<td>Kamratérfogat [cm³]</td>
<td>60</td>
<td>1600</td>
<td>60</td>
<td>22</td>
</tr>
<tr>
<td>Rezonátor átmérője és hossza [mm]</td>
<td>4,5 x 40</td>
<td>15 x 138 (1) 15 x 146 (2, 3)</td>
<td>7,3 x 40</td>
<td>4 x 36</td>
</tr>
<tr>
<td>Puffer térfogat mérete [mm] és alakja</td>
<td>22 x 22 x 22 (kocka)</td>
<td>60 x 75 (henger)</td>
<td>22 x 22 x 22 (kocka)</td>
<td>21 x 19 (henger)</td>
</tr>
<tr>
<td>Mikrofon típusa</td>
<td>Knowles EK 3029 B&K 4179 (1) ill. Knowles EK 3024 (2, 3)</td>
<td>Knowles EK 3029</td>
<td>Knowles EK 3029</td>
<td></td>
</tr>
<tr>
<td>Mikrofon érzékenysége [mV/Pa]</td>
<td>31</td>
<td>1000 (1) ill. 22 (2, 3)</td>
<td>31</td>
<td>31</td>
</tr>
</tbody>
</table>

* a felső indexben szereplő szám mutatja, hogy melyik kamrára vonatkozik az adott érték
++ a véglegesített változat

Az SZTE által kifejlesztett fotoakusztikus kamra

A Szegedi Tudományegyetem Optikai és Kvantumelektronikai Tanszék munkacsoportja által kifejlesztett rozsdamentes acélból készült longitudinális rezonáns fotoakusztikus kamra [50] keresztmetszeti rajza a II.11. ábrán látható. A fotoakusztikus kamra két teljesen egyforma rezonátorát 40 mm hosszúságú és 4,5 mm belső átmérőjű rozsdamentes acélcsovek alkotják. A rezonátorok közepén fúrt 1 mm átmérőjű lyukban helyezkednek el a 31 mV/Pa érzékenységű elektrét mikrofonok (Knowles EK 3029), minden rezonátorban egy-egy mikrofon. A fény kamrába történő be- és kilépését a gerjesztésnek megfelelő AR (antireflexiós) bevonatú optikai ablakok teszik lehetővé, amelyeket 2,2 cm oldalhosszúságú, kocka alakú puffer-térfogat választ el a rezonátoroktól. Mind az antireflexiós bevonat, mind a puffer-térfogat célja az optikai ablakok abszorpciójából származó háttérrel csökkentése. A gáz be- és kiveze-
tése gyakorlatilag a kamra két végén került kialakításra. Az alkalmazott akusztikus szűrők (¼λ oldalhosszúságú, kocka alakú puffer-térfogatók és ¼λ karakterisztikus méretű csövek egymás utáni elrendezése, ahol λ az akusztikus hullámhossz) csökkentik a külső és a gáz áramlása által okozott akusztikus zajt. A fotoakusztikus kamra teljes hossza 20 cm és belső térfogata kb. 60 cm³. A kamra akusztikus háttérzaja 150 μPa/W, jósági tényezője pedig 27. A fotoakusztikus kamrában elhelyezett két rezonátor egyikén halad csak keresztül a lézerfény, így csak ebben keletkezik fotoakusztikus jel. A két rezonátor mikrofon jelét differenciálásán mérve tovább csökkenthető a gáz áramlásából származó zaj és az ablakok abszorpciójából eredő háttérjel. Az ablakok, a gáz be- és kivezetés, a mikrofoncsatlakozások és magának a fotoakusztikus kamrának a külső környezettől való elszigetelése VITON O-gyűrűk biztosítják. Ezt a kamrát használtam CO₂ mérésére (IV. fejezet).

Az aeroszol mérésekhez alkalmas (VII. fejezet) hordozható fotoakusztikus készülékben a méretek csökkentése céljából a fentiekben leírt felépítése és alapanyagú, csak kisebb geometriai mértékké rendelkező egyrezonátoros fotoakusztikus kamrákat alkalmaztam. Egy ilyen kamra teljes hossza 8,7 cm és belső térfogata 22 cm³. A kamra akusztikus háttérzaja 200 μPa/W, jósági tényezője pedig 10.

A Nijmegeni Egyetem által kifejlesztett fotoakusztikus kamra

Lézerrezonátoron belüli nagy fényteljesítményre és széles hullámhossz tartományon [több μm] alkalmazható egyrezonátoros kamra [49, 51] keresztmetszeti rajza a II.12. ábrán látható. Ez a kamra a CO lézer rezonátorán belüli alkalmazásra készült a Nijmegeni Egyetem fotoakusztikus méréseket végző csoportja által. A kamra lézerrezonátoron belüli helyzetét úgy kellett megválasztani, hogy az a lézerfény minimális nyalábátmérőjénél (nyalábnyak), valamint a lézerfény modulációját adó mechanikai szaggatótól a lehető legtávolabb legyen (az II.5. ábrán ez a pozíció közvetlenül az optikai rács előtt található). A gyakorlatban nem egyet-

II.11. ábra. A munkacsoportunk által kifejlesztett antireflexiós bevonatú ablakokkal felszerelt rezonáns kétrezonátoros fotoakusztikus kamra keresztmetszeti rajza

Az aeroszol mérésekre alkalmas (VII. fejezet) hordozható fotoakusztikus készülékben a méretek csökkentése céljából a fentiekben leírt felépítésű és alapanyagú, csak kisebb geometriai mértékkel rendelkező egyrezonátoros fotoakusztikus kamrákat alkalmaztam. Egy ilyen kamra teljes hossza 8,7 cm és belső térfogata 22 cm³. A kamra akusztikus háttérzaja 200 μPa/W, jósági tényezője pedig 10.
len, hanem három kamrát helyezték el a lézerrezonátorban, amelyeket egymástól 5 mm vas-
tagságú nikkel bevonatú rézlap választ el. A rézlapokba vannak beragasztva a kamrák ZnSe
anyagból készült optikai ablakai. Mivel jelenleg nincs olyan antireflexiós anyag, ami a CO
lézer teljes hullámhossz tartományán olyan kis reflexióképességgel rendelkezik, hogy az ne
zavarja a lézer működését, ezért Brewster-ABLAKOK kerültek alkalmazásra. A Brewster-ABLAK
szélesebb hullámhossz tartományon biztosítja az alacsony reflexiót. A ZnSe alig nyeli el a
fényt, de a lézerrezonátoron belüli nagy fényteljesítmény és az amplitudó-moduláció miatt
jelentős háttérjel keletkezhet a fotoakusztikus kamrában. Ezt egyrészt az előzőekben már is-
mertetett ¼λ hosszúságú (75 mm) és 60 mm sugarú, henger alakú puffer-térfogatok alkalmaza-
sával, másrészt az ablakok közelében kialakított változtatható hosszúságú légoszlop beiktat-
tásával csökkentették [49, 51]. A puffer-térfogatok belső falát polírozás után nikkellel vonták
be, a vízgőz adszorpciójának csökkentése céljából. Az egyik kamra rezonátorának közepébe
Brüel&Kjaer (B&K 4179), a másik kettőbe pedig Knowles (EK 3024) gyártmányú mikrofon-
kok építettek be. Az első kamra rezonátora vörösrézből készült, amelyet polírozott aranyré-
teggel vontak be. A második és harmadik fotoakusztikus kamra rezonátora rende polírozott
vörösrézből, illetve polírozott rozsdamentes acélból készültek [51]. Megjegyzendő, hogy a
továbbiakban ismertetésre kerülő mérésekben a rezonátorok anyaga és a mikrofon típusa nem
játszott fontos szerepet.

II.12. ábra. Brewster-ABLAKOKkal ellátott rezonáns fotoakusztikus kamra keresztmetszeti
rajza. Az ábrán használt jelölések a következők: 1: rezonátor, 2: henger alakú puffer-
térfogat, 3: puffer gyűrű a puffer-térfogat csökkentésére, 4: ZnSe Brewster-ABLAK, 5:
állítható ¼λ-es szűrő az ablakjel csökkentésére, 6: gáz bevezetés, 7: ¼λ-es fésű szűrő az
áramlási zaj csökkentésére, 8: gáz kivezetés és 9: mikrofon.

A három fotoakusztikus kamra rezonancia-frekvenciáját egyenlővé kell tenni, mivel
egyetlen fényszaggató szolgál a gerjesztő fény sugár modulálására. A B&K kondenzátor mik-
rofon 1 inch-es membránja nagymértékben befolyásolta a rezonancia-frekvenciát, ezért az
első kamra rezonátorából 8 mm-et leváltak. Az ezután fennmaradó rezonancia-frekvencia
eltérés a rezonátorok megfelelő hőméréskletre történő felfűtésével kompenzálható. A hőmérésklet erőteljes fejek a rezonátorok közepén helyezkednek el. A rezonátor hőméréskletének 0,5°C fokkal történő megnövelése nagyjából 1 Hz-es rezonancia-frekvencia növekedést idéző elő (\[f_{res} \propto \sqrt{T} \]) [51]. A gyakorlatban a kamrák hőmérésklete nagyjából 2-7°C fokkal tért el egymástól; mindegyik kamra hőmérésklete pár fokkal meghaladta a szobahőmérésklet értéket.

A megfelelő konstrukció következtében a kamrák hármas rendszerében bármelyik tag könnyen cserélhető. A kamrák központi része egyenként 75 x 150 x 150 mm térfogatú alumíniumból készült, amelyek közepében képezték ki a rezonátorokat. A rezonátorokra merőlegesen fúrt lyukakban helyezték el a mikrofont, a gázbemenetet és a hőméréskletérzékelő egységet. A csatlakozásokat VITON O-gyűrűvel szigetelték. A vizsgálni kívánt minta áramlásából származó zaj eredményesen csökkenthető különböző belső átmérőjű (6,4 és 0,8 mm) ¼\[\lambda \]-es csövek sorba kapcsolásával kapott ún. fésű szűrő alkalmazásával, hasonlóképpen, mint az SZTE OKT által használt rendszerben. A kamrák akusztikus háttérzaj értékei rendre 120, 200 és 900 μPa/W, jósági tényezői pedig 40, 26 és 24.

A hármas kamrarendszerben a zajszint értéke a negyedére csökkent egy korábban alkalmazott egykamrás változathoz [23] képest, lényegében véve a három kamra megnövelt tömegének (50 kg) következtében [28]. A gumiból készült rezgéscsillapítók alkalmazásával próbálták csökkenteni a fényszaggató által keltett mechanikus rezgéseket. Ezen túlmenően, a fotoakusztikus kamrákat zajcsökkentés céljából akusztikus szigetelőanyaggal bevont 2 mm vastagságú acélelemekből készült akusztikus szigetelődobozzal burkolták.

II.6. A detektáló egység

A fotoakusztikus rendszerek detektáló egysége magában foglalja az akusztikus hullámok mikrofonnal történő érzékelését, ezen jelek felerősítését (előerősítés), a jelfeldolgozó egységet és az esetlegesen szereplő teljesítménymértőt.

A gázfázisú kísérletek során a keltett hanghullámok detektálására érzékeny kondenzátor vagy elektrét mikrofonokat használnak [52]. Mivel munkám során csak kondenzátor mikrofonokat használtam, ezek felépítését és működését ismertetem a továbbiakban.

A kondenzátor mikrofon, – mint ahogy a neve is utal rá – nem más, mint egy légszigeteléses kondenzátor, néhány pF kapacitással. A kondenzátor egyik fegyverzete maga a membrán, ami általában egy műanyag fólia, amelyre fémet gözölnek, a másik fegyverzete, pedig egy általában szintén fémmelem gőzőlt kerámia vagy fémdarab [53]. A kondenzátor mikrofon
működési elvét a II.13. ábra szemléltei. A kondenzátorra egyenáramot kapcsolnak, azaz működéséhez tápegységre van szükség. A hanghullámoktól mozgásba jön a membrán, ezzel megváltozik a kondenzátor fegyverzeteinek egymáshoz viszonyított távolsága. Ez változást elé a kondenzátor kapacitásában és a kondenzátor fegyverzeteire kapcsolt feszültségben is. Ennek a feszültségváltozásnak a mértéke megfelel a hanghullámok intenzitásának. A fentiakból látszik, hogy a mikrofon jele a mikrofon kapacitásától, a nyomás okozta kapacitásváltozástól és az alkalmazott feszültség nagyságától függ.

II.13. ábra. A kondenzátor mikrofon felépítése és működési elve

A munkám során Brüel&Kjaer, illetve Knowles gyártmányú mikrofonokat használtam. A B&K mikrofon alacsony zajértéke ellenére nem vált igazán elterjedté a fotoakusztikus spektroszkópiában, ugyanis drágább és nagyobb átmérőjű érzékelő fejjel rendelkezik, mint a Knowles mikrofon, valamint működése speciális tápegységet igényel.

A jelfeldolgozás során a mikrofon jelét fel kell erősíteni, hiszen a keletkező fotoakusztikus jel jellemzően a néhány száz nV feszültségtartományba esik, így a rendszerben jelentkező, jellemzően 100 nV nagyságú elektromos zaj nagymértékben ronthatja a rendszer érzékenységét. A mikrofon-erősítő erősítése lehetőség szerint illeszkedik a fotoakusztikus kamra rezonancia-frekvenciájához, és annak csak néhány száz Hz-es környezetében erősíti a bemenő jelet.

A fényforrás fényintenzitásából származó esetleges ingadozások kiküszöbölésére szolgál a teljesítménymér. A lézerfény intenzitásának csökkenése a fotoakusztikus kamrában való áthaladása során elhanyagolható, mivel legtöbb esetben igen kicsi a mérendő abszorbeáló anyagok mennyisége. Ebből kifolyólag a fotoakusztikus kamra után elhelyezett teljesítménymérő által mért értékek gyakorlatilag megegyeznek a fotoakusztikus kamrába belépő fény teljesítményével. A mért fotoakusztikus jeleket normálva az aktuálisan mért fényteljesítmény értékekkel, azok függetlené válannak a fényintenzitás fluktuációjától.

II.6.a. Multikomponens analízis

Mivel a fotoakusztikus spektroszkópiában a keletkező jel az adott hullámhosszon elnyelő összes gáz abszorpciójának a következménye, több, megfelelő hullámhosszon történő méréssel a gázelegy minden komponensének koncentrációja meghatározható. Ehhez írjuk fel az (1) egyenlet a következőképpen [54]:

\[J_i = MC P \sum_{n=1}^{N} \alpha_{in} c_n, \]

ahol \(J_i \) az \(i \)-dik hullámhosszon (lézervonalon) mért fotoakusztikus jel, \(\alpha_{in} \) az \(n \)-dik gázkomponens abszorpciós együtthatója a \(P_i \) teljesítményű \(i \)-dik lézervonalon, \(c_n \) az \(n \)-dik gáz koncentrációja és \(N \) a fotoakusztikus kamrában jelen lévő gázok száma. A háttérjelet, amit minden lézervonalon meg kell határozni, egyszerűen egy újabb abszorbeáló gázkomponensként érdemes kezelni. Ennek értelmében, a mérés során elnyelő összes komponens koncentrációjának meghatározása elméletileg \(N+1 \) db lézervonalon történő mérést igényel. Megmérve minden lézervonalon a fotoakusztikus jel nagyságát és ismerve minden gáz minden vonalra vonatkozó abszorpciós együtthatóját, minden egyes gázkomponens koncentrációja meghatározható a következő mátrixegyenlettel:

\[c_n = \frac{1}{MC} \sum_{i=1}^{N+1} \alpha_{in} \left(\frac{J_i}{P_i} \right), \text{ vagy } \ddot{c} = \frac{1}{MC} \ddot{a} \left(\frac{\ddot{J}}{\ddot{P}} \right), \]

ahol \(c_n \), \(J_i \) és \(P_i \) vektor mennyiségek, \(N+1 \) elemszámmal és \(\ddot{a} \) egy \((N+1) \times (N+1)\)-es mátrix. Ezt a módszert nevezzük multikomponens analízisnek.

A módszer hatékonysága egy többkomponensű minta analízisénél nemcsak \(\ddot{J} \) és \(\ddot{P} \) pontos mérésétől függ, hanem az \(\ddot{\alpha} \) mátrix tulajdonságaitól is. Abban az esetben, ha sikerül csupa olyan hullámhosszat kiválasztani, hogy az \(\ddot{\alpha} \) mátrix diagonális legyen, azaz minden egyes hullámhosszon csak egyetlen gázösszetevő abszorbeálja a fényforrás gerjesztő fotonjait,
a probléma leegyszerősödik, ugyanis a komponensek interferenciája már nem fogja befolyá-
solni az érzékenységet. A valóságban ilyen egyszerű eset a legritkábban fordul elő.

A multikompenens analízis pontatlansága adódhat abból, hogy a vizsgált gáztérben olyan összetevők is jelen lehetnek, amelyek rendelkeznek abszorpcióval, azonban ezt nem vettük figyelembe a számítások során. Tovább növelheti a mérés pontatlanságát, ha a lézer vonalról vonalra történő hangolása jelentős időt vesz igénybe, mivel ilyenkor nem lehet átla-
golással a mérés zaját csökkenteni. A hosszú mérési idő esetén fennáll annak a veszélye, hogy mérés közbe a gáz összetétele megváltozik.
III. Tudományos előzmények, Célkitűzések

III.1. A molekuláris relaxáció hatása a fotoakusztikus jelkeltésre

A fotoakusztikus jel függ a mérendő gáz fizikai és kémiai tulajdonságaitól. Ennek oka, hogy a jelkeltés indirekt módon történik, azaz az abszorbeált fényenergia azon részét érzékelő, ami először hővé, majd nyomáshullámmá alakul át a molekuláris relaxáció, illetve a hőtágulás következtében. Következképpen kijelenthető, hogy a fotoakusztikus spektroszkópia nem egy abszolút méréstechnika, azaz a fotoakusztikus rendszereket koncentrációmérések előtt kalibrálni kell. Továbbá, fotoakusztikus mérések alkalmával a mérendő gáz fizikai tulajdonságait állandó értéken kell tartani, vagy valamilyen módon mérni kell. A fotoakusztikus jel fizikai tulajdonságoktól (hőmérséklet, nyomás) való függése jól ismert jelenség, amelyek függvénye azonban nagy számos megoldás született [48, 55]. A molekuláris relaxáció jelenségét azonban a legtöbb esetben nem veszik figyelembe, annak ellenére, hogy a fotoakusztikus jelkeltés szerves része. Az elhanyagolás gyakran indokolt is, különösen abban az esetben, amikor a molekuláris relaxáció időskálája jóval rövidebb, mint a lézer modulációs frekvenciájának reciprokája. Bizonyos esetekben azonban a relaxáció befolyásolhatja a fotoakusztikus jelkeltés hatékonyságát [18, 56].

A CO₂ molekuláris relaxációja [57] N₂ jelenlétében már kellő mértékben ismertetett a 10 μm hullámhossz tartományban elvégzett CO₂ lézer alapú fotoakusztikus mérések során, amikor a lézer fényét nitrogén vivőgázban lévő szén-dioxid abszorbeálja [58, 59]. Az abszorpció következtében a CO₂ molekula (1,0,0) állapotból a rövid élettartamú (0,0,1) gerjesztett állapotba kerül. Ez az energiaállapot igen közel van a N₂ molekula gerjesztett vibrációs állapotához. A két állapot hullámszámban megadott energiakülönbsége 18 cm⁻¹, ami kisebb, mint a szobahőmérsékletű termális gerjesztés energiája, továbbá a közöttük fennálló rezonáns energiacsere időállandója a μs alatti tartományba esik [60]. Következképpen a CO₂ molekula ν₃ vibrációs gerjesztett állapotának energiáját ütközés révén átadja az alapállapotú N₂ molekulának. A létrejött N₂ molekula gerjesztett vibrációs állapotának relaxációs ideje pedig 1,6 ms [58], ami által az elnyelt fényenergia igen lassú termalizációja tapasztalható. Míg ez a jelenség a CO₂ lézer esetében a működés kulcsfontosságú része, addig a fotoakusztikus mérések során drasztikusan csökkentheti a jelkeltés hatékonyságát [58].

A szén-dioxid koncentráció dióda lézeres fotoakusztikus elvű méréseire az 1430 nm hullámhossz tartomány ideálisnak látszik, hiszen a közeli infravörös tartományban található szén-dioxid elnyelési vonalak itt a legerősebbek (nem számítva a jelenleg még nehezen élér-
hető 2 mikronos hullámhossz tartományt). Ugyanakkor várható, hogy a molekuláris relaxációs effektus ebben a tartományban is jelentkezik, hiszen az itt gerjesztett átmenetek a korábban említett 10 mikronos átmenetek felharmonikusai. Vízgőz jelenlétében a helyzet lényegesen megváltozik, ugyanis a H₂O molekulák igen hatékonyan elősegítik a vibrációs állapotok relaxációját [61]. Vízgőz jelenléte négy nagyságrenddel csökkenti a N₂ molekulák effektív vibrációs relaxációs idejét, ami ezáltal lecsökkent a µs tartományra. A CO₂, N₂ és H₂O molekularendszer 10 µm hullámhossz tartományban lévő vibrációs energiaállapotai közötti átmenetek és azok élettartamai a III.1. ábrán láthatók (standard atmoszférikus nyomáson és 30 % relatív páratartalom esetében) [60, 62].

III.1. ábra. A CO₂ – N₂ –H₂O molekularendszer vibrációs energiaszint diagrammja 10 µm hullámhosszon. Az egyes átmenetek időállandói [60, 62]: τ₁ = 2,3·10⁻⁴ s; τ₂ = 1,0·10⁻⁷ s; τ₃ = 1,2·10⁻² s; τ₄ = 6,3·10⁻⁷ s; τ₅ = 1,4·10⁻² s; τ₆ = 7,5·10⁻⁷ s (standard atmoszférikus nyomáson és 30 % relatív páratartalom esetében)

A fentiek alapján célul tüztem ki:

− Annak vizsgálatát, hogy a várakozásoknak megfelelően fellép-e az 1430 nm tartományban történő fotoakusztikus CO₂ koncentráció mérés esetén a molekuláris relaxáció.
− Olyan mérési módszer és mérésiértékelési eljárás kidolgozását, amellyel a molekuláris relaxáció hatása csökkenthető és így a nitrogén vivőgázban lévő szén-dioxid koncentráció fotoakusztikus elvű mérésének érzékenysége maximalizálható.
− A molekuláris relaxációnak a fotoakusztikus jel amplitúdójára és fázisára kifejtett hatásának vizsgálatát.
Annak vizsgálatát, hogy a gerjesztésre használt hullámhosszon (1431,4 nm) lehetőséges-e a gyakorlati célokra is alkalmazható CO₂ koncentrációt mérő fotoakusztikus rendszert építeni.

III.2. Fotoakusztikus módszer alkalmazása rizsnövények alkoholos erjedésének vizsgálatához

Élő szervezetek anyagcseréjének dinamikai tanulmányozásához elengedhetetlen a valós környezetbeli (in situ), roncsolásmentes és érzékeny mérési módszerek alkalmazása. A fotoakusztikus méréstechnika nagyérzékeny fényforrás (pl. CO vagy CO₂ lézer) használatával a fenti feltételeknek teljes mértékben eleget tesz. Munkám során CO lézer alapú fotoakusztikus módszerrrel mértem rizsnövények alkoholos erjedésének anyagcseretermékeit acetaldehidet és etanol.

A növények alkalmazkodása az őket körülvevő állandóan módosuló és változó környezetükhöz igen változatos. Ez az alkalmazkodás eltérő bonyolultságú fejlődési (fiziológiai és morfológiai) formák kialakulásához vezet különösen akkor, ha az alapvető erőforrásokban (tápanyag, hőmérséklet, fény, levegő, víz) hiány lép fel. Ilyen esetben fenn vizenyős területeken élő fajoknál, amelyeknek szélsőséges környezet körülményekkel kell megbirkóznia, hiszen a vízzel átitatott (túltelített) talaj kizárja a növények képességét az oxigént, a növényi élet egyik kritikus változását. Ez az oxigénhiány (hipoxia) kialakulásához vezet, mint levegőben [64], ami oxigénhiány (hipoxia) kialakulásához vezet. Az ilyen környezeti körülmények hatására igen változatos karakterisztikájú morphológiai és biokémiai sajátosságok fejlődnek ki, mint pl. az aerenchyma (ami a növényeket alkotó szövetek levegővel töltött összefüggő sejtközi járataiból tevődik össze és kis ellenállású belső csatornát biztosít a gázcsere lebonyolításához a vízzel ellepett és víz felszíne feletti szövetek között [65, 66]), illetve a hajtások sokkal gyorsabb növekedése. Azonban az említettalkalmazkodási módszerek ellenére az áradás súlyos következményekkel járhat, kiterjedt levélkárosodás érheti a növényt [67, 68], illetve annak elpusztulásához is vezethet, a növény fejetlenségtől és egyéb tényezőktől (pl. áradás időtartama, az áradó víz hőmérséklete, stb.) függően. Az áradás okozta károsodások fiziológiajának megértése céljából tekintsük át a magasabbrendű növények energiaszerző és energia-átalakító biokémiai folyamatainak összetételét, azaz anyagcseréjét (metabolizmusát). Nagy általánosságban ennek három fajtája létezik: fotoszintézis, légzés (respiráció) és erjedés (fermentáció).
Fotoszintézis során a növények szervetlen anyagokból, azaz szén-dioxidból és vízből az elnyelt sugárzási energia kémiai energiává történő átalakítása mellett szerves anyagot, azaz glükózt állítanak el asszimiláció (szénhidrátok szintézise) révén, miközben oxigén képződik.

Abban az esetben, amikor a növényi szövetek szabad gázcserére akadályokba ütközik (mint például áradások alkalmával), a külső szén-dioxid fotoszintetikus megkötésének, valamint a beáramló oxigén mennyiségének elégtelensége az erjedés kialakulásához vezet. Az erjedés az a folyamat, amely során a sejt oxigén jelenléte nélkül, valamilyen enzim segítségével jut a szerves vegyületekben tárolt energiához. Ez az energiatermelő folyamat azonban alacsony hatásfokú [69]. Az erjedés az aerob légzés során is lejátszódó glikolízist követi (lásd III.2. ábra). A piruvát molekula oxigén jelenléte nélkül a tejsavas erjedés során tejsavvá alakul át a tejsav-dehidrogenáz (LDH) enzim hatására, illetve az alkoholos erjedés alkalmával először acetaldehidre dekarboxilálódik a piruvát-dekarboxilázm (PDC) enzim hatására, majd a keletkezett acetaldehid etanollá alakul az alkohol-dehidrogenáz (ADH) enzim közreműködésével. Növényeknél nagyfokú általánosítás és egyszerűsítés mellett megállapítható, hogy oxigén hiányában az LDH enzim aktivizálódásával beindul a tejsavas erjedés. A keletkezett tejsav gyors felhalmozódása azonban csökkenti a citoplazma pH értékét, ami gátolja az LDH, és aktivizálja a PDC enzimeket, melynek következtében néhány órán belül elindul az alkoholos erjedés [70]. Vannak azonban olyan növények (mint pl. a rizsnövény), amelyeknél oxigénhiány esetében a tejsavas erjedés elmarad és csak az alkoholos erjedés jelentkezik.

Az alkoholos erjedés során termelt energia (ATP) az aerob légzés során termelt energiának kb. 5,5 %-át teszi csak ki. Annak ellenére, hogy az erjedés energiatermelő hatásfoka
ennyire kedvezőtlen, azaz korlátolt energiaforrást jelent a növények számára, valamint hogy végtermékei (az acetaldehid és az etanol) mérgező hatásúak lehetnek magára a növényre nézve, nélkülözhetetlen a szövetek rövid idejű túléléő folyamatában. Még a levegő oxigén tartalmára érzékeny fajok (pl. búza) is rendelkeznek olyan anyagcsere és molekuláris folyamatokkal, amelyek segítségével a túléléő időtartamuk a néhány óráról a pár napra hosszabbítható meg oxigénhiány esetében [63]. Minden növény termel ún. anaerob proteineket, amelyek lehetővé teszik az oxigén jelenlététől független energiatermelő anyagcsere-folyamatok lebonyolítását, amely során különösen fontos az eredésre képes kiindulási anyagok folyamatos biztosítása [71]. Az oldódó cukrok oxigénszint adott érték alá történő csökkenése után szinte azonnal transzportálódnak az aerob légzésből a fermentációs anyagcserebe. Ezen cukrok korlátozott mennyisége elindítja a keményítő lebomlását [72], ami további cukortartalékok eléréséhez vezethet.

III.2. ábra. Növények anyagcsere-folyamatainak sematikus áttekintése
Az alkoholos erjedés már régóta ismert anyagcsere-folyamat. Növények esetében már több évtized óta tanulmányozott az áradással szembeni ellenálló képesség jelentősége miatt [64, 68]. Fontos szerepet játszik gyümölcsök tárolása során is. A jelenlegi kutatások szerint az erjedésnek oxigén jelenléte mellett is fontos szerepe van, ugyanis a virágport tartalmazó tokocska kifejlődése, valamint a mag csírázása alatt az aerob légzéssel együtt az etanol termelődése is lejátszódik. Az alkoholos erjedés másik újszerű jellegzetessége a stressz által keltett biológiai jelek átalakítása és a különböző betegségekkel szembeni ellenálló képességgel való összefüggése. Számos növényi fajnál tapasztalták, hogy káros környezeti tényezők (mint pl. vízhiány, ózonbesugárzás, alacsony hőmérséklet vagy kóros fertőzés) hatására jelentős mennyiségű acetaldheidet és etanolt termeltek, annak ellenére, hogy a környezeti levegő normál, vagy annál magasabb oxigénmennyiséget tartalmazott [70].

Növényeknél egyetlen olyan szervet sem ismerünk, amelyik túlélné a hosszú távú anaerob körülményeket. Ebből kifolyólag a túlélési folyamatban fontos szerepet jut az anaerob körülményeket követő oxigén megjelenésének, ami azonban a sejtek oxidatív károsodásához is vezethet. Az anaerob környezetet követő aerob körülmények által kiváltott hatások közül kiemelkedő az acetaldheid (C₃H₄O) termelődés gyors és nagy mértékű megnövekedése, ami az anaerob körülmények alatt a sejtekben felhalmozódott etanol (C₂H₅OH) oxidációjának a következménye [73, 74]. Ezt a folyamatot okozhatja az alkohol-dehidrogenáz (ADH) enzim által katalizált etanol oxidációja [75, 76]. Ezt a folyamatot okozhatja az alkohol-dehidrogenáz (ADH) enzim által katalizált etanol oxidációja [75, 76].

Az ADH enzim képes acetaldheidet oxidálni, ami az etanol oxidációjának előkészítője lehet:

\[C_2H_4OH + NAD^+ \xrightarrow{ADH} C_2H_4O + NADH \quad (26) \]

Egy másik alternatív útvonal az acetaldheid gyors és magas szintű kibocsátására az etanol hidrogén-peroxidtól (H₂O₂) függő, kataláz enzim által közvetített peroxidációja lehet:

\[C_2H_4OH + H_2O_2 \xrightarrow{kataláz} C_2H_4O + 2H_2O \quad (27) \]

A hidrogén-peroxid a szuperoxid gyök (O₂⁻) terméke, ami a sejtekbe jutó oxigénből ered:

\[Fe^{2+} + O_2 \rightarrow Fe^{3+} + O_2^- \quad (28) \]

A szuperoxid gyök nagy reakcióképességű és a szuperoxid-dizmutáz (SOD) enzim hatására bizonyos mennyisége hidrogén-peroxiddá alakul át [75] a következő módon írható:

\[2O_2^- + 2H^+ \xrightarrow{SOD} 2H_2O_2 + O_2 \quad (29) \]

\[\text{SOD} \]

1 A szuperoxid-dizmutáz (SOD) fémtartalmú enzim, jelentős antioxidánsnak tekintik. Állati és baktérium-sejtekben azonban, ahol megemelkedett aktivitását észlelték, a sejtek halálát okozta, abban az esetben, ha a kataláz nem volt képes semlegesíteni a keletkezett hidrogén-peroxidot.
Egyes kutatók állítása szerint nem valószínű, hogy az anaerob körülményeket követő oxigén megjelenés utáni néhány percben megfelelő mennyiségű NAD⁺ koenzim áll a növények rendelkezésére a (26) egyenlettel leírt folyamatot [74]. Ez azt jelenti, hogy ez a reakció túl lassú ahhoz, hogy felelős lehessen az anaerob körülményeket követő oxigén hatására megjelenő gyors acetaldehid kibocsátásáért.

Az anaerob körülményeket felváltó normál levegőben lévő oxigén a szövetbe jutva reaktív oxigén származékok (pl. hidrogén-peroxid) és szabad gyökök (hidroxil, peroxid, szuperoxid és hidroperoxid) kialakulásához vezet, amelyek sejtek szétesését és szövetek károsodását idézik elő (oxidatív peroxidáció). A szabadgyökök kémiaiag igen reakcióképesek, aminek következtében különféle molekulákat (zrírokat, fehérjéket, a genetikai állományt, valamint a szervezetbe behatoló mikroorganizmusokat is) károsítanak. Elsősorban az oxigénből keletkező szabadgyökök játszanak jelentős szerepet az élő szervezetekben. A reaktív oxigénvegyületek és szabadgyökök elleni védelem az antioxidáns védelmi rendszer képző normális gyök fogó (scavenger) enzimfehérjékként (pl. kataláz, peroxidáz, SOD) és kismolekulájú antioxidánsokkal (pl. A-, E- és C-vitamin, szelén, karotinok, ubiquinon (CoQ), glutation, húgysav) történik. Természetes körülmények között a reaktív oxigén származékok és szabadgyökök képződése és semlegesítése minden szervezetben állandóan megújuló egyensúlyban lévő folyamat. Különleges fiziológiai körülmények hatására (UV sugárzás, alacsony hőmérséklet) különösen a lipid peroxidációra (a többszörösen telítetlen zsírsavak szabad gyökök által előidézett lebomlása). A lipid peroxidáció következtében szétesik a sejtmembrán és a sejthártya, ami különböző mértékű károsodást, söt sejtpusztulást okoz. Ez a peroxidatív károsodás figyelhető meg növényeknél az anaerob időszakot követő normál levegő hatására [76], ugyanis anaerob, illetve micro-aerob körülmények között a gyök fogó enzimfehérjék képződése és a természetes antioxidánsok aktivitása mérsékelt.

Teljes áradás alkalmával, azaz amikor a növény teljes mértékben víz alá kerül, a korlátozott gázdiffúziót és az alacsony fényintenzitást tekintik a legfontosabb károsító és pusztító hatásnak [77]. Ilyen körülmények között az oxigén hiánya „energiakrúzist” [78] válthat ki, ugyanis a lassú belső diffúzió és az igen alacsony, gyakran anaerob mennyiségű oldott oxigén [79, 80] jelenléte miatt a légzést egy kevésbé hatékony energiaszolgáltató folyamat, a korábban már tárgyal alkoholos eredés válta fel. Az áradás okozta károsodás egyéb tényezői a szénhidrát tartalékok kiürülése [81], valamint a belső oxigénképződés elmaradása, a fény és CO₂ hiányának következtében gátolt fotoszintézis miatt. Azonban nem csak a vízzel ellepett időszak fejt ki drasztikus hatást a növények anyagcseréjére, hanem az áradás utáni közvetlen
időszak, amikor az áradó víz visszahúzódik és a növényeket, visszatérve a teljes aerob környezeti feltételekhez, oxidatív károsodás érheti.

Pillanatnyi ismereteink alapján megválaszolható a kérdés, hogy vajon a gyorsabb vagy lassabb erjedési folyamat vezet a hosszabb idejű túléléshez oxigénhiány esetében. Tisztázatlan továbbá, hogy vajon az oxigennélkülvédelmű az áradás okozta károsodás fő kiváltó oka, vagy az áradásra való eltérő érzékenység [82] összefüggésben van az oxigénhiány különböző mértékű tolerálásával. Ez a bizonytalanság abból a megfigyelésből származik, amely szerint az áradásra érzékeny fajok megtartják nagyobb érzékenységüket akkor is, ha az áradó víz tartalmaz valamennyi oxigént [83, 84]. Ezen túlmenően, ilyen kisérleti körülmények között nem találtak bizonyítéket anoxiás szövetekre, habár a levelek megsérültek [85]. Ennek ellenére bebizonyosodott, hogy van olyan rizsfajták, ami jobban türi az anaerob körülményeket, mint más fajták [68]. Ez szükségessé tette az erjedés kINETIKÁJÁNAK megvizsgálását a fenti irányvonalak mentén különböző oxigénszintek jelenléte mellett.

A fentiek alapján célul tűztem ki a fotoakusztikus módszer alkalmazását rizsnövények fermentációs anyagcserettermékeinek (etanol és acetaldehid) vizsgálatára. Ezen belül a következő feladatok teljesítését tűzöm ki:

- A különböző mértékű oxigénhiány rizsnövény anyagcseréjére kifejtett hatásának fotoakusztikus vizsgálatát.
- Az áradást türlő, illetve nem türlő rizsfajták alkoholos erjedésének összehasonlítását különböző mértékű oxigénhiány hatására.
- Azon külső oxigénszint meghatározását, ami még elégséges a növény számára a légzés fenntartásához és az erjedés gátlásához.
- Az oxigénhiány által okozott növényi károsodás lehetséges összefüggését az oxidatív peroxidációval, ami az erjedés során, valamint az oxigénhiányt követő újbóli levegő hatására következik be.
- Annak vizsgálatát, hogy fény jelenléte mennyire módosítja az anaerob körülmények során kiváltott folyamatokat, ugyanis fény jelenlétében végzett fotoszintézis által termelt belső oxigén módosíthatja az oxigénszegény környezet által kiváltott reakciókat.

A fentiekben megnevezett célok figyelembe vételével a V. fejezet magában foglal egy részletes összehasonlítást az áradással szemben figyelemre méltó tűrőképességű (FR13A), valamint az áradásra érzékeny (CT6421) genotípusú rizsfajták palántáinak alkoholos erjedése között gáz fázisú anaerob (oxigén nélküli) és ún. mikro-aerob (0,5 % alatti oxigénkoncentráció) jel-
III.3. Ózon mérése fotoakusztikus módszerrel

Az utóbbi években egyre nagyobb hangsúlyt fektetünk környezetünkre, azaz a Föld védelmére. Környezetvédelmi szempontból a Föld légkörében rendkívül összetett folyamatok játszódnak le. Éppen ezért igen nehéz megállapítani, hogy melyek azok a folyamatok, amelyek természetesnek tekinthetők, és melyek azok, amelyeket káros antropogén hatásnak tulajdoníthatunk. Az azonban bizonyos, hogy a fosszilis energiahordozók elégtetése, az ózonréteget károsító gázkibocsátása és az esőerdők kiirtása negatív hatásokat eredményez, amelyek a legoptimistább becslése szerint is felerősítik a természetben meglévő, negatív hatású folyamatokat (pl. vulkánkiterjedések, erdőtüzek, stb.). A népesség ugrásszerűen megnövekedésének és a fokozódó iparosodás következtében kibocsátott, hatalmas mennyiségű, a bioszférára károsító gákok (CO₂, CO, NO₂, SO₂ stb.), különböző vegyi anyagok, por és nehézfémek következtében évről évre növekszik a mérendő gázösszetevők száma. Részben ezek az anyagok felelősek a globális felmelegedésért, a savas esőkért, az ózonréteg elvékonyodásáért, az elsivatagodásért és a Föld klímájának megváltoztásáért. A környezet károsításának és szenyenezésének nyomon követése, valamint visszaszorítása céljából egyre nagyobb az igény mind az egyedi (specifikus), mind a multikomponens gázanalízishez szükséges spektroszkópiai módszerek, valamint az ezeken alapuló mérőberendezések fejlesztése iránt [86, 87].

Az ún. nyomgázok közül az ózon (O₃) a Föld légkörének egyik legfontosabb összetevője. Nagyrészt fotokémiai reakciókban képződik. Fontos szerepet játszik a Föld energiamérlegének alakításában. Jelenléte az atmoszférában ellentmondáson befolyásolja életünket minőségét. A sztratoszférában és a troposzférában (a Föld felszínétől 12 - 50 km magasságában) jelen lévő un. ózonréteg a káros ultraibolya (UV) sugárzás elnyelésével védelmet nyújt a bioszférának. Az ózonréteg elvékonyodása igen káros következményekkel (pl. bőrrák, szürke hályog, vakság kialakulásával) jár. A troposzférában (a Föld felszínétől 12 km magasságig) jelen lévő ózon a troposzférius szmog egyik fő alkotórésze, infravörös abszorpciója pedig fontos szerepet játszik a globális hőmérsékleti egyensúlyban. Az ózon fotokémiai reakcióképessége hatással van mind a sztratoszféra, mind a troposzféra összetételére, jelentős mértékben befolyásolja az atmoszféra alsó részének hőmérsékleti és kémiai karakterisztikáját. Annak ellenére, hogy legű környezeti feltételek mellett, valamint az oxigéniányszorú környezetet felváltó levegő hatására. Az energiatermelés mechanizmusában mutatkozó különbségek, a légzéshez szükséges anyagok elérhetősége, valamint a rendelkezésekre álló energia hatékonyabb felhasználása különbséget tehet az áradással szemben toleráns és intoleráns fajták között.
számos műholdas és léggömbös technika létezik már a felső légkör ózonkoncentrációjának mérésére [88], a felszínközeli ózon (ahol károsító hatása a legközvetlenebb az emberi egészségre és a környezetre) megfigyelése még mindig aktuális téma. A felszínői ózon nem emisszióval kerül az atmoszférába, hanem másodlagos szennyező anyag, ugyanis fény jelenlétében a nitrogén-dioxid, az oxigén és a szénhidrogének közötti reakció terméke [89]. Emiatt keletkezése és térbeli eloszlása egyenlent. Számos módszert alkalmaztak már az ózon mérésére [90]. Ezek magában foglalják az UV abszorpciót, a DOAS (differenciális optikai abszorpciós spektroszkópia) módszert, a kemilumineszcenciát és a kémiai titrálás módszerét [91], az elektrorókémiai [92] és a LIDAR (light detection and ranging) technikát. Az UV abszorpciós módszert főként a környezeti levegő ózontartalmának mérésére alkalmazzák, mivel nem igényel semmilyen reagenst (ellentétben a kemilumineszcenciás módszerrel), és alkalmas az ózonkoncentráció abszolút módon történő meghatározására [93].

A fotoakusztikus spektroszkópia is számításba vehető, mint az optikai ózonmérés alternatívája, mivel a fotoakusztikus technika az optikai abszorPCI mérésén alapszik. Kellően nagy fényteljesítmény alkalmazásával a fotoakusztikus technika által megvalósítható legkisebb kimutatható koncentráció megközelítheti a közvetlen optikai abszorPCIóval elérhető értéket.

A fentiek alapján célul tıztem ki:

- **Olyan fényforrás megtervezését és megépítését, amely az UV tartományban működik és alkalmas az ózon koncentrációjának fotoakusztikus elvű mérésére.**

- **Az ózonkoncentráció mérésére alkalmas impulsz üzemmódból és modulált fényforrások összehasonlítását a fotoakusztikus jelmélet szempontjából.**

- **Terepi körülmények közötti ózonkoncentráció fotoakusztikus mérését, amellyel a módszer gyakorlati alkalmazhatósága igazolható.**

Mivel a célkitizésben szerepl fényforrás tervezéséhez felhasználtam a nemlineáris optika, a mátrixoptika és a Gauss-nyalábkora vonatkozó ismereteket, a következıkben kitérek ezek rövid ismertetésére.

Egészen a múlt század közepéig minden optikai jelenséget a lineáris optika elméletével magyaráztak. Ennek legfább oka a nagy intenzitású – nemlineáris jelenségeket keltő – fényforrás hiánya volt. Az els nemlineáris optikai kíséretet 1960-ban végezte el P. A. Franken [94], aki a rubinlézer által kisugárzott 696,3 nm hullámhosszú fény frekvencia-kétszerezését (347,2 nm) állította elő.

A lineáris optikában az alkalmazott térreresség E és az anyag válasza, azaz P polarizációja közötti kapcsolatot a
egyenlet írja le, ahol ε_0 a vákuum permittivitása és χ az anyag szuszceptibilitása. Nagyintenzitású lézerfény által keltett téreresség nagyságrendje már megközelíti az atomok között ható erők nagyságrendjét, ami a téreresség és a polarizáció nemlineáris kapcsolatát eredményezi, ugyanis a közege molekuláinak töltése olyan nagy amplitúdójú kitéréseket szenvednek, amelyek esetében a feltételezett Hooke-törvény érvényét veszti. A nemlineáris effektusok leírásához a polarizációt fejtsük sorba a téreresség-vektor szerint [95]:

$$P_i = P_{i0} + \chi_{ij} E_j^a + \chi_{ijkl} \nabla_i E_j^a + \chi_{ijkl} E_j^a E_k^a E_l^a + \chi_{ijklmn} E_j^a E_k^a E_l^a E_m^a + \ldots$$ \hspace{1cm} (31)

ahol a felső indexek a tér frekvenciáját jelölik, az alsók pedig a derékszögű komponenseket. A fenti sor minden tagja egy vagy több jelenséget ír le. Az általam végzett kísérletek szempontjából a negyedik tag az érdekes, ami a másodharmonikus-keltést írja le abban az esetben, ha $\omega_1 = \omega_2 = \omega/2$, ekkor ugyanis:

$$P_{i2\omega} = \chi_{ij} E_j^a E_i^a.$$ \hspace{1cm} (32)

A tenzor formalizmust elhagyva, a beeső intenzív fényt E elektromos téreresség hullámokként kezelve, amelyek a dielektrikum (ε permittivitású) egyik helyén – mondjuk –

$$E = E_m \sin \omega t$$ \hspace{1cm} (33)

szerint nagy E_m értékű amplitúdóval rezegnek, és ezáltal itt a dielektrikumot a lineárisnál erősebben,

$$P = \chi (E + aE^2)$$ \hspace{1cm} (34)

alakban polarizálják (itt a egy állandó). A (34) egyenletet a fentibe helyettesítve kapjuk [96]:

$$P = \chi \left(E_m \sin \omega t + \frac{aE^2}{2} (1 - \cos 2\omega t) \right).$$ \hspace{1cm} (35)

A (32) és (35) egyenletek egy olyan fényhullám keltését írják le, amelynek frekvenciája a beeső hullám frekvenciájának kétszerese. Ez azt jelenti, hogy elegendően intenzív egyszínű fény megfelelő nemlineáris kristályon történő áthaladása esetében a kristályból kilépő fény kétszínű lesz. Ennek a frekvenciaviszonyának a hullámhosszban a λ és $\lambda/2$ felel meg. Ha például a kezdeti hullám infravörös 1,064 μm hullámhosszú, akkor a felharmonikus zöld színű lesz (0,532 μm), ami pontosan az alapfrekvencia kétszerese.

A frekvenciátöbbszörözős gyakorlati megvalósítása a kitűzött célnak legmegfelelőbb nemlineáris kristály vagy kristályok kiválasztásából, valamint a fény sugár terelését és lekepezését megvalósító optikai rendszer megtervezéséből tevődik össze. Mivel a felharmonikus intenzitása arányos az alapharmonikus intenzitásának négyzetével, a minél nagyobb frekven-
ciakonverziós hatások elérése céljából célszerű az alapharmonikus sugár lefókuszálása a nemlineáris kristályra. A fénysugarat Gauss-nyalábként kezelve (ω_0 nyalábnyakkal és z_0 Rayleigh-hosszal a III.3. ábra jelölése szerint) az optimális fókuszálás úgy érhető el, ha a fókuszálással kapott Gauss-nyaláb Rayleigh-hossza a frekvenciakétszerekő kristály hosszának (l) a kétszerese lesz. Ismerve a nyalábnyak és a Rayleigh-hossz közötti összefüggést, valamint a fény λ hullámhosszát, a fent megfogalmazott összefüggés matematikai megfogalmazása a következő [97]:

$$l = 2z_0 = \frac{2\pi\omega_0^2}{\lambda}. \quad (36)$$

Egy fénysugar ω_0 nyalábnyak értéke a fény λ hullámhosszának és a nyaláb Θ divergenciájának ismeretében meghatározható [95]:

$$\omega_0 = \frac{\lambda}{\pi\Theta}. \quad (37)$$

A fókuszáláshoz szükséges megfelelő optikai elemek kiválasztását és egymáshoz viszonyított helyzetének meghatározását mátrixoptikai számításokkal végeztem. Ehhez fel kell írni az n törésmutatójú közegben történő d távolságú szabad terjedés, illetve az f fókusztávolságú lencse leképező mátrixait [97], melyek rendre a következők:

$$M_{	ext{terjedés}} = \begin{bmatrix} 1 & d/n \\ 0 & 1 \end{bmatrix} \quad \text{és} \quad (38)$$

$$M_{	ext{lencse}} = \begin{bmatrix} 1 & 0 \\ -1/f & 1 \end{bmatrix}. \quad (39)$$

![Illusztráció III.3. ábra](image)

III.3. ábra. A Gauss-nyaláb jellemző paraméterének grafikus értelmezése (ω_0: nyalábnyak és z_0: Rayleigh-hossz)

Az egymás után elhelyezett optikai elemek eredő transzformációs mátrixát (M) megkapjuk, ha az egyes leképezések M_i mátrixait összeszorozzuk a III.4. ábrán vázolt fényterjedésnek megfelelően, a következők szerint:
$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = M_N \cdots M_3 M_2 M_1$.

![Diagram](M_1 -> M_2 -> M_3 -> ... -> M_N)

III.4. ábra. A fény terjedési irányában elhelyezett optikai elemek transzformációs mátrixai

Egy Gauss-nyaláb paramétereinek módosulását az eredő M mátrixszal (melynek mátrixelemei A, B, C és D) leírható optikai rendszer által a komplex nyalábparaméter (q_{0i}) segítségével lehet kifejezni az ún. ABCD törvény alapján [97]:

$$q_{0i} = \frac{Aq_{00} + B}{Cq_{00} + D} \Rightarrow Cq_{00}q_{0i} + Dq_{0i} = Aq_{00} + B.$$

(41)

Ismerve a komplex nyalábparaméter, a nyalábnyak és a hullámhossz közötti összefüggést, a (38) – (42) egyenletek segítségével kiszámolható az optimális fókuszáláshoz szükséges lencsék fókusztávolsága és azok egymáshoz viszonyított elhelyezkedése.

III.4. Aeroszolok optikai abszorpciójának mérése fotoakusztikus módszerrel

Az ózonmérésre alkalmas fényforrás előállítását frekvenciakonverzióval végeztet, ezáltal egy több hullámhosszon működő fényforrás állt a rendelkezésemre. A kifejlesztett fényforrás alkalmas az alapjában véve struktúrálatlan spektrumú anyagok, mint pl. a korom vagy a szálló por. A kifejlesztett fényforrás használata azonban segít a légző képességének meghatározására.

A korom és a szálló por a légköri összetétel mérést alkotó aeroszolok közé sorolhatók. Az aeroszolok szilárd vagy cseppfolyós részecskék alkotta olyan diszperz rendszerek, amelyek hordozó közége a levegő. Az aeroszol részecskék fontos szerepet játszanak a légkörkémiai és légzés/vitamin vannak a föld klímájára, a globális éghajlatra [98 - 100], a látási viszonyokra és a levegő minőségére [101]. A fentiek mellett az ember egészségére gyakorolt káros hatásuk is régóta ismert. Szoros összefüggést találtak a részecskemért, valamint a megnövekedett részecské-konzentráció és a légzőszervi, érrendszeri és rákos meg- betegedések és halálesetek, valamint a tüdőgyulladás, az asztma és más légzőszervi problémák kockázatának megnövekedése között [102, 103]. A légköri aeroszolok közvetlenül és közvetetten is hatást gyakorolnak a Föld energiaháztartására (sugárzási egyensúlyra). A köz-
vetlen hatásukat az infravörös, a látható és a közelű UV spektrális tartományokba eső sugárzások abszorpciója és szórása által fejtik ki. Az aeroszolok közvetett hatása a felhőképződési folyamatokban betöltött szerepekében nyilvánul meg, ugyanis megváltoztatják a felhő mikrofizikai tulajdonságait és élettartamát. Az aeroszol számos megjelenési formájának (por, homok, korom, füst, tengeri só, vírusok, baktériumok, pollenek, stb.) egyaránt van természeti (pl. vulkánkitörések, erdőtüzek, oceánok párolgása, stb.) és antropogén (pl. fosszilis és egyéb tüzelőanyagok égetése, ipari működéshez kapcsolódó kibocsátások, stb.) forrása. Jelenleg az aeroszolok forrásainak, eloszlásának és optikai tulajdonságainak (abszorpció, szórás, extinkció) hiányos ismerete jelenti a legnagyobb bizonytalanságot az éghajlatra kifejtett hatásuk tanulmányozásában.

A sivatagos területekről származó ásványi porszemcsék alkotta aeroszolok jelentős mértékben hozzájárulnak a légkör teljes aeroszol tartalmához [104]. A porfelhő optikai tulajdonságai a homokszemcsék méretétől és ásványi összetételtől függ, és a légkör vagy pozitív, vagy negatív hőmérsékletváltozását idézi elő. Különösen a sötét színű ásványok (a túlnyomó részt vas-oxidot tartalmazóak) befolyásolják a természetben előforduló szálló por hullámhossz függő tömegspecifikus abszorpciói hatáskeresztmetszetét (az abszorpciói hatáskeresztmetszet és a tömegkoncentráció aránya) a létható spektrális tartományban [105, 106].

A légkör aeroszol tartalmának másik jelentős részét a korom részecskék képezik, amelyek fenyegetést jelentenek a közegészségre [107, 108] és hozzájárulhatnak az üvegházhatás-hoz is [109, 110]. Az atmoszférában előforduló korom aeroszolok származhatnak a háztartáskocka fűtése során elégetett (fosszilis) tüzelőanyagokból, a belső égésű motorokból, illetve egyéb ipari forrásokból. Tudományos eredmények alapján [111 - 114] ismert, hogy a különböző aeroszolok (pl. korom, por, ásványi sók) széles hullámhossz-tartományban különböző jellegű optikai abszorpcióval rendelkeznek. Több különböző hullámhosszon elvégzett mérési eredmények alapján várható, hogy az aeroszolok megkülönböztethetővé válnak pl. összetételel vagy forrás alapján. Ebből kifolyólag a környezeti levegő optikai abszorpciójának vizsgálata az UV, a látható és a közeli infravörös spektrális tartományokban információval szolgálhat a biomassza (elsősorban a tűzifa) égetéséből származó és a közlekedési eredetű aeroszolok relatív mennyiségéről.

Az aeroszolok optikai abszorpciójának hagyományos meghatározása történhet a fény transzmissziójának mérésével filteres, illetve különböző módszerrel. A filteres módszereknél (pl. aethalometer, MAAP (multiangle absorption photometry)) az aeroszol-tartalmú szűrő transzmisszióját, míg a különböző módszereknél (pl. Lopes, CRD-AES (cavity ring-down aerosol extinction) vagy nephelometer) a gáz fázisban szuszpenzált részecskék transzmisszióját

A fentiek ismeretében célul tűzem ki:

- Olyan több hullámhosszon működő fotoakusztikus rendszer megépítését, amelyen lyel egyszerre mérhető az aeroszol optikai abszorpciója a közeli infravörös, a láttható (zöld) és az UV hullámhossz tartományban.
- A megépített több hullámhosszon működő fotoakusztikus rendszerrel különböző aeroszolok (korom és homok) optikai abszorpciójának mérését a rendelkezésre álló hullámhosszakon.
- A több hullámhosszon működő fotoakusztikus rendszer terepi körülmények közötti alkalmazhatóságának igazolását.
IV. CO\textsubscript{2} MÉRÉSE 1,43 μm HULLÁMHOSZON KÜLSŐ DIÓDALÉZERES FÉNYFORRÁSSAL; A MOLEKULÁRIS RELAXÁCIÓ

IV.1. A molekuláris relaxáció hatása a CO\textsubscript{2} fotoakusztikus jelére

A CO\textsubscript{2} molekuláris relaxációjának vizsgálatához használt mérési elrendezés sematikus rajza a IV.1. ábrán látható. Az alkalmazott fényforrásvé fotoakusztikus kamrák ismertetése rendre a II.4.c., illetve II.5. fejezetekben találhatók. A modulált lézerfény először a mérő, majd a referencia fotoakusztikus kamrán haladt keresztül. A két (AR ablakkal ellátott, kétrezonátoros) kamra (II.11. ábra) felépítése azonos. A referencia kamra után a fénysugár hullámhossz mérés céljából egy rácsos spektrométerbe (Carl Zeiss, Jena, PGS2) jutott. A fotoakusztikus kamrák mérő és referencia mikrofonjainak jeleit egy saját fejlesztésű előerősítő felerősítette, majd a lock-in erősítő mérete és a további feldolgozás céljából egy számítógép mentette el.

A kísérletekhez szükséges gázeleget elállítására 100 % szén-dioxid, 100 % argon, 100 % nitrogén tartalmú gázpalackokat használtam, amelyek tisztasága 99,995 % volt. A megfelelő összetételű gázáramok elállítását tömegáramlási szabályozókkal (Tylan General) végeztem. A különböző koncentrációjú mintákat véletlenszerű sorrendben állítottam elő. A mérések alatt a vizsgált gázminta 200 cm³/perc áramerőségellé áramolt a mérő fotoakusztikus kamrán keresztül. A referencia kamrát tömöny szén-dioxidtal töltöttem fel. A mérések során a gáznyomás a kamrákban atmoszférnik volt.

Első lépésként felvettem tiszta CO₂ spektrumát 1431–1432 nm hullámhossz tartományon és összehasonlítottam a HITRAN adatbázisban szereplő spektrummal. Jó egyezést találtam a mért és az irodalmi spektrum között (IV.2. ábra). A CO₂ fotoakusztikus mérésére a továbbiakban az 1431,4 nm hullámhosszon lévő abszorpcióis vonalat választottam.

IV.2. ábra. A 100 % CO₂ mért (folytonos fekete görbe) és a HITRAN adatbázis segítségi végtelen számított (folytonos kék görbe) spektrumai

IV.2. A rendszer kalibrációja

A fotoakusztikus rendszer kalibrálása céljából a szén-dioxidot különböző arányokban kevertem először argonnal, majd nitrogénnel külön-külön oly módon, hogy az elállított gázkeverék szén-dioxid koncentrációja 0 és 100 % közötti értékeket vett fel. Mivel a fotoakusztikus jel, azaz a hang sebessége függ a közeg összetételétől, minden egyes elállított gázösszetétel tőlettem a fotoakusztikus kamrák (akusztikus) rezonancia görbéit. Méréseim
alapján megállapítható, hogy a mérő kamra rezonancia-frekvenciája 3010 és 4010 Hz között változott a gázösszetételtől függően. Mivel a referencia kamra 100 % szén-dioxidot tartalmazott, ennek rezonancia-frekvenciája mindig 3010 Hz volt. A spektrumok felvétele előtt a lézer modulációs frekvenciáját a mérőkamra mért akusztikus rezonancia-frekvenciájára állítottam. A mért fotoakusztikus spektrumok lefedték az 1431,3 – 1431,5 nm hullámhossz tartományt. Minden egyes hullámhosszon felvettem mind a mérő, mind a referencia kamra fotoakusztikus jelén amplitudóját és fázisát, valamint a piezo-lépőtő aktuális feszültségét.

A tömény szén-dioxiddal töltött referencia kamra a mérések során fontos szerepet töltött be. Egyrészről, referenciaként szolgált a lézer hullámhosszának pontos meghatározásában, ugyanis alacsony gázkoncentrációk, vagy több abszorbeáló gázkomponens mérése során nem mindig egyértelmű a mért kívánt gáz abszorpciós maximumának pontos helyzete. Ennek megfelelően a referencia kamrában mért fotoakusztikus jel alapján meghatározott karakterisztikus hullámhosszakon rögzített mérőkamra fotoakusztikus jelét használtam fel a kiértékeléseknél. Másrészről, az optikai teljesítmény ingadozásának kiküszöbölésére használtam a referencia kamrában mért fotoakusztikus jel alapján meghatározott karakterisztikus hullámhosszakon rögzített mérőkamra fotoakusztikus jelét. A tömény szén-dioxid szelepek és fotocoagulációk az állapot mérése során fontos szerepet töltött.

Az 1431,4 nm hullámhosszú foton elnyelésével a CO₂ molekula a (0,0,3) gerjesztett állapotba kerül, ahonnan a kísérleti körülményekből függően kétféle útvonalon juthat vissza alapállapotába [116]. Az egyik lehetséges útvonal szerint ütközik az alap- vagy már gerjesztett állapotba lévő N₂ molekulákkal, ami a CO₂ molekulákat először a (0,0,2), majd újabb
ütközés révén a (0,0,1) állapotba juttatja, a felesleges energia, pedig a N₂ molekula valamelyik vibrációs gerjesztett állapotában tárolódik. Az ütközés időskálája a ps tartománya esik [116]. A (0,0,1) gerjesztett állapotú CO₂ molekula energiája az előző bekezdésben ismertetették szerint ütközéses vibrációs-transzlációs energiacserevel az alapállapotú N₂ molekula hosszú élettartamú legalacsonyabb gerjesztett vibrációs állapotában tárolódik. A CO₂ molekula (0,0,3) gerjesztett állapotának másik lehetséges relaxációja a rezonáns energiacsere N₂ molekulával 7000 cm⁻¹ hullámszám környékén. A CO₂ molekula 3v₃ gerjesztett energiaátszájának hullámszámában kifejezett középpontja 6986,2 cm⁻¹ [117]. A N₂ molekula (v₀=2330,7 cm⁻¹) alapátmenetének [118] és (v₁=14,06 cm⁻¹) anharmonikus tényezőjének alapján, ezen alapátmenet második felharmonikusa 7030,5 cm⁻¹ hullámszámon található. Tehát a két vibrációs felharmonikus sáv közötti energiakülönbség mindössze 44 cm⁻¹. Mivel a rezonáns energiaátadás energiakülönbsége kisebb, mint a termális gerjesztés energiája, ami szobahőmérsékleten nagyjából 200 cm⁻¹, az energiaátadás csakugyan lejátszódhat. A keletkező magasabb vibrációs felharmonikus állapotú N₂ molekulák nagyon rövid idő alatt jutnak a hosszú élettartamú első gerjesztett vibrációs állapotukba. A fentiek alapján kijelenthető, hogy mindkét relaxációs útvonal ugyanabban a gerjesztett N₂ állapotban végződik. Abban az esetben, ha a N₂ molekulák száma nagymértékben meghaladja a CO₂ molekulákét, az abszorbeált fényenergia jelentős mennyisége a N₂ molekula első vibrációs gerjesztett állapotában halmozódik fel. Ezen állapot lassú relaxációja csökkenti a fotoakusztikus jel nagyságát [58].

IV.3. ábra. A kalibrációs görbék ábrázolása 0 - 10 % CO₂ tartományban N₂ (●) és Ar (▲) vivőgázok esetében. Az ábrázolt szórás 3σ értéknek felel meg.
Magasabb CO₂ koncentrációkon (10 % felett) száraz nitrogénben felvett kalibrációs görbe nemlineárisá válik, mivel csökkent a nitrogénmolekulák száma, amelyekkel a gerjesztett állapotú CO₂ molekulák ütközhetnek, és ezzel párhuzamosan csökkent a N₂ molekulákban tárolt energia mennyisége. Száraz argonban felvett CO₂ kalibrációs görbe a teljes koncentráció tartományban lineáris maradt (IV.4. ábra).

![IV.4. ábra. A CO₂ argon (▲) és N₂ (●) vívógázban felvett kalibrációs mérési pontjai. Argon vívógáz esetében egyenes illeszthető a kalibrációs pontokra (—).](image)

IV.3. Vízgőz hatása a molekuláris relaxációra

Az előzőekben ismertetették szerint a vízgőzmolekulák hatékonyan elősegíthetik a vibrációs állapotok relaxációját [118]. Ennek igazolása céljából a mérési elrendezést (IV.1. ábra) egy vízmellett üvegküvettelel egészítettem ki, ami a gázkeverék szabályozott mértékű felnedvesítését valósította meg. Mivel a gázáram nedvességtartalma erősen függ a környezet hőmérsékletétől, a küvetta stabil hőmérsékletét (24,0 ± 0,1°C) egy hőfokszabályozó biztosította. Ezen a hőmérsékleten a telített vízgőz koncentrációja 3,70 (± 0,02) %. Továbbá, a rendszert kiegészítettem egy nitrogén vívógázban 1% CO₂ tartalmú gázpalackkal, amellyel az alacsony koncentrációs méréseket végeztem. A módosított rendszer sematikus ábrája a IV.5. ábrán látható.

Először felvettem nitrogén vívógáz telített vízgőz spektrumát 1431-1432 nm hullámhossz tartományon és összehasonlítottam a CO₂ spektrumával (IV.6. ábra). Az ábrán jól látható...
IV.5. ábra. A kiegészített mérési elrendezés sematikus ábraja

IV.6. ábra. 100 % CO₂ (folytonos fekete görbe) és N₂ vivőágban lévő telített vízgőz (szaggatott kék görbe) mért spektrumai. λ₁ és λ₂ a kiértékeléshez felhasznált karakterisztikus hullámhosszak.
szik, hogy a kiválasztott CO₂ vonal (\(\lambda _2 = 1431,4 \) nm) két szomszédos vízgőzvonalk közötti lokális minimumban található. Ezek után felvettem nitrogén vivőgázban lévő 1 % CO₂ koncentrációjú felnedvesített gázmintá spektrumát (IV.7. ábra). A szaggatott vonallal ábrázolt görbe a referenciakamrában lévő tömény CO₂ mért amplitúdó-spektruma. Az ábra alapján kijelenthető, hogy a nedvesítés hatására jól kivehető válík a CO₂ abszorpciósvonala, azonban ezzel párhuzamosan megjelenik a vízgőz abszorpciósvonala is. A jelentkező spektrális átfedés miatt a fentiekben használt kiértékelési eljárás már nem alkalmazható, ezért a következő fejezetben részletezett módosított kidolgozási eljárást alkalmaztam.

IV.4. Nedves gázminták kiértékelési módszere

Az eddigiekben ismertetettek szerint a szén-dioxidot tartalmazó nitrogén gáz felvizesítése eredményeként a CO₂ relaxáció hatása megszűnt, és várható, hogy a rendszer érzékenysége jelentősen megnő. Ugyanakkor a felvizesítés hatására spektrális interferencia lép fel. Ezért a potenciálisan megnövelt érzékenységi mérések tényleges megvalósításához szükség van egy olyan eljárás kidolgozására, amellyel a fellépő spektrális interferencia kiküszöbölhető, azaz az 1431,4 nm hullámhosszon a teljes fotoakusztikus jelből (\(J(\lambda _2)\)) megkülönböztethető a CO₂ (\(C(\lambda _2)\)), illetve a vízgőz (\(V(\lambda _2)\)) járuléka. Megjegyzendő, hogy míg a vízgőz hozzájárulása a fotoakusztikus jelhez felhasznált karakterisztikus hullámhosszak.

IV.7. ábra. Nedves nitrogén (■) vivőgázban felvett 1 %-os CO₂ spektruma 1431,4 nm hullámhosszon. A referenciakamrában lévő tömény CO₂ spektrumát szaggatott fekete görbe jelöli. \(\lambda _1\) és \(\lambda _2\) a kiértékeléshez felhasznált karakterisztikus hullámhosszak.
lehet meghatározni. Abban az esetben, amikor nedves gázok vízgőz tartalma teljesen állandó, a CO₂ hozzájárulása a mérhető fotoakusztikus jelhez könnyen meghatározható, ugyanis a mért fotoakusztikus jelből ki kell vonni a vízgőz fotoakusztikus \(V(\lambda_2) \) jelét. Azonban, mivel a vízgőz koncentráció még a temperált nedvesítő küvettában is változhat (hiszen a ±0,1°C hőmérséklet instabilitás 24°C-on nagyjából 260 ppm vízgőzkoncentráció-ingadozást eredményezhet), az éppen mért aktuális vízgőztartalom pontos meghatározásához párhuzamos méréseket kell végezni egy megfelelő referencia hullámhosszon, ahol a CO₂ abszorpciójából származó fotoakusztikus jel elhanyagolható a vízgőz jeléhez képest. Referencia hullámhossznak a CO₂ 1431,4 nm hullámhosszon lévő abszorpciós maximumát közvetlenül megelőző minimumot választottam és a IV.6. és IV.7. ábrákon \(\lambda_1 \)-gyel jelöltem \((C(\lambda_1) \approx 0) \). A CO₂ mentes nedves nitrogénten történő mérések során az aktuális vízgőz-koncentráció eltérésről számot adó \((J(\lambda_1)/V(\lambda_1)) \) hányados tallal megszorozva a \(V(\lambda_2) \) értéket, a vívógáz vízgőz-koncentrációtól függő hozzájárulását a következő módon vontam ki a mért fotoakusztikus jelből \((J(\lambda_2)) \):

\[
C(\lambda_2) = J(\lambda_2) - J(\lambda_1)V(\lambda_2)/V(\lambda_1).
\]

Megjegyzendő, hogy ez az egyenlet csak abban az esetben érvényes, ha minden egyes fotoakusztikus jel fázisát is figyelembe vesszük. Ez oly módon történhet, hogy a mért amplitúdó és fázisértékek ből kiszámoljuk a fotoakusztikus jel x és y koordinátáját, ezekkel végezzük el a fenti számolást, majd a kapott x és y koordinátákat visszaalakítjuk amplitúdó értékekké.

IV.8. ábra. Nedves N₂ (●) vívógázban lévő CO₂ kalibrációs egyenese a 0 - 10 % CO₂ tartományban. Az ábrázolt szórás 3σ értéknek felel meg.
A fenti (30) egyenlettel számolt \(C(\lambda_2) \) értéket tekintettem az adott \(CO_2 \) koncentráció-hoz tartozó fotoakusztikus jelként. Az így kapott kalibrációs görbe (alacsony \(CO_2 \) koncentrációkon) a IV.8. ábrán látható. Az ábrázolt hibahatárok az ismételt mérések 3\(\sigma \) szórásnak felelnek meg. A kalibrációs egyenes meredeksége 0,41 nV/ppm értéknek adódott [115], ami közel egy nagyságrenddel nagyobb, mint amit száraz nitrogén vívőgázban lévő szén-dioxidra kaptam (0,043 nV/ppm). Ennek ismeretében nedves nitrogén vívőgázban a legkisebb kimutatható \(CO_2 \) koncentráció 1150 ppm [115]. Már a IV.7. ábra alapján is megállapítható, hogy nitrogénben lévő \(CO_2 \) mérésére szolgáló fotoakusztikus rendszer érzékenysége nagymértékben meg-növelhető a vívőgáz szabályozott nedvesítésével.

![IV.9. ábra. Felnedvesített nitrogén vívőgázban levő 1\% \(CO_2 \) fázis-spektruma (■) 1431,4 nm hullámhossz környékén. A referenciakamrában lévő 100 \% \(CO_2 \) mért spektrumát szaggatott kék görbe jelöli. \(\lambda_1 \) és \(\lambda_2 \) a kiértékeléshez felhasznált karakterisztikus hullámhosszak.](image)

Megjegyzendő, hogy a kalibrációs görbék (IV.3. és IV.7. ábrák) meredekségei alapján nedves nitrogén vívőgázban nagyobb érzékenység érhető el, mint argon vívógáz esetében. Ez azzal magyarázható, hogy argon gázban a gerjesztett \(CO_2 \) molekulák relaxációja alapállapotba egy viszonylag hosszabb élettartalmú köztes állapoton keresztül történik, ami a fotoakusztikus jel intenzitásának nemi csökkenését eredményezi [58]. Ezt a viszonylag lassú relaxációt vízgöz jelenléte felgyorsította.

Megjegyzendő továbbá, hogy nedves nitrogén vívőgáz esetében alternatív módszer-ként a \(\lambda_1 \) és \(\lambda_2 \) hullámhosszakon mért fotoakusztikus jelek fáziskülönbsége (IV.9. ábra) is felhasználható a \(CO_2 \) koncentrációjának meghatározásához. A kapott kalibrációs egyenes mere-
deksége 0,0014°/ppm, a fázis-meghatározás szórása, pedig 3σ = 4°, amiből a legkisebb meg-
határozható koncentráció 2850 ppm.

IV.5. A CO₂ mérés gyakorlati alkalmazhatósága 1431,4 nm hullámhosszon

A szén-dioxid bizonyos ipari folyamatok egyik fő szennyezőanyaga és döntő szerepet játszik biológiai rendszerek működésében is. A gyakorlati alkalmazásban lehet, hogy nem keltene nagy érdeklődést egy kizárólag szén-dioxid mérésére alkalmazásak fotoakusztikus rend-
szer, ugyanis egy diódalézer alapú fotoakusztikus mérőkészülék sokkal drágább, mint pl. a nemdiszperzív infravörös CO₂ detektorok. Azonban, határozott az érdeklődés olyan mérő-
rendszerek iránt, amelyek egyetlen lézeres fényforrás felhasználásával alkalmazásak gázkeveré-
kek több komponensének (kvázi) egyidejű detektlására.

IV.10. ábra. A CO₂ abszorpciós vonalai a közeli infravörös hullámhossz tartományban

A HITRAN adatbázis szerint [117] a közeli infravörös tartományban három lehetséges hullámhossz tartományon (2000, 1600 és 1430 nm környéke) mérhető a CO₂ (IV.10. ábra). A legerősebb abszorpciós vonalak 2000 nm környékén találhatóak, azonban ezen a hullámhosz-
azon sugárzó diódalézerek magas ára akadályozza ipari alkalmazásukat. A két másik hullám-
hossz tartományon emittáló diódalézerek kereskedelmi forgalomban kaphatók. Ezek a hullámhosszakon a CO₂ abszorpciós vonalainak erőssége azonos nagyságrendű, azonban az 1430 nm környékén lévő vonalak kb. háromszor olyan erősek, mint az 1580 nm környékeik.

Ez a két különböző hullámhossz tartomány tulajdonképpen lehetőséget nyújt eltérő összetétele-
lű gázok CO₂ tartalmának mérésére. 1550 nm környékén az ammonia, a kén-hidrogén és a
szén-monoxid mérhető párhuzamosan a szén-dioxiddal, míg 1430 nm környékén a vízgőz erős abszorpciói vonalai mellett a szénhidrogének is detektálhatók. Az utóbbi hullámhosszon történő CO₂ mérés a későbbi esetleges földgáziparban való alkalmazhatósága miatt előnyősebb.

Az előző fejezetekben ismertetett módon 1431,4 nm hullámhosszra kapott minimálisan detektálható CO₂ koncentrációkat 1 mW teljesítményű diódalézer alkalmazásával értelmezve, Ma már kapható ugyanerre a hullámhosszra 40 mW teljesítményű diódalézer, amelyel az általam kifejlesztett fotoakusztikus rendszerrel elérhető 30 - 40 ppm legkisebb kimutatható CO₂ koncentráció már sok alkalmazási lehetőségehez elégséges lenne. Ez azonban csak elméleti határ, nem szabad megfeledkezni arról, hogy a jelenlegi körülmények alapján az amplitudó-spektrumból meghatározott fotoakusztikus jel bizonytalansága ötször nagyobb, mint a fotoakusztikus mérésekakusztikus háttérzaját (<100 nV). Ez a viszonylag nagy szórás a hozzáadott vízgőz-koncentráció bizonytalanságából származik. Annak ellenére, hogy a vízgőz-koncentráció ingadozásának közvetlen hatását a fotoakusztikus jelre az (30) egyenlet alkalmazásával kiküszöböltettem, annak közvetett hatása – a vízgőz-koncentráció CO₂ relaxációs hatásfokára gyakorolt befolyása – még jelen volt. Ebből kifolyólag a rendszer érzékenységének növeléséhez egy pontosabb hőmérséklet stabilitáson alapuló nedvesítési módszer alkalmazására van szükség.

Ki kell hangsúlyozni, hogy a tapasztalt molekuláris relaxáció ugyan szükségessé teszi a nitrogén gázáram nedvesítését, ennek ellenére a fentiekben leírt rendszerrel lehetséges a bejövő gáz minta vízgőz-koncentrációjának mérése is. Ebből a célból még egy fotoakusztikus kamrát kellene a fényútba helyezni, amelyen a nedvesítetlen gázmintát áramolva keresztül. A gázáram az első mérő kamra után jutna a nedvesítőbe, majd a második fotoakusztikus kamrába a CO₂ mennyiségének mérése céljából. Alternatív megoldást jelentene a gázáram megfelelően megfelelően helyezése, az egyik ág a nedvesítőn keresztül áramolna az egyik fotoakusztikus kamrába, míg a másik ág nedvesítés nélkül egy másik fotoakusztikus kamrába.

IV.6. Összefoglalás

Egy külső rezonátoros diódalézeren alapuló fotoakusztikus rendszert építettem a CO₂ 1430 nm hullámhosszon előforduló molekuláris relaxációjának tanulmányozására, illetve módszert dolgoztam kis annak kiküszöbölésére. A molekuláris relaxáció csökkenti a mérés érzékenységét abban az esetben, ha száraz nitrogént használtam vívőgázként. A gázáram sz-
bályozott nedvesítésével azonban a fotoakusztikus jel felerősíthető és végső fokon nagyobb
érzékenység érhető el, mint száraz argon vivógáz alkalmazása esetében.

A szén-dioxid és a vízgőz spektrális átfedése miatt egy több hullámhosszon történő
mérési módszert dolgoztam ki a szén-dioxid koncentráció meghatározására. Ezzel a módszer-
rel kapott minimálisan detektálható koncentráció érték alacsonyabb, mint amit a fázisértékek
felhasználásával kaptam. A rendszer továbbfejleszthető a nedvesítési módszer szabályozásá-
nak tökéletesítésével, illetve egy nagyobb teljesítményű diódalézer alkalmazásával. Ez a
munka jó példa a referencia kamra használatának jelentőségére, mind pontos hullámhossz
meghatározó, mind pedig a lézer teljesítmény és hullámhossz ingadozásából származó bi-
zonytalanságok csökkentésének eszköze. A leírt rendszer multikomponens analízisek elvégzé-
sére is alkalmazható.
V. ÁRADÁSRA REZISZTENS ÉS ÉRZÉKENY RIZSPALÁNTÁK ANYAGCSERÉJÉNEK (ALKOHOLOS ERJEDÉSÉNEK) VIZSGÁLATA ANAEROB ÉS MIKRO-AEROB KÖRÜLMÉNYEK KÖZÖTT

V.1. Anyagok és módszerek

V.1.a. A mérésekhez használt növényi minták (csíráztatás, nevelés, előkészítés és utónevelés)

A kísérleteimhez felhasznált áradással ellenálló, ugyanakkor rossz terméshozamú *Oryza sativa* L. cv. FR13A, és az áradásra érzékeny, de jó terméshozamú CT6241 rizsfajták magjai a thaiöldi IRRI Bangkoki Hivatal munkatársától, Dr. S. Sarkarungtól származtak. A magokat csíráztatás előtt 10 percig sterilizáltam nátrium-hipoklorid (NaOCl) 1 %-os vizes oldatával, majd 5 perces csapvízzel való átmosás után 110 mm átmérőjű szűrőpapírral bélelt Petri-csészébe helyeztem, 15 ml csapvíz hozzáadásával. A csíráztatás inkubátorban 30°C hőmérsékleten és 65 % relatív páratartalom mellett, fény jelenléte nélkül történt. Az 1 cm hosszú csírahajtással rendelkező magokat neveltálca (30x20x15 mm) ültettem, ami fekete színű, lapos, kerek, kis sűrűségű polietilén szemcsékkel és pH:5,0 tápoldattal (fő tápanyagok: 0,849 mM KH$_2$PO$_4$; 0,123 mM K$_2$HPO$_4$; 1,428 mM NH$_4$NO$_3$; 0,754 mM CaCl$_2$·2H$_2$O; 0,513 mM K$_2$SO$_4$; 1,644 mM MgSO$_4$·7H$_2$O; mellék tápanyagok: 9,5 µM MnCl$_2$·4H$_2$O; 18,89 µM H$_3$BO$_3$; 0,156 µM CuSO$_4$·5H$_2$O; 0,152 µM ZnSO$_4$·7H$_2$O; 7,484·10$^{-5}$ µM (NH$_4$)$_6$Mo$_7$O$_24$·4H$_2$O és 35,75 µM FeEDTA) [119] volt feltölve. A csíranövények az első két napon keresztül 25 %-os tápoldatban, majd az ezt követő két napon keresztül 50 %-os tápoldatban nevelkedtek, és csak ezután kerültek 100 %-os tápoldatba, amit a továbbiakban kétnaponta cseréltem. A tápoldat oxigén ellátása a neveltálca alján elhelyezett áthyuggatott szilikon gumiből készült, a legvégén lezárt csövezeték levegővel történő folyamatos befúvásával valósult meg. A növények nevelése 12 óra fény (500 ȝmol m$^{-2}$ s$^{-1}$) / 12 óra sötétség periódusban, 28/22°C hőmérsékleten és 60-65 %-os relatív páratartalom mellett történt a V.1. ábrán látható ún. nevelőszekrényben. Automatikus kapcsoló szabályozta a fényt biztosító lámpa (Philips SON-T Agro400) be- és kikapcsolását.

A kísérletekhez 14 napos rizsnövényeket használtam, amelyek tömegét mindig közvetlenül az adott kísérlet előtt métem meg, ez az érték a FR13A esetében átlagosan 0,35 g FW (fresh weight – friss tömeg) volt palántánként, míg a CT6241 esetében 0,2 g FW. A nagyobb mennyiségű mintagáz előállítása, valamint az egyedek közötti sajátosságokból eredő eltérések csökkentése céljából a kísérleteket nem egyetlen rizspalántán, hanem három növényből álló
ún. „csokron” végeztem. A növényeket üveg küvettába (56 ml) helyeztem, melynek alján kb. 5 ml csapvíz lepte el a gyökereket.

A kísérletek elvégzése után a növényeket visszahelyeztem a nevelőtálcába, hogy 7 nap elteltével megvizsgálhassam a kísérletek a növényekre kiféjtett káros hatását. Egyrészről arra voltam kíváncsi, hogy vajon a növények túlélik-e a kísérleteket és képesek lesznek-e új levél vagy levelek növesztésére, másrészről pedig a károsodások mértéke és megjelenési formája érdekelt.

V.1. ábra. Fénykép a rizsnövények nevelésére használt nevelőszekrényről

V.1.b. A mérési eljárás

Természetes körülmények között a teljesen elárasztott rizsnövények csak extrém esetekben találkoznak anoxiával (teljes oxigénhiány), például az éjszaka alatt, és különösen a gyökerekben, amikor a növény nem végez fotoszintézist. Nappal csak abban az esetben fordul elő anoxia, ha a víz nagyon zavaros, vagy ha az áradás már huzamosabb ideje fennáll. Az árasztó víz tehát általában nem teljesen anaerob, hanem tartalmaz némi oxigént. A tapasztalat azonban azt mutatja, hogy ilyen áradási körülmények között is nagyobb az FR13A áradást türelmesege, mint a CT6241 vagy más egyéb érzékenyebb fajoké [83, 84]. A szántóföldeken uralkodó körülmények esetében az áradó víz akár oxigénnel tültelített is lehet, azonban még ilyen esetekben is károsító hatású [81]. Mivel egyértelmű különbség nem állapítható meg az FR13A és CT6241 rizsfajták különböző ideig tartó gáz fázisú anaerob körülmények hatásá-
ra bekövetkező erjedési folyamatában [85], megvizsgáltam, hogy a termőföldeken tapasztalt részleges oxigénhiány hatására termelt anyagcseretermékek mennyisége vajon mutat-e összefüggést a rizsnövények áradást tűrő képességével.

Áradás alkalmával a rizsnövényeket két drasztikus környezeti változás éri. Először az aerob környezet anaerob környezetté válása az áradás megjelenésekor, majd az ezt követő aerob körülményekre történő visszaállás a víz visszahúzódása után. Az áradás laboratóriumi körülmények közötti demonstrálásához a rizsnövényeket vízzel kellett volna ellepni. Ebben az esetben azonban a rizsnövény fermentációs folyamatáról és ennek dinamikájáról semmilyen információt sem kaptam volna, ugyanis a kibocsátott gázok feloldódnak a növényt ellepő vízben. Ennek elkerülése céljából az áradás jelenségéért különböző összetételi gázáramok alkalmazásával helyettesítettem. A gázáram elvégezte a növények által kibocsátott anyagcseretermékek detektálási helyre történő szállítását is. Az alkalmazott gázáramok szintetikus levegő, nitrogén vagy levegő és nitrogén megfelelő arányú keverékéből álltak.

A fentieknek megfelelően ötféle kísérletsorozatot hajtottam végre mind a két rizsfajtán: fény jelenléte nélküli aerob, anaerob, mikro-aerob, mikro-aerob – anaerob, valamint fényjelenlétében végzett anaerob kísérletek. Minden egyes kísérlet három szakaszból tevődött össze.

(i) A fény jelenléte nélküli aerob kísérletek során a rizsnövényeket tartalmazó küvetten mindvégig szintetikus levegő áramlott keresztül.

(ii) A fény jelenléte nélküli anaerob kísérletek körülménye egy órás aerob körülmények – szintetikus levegőt (kb. 21 % O₂) áramlott a növényeket tartalmazó küvetten keresztül – közötti megfigyeléssel kezdődtek. Ezt követte a 8 órán át tartó anaerob kezelés, amikor 100 % N₂ gáz áramlott a növényeket tartalmazó küvetten keresztül. Végül, pedig ismét aerob körülmények (szintetikus levegő) biztosítása a küvetten kb. 6 órán keresztül.

(iii) A fény jelenléte nélküli mikro-aerob kísérletek is kb. egy órás aerob körülményekkel kezdődött. Ezt követte a 8 órán át tartó ún. mikro-aerob (különböző alacsony O₂ koncentrációjú: 0,05; 0,10; 0,15; 0,20; 0,25; 0,30; 0,35 és 0,50 %) kezelés, majd ismételtelen az aerob körülmények biztosítása kb. 6 órán át.

(iv) A fény jelenléte nélküli mikro-aerob – aerob kíséret szintén egy órás aerob körülményekkel kezdődött. Ezt követte a 0,05 % O₂ koncentrációjú kezelés, amit 5 óra elteltével anaerob körülmények váltottak fel.

(v) A fény jelenlétében végzett anaerob kísérletek gázkezelése megegyezett a fény nélküli anaerob kísérletek során alkalmazottal, azaz kezdeti 1 órás aerob kezelés, majd 8 órás
anaerob kezelés, és végül a kb. 6 órás aerob kezelés. Ebben az estben azonban két fényintenzitás alkalmazása (220 és 560 μmol m⁻² s⁻¹) mellett történtek a mérések, a fotoszintézis anaerob körülményekre kifejlett hatásának vizsgálata céljából.

A fény nélküli kísérletek során a mintatartó küvettákat alumínium fóliával burkoltam be abból a célból, hogy a fény jelenlétében lejátszódó fotoszintézis és annak termékei semmilyen módon se befolyásolhassák a kísérletek eredményeit.

Fény jelenléte nélkül 16 órán keresztül aerob körülményeknek kitett rizsnövények anyagcseretermékeinek mérési eredményeit használtam referencia értékeknek.

Minden egyes mérést legalább háromszor ismételtem meg. Az etanolnak, mint végterméknek és az acetaldehidnek, mint köztes terméknek folyamatos mérésével nyomon lehetett követni az erjedési folyamat dinamikáját.

V.1.c. A mérési elrendezés

A rizspalánták által a gázáramba bocsátott fermentációs anyagcseretermékek – acetaldehid esetében 0,1 nl l⁻¹, etanol esetében pedig 3 nl l⁻¹ érzékenységű – detektálását CO gázlézer (II.4.a. fejezet) alapú fotoakusztikus rendszerrel végeztettem. Mivel a CO lézer rezonátorában három Brewster-ablakkal ellátott fotoakusztikus kamra helyezkedett el (II.5. fejezet és II.12. ábra), egyszerre három gázáram koncentráció analízisét tudtam elvégezni. A mért fotoakusztikus jelek intenzitása a növények aktuális gázkibocsátási sebességének felel meg, etanol esetében valószínűleg módosítva, azaz késleltetve a növény szövetbeli elraktározásával. Ez a lehetséges tárolási effektus azonos fajhoz tartozó növényi kultúrák összehasonlítása esetében azonban nem játszik szerepet, hiszen hatása egyformán vehető.

Mivel a fotoakusztikus mérőkamrában különböző gázok keveréke található és minden egyes gáz adott abszorpciós vonalának erőssége különböző, a II.6.a. fejezetben ismertetett multikomponens gázanalízist alkalmaztak [120]. A mérésekhez felhasznált CO lézervonalak (II.6. ábra) hullámhosszai, valamint az acetaldehid, az etanol, a szén-dioxid és a vízgőz abszorpciós együtthatója az alkalmazott lézervonalakon a V.1. táblázatban láthatók.

A gázáram szén-dioxid és az oxidén tartalmának mérése, az acetaldehid és etanol mérésekkel párhuzamosan történt egy kereskedelmi forgalomban kapható 1 μl l⁻¹ érzékenységű infravörös CO₂ analizátor segítségével, amely készülék egy 0,01 % érzékenységű elektrokémiai oxigénszenzort is tartalmazott (URAS 14, Hartmann & Braun, Frankfurt, Németország).
V.1. táblázat: Az acetaldehid, az etanol, a szén-dioxid és a vízgőz abszorpciós együtthatói a mérések során alkalmazott lézervonalakon.

<table>
<thead>
<tr>
<th>Lézervonal</th>
<th>Hullámhossz [μm]</th>
<th>Abszorpciós együttható [atm⁻¹ cm⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(7)₇</td>
<td>5,172</td>
<td>CO₂: 4,74E-3 Acetaldehid: 0,116</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H₂O: 0,00994 Etanol: 0,135</td>
</tr>
<tr>
<td>P(11)₁₃</td>
<td>5,664</td>
<td>4,6E-6 30,1 0,0264 0,0279</td>
</tr>
<tr>
<td>P(11)₁₉</td>
<td>6,188</td>
<td>4,2E-6 0,424 0,485 0,021</td>
</tr>
<tr>
<td>P(8)₂₈</td>
<td>7,108</td>
<td>2,8E-5 6,5 0,0163 2,35</td>
</tr>
<tr>
<td>P(8)₂₉</td>
<td>7,231</td>
<td>9,57E-5 5,95 0,0133 2,06</td>
</tr>
<tr>
<td>P(11)₂₄</td>
<td>6,694</td>
<td>6,3E-8 0,962 0,03597 0,221</td>
</tr>
</tbody>
</table>

V.2. ábra. A rizspalánták erjedési anyagcseretermékeinek dinamikus mérésére használt fotoakusztikus rendszer sematikus felépítése, az egyszerűsedés kedvéért egyetlen fotoakusztikus kamra gázkezelésének feltüntetésével. Az ábrán használt rövidítések:

MC: áramlásszabályozó; SZ: szelep; PE: Peltier-hűtőelem; HCS: hideg csapdázó; TM: teljesítménymérő; OR: optikai rács; PT: puffer tér fogat, R: fotoakusztikus kamra rezonátora; MIK: mikrofon; ASZ: akusztikus szűrő; BA: Brewster-ablak; LN₂: folyékony nitrogén; K: katód; A: anód; T: tükör; CH: fényszaggató; P: Piezo elem.

A küvetta be- és kimeneti csöve tette lehetővé a benne elhelyezett rizsalánták által termelt anyagcseretermékek gáz fázisú méréseinek megvalósítását. A megfelelő gázáramot (szintetikus levegő, 100 % nitrogén vagy alacsony oxigéntartalmú nitrogént) 2 l h⁻¹ áramlási sebességgel a küvetta bemenetére csatlakoztatott. A gázkimenetet az URAS (CO₂ és O₂ analizátor) készülékre kötöttem, ahonnan a mérendő mintagáz a kétlépésű víz kifagyasztása.
(Peltier-hűtő-element (-5°C) és hideg csapdázó(-45°C)) után jutott a lézerrezonátor belsejében lévő fotoakusztikus mérőkamrába. A mérési elrendezés sematikus rajza a V.2. ábrán látható (egyetlen fotoakusztikus kamra gázkezelésének feltüntetésével). Ilyen módon a növények által kibocsátott, illetve elhasznált gázok mennyiségét közvetlen módon nyomon tudtam követni anélkül, hogy a mintát közvetlen fizikai sérülés érte volna. A mikro-aerob kezelések megfelelő oxidén koncentrációjának előállításához levegő és nitrogén gázáramok különböző arányú keverése tömegáramlás-szabályozók segítségével történt. A fény jelenléte nélküli kíséletek kb. 22°C hőmérsékleten történtek. A különböző fényintenzitások (0, 220 és 560 μmol m⁻² s⁻¹) által kifejtett hatások vizsgálatánál a fényforrást egy Philips SON-T Agro400 lámpa biztosította, ami elkerülhetetlenül felmelegítette a küvetták levegőjének hőmérsékletét 25°C, illetve 27°C hőmérsékletre. A fény intenzitásának mérését Li-250 (Li-Cor Inc., USA) fényméréőr készülékkel végeztük.

Mivel a növényi minták kezelésére használt különböző összetételű gázáramok megváltoztatják a fotoakusztikus kamra akusztikus tulajdonságait beleértve a rezonanciafrekvenciáját is, hogy ezt elkerüljük, két párhuzamos gázáramot használtunk. Az egyik gázáram (pl. levegő) a növényi mintát tartalmazó küvettán, a másik gázáram (nitrogén vagy alacsony oxigéntartalmú nitrogén) pedig egy ugyanolyan, csak üres küvettán áramolt keresztül. Számítógép vezérelt szelep-rendszer biztosította, hogy a megfelelő gázáram adott ideig áramoljon az adott küvettán keresztül. A két gázáram egyesítés után 4 L h⁻¹ áramlási sebességgel jutott a fotoakusztikus kamrába. Attól függetlenül, hogy melyik gázáram melyik küvettán áramolt keresztül, a fotoakusztikus kamrába ugyanaz a gázkeverék jutott. Ez a gázkezelési elrendezés biztosította a mérőkamra állandó rezonancia-frekvenciáját.

Az eredmények megadásakor figyelembe vettem a kísérletekhez felhasznált növényi minta mennyiségét, azaz tömegét (g FW) és a gázáram áramlási sebességét (41 h⁻¹).

V.2. Mérései eredmények és következtetések

Az alábbiakban az öt elvégzett kísérletsorozat eredményeit fogom ismertetni.

V.2.a. Gázcseré aerob körülmények között

A 16 órán keresztül tartó aerob kísérlet, valamint a minden egyes kísérletsorozat kezdeti egy óráz aerob körülményei alatt mindkét rizsfajta (FR13A és CT6241) viselkedése azonos volt. Fény jelenlététől függetlenül egyik növényfajtában sem indult meg az erjedési fo-
lyamat. Konstans acetaldehid és etanol kibocsátási szinteket mértem, amelyek megfeleltek a fotoakusztikus háttérjelnek. Fény jelenléte nélkül, az aerob légzés következtében a CO₂ kibocsátás nagyjából 300 µl h⁻¹ g⁻¹ FW volt, míg fény jelenlétében kb. 300 µl h⁻¹ g⁻¹ FW volt a CO₂ megkötési sebessége.

V.2.b. Fény jelenléte nélküli anaerob kísérletek gázcserjeje

CO lézer lapú fotoakusztikus rendszerrel 14 napos CT6241 és FR13A rizspalánták acetaldehid és etanol kibocsátásának (V.3. és V.5. ábrákon ● jelű görbék, az elvégzett 4 - 5 mérések közül egyetlen jellemző mérési eredményt ábrázoltam) folyamatos méréssel nyomon lehetett követni az erjedési folyamat dinamikáját az anaerob körülmények alatt és azt követő szintetikus levegővel történő öblítés során.

A kísérletek során meghatározott karakterisztikus mérési eredmények, melyek rendre az V.2. - 4. táblázatok első sorában szerepelnek a standard deviáció értékeikkel együtt: (i) az erjedés anyagcseretermékeinek (acetaldehid és etanol) a kezelés kezdététől mért megjelenési ideje (V.2. táblázat), (ii) ezen anyagok kibocsátási sebessége a 8 órás kezelés végén (V.3. táblázat) és (iii) a kezeléseket követő levegővel történő öblítés során mért maximális értékeik (V.4. táblázat), valamint (iv) a CO₂ kibocsátási sebessége a 8 órás kezelés végén (V.3. táblázat). A megjelenési idő az anaerob körülmények létrehozásától mért időtartam addig a pillanatig, amíg a fermentációs anyagcseretermékek kibocsátási sebessége a háttérérték duplájára növekedett.

Az anaerob (0,0 % O₂) körülmények létrehozása után nagyjából fél órával megkezdődött az acetaldehid kibocsátás, amit kb. 10 perc késéssel követett az etanol kibocsátás (az V.3. és V.6. ábrán ● jelű mérési eredmények). Az erjedés valójában a mértőnél rövidebb idő alatt elindul, ugyanis technikai okok miatt nagyjából 20 percet vett igénybe az oxigén eltávolítása a növényt tartalmazó küvettából. Az acetaldehid kibocsátás gyorsan növekedett mind a két rizsfajtánál, majd egy konstans értéket ért el (FR13A estében 0,90 µl h⁻¹ g⁻¹ FW és CT6241 estében 0,70 µl h⁻¹ g⁻¹ FW), amit megtartott az anaerob kezelés végéig. Ezzel ellentétben az etanol kibocsátás folyamatosan növekedett az anaerob kezelés végéig, amikor elért az 55 µl h⁻¹ g⁻¹ FW értéke mindkét rizsfajta esetében. Ez az érték az acetaldehid kibocsátási sebességének 61- (FR13A), illetve 78-szorosa (CT6241).

Aerob körülményekről anaerob körülményekre történő áttérés alkalmával a mintatartó küvetta O₂ szintjének kiürülése gyorsan lejátszódott, az átváltás után 15 perccel az eredeti szint 0,05 %-ra esett vissza, majd néhány óra alatt a 0 %-ra csökkent. Ezzel párhuzamosan a
növény által kibocsátott CO₂ mennyiség kezdetben folyamatosan csökkent, majd stabilizálódott egy bizonyos értéken. Ez az érték az aerob légzés során kibocsátott CO₂ mennyiség kb. 30 %-ának felelt meg (V.3. táblázat). A V.4. ábrán látható a küvetta CO₂ (fekete színű görbe) és O₂ (piros színű görbe) tartalmának alakulása anaerob kezelés alatt és után (a CO₂ koncentrációja a bal oldali fekete, az oxigén pedig a jobb oldali piros skálán olvasható le).

![Kibocsátási sebesség diagram](https://via.placeholder.com/150)

V.3. ábra. A CT6241 rizspalánták alkoholos erjedés anyagcseretermékeinek (acetaldehid és etanol) kibocsátási sebessége levegőben (kb. 1 óra), majd a 8 órás 0,0 (●), 0,05 (◆), 0,15 (○), 0,25 (●) és 21 (●) oxigéntartalmú gáz fázisú kezelés alatt (szürke hátterű tartomány) és az azt követő szintetikus levegővel történő öblítés során. Minden egyes O₂ koncentráció elvégzett 4 - 5 mérések közül egyetlen jellemző mérési eredményt ábrázoltam.

A 8 órán át tartó anaerob kezeléseket követő szintetikus levegővel történő öblítés során mért acetaldehid és etanol kibocsátási sebessége a két rizsfajtánál hasonló volt (V.3. és V.6. ábrák szürke hátterű tartományt követő ● jelű része). A rizspalánták hirtelen bekövetkező és nagy mennyiségű acetaldehidet és etanolt bocsátottak ki (V.4. táblázat). Az acetaldehid kibocsátás nem szűnt meg a további 6 - 7 órán át tartó megfigyelések alatt, hanem bizonyos
Értéken stabilizálódott. Rizspalánták anaerob körülmények utáni acetaldehid kitörléséről már beszámoltak [85]. Ez a jellegzetesség megfigyelhető volt más növények esetében is [74, 75, 121], ami valószínűleg az etanol acetaldehidé történő peroxidációjának a következménye. Erről a fejezetben leírt szó. Az etanol kibocsátás sebessége a maximális érték elérése után egyenletesen csökkent mindkét rizsfajtánál. A mért széles etanol kibocsátási görbék azt bizonyítják, hogy az anaerob körülmények megszűnése után az erjedés még egy ideig fennmaradt és működött. Ezt a jelenséget alátámasztóan, ugyanis az oxigén újramegjelenésekor a CO₂ kibocsátás a kezdeti aerob érték alatti volt (V.4. ábra). A további megfigyelések során azonban a CO₂ kibocsátás növekvő tendenciát mutatott és a mérések befejezésekor gyakran elért a kezdeti aerob értéket. Ez arra utal, hogy a normál aerob légzés ugyan elindult, de az oxigén nélküli kezelés alatt bekövetkező károsodás(ok) következtében nem működött tökéletesen. A további megfigyelések, pedig az aerob légzési folyamat regenerálódását bizonyítják.

Hét nap elteltével a kísérleti körülmények káros hatásának vizsgálata során megállapítható, hogy minden egyes növény túlélte a kísérletet és képes volt új és egészséges levél vagy levelek növesztésére, azaz a túlélési arány mindkét fajta esetében 100%-os volt. A kísérletek során alkalmazott kedvezően körülmények azonban nyomott hagytak a már meglévő leveleken, amelyek a kísérlet befejezésekor még nem voltak láthatók. Csak néhány nap elteltével vált észrevehetővé a levelek dehidrálódása, ami a régi levelek megsárgulásában és a
levélhegyek elszáradásában nyilvánult meg. Az anaerob dehidráción mértéke az FR13A esetében kb. 20 %-os, míg a CT6241 palánták esetében 35 %-os volt.

V.2.c. Fény jelenléte nélküli mikro-aerob kísérletek gázcserje

A 14 napos rizspalánták acetaldehid és etanol kibocsátási sebességek folyamatos mérsével nyomon követtem az erjedési folyamat dinamikáját különböző mikro-aerob körülmények alatt és után. Jellegében hasonló görbéket kaptam mindkét rizsfajta esetében. Ezek közül néhány (a CT6241 esetében: 0,05 (), 0,15 (), 0,25 () és 21 () % O₂ koncentráció, míg FR13A esetében: 0,05 (), 0,10 (), 0,15 () és 0,20 () % O₂ koncentráció) mért görbe a V.3, ill. V.5. ábrán látható. Az adott oxigénkoncentrációból minden esetben elvégzett 4 – 5 mé-

![Diagram](image.png)

V.5. ábra. Az FR13A rizspalánták alkoholos erjedés anyagcseretermékeinek (acetaldehid és etanol) kibocsátási sebessége 1 órás aerob, 8 órán át tartó anaerob (), 0,05 (), 0,10 (), 0,15 () és 0,20 () % O₂ tartalmú mikro-aerob kezelés alatt (szürke hátterű tartomány), valamint az ezeket felváltó szintetikus levegővel történő öblítés során. Minden oxigénkoncentrációból elvégzett több mérésből egyetlen jellemző eredményt ábrázoltam.
rések közül egyetlen jellemző mérési eredményt ábrázoltam. A kísérletek során meghatározott karakterisztikus mérési eredmények, melyek rendre az V.2. - 4. táblázatok 2. sorától a 7., ill. a 9. sorág szerepelnek a standard deviáció értékeikkel együtt, megegyezett az anaerob kísérleteknek meghatározottakkal.

V.2. táblázat. A 14 napos FR13A és CT6241 rizspalánták által fény jelenléte nélkül az anaerob és a mikro-aerob (0,05; 0,10; 0,15; 0,20; 0,25 és 0,30 % O₂) kezelés esetében az acetaldehid és etanol megjelenési ideje a kezelés kezdetétől számítva. Minden egyes érték a többször megismételt mérési eredmények átlagértéke és azok standard deviációja.

<table>
<thead>
<tr>
<th>O₂ [%]</th>
<th>Acetaldehid megjelenési ideje [h]</th>
<th>Etanol megjelenési ideje [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FR13A</td>
<td>CT6241</td>
</tr>
<tr>
<td>0,00</td>
<td>0,43±0,02</td>
<td>0,31±0,03</td>
</tr>
<tr>
<td>0,05</td>
<td>2,45±0,04</td>
<td>0,85±0,03</td>
</tr>
<tr>
<td>0,10</td>
<td>3,17±0,12</td>
<td>2,22±0,08</td>
</tr>
<tr>
<td>0,15</td>
<td>4,06±0,25</td>
<td>2,51±0,18</td>
</tr>
<tr>
<td>0,20</td>
<td>4,60±0,19</td>
<td>3,58±0,35</td>
</tr>
<tr>
<td>0,25</td>
<td>5,25±0,05</td>
<td>4,39±0,54</td>
</tr>
<tr>
<td>0,30</td>
<td>5,35±0,05</td>
<td>4,72±0,05</td>
</tr>
</tbody>
</table>

V.6. ábra. A 14 napos FR13 (fekete színű oszlopok) és CT6241 (fehér színű oszlopok) rizspalánták acetaldehid és etanol megjelenési ideje a kezelés kezdetétől számítva

Az acetaldehid és etanol megjelenési ideje arányos az O₂ koncentrációval, azaz minél nagyobb volt a mikro-aerob kezelések O₂ tartalma, annál később jelent meg az acetaldehid és az etanol. Abban az estben, amikor a gázáram oxigéntartalma meghaladta a 0,3 %-ot egyik
rizsfajtában sem jelennek meg a fermentációs anyagcseretermékek a kezelés ideje alatt [122]. Továbbá, adott oxigénkoncentráció a fermentációs anyagcseretermékek megjelenési ideje az FR13A estében mindig meghaladta a CT6241-re vonatkozó értéket (V.2. táblázat és V.6. ábra).

A mikro-aerob körülményeknek megfelelő mennyiségű oxigén jelenléte nagymértékben befolyásolta az acetaldehid kibocsátásának dinamikáját, ugyanis az acetaldehid kibocsátás nem stabilizálódott (V.3. és V.5. ábrák), hanem konstans növekedést mutatott a 8 órás kezelés végéig. Az egyes kezelések oxigén tartalmának növekedésével az etanol kibocsátási sebessége csökkent, az acetaldehid kibocsátási sebessége azonban a 0,05 - 0,15 % O₂ tartományban meghaladta az anaerob körülmények végén tapasztalt értékeket (V.3. táblázat).

V.3. táblázat. A 14 napos FR13A és CT6241 rizspalánták által fény jelenléte nélkül mért acetaldehid, etanol és szén-dioxid kibocsátás sebessége a 8 órás anaerob, mikro-aerob (0,05; 0,10; 0,15; 0,20; 0,25; 0,30, 035 és 0,50 % O₂ koncentráció), illetve aerob kezelés végén. Minden egyes érték a többször megismételt mérési eredmények átlagértéke és azok standard deviációja.

<table>
<thead>
<tr>
<th>O₂ [%]</th>
<th>Acetaldehid [µl h⁻¹ g⁻¹ FW]</th>
<th>Etanol [µl h⁻¹ g⁻¹ FW]</th>
<th>CO₂ [µl h⁻¹ g⁻¹ FW]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FR13A</td>
<td>CT6241</td>
<td>FR13A</td>
</tr>
<tr>
<td>0,00</td>
<td>0,90±0,13</td>
<td>0,70±0,04</td>
<td>55±6</td>
</tr>
<tr>
<td>0,05</td>
<td>5,55±1,04</td>
<td>3,40±0,15</td>
<td>47±9</td>
</tr>
<tr>
<td>0,10</td>
<td>4,41±0,44</td>
<td>3,12±0,53</td>
<td>31±2</td>
</tr>
<tr>
<td>0,15</td>
<td>2,60±0,16</td>
<td>1,60±0,10</td>
<td>9,8±1,9</td>
</tr>
<tr>
<td>0,20</td>
<td>0,77±0,12</td>
<td>0,64±0,10</td>
<td>5,8±0,1</td>
</tr>
<tr>
<td>0,25</td>
<td>0,80±0,14</td>
<td>0,33±0,09</td>
<td>3,2±0,3</td>
</tr>
<tr>
<td>0,30</td>
<td>0,35±0,05</td>
<td>0,14±0,05</td>
<td>1,43±0,06</td>
</tr>
<tr>
<td>0,35</td>
<td>0,16±0,05</td>
<td>0,12±0,04</td>
<td>0,90±0,12</td>
</tr>
<tr>
<td>0,50</td>
<td>0,10±0,02</td>
<td>0,10±0,02</td>
<td>0,86±0,15</td>
</tr>
<tr>
<td>21,0</td>
<td>0,14±0,04</td>
<td>0,11±0,02</td>
<td>0,75±0,04</td>
</tr>
</tbody>
</table>

Aerob körülményekről mikro-aerob körülményekre történő áttérés alkalmával a minta-tartó küvetta O₂ és CO₂ alakulása hasonló volt, mint az aerob kísérletek során. Az O₂ szint néhány óra alatt 0 %-ra csökkent. Ezzel párhuzamosan a növény által kibocsátott CO₂ mennyiség kezdetben folyamatosan csökkent, majd stabilizálódott egy bizonyos értéken. Ez az érték az aerob légzés során kibocsátott CO₂ mennyiség 30 - 60 %-ának felelt meg (V.3. táblázat).
V.4. táblázat. A 14 napos FR13A és CT6241 rizspalánták által a 8 órás anaerob, illetve különböző mikro-aerob kezelést követő szintetikus levegővel történő öblítés során mért maximális acetaldehid és etanol kibocsátási sebességeket fény jelenlété nélkül. Minden egyes érték a többször megismételt mérési eredmények átlagértéke és azok standard deviációja.

<table>
<thead>
<tr>
<th>O₂ [%]</th>
<th>Anaerob, illetve mikro-aerob kezelést követő levegő hatására bekövetkező maximális kibocsátási sebességek [µl h⁻¹ g⁻¹ FW]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acetaldehid</td>
</tr>
<tr>
<td>FR13A</td>
<td>CT6241</td>
</tr>
<tr>
<td>0,00</td>
<td>4,86±0,37 5,56±1,28</td>
</tr>
<tr>
<td>0,05</td>
<td>12,39±1,65 4,26±0,40</td>
</tr>
<tr>
<td>0,10</td>
<td>7,98±0,92 3,60±0,64</td>
</tr>
<tr>
<td>0,15</td>
<td>4,11±0,63 1,54±0,02</td>
</tr>
<tr>
<td>0,20</td>
<td>1,25±0,22 0,82±0,16</td>
</tr>
<tr>
<td>0,25</td>
<td>0,56±0,04 0,42±0,10</td>
</tr>
<tr>
<td>0,30</td>
<td>0,52±0,06 0,15±0,05</td>
</tr>
</tbody>
</table>

A 8 órán át tartó mikro-aerob kezeléseket követő szintetikus levegővel történő öblítés hatására, a rizspalánták acetaldehid kibocsátási sebessége hirtelen és nagymértékben megnövekedett (V.3. és V.6. ábrák szürke hátterű tartomány követő része) hasonlóan, mint az anaerob körülmények után. Az anaerob körülmények után tapasztaltakkal ellentétben, a mikro-aerob körülmények megszűnése utáni acetaldehid kibocsátási sebességek 4 - 5 óra alatt gyakorlatilag a háttérszint értékére csökkentek. A CT6241 rizspalántáknál a mikro-aerob kezelések oxigénkoncentrációját növelte egyre kisebb mértékű acetaldehid kibocsátási sebességet tapasztaltam. Az FR13A rizspalánták esetében ez csak a 0,15 % O₂ koncentrációtól magasabb mikro-aerob kezelések utáni acetaldehid kibocsátási sebességre volt jellemző (V.4. táblázat). Ettől alacsonyabb oxigéntartalmú kezelést követő levegő hatására az acetaldehid kibocsátás sebessége meghaladta az anaerob körülmények befekvése után mért értéket. Ezek a mikro-aerob körülmények utáni acetaldehid kitörések mértéke minden egyes oxigénszint esetében az FR13A rizsfajtjánál nagyobbak voltak, mint a CT6241 esetében. Ismereteim alapján ez az első olyan kísérlet, amely szerint kis mennyiségű oxigén jelenlété elősegítette a növények acetaldehid termelődését, mégpedig olyan mértékben, hogy az meghaladta mind az anaerob körülmények alatt (O₂ koncentráció ≤ 0,15 % esetben) mind az után mért értéket is (FR13A esetében, amikor O₂ koncentráció ≤ 0,15 %). A kísérletek során tapasztalt acetaldehid és etanol
kibocsátási sebességek arra engedtek következtetni, hogy az acetaldehid termelődés az erjedé-

sen kívüli folyamat során is lejátszódott, amelyről részletesen az V.4. fejezetben lesz szó.

A mikro-aerob kezelések befejezése után az acetaldehidhez hasonló megőrvekedett
etanol kibocsátási sebességet figyelhettem meg, az anaerob körülmények befejezésekor ta-

pasztaltakhoz hasonlóan. A maximális érték elérése után az etanol kibocsátás egyenletesen

csökkent mindkét rizsfajtánál. Minél nagyobb volt a mikro-aerob kezelések O₂ szintje, annál
kisebb volt az etanol kibocsátás sebességének maximum értéke mindkét rizsfajtánál. Abban
az esetben, amikor a mikro-aerob kezelések O₂ koncentrációja nem haladta meg a 0,15 %-ot,
a a levegő hatására keletkező etanol maximumok az FR13A palántáknál nagyobb voltak,
mint a CT6241 esetében (V.4. táblázat).

A mikro-aerob kezelést követő levegő hatására a rizspalánták által kibocsátott CO₂
mennyisége a kezdeti aerob érték alatti volt ahhoz hasonlóan, mint az anaerob kezelést köve-
tően. A további megfigyelés során a CO₂ kibocsátása lassú növekedést mutatott, és a mérések
befejezése előtt elérte a kezdeti értéket.

A mikro-aerob körülmények által okozott dehidráción kisebb mértékű volt, mint az
anaerob körülmények által okozott. Továbbá, minden egyes alacsony oxigénszint nagyjából
10-15 %-kal nagyobb károsodást váltott ki az áradásra érzékeny fajtánál (CT6241).

V.2.d. Fény jelenléte nélküli mikro-aerob – anaerob kísérletek gázcseréje

Az FR13A rizspalántákat 5 órás 0,05 % külső O₂ koncentrációjú kezelése után oxí-
génnentes környezetnek tettem ki fény jelenléte nélkül. A mérési eredményeket a V.7. ábrán
(*) jelölle ábrázoltam (A: acetaldehid, B: etanol). A könnyebb összehasonlíthatóság érdekében
az ábrán szerepel az FR13A palánták 8 órán át tartó 0,05 % O₂ környezetben fény jelenlé-
te nélkül mért fermentációs anyagcserettermékek kibocsátási sebessége is (○). Az ábrán az
első függőleges szaggatott vonal jelöli az 0,05 % külső O₂ koncentráció kezdettét mindkét
minta esetében. A második függőleges szaggatott vonal után csak az egyik gázáramból von-
tam el teljesen az oxigént (*), a másikat (○) változatlanul hagytam. Abban a pillanatban, ami-
kor a külső oxigénszint nullára csökkent, a folyamatosan növekvő acetaldehid termelődés
2 µl h⁻¹ g⁻¹ FW értékéről nagyjából konstans 1 µl h⁻¹ g⁻¹ FW értékre esett vissza, miközben az
etanol kibocsátás sebessége megőrvekedett, azaz külső oxigén teljes hiánya azonnal lecsök-
kentette a mikro-aerob körülmények alatti acetaldehid kibocsátását. Ezzel párhuzamosan pe-
dig megőrvekedett az etanol kibocsátás sebessége. A kísérleti eredmények szerint kis meny-
nyiségű oxigén jelenléte elősegítette a növények acetaldehid termelődését, míg csökkentette
az etanol termelődést. A fenti tapasztalatok megerősíteni azzal a feltételezéssel, amely szerint az acetaldehid termelődése egy, az erjedésen kívüli folyamat során is lejátszódott [122].

V.7. ábra. Az FR13A 14 napos rizspalánták acetaldehid és etanol kibocsátás sebessége az 5 órán át tartó 0,05 % O₂ koncentrációjú, majd az ezt követő anaerob körülmények alatt (●). A könnyebb összehasonlíthatóság érdekében az ábrán szerepel a 8 órán át tartó 0,05 % külső O₂ jelenléte egy értéken mért eredmény is (○).

V.2.e. Fény jelenlétében végzett anaerob kísérletek gázcsereje

Az anaerob körülmények megjelenésétől kezdődően nyomon követve a mintatartó küvetta O₂ koncentrációjának alakulását (V.7. ábra) megállapítható, hogy az hasonló menet, mint a fény jelenléte nélkül mért esetekben, azaz az O₂ mennyiség nullára csökkent pár órán belül. Ezen megfigyelés alapján kijelenthető, hogy a növény fény jelenléte ellenére mégsem bocsátott ki oxigént. Ennek a ténynek két magyarázata lehet: a növény vagy nem végzett fotoszintézist, vagy pedig külső oxigénforrás hiányában a fotoszintézis által termelt oxigént teljes mértékben fel is használta. A CO₂ mérési adatai az utóbbi feltételezést támasztották alá. Egyrésztől, még a kezdeti normál levegőben történő megvilágítás hatására a küvetta CO₂ tartalma
folyamatosan csökkent (kb. 300 µl h⁻¹ g⁻¹ FW volt a rizspalánták CO₂ megkötése), ellentétben a fény nélkül tapasztalt CO₂ kibocsátással (kb. 300 µl h⁻¹ g⁻¹ FW). Másrészről, anaerob körülmények között fény jelenléteben mért CO₂ kibocsátás a sötétben mért érték kb. 20 % -át érte csak el, ami szintén a légzés CO₂ fotoszintetikus megkötésére utal.

V.8. ábra. Az FR13A rizspalántát tartalmazó küvetta O₂ (---) és CO₂ (—) tartalmának alakulása 560 µmol m⁻² s⁻¹ fényintenzitás alkalmazása esetében 1 órás aerob, 8 órás anaerob kezelés alatt, valamint szintetikus levegővel történő öblítés során. A bal oldali feketéskála a CO₂, a jobb oldali piros, pedig az O₂ koncentrációt jelöli.

Az anaerob körülmények alatt megvilágított növények aktiv fotoszintézisét, az acetaldehid és etanol mérési eredményei is alátámasztották. Az acetaldehid és az etanol ugyanazon jellegzetes paraméterei határoztam meg, mint a fény nélküli kísérletek során, melyek rendre a V.9. ábrán, valamint a V.5. és V.6. táblázatban szerepelnek a standard deviáció értékeikkel együtt (az anaerob körülmények alkalmazásától számított megjelenési idejük, kibocsátási sebességük az anaerob körülmények végén, valamint az azt felváltó szintetikus levegővel történő öblítés során jelentkező maximális kibocsátási értékeik). Az anaerob kezelés alatti fény jelenléte késleltette az erjedési folyamat megjelenést, azonban a túl sok fényintenzitás éppen az ellenkező hatást váltotta ki mind a két rizsfajta esetében (V.9. ábra). A fény jelenléteben végzett kísérletek során is az acetaldehid megjelenése megelőzte az etanolét.

Az áradást tűrő FR13A palánták eredési anyagcseretérzékeinek (acetaldehid és etanol) kibocsátási sebessége a 8 órán át tartó anaerob és az azt követő levegővel történő öblítés hatására két különböző fényintenzitás (220 (●) és 560 (●) µmol m⁻² s⁻¹) alkalmazása során a V.10. ábrán látható. Referenciaként szerepelnek az ábrán a fény nélkül mért eredmények (●) is. Fénnyel megvilágított minták esetében az acetaldehid kibocsátás sebessége kezdeteben nő-
vekedett, amit hamarosan a kibocsátási sebesség csökkénése változt fel. Ennek következtében az anaerob körülmények végén mért acetaldehid kibocsátás sebessége a sötétben mért érték 30 % (FR13A), illetve 26 %-át (CT6241) érte csak el (V.5. táblázat). Az etanol kibocsátás sebessége az anaerob kezelés végén közepes fényintenzitás alkalmazásakor a fény nélkül mért érték 60 % (FR13A), illetve 50 % (CT6241) volt. Ezek az eredmények azt sugallják, hogy anaerob körülmények alatt alkalmazott fény jelenléte nagyjából 40 - 50 %-kal visszaszoríttotta az alkoholos erjedés mértékét. Ez várható következmény, hiszen fény jelenléteben a fotoszintézis aktívan termeli az oxigént, amit az aerob légzési mechanizmus hasznosít. Maximális fényintenzitás (560 µmol m⁻² s⁻¹) alkalmazása esetében az anaerob körülmények végén mért etanol kibocsátás sebessége megközelítette a fény nélkül mért értékeket (főleg az FR13A palánták esetében). Ez a tapasztalat azonban nem a fotoszintézis fermentációt csökkentő hatását cáfolja, hanem a külső környezet (ebben az esetben az extrém hőmérséklet) anyagcserefolyamatokra kifejtett hatásának komplexitását igazolja. Feltételezhető ugyanis, hogy a maximális fényintenzitással járó elengedhetetlen felmelegedésnek köszönhető az erjedés anyagcseretermékeinek intenzívebb termelődése az oxigén nélküli környezetben. Az adott fényintenzitás mellett a két rizspalánta acetaldehid és etanol kibocsátási dinamikájában lényeges különbséget nem tapasztaltam.

![Acetaldehid és etanol megjelenési ideje](V.9. ábra. A 14 napos FR13A (fekete színű oszlopok) és CT6241 (fehér színű oszlopok) palánták acetaldehid és etanol megjelenési ideje a kezelés kezdetétől számítva két különböző (220 és 560 µmol m⁻² s⁻¹) fényintenzitás alkalmazása esetében, referenciaként szerepel a fény nélkül mért eredmény is]

Az anaerob körülményeket felváltó levegővel történő öblítés hatására a sötétben végzett kísérletekhez hasonlóan, mindkét rizsfajtánál tapasztalható volt az acetaldehid és az etanol kibocsátás sebességeinek gyors növekedése. Fény jelenléteben azonban megfigyelhető volt az acetaldehid kitörlésel azonos idejű etanol kibocsátás sebességének rövid idejű és kis
V.10. ábra. A 14 napos FR13A palánták acetaldehid és etanol kibocsátás sebessége 1 órás aerob, 8 órán át tartó anaerob és az azt követő szintetikus levegővel történő öblítés során két különböző fényintenzitás (220 (●) és 560 (●) μmol m⁻² s⁻¹) alkalmazása mellett, referenciaként ábrázoltam a fény nélkül mért eredményeket is (●).

mértékű csökkenése. Ennek a jelenségnek a magyarázata még nem tisztázott. Nagyobb fényintenzitás esetén az FR13A palánták anaerob körülmények után mért maximális acetaldehid kibocsátási sebessége (közepes fényintenzitási) 3 %-kal, illetve (maximális fényintenzitásnál) 74 %-kal növekedett, míg a CT6241 esetében kis mértékű csökkenést tapasztaltam mindkét fényintenzitás esetében. Az anaerob körülményeket követő levegővel történő öblítés hatására bekövetkező etanol kibocsátás az alkalmazott 220 μmol m⁻² s⁻¹ fényintenzitás hatására lecsökkent a fény nélkül mért érték 34 %- (CT6241), illetve 44 %-ra (FR13A), 560 μmol m⁻² s⁻¹ fényintenzitás alkalmazása esetében pedig 54 %-ra (mindkét fajtánál). Ezek az eredmények is a fény jelenlétében lejátszódó fotoszintézis által termelt oxigén eredést gátló hatását támasztották alá. A fermentációs anyagcseretermékek kitörését konstans csökkenés változtatta fel. Az
acetaldehid kibocsátás 1,5 - 2 óra alatt gyakorlatilag megszűnt, míg az etanol kibocsátás 5 - 6 óra alatt a maximális érték 30 - 20 %-ára esett vissza.

V.5. táblázat. A 14 napos FR13A és CT6241 rizspalánták két különböző fényintenzitás (220 és 560 μmol m² s⁻¹) alkalmazása mellett mért acetaldehid és etanol kibocsátás sebessége az anaerob kezelés végén. Referenciaként szerepelnek a fény nélkül mért értékek is. Minden egyes érték a többször megismételt mérési eredmények átlagértéke és azok standard deviációja.

<table>
<thead>
<tr>
<th>Fény intenzitás [μmol/m²s]</th>
<th>Acetaldehid [μl h⁻¹ g⁻¹ FW]</th>
<th>Etanol [μl h⁻¹ g⁻¹ FW]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FR13A</td>
<td>CT6241</td>
</tr>
<tr>
<td>560</td>
<td>0,19±0,02</td>
<td>0,24±0,03</td>
</tr>
<tr>
<td>220</td>
<td>0,17±0,02</td>
<td>0,18±0,03</td>
</tr>
<tr>
<td>0</td>
<td>0,90±0,13</td>
<td>0,70±0,04</td>
</tr>
</tbody>
</table>

V. 6. táblázat. A 14 napos FR13A és CT6241 rizspalánták két különböző fényintenzitás (220 és 560 μmol m² s⁻¹) alkalmazása mellett mért maximális acetaldehid és etanol kibocsátás sebessége az anaerob kezelést követő szintetikus levegővel történő öblítés hatására. Referenciaként szerepelnek a fény nélkül mért értékek is. Minden egyes érték a többször megismételt mérési eredmények átlagértéke és azok standard deviációja.

<table>
<thead>
<tr>
<th>Fény intenzitás [μmol/m²s]</th>
<th>Acetaldehid [μl h⁻¹ g⁻¹ FW]</th>
<th>Etanol [μl h⁻¹ g⁻¹ FW]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FR13A</td>
<td>CT6241</td>
</tr>
<tr>
<td>560</td>
<td>8,44±0,91</td>
<td>4,27±0,43</td>
</tr>
<tr>
<td>220</td>
<td>5,02±0,22</td>
<td>4,32±0,71</td>
</tr>
<tr>
<td>0</td>
<td>4,86±0,37</td>
<td>5,56±1,28</td>
</tr>
</tbody>
</table>

A fény jelenlétében lejátszódó fotoszintézis nagymértékben lecsökkentette, de nem szüntetette meg a termelt fermentációs anyagcseretermékek mennyiségét. Ez arra enged következtetni, hogy a fotoszintetikus úton keletkező oxigén képtelen a teljes növény megfelelő mértékű oxigénellátására. Egyes feltételezések szerint fény jelenlétében tapasztalt anoxia a gyökerekben fordul elő [123], ugyanis nem valószínű, hogy a fotoszintetikus úton termelt O₂ meg tudja tenni az odavezető utat anélkül, hogy időközben más anyagcseré-folyamat azt fel ne használja. Ezt a tény be is igazolódott, hiszen az anaerob körülményeket követő levegő hatására tapasztalt lassú etanol kibocsátás magyarázata nem a növény anyagcseréjében rejlik, hanem magában a gázkezelési rendszerben. Ugyanis, a kísérletek végén a gázkezelési rendszer vízkifagyasztóját (PE) egy újra cserélve, az etanol kibocsátás azonnal lecsökkent egy mi-
nimális értékre. Ez a minimális jel a gyökereket ellepő vízből származott, ugyanis a gyökerek erjedési anyagcseretemékei vízbe jutva abban feloldódtak, és onnan csak lassan ürültek ki.

Az anaerob körülményeket felváltó levegő hatására a CO$_2$ fotoszintézis által történő felhasználása egy óra elteltével visszaállt a kezdeti aerob szintre (V.7. ábra). Ez a tény a légzési mechanizmus gyors regenerálódását és a fermentációs folyamat megszűnését támasztotta alá.

Az anaerob körülmények káros hatása 7 nap elteltével láthatóvá vált a növények levelein, amelyek kissé megsárgultak, de minden növény életképes maradt. Az okozott levélkárosodás jóval kisebb mértékű volt, mint a fény jelenléte nélküli anaerob kísérletek során.

V.3. A mérési eredmények összegzése

A CO lézer alapú fotoakusztikus rendszer alkalmasnak bizonyult az áradással szemben toleráns FR13A és az áradásra intoleráns CT6241 rizspalánták etanol és acetaldehid kibocsátásának nyomon követésére, mely anyagok az aerob légzést felváltó fermentációs metabolizmus jelenlétére utalnak. Az erjedés során a glükóz gyenge hatásfokú energiatermelési hatásfok mellett bomlik le, amely során a keletkező acetaldehid lehetséges toxikus hatásával kell számolni. Mivel a növényt ellepő víz nagymértékben akadályozza a külső szén-dioxid fotoszintetikus megkötését [77], a fermentáció abszolút sebessége is fontos lehet. Például a lassú erjedési folyamat megőrizve az energiatartalékokat meghosszabbíthatja az életbenmaradást vagy éppen ellenkezőleg, nem termel elegendő mennyiségű energiát (ATP molekulát) a létfontosságú folyamatok fenntartásához. A fenti lehetőségek valamelyikét támasztaná alá az az eset, ha az árasztásra eltérő toleranciával rendelkező rizsfajták erjedési anyagcseréje különböző mértéket mutatna az anaerob körülmények hatására. Várakozásunkkal ellentétben ezt a jelenséget nem tapasztaltam. Mindkét növényi kultúra (FR13A és CT6241) rendkívül hasonló viselkedést mutatott teljes oxigénihiány esetében.

A 8 órás anaerob kezelés alatt az acetaldehid kibocsátás sebessége egy konstans értéken stabilizálódott, ami jóval kisebb volt, mint az etanolra vonatkozó érték, ugyanis az etanol kibocsátás sebessége folyamatosan növekvő tendenciát mutatott az anaerob kezelés végéig [124]. Az anaerob kezeléseket követő szintetikus levegővel történő öblítés hatására mindkét növényfajta hirtelen bekövetkező és nagy mennyiségű acetaldehidet és etanolt bocsátott ki.

Az igen kis mennyiségű O$_2$ késleltette a fermentáció megjelenését, valamint csökkenette annak mértékét. Az egyre nagyobb külső oxigén koncentráció az erjedés megjelenésének további késleltetéséhez, valamint az etanol kibocsátási sebességének csökkenéséhez vezetett.
Az eredmények alapján megállapítható, hogy 0,3 %-nál nagyobb külső O₂ koncentráció elégséges a rizsnövény bármely részén előforduló erjedési folyamat gátlásához, azaz a normál aerob légzés teljes mértékben a Szent-Györgyi–Krebs cikluson keresztül játszódik le [122].

Meglepleő módon, mikro-aerob feltételek között (O₂ koncentráció ≤ 0,2 %) az acetaldehid kibocsátás sokkal erőteljesebb volt, mint oxigén nélküli környezetben, miközben az etanol termelődés jelentős mértékben csökkent. Az anaerob körülmények alatt tapasztaltakkal ellentében az acetaldehid kibocsátás sebessége konstans növekedést mutatott a 8 órás mikro-aerob kezelés végéig. Ezen tülmenően, az áradást tűró rizsfajta esetében az acetaldehid képződésében további növekedést lehetett megfigyelni a mikro-aerob környezet levegőre történő visszaállása alkalmával. Ez nagymértékben hasonlít az anaerob körülmények után tapasztaltakra, azzal a különbséggel, hogy sokkal szélesebb értéktartományon változott az alkalmazott O₂ koncentrációjától függően. Ez a megfigyelés a lipidmembránok kisebb mértékű peroxidációjával hozhato összefüggésbe, ugyanis a gázáramban jelenlévő oxigénből származó reaktív oxigén gyökök a membránkárosító hatásuk kifejtése előtt hidrogén-peroxiddá alakulnak (ami egy kevésbé károsító anyag) és elősegítik az etanol acetaldehiddé történő peroxidációját [122]. Ennek a folyamatnak a legvalószínűbb molekuláris biológiai magyarázata az V.4. fejezetben olvasható.

A 0,05 % O₂ tartalmú gázáram 100 % nitrogénre váltásának pillanatában a növekvő acetaldehid termelődés a felére esett vissza és konstans értékű lett, miközben az etanol termelődés intenzívebbé vált (V.7. ábra). Ennek magyarázata a feltételezett elmélet (részletezve a V.4. fejezetben) alapján a következő: külső O₂ hiányában megszűnt a H₂O₂ képződés, ami által leállt az etanol acetaldehiddé történő peroxidációjája [122]. Az anaerob körülmények során alkalmazott fényintenzitás a fotoszintézis aktív működését idézte elő, amit a CO₂, az acetaldehid és az etanol mérési eredményei alátámasztottak. Megvilágítás hatására a rizspalánták CO₂ megkötése kb. 300 μl h⁻¹ g⁻¹ FW volt, ellentétben a fény nélkül tapasztalt CO₂ kibocsátással (kb. 300 μl h⁻¹ g⁻¹ FW). Továbbá, az anaerob légzés által sötétben termelt CO₂ mennyiség 80 %-a megkötődött és az anaerob körülmények megzűnése után a légzési mechanizmus gyorsan regenerálódott. Valamint a növények jóval kevesebb acetaldehidet és etanolot bocsátottak ki fény jelenlétében, mint fény hiányában. Fény jelenléte nagyjából 40 - 50 %-kal visszaszorította az alkoholos erjedés mértékét, és nagymértékben csökkentette a fény nélküli anaerob hatás által előidézett levélkárosodást is. A fentiekben megnevezett jellemzők nagyon hasonlók voltak a két megvizsgált rizsfajta esetében. A fenti eredmények kihangsúlyozzák a fény jelenlétének jelentőségét a szántóföldeken előforduló áradások során. Ezen kívül megerősítik azt a feltételezést, amely szerint az FR13A áradás-
sal szembeni nagyobb tűröképessége nem feltétlenül függ össze az oxigénhiány által előidézett különbőző mértékű er Jedéssel, továbbá, hogy a rizsnövények áradás okozta károsodása nem feltétlenül az oxigénhiány következménye.

V.4. Molekuláris szintű értelmezés

A rizspalánták anaerob körülmények utáni acetaldehid kitörése nagy valószínűséggel az etanol acetaldehiddé történő peroxidációjának a következménye. Ez a folyamat vagy a NAD⁺ függő alkohol-dehidrogenáz (ADH) által katalizált etanol visszaalkulása acetaldehyddé a (26) egyenlet alapján, vagy a hidrogén-perioxidtól függő kataláz enzim – amelynek aktivitása ilyen körülmények között megnő [125] – által elősegített etanol oxidációja a (27) egyenlet alapján. Abban a pillanatban, amikor a rizsnövények anaerob környezetből aerob környezetbe jutnak, az irodalom szerint [74] még elégtelen mennyiségű NAD⁺ áll az alkohol-dehydrogenáz (ADH) rendelkezésére ahhoz, hogy félelős lehessen a növekvő acetaldehyd termelődését. Ebből kifolyólag a NAD⁺-függő ADH által katalizált reakció a NAD⁺ hiánya miatt nem valósulhat meg. Kötékezésképpen, az acetaldehyd szintézisére a kataláz alapú reakció sokkal valószínűbb folyamat. A H₂O₂ forrásául a szuperoxid gyökök szolgálnak, amit valószínűleg az elérhető külső oxigénből a mitokondrium állít elő (csökkentve az ubikinon² mennyiséget) [126]. A keletkezett szuperoxid gyökök egy része átalakul hidrogén-peroxiddá a szuperoxid-dizmutáz (SOD) enzim aktivitásának köszönhetően a (29) egyenlet alapján [75]. Közvetett bizonyítékkal rendelkezünk (etán kibocsátás észlelése) arról, hogy anaerob körülményeknek kitett rizsnövények szöveteiben reaktív oxigén származékok (ROS) vannak jelen [127]. Ennek magyarázata a következő. Növényi szövetekben az anaerob körülményeket követő újból oxigén hatására megbomlik az egyensúly a szabad gyökök keletkezése és a normál gyöksemlegesítő mechanizmus között. Ezáltal a növény érzékenyé válik a megnövelt peroxidatív károsodásra [76]. A többszörösen telítetlen zsírsavak, azaz lipidmembránok oxigén szabad gyökei (mint pl. a szuperoxid) által előidézett peroxidációjának bomlásterméke az etán [128]. Normál körülmények között tehát a szövetekben a szuperoxid (O₂⁻) mennyiségét a gyöksemlegesítő rendszer szabályozza, azonban az oxigén-elégtelenség miatt ez a detoxikáló mechanizmus leáll, vagy lelassul, melynek következtében a szuperoxid kifejtheti roncsoló hatását.

² Ubikinon vagy más néven Q₁₀ koenzim egy speciális kettős hatású molekula. Egyrészről antioxidáns, másrészről pedig a sejtke energiatranszportját biztosítja és jelenléte elengedhetetlen a biokémiai folyamatok zavartalan működéséhez.
A rizsnövényeknél mikro-aerob körülmények alatt és után jelentkező gyorsabb acetaldéhid termelődés nagy valószínűséggel hasonló eredetű, mint az anoxia után jelentkező gyors acetaldéhid kibocsátás. Ennek a mechanizmusnak a különböző mértékű működése magyarázatot adhat az FR13A palánták áradással szemben tanúsított jellegzetes tűrőképességéről. Az áradással szemben mutatott nagyobb tolerancia lényeges lánkészeme a gyorsabb acetaldéhid és lassabb etánkibocsátás egybeesése [127, 128]. Mind az acetaldéhid, mind az etán kibocsátása peroxidációhoz kapcsolódik, az etán mint a lipid peroxidáció végső terméke, az acetaldéhid pedig a kataláz enzim által közvetített H₂O₂ eltávolítás végterméke. A H₂O₂ gyorsabb átalakítása (nagyobb mennyiségű acetaldéhid termelődés) a lehetséges veszélyes szuperoxid gyökök nagyobb részének semlegesítését eredményezi, így csökkenti a telítetlen zsírsavak peroxidációját. Az ilyen módon csökkentett membránkárosodás lehet a kisebb mennyiségű etan kibocsátás, valamint az FR13A áradással szemben mutatott nagyobb tűrőképességének magyarázata. A feltételezés szerint a mikro-levegőztetés (nagyjából 0,05 % O₂) mindkét rizskultúrában túlságosan alacsony ahhoz, hogy teljes mértékben fenntartsa a gyöksemlegesítő védelmi rendszert, de elegendő a reaktív oxidáns származékok (ROS), különösen a szuperoxidok képződéséhez, ami pedig lipid peroxidációhoz vezet [122]. A lipidkárosodás mértékét a termelt etán mennyisége mutatja, ami az áradást tűrő fajtánál (FR13A) kevesebb volt, mint az áradásra érzékenynél (CT6241) [129]. Ezt támasztja alá az a kísérleti eredmény is, mely szerint az acetaldéhid termelődés megfeleződött és lecsökkent az anaerob erjedéskor mért konstans szintre, amelyel párhuzamosan az etanol termelődés felerősödött, amikor a 0,05 % O₂ koncentrációjú mikro-aerob körülményeket oxigénmentes változta fel (V.5. ábra). Ezáltal ugyanis az O₂⁻ forrás hirtelen eltűnt, ezért leállt a H₂O₂ és vele együtt az etanol peroxidációjából származó acetaldéhid termelődés is. A fentiek alapján megállapítható, hogy a mikro-aerob körülményeknek megfelelő oxidáns jelenléte mellett észlelt acetaldéhid kibocsátás nem csak az alkoholos erjedés során keletkező köztes termék, hanem a kataláz enzim segítségével közvetített, a H₂O₂ által oxidált etanol végterméke is. Az O₂⁻ forrás megszűnésével nem képződött több H₂O₂, aminek következtében az etanol nem peroxidálódott acetaldéhiddé.

A fentiekben ismertetett elmélet alapján a kapott kísérleti eredmények legvalószínűbb magyarázata a következő: a keletkezett szuperoxid gyökök (O₂⁻) nagyobb mennyisége alakul át hidrogén-peroxiddá (a SOD enzim közrejátszásával), amely vegyület pedig az etanolt acetaldéhiddé történő peroxidációját váltja ki [122]. Ezt az elméletet, amelynek összefoglaló semantikus vázlata a V.11. ábrán látható, a kísérleti eredmények teljes mértékben alátámasztanak:
(i) mikro-aerob körülményeket követő anoxia az acetaldehid termelés gyors csökkenését idézi elő (feltételezhetően a H₂O₂ forrás megszűnése miatt), valamint
(ii) a mikro-aerob környezeti körülmények kevésbé károsító hatásúak, mint az anoxia, a sokkal erőteljesebb acetaldehid képződés ellenére (a legkevésbé károsodott növények (FR13A) termelik mikro-aerob körülmények alatt és után is a legtöbb acetaldehidet).

V.11. ábra. A rizspalánták mikro-aerob körülmények alatt és az azt követő szintetikus levegővel történő üblítés hatására termelt etanol acetaldehididdé történő átalakulás elméletének sematikus ábrája. Az etanol acetaldehididdé történő gyorsabb peroxidációja a kataláz enzim közreműködésével több H₂O₂ felhasználását eredményez, ami az FR13A áradás tűrésének a következménye. Ez a folyamat lényegében véve eltávolítja a szuperoxid gyököket a lipid peroxidációtól.

V.5. Összefoglalás

A rizsnövényt a természetben előforduló áradás alkalmával súlyos károsodás éri, ami komoly problémát okoz a rizstermesztésben. Az okozott károsodás részben az oxigénhiány következménye. Ennek kivizsgálása céljából a szövetek anoxiájára utaló alkoholos erjedés termékeit követtem nyomon CO lézer alapú fotoakusztikus spektroszkópiával, amely alkalmas az etanol 3 nl l⁻¹ és az acetaldehid 0,1 nl l⁻¹ koncentrációjának érzékelésére.

Rizspalánták erjedése az oxigén megszűnését követő 30 percen belül kezdetét veszi. Rizspalánták anaerob körülmények között mért részletes etanol, acetaldehid és CO₂ kinetiká-
jának összehasonlítása során arra a következtetésre jutottam, hogy nincs észrevehető különbő-
ség az áradást tűrő (FR13A) és az arra érzékeny (CT6241) rizsfajták között. Azonban igen
eltérő viselkedést mutattak mikro-aerob körülmények (különösen 0,05 % O₂) alatt és az azt
követő szintetikus levegővel történő obliités hatására, amikor a fokozott acetaldehid termelő-
dés csökkentett etanol termelődéssel párosult. Ez a jelenség sokkal jellegzetesebb volt az ára-
dást tűrő fajtánál (FR13A), mint az áradásra érzékeny fajtánál (CT6241). Ez a megfigyelési
eredmény a lipidmembránok kisebb mértékű peroxidációjával hozható összefüggésbe, amit a
lassabb etánkibocsátás is alátámaszt. Megállapítható, hogy FR13A rizsfajtánál a kisebb mért-
ekű lipidkárosodás annak köszönhető, hogy a reaktív oxigén gyökök a membránkárosító hat-
tásuk kifejtése előtt hidrogén-peroxiddá alakulnak, ami egy kevésbé károsító anyag és az et-
nol acetaldehiddő történő peroxidáció egyik alapanyaga.

Mikro-aerob körülmények oxigénszintjének növelése késleltette az alkoholos erjedés
megjelenését és annak mértékét. A 0,3 % feletti külső O₂ koncentráció elégséges a normál
aerob légzés fenntartásához, azaz az alkoholos erjedés gátlásához mindkét rizsfajta esetében.

Fény hatására nagymértékben csökkent az anaerob környezet által a növények anyag-
cseréjében kiváltott erjedés, ami a fotoszintetikusan termelt oxigén felhasználásának a követ-
kezménye. Annak ellenére, hogy a kísérleti körülmények alatt lényeges különbséget nem ta-
paszáltam a kétfaja rizspalánta (FR13A és CT6241) viselkedése között, a kedvezőtlen kö-
rülmények nagyobb dehidrációt okoztak az áradásra érzékeny növényekben. Következéskép-
pen megállapítható, hogy nem az oxigénhiány a károsodás fő okozója.
VI. ÓZON MÉRÉSE Nd:YAG LÉZER ALAPÚ FOTOAKUSZTIKUS MÓDSZERREL

VI.1. Az ózon UV optikai spektrumának elemzése

Egy fotoakusztikus rendszer megépítésének egyik legfontosabb lépése a megfelelő gerjesztő fényforrás kiválasztása. Ennek során a legkritikusabb szempont, a fényforrás által kibocsátott hullámhossz egybeesése a vizsgálni kívánt minta valamelyik erős abszorpciós vonalával. Egyéb kritériumokat, mint a gerjesztő rendszer esetleges egyszerű kezelhetősége, kis mérete, olcsósága, stabilitása, automatikus vezérelhetősége, vagy elegendően nagy fényteljesítmény biztosítása, a készülő eszköz felhasználási célja szabja meg. Az ózon mérésére alkalmas gerjesztő fényforrás megépítésénél a felsorolt feltételek mindegyikét megfelelő mértékben figyelembe vettem, azaz a kísérletekhez optimalizáltam a fényforrást.

VI.1. ábra. Az ózon abszorpciós spektruma különböző hullámhosszakon

Az ózon abszorpciójának (V.1. ábra) áttanulmányozása [130] során megállapítható, hogy a legerősebb elnyelési vonalak a 100 - 140 nm tartományban találhatók. Gerjesztő fényforrás hiányában azonban ez a hullámhossz tartomány nem alkalmas fotoakusztikus mérések elvégzésére. Ettől kissé gyengébb abszorcióval rendelkezik az ózon a 250 nm környékén lévő ún. Hartley-vonalakon. Ezt a spektrális tartományt a Nd: YAG lézer harmadik felharmo-
nikusa (266 nm) jól megközelíti. 266 nm hullámhosszon az ózon abszorpciós hatáskereszt-metszete \(9.44 \times 10^{-18}\) cm\(^2\)/molekula (22\(^\circ\)C hőmérsékleten) kis mértékben kisebb, mint a 254 nm-es maximális \(1.15 \times 10^{-17}\) cm\(^2\)/molekula érték [131], ezért a Nd: YAG lézer harmadik felharmonikusa alkalmasnak tűnik az ózonkoncentráció mérésére.

VI.2. Optikai hullámhossz konverziós rendszer megtervezése

A Nd:YAG lézer alap-hullámhosszának konverziója az UV tartományba két lépésben, azaz két egymást követő SHG I. típusú (ooe) frekvenciákétszerezéssel oldható meg. Az alapharmonikus az ordinárius hullámterjedésnek megfelelő polarizációval lép a nemlineáris kristályba, az optikai tengellyel \(\theta_f\) szöget bezárva. A \(\theta_f\) fázisillesztési szögénél az \(n_o^e\) alapharmonikus ordinárius törésmutatója éppen megegyezik az \(n_{2o}^i\) felharmonikus törésmutatójával. A keletkezett felharmonikus ekkor extraordinárius polarizációjú lesz. Ennek megfelelően a lézer 1064 nm alap-hullámhosszú infravörös fényugrát egy nemlineáris kristály először 532 nm hullámhosszú fényre, majd ezt egy másik nemlineáris kristály 266 nm hullámhosszú fénynyalábra konvertálja, a következők szerint:

\[
1064(o) + 1064(o) = 532(e) \quad (43)
\]

\[
532(o) + 532(o) = 266(e). \quad (44)
\]

Adott nemlineáris kristály kiválasztásakor elsődleges szempont a minél nagyobb felharmonikus keltés hatásfoka, amelyet a kristály effektív nemlineáris együtthatója jellemez. Ezen kívül fontos tényező a kristály vízmegkötő képessége (higroszkópikussága), ami megnehezítheti gyakorlati alkalmazását. Szem előtt kell tartani a kristály mind az alap-, mind a felharmonikus hullámhosszakra vonatkozó abszorpciós tulajdonságait, ugyanis bármelyiken előforduló esetleges fényelnyelés csökkenti az előállított felharmonikus fényintenzitását. A kevésbé intenzív, illetve divergens fényugarak hatékonyabb frekvenciakonverziójának elérése érdekében célzott fázis tolerancia

\[3\]

Szögtolerancia: a fázisillesztés szögének függvényében ábrázolt, egyre normált frekvenciatóbbszörö-zött fényintenzitás félértékszélessége.

\[3\] Szögtolerancia: a fázisillesztés szögének függvényében ábrázolt, egyre normált frekvenciatóbbszörö-zött fényintenzitás félértékszélessége.
Az 1064 nm hullámhosszú fénysugár leghatékonyabb frekvenciakétszerezését a BBO,
KNBO₃, LIO₃ és LNB_M kristályok végzik magas effektív nemlineáris együttthatóik miatt
(> 2 pm/V), azonban kis szög toleranciával rendelkeznek. Az LNB_S kristály nagy effektív
nemlineáris együttthatóval és jelentős szög toleranciával rendelkező kristály, azonban 1064 és
532 nm hullámhosszakon fennálló abszorpciója miatt a kitűzött célra nem alkalmas. Diver-
gens fénysugarakkal történő frekvenciakétszerezés megvalósítására az LBO kristály a leg-
megfelelőbb, kedvező szög toleranciája és nagy roncsolási küszöbértékének köszönhetően.
További előnye a levegő nedvességtartalmára való érzékeltsége (nem higroszkópikus).

VI.1. táblázat: 1064 nm hullámhossz (SHG I. típusú) frekvenciakétszerezésre legalkalma-
masabb nemlineáris kristályok és egyes jellegzetes tulajdonságai

<table>
<thead>
<tr>
<th>Kristály neve</th>
<th>Effektív nemlineáris együtttható [pm/V]</th>
<th>Szög tolerancia [mrad°cm]</th>
<th>Roncsolási küszöbérték @1064 nm (@532 nm) [J/cm²]</th>
<th>Lineáris abszorpció @1064 nm (@532 nm) [J/cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBO</td>
<td>2,01</td>
<td>0,58</td>
<td>13 (>2,5)</td>
<td>-</td>
</tr>
<tr>
<td>KNBO₃</td>
<td>-9,42</td>
<td>0,45</td>
<td>1,7 (1,7)</td>
<td>-</td>
</tr>
<tr>
<td>LBO</td>
<td>0,83</td>
<td>4,82</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>LIO₃</td>
<td>2,48</td>
<td>0,39</td>
<td>1 (1)</td>
<td>0,02-0,08 (~0,24)</td>
</tr>
<tr>
<td>LNB_S</td>
<td>-4,68</td>
<td>3,08</td>
<td>10</td>
<td>0,08 (0,025)</td>
</tr>
<tr>
<td>LNB_M</td>
<td>-4,87</td>
<td>1,28</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>

VI.2. táblázat: 532 nm hullámhossz (SHG I. típusú) frekvenciakétszerezésre legalkalma-
masabb nemlineáris kristályok és egyes jellegzetes tulajdonságai

<table>
<thead>
<tr>
<th>Kristály neve</th>
<th>Effektív nemlineáris együtttható [pm/V]</th>
<th>Szög tolerancia [mrad°cm]</th>
<th>Roncsolási küszöbérték @532 nm (@266 nm) [J/cm²]</th>
<th>Lineáris abszorpció @532 nm (@266nm) [J/cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>0,671</td>
<td>1,61</td>
<td>> 5</td>
<td>0,1 (0,035)</td>
</tr>
<tr>
<td>BBO</td>
<td>1,75</td>
<td>0,19</td>
<td>>2,5 (>1)</td>
<td>-</td>
</tr>
<tr>
<td>CLBO</td>
<td>0,788</td>
<td>0,54</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DKDP</td>
<td>0,431</td>
<td>9,30</td>
<td>-</td>
<td>0,005</td>
</tr>
</tbody>
</table>

Az 532 nm fénysugár frekvenciakétszerezéséhez a legnagyobb effektív nemlineáris
hatásfokkal a BBO kristály rendelkezik (VI. 2. táblázat), azonban a már említett alacsony
szög toleranciája miatt fókuszált nyalábok frekvenciakétszerezésére nem alkalmas. Az ADP
kristály felhasználását optikai abszorpciója hiúsítja meg. Kiemelkedően kedvező szög toleran-
cia értékkel a DKDP kristály rendelkezik, azonban az effektív nemlineáris együtttható tekinte-
tében a CLBO kristály alkalmazása előnyösebb. Mindkét kristály higroszkópikus. Kísérleteim során mind a két kristályt kipróbáltam, a CLBO kristályt az ózonmérőben, a DKDP kristályt a három hullámhosszon működő photoakusztikus rendszerben.

VI.2. ábra. A Nd:YAG lézerből kijövő infravörös sugár nyalábnyak transzformációja az első (LBO) nemlineáris kristályra

A Nd:YAG lézer alap-hullámhosszú fénysugarának fókuszálását – a minél nagyobb teljesítménysűrűség elérése érdekében – egy szóró és egy gyűjtőlencse kombinációjának segítségével végeztem (VI.2. ábra). Ez az optikai rendszer mátrixoptikai szempontból a fényterjedés irányában egy l_0 hosszúságú levegőben történő terjedésből ($n_{\text{levğ}} = 1$), egy f_0 fókusztávolságú szórólencse leképezésből, egy l_1 hosszúságú levegőben történő terjedésből, egy f_1 fókusztávolságú gyűjtőlencse leképezésből és végül egy l_2 hosszúságú levegőben történő terjedésből tevődik össze. A rendszer eredő transzformációs mátrixa a (40) alapján felhasználva a (38) és (39) mátrixokat a következő módon írható fel:

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{bmatrix} 1 & l_2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & l_0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & l_0 \\ 0 & 1 \end{bmatrix}. \tag{45}$$

Ez az egyenlet és a III.3. fejezetben leírtak szerint kiszámolható az alkalmazott lencsék fókusztávolsága ($f_0 = -100$ mm és $f_1 = 75$ mm), valamint azok egymáshoz viszonyított relatív elhelyezkedése ($l_0 = 41$ mm, $l_1 = 295$ mm és $l_2 = 75$ mm).

VI.3. ábra. A zöld színű fénysugár nyalábnyak (ω_{10}) transzformációja a második nemlineáris kristályra
A fentiekhez hasonló számítással határozható meg a második frekvenciakétszerezés során alkalmazott optikai elemek paramétereinek és egymáshoz viszonyított helyzeteinek értékei a VI.3. ábrán vázolt optikai rendszert leíró (46) mátrixegyenlet segítségével:

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix} =
\begin{bmatrix}
1 & l_4 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
\frac{1}{l_2} & 0 \\
\frac{1}{l_3} & 1
\end{bmatrix}.
\]
(46)

A számolások során figyelembe kell venni, hogy a keltett felharmonikus fénysugár nyalábnyak paramétere \(\omega_{01}\) az alapharmonikus \(\omega_{10}\) kétszerese:

\[\omega_{01} = 2 \omega_{10}\]
(47)

A kapott eredmények: \(f_2 = 50\) mm, \(l_3 \approx 220\) mm és \(l_4 \approx 65\) mm.

VI.3. Ózon mérésére alkalmas fotoakusztikus rendszerek

VI.3.a. Impulzus üzemmodú rendszer

Az impulzus üzemmodú rendszer sematikus rajza a VI.4. ábrán látható. Az 532 nm hullámhosszú lézerfénnyi frekvenciakétszerezését egy cézium lítium borát (CsLiB₆O₆ vagy ismertebb nevén CLBO) nemlineáris kristály (10x10x12 mm³) végezte. A kristály, erős nedvesszivó képessége miatt, egy speciális rozsdamentes acélból készült kristálytartóban helyezkedett el, amelynek alján található fiókos rekeszben lévő foszfor-pentooxid kötötte meg a kristálytartóban lévő vízmolekulákat. A kristály fényútba való elhelyezése a szinte divergenciamentes lézerfénnyi miatt nem volt kritikus paraméter. A keltő (532 nm) és a keltett (266 nm) fénysugarak szétválasztása két dikroikus tükőr (T, maximális reflexió 266 nm hullámhosszon) segítségével történt. A fotoakusztikus kamrába bejutó fénysugár átmérőjét egy diafragmával (D) 2 mm értékre korlátoztam, ami csökkentette a szórt fényből eredő háttérjel nagyságát. A fényforrás energiájának ellenőrzése a fénysugár nyalábosztóval (Ny) kicsatolt részének ener-
giamérővel \((E_1)\) való folyamatos mérésével történt. A 266 nm hullámhosszú fény energiáját a fotoakusztikus kamra után elhelyezett \(E_2\) energiamérő (GENTEC ED150, Québec) detektálta.

A fotoakusztikus kamra felerősített mikrofon jelét egy digitális oszcilloszkópra (Tektronix TD5 3052B, Beaverton, OR, USA) csatlakozott az \(E_2\) energiamérő feszültségkimenetével együtt. A mérések jel/zaj viszonyának javítása és a lézer fényenergiájának impulsusról impulsusra történő ingadozásának csökkentése érdekében a fotoakusztikus jelet normáltam a lézerfény energiájával, majd átlagoltam. Ez oly módon történt, hogy minden egyes fotoakusztikus jelet elosztottam a jelet keltő impulsz mért energiájával, majd rendszerint 100 ilyen leosztott fotoakusztikus jelet átlagoltem. A különböző rendszerek és az azokkal elvégzett mérések összehasonlítására az abszolút fotoakusztikus jel a legalkalmasabb. Ennek meghatározása érdekében a fentiekben leírt normálás és átlagolás után a mért jeleket megszoroztam a lézer hosszútávon mért átlagenergia értékével.

VI.4. ábra. Impulzus üzemmódú fotoakusztikus rendszer sematikus elrendezése \((E_1: \text{energiamérő (@ 532 nm)}; \text{Ny: nyalábosztó}; \text{CLBO: nemlineáris kristály}; \text{T: dikri-}
\text{kus tükrö (266 nm hullámhosszú maximális reflexióval}); \text{D: diafragma}; \text{E_2: energiamérő (@ 266 nm)}; \text{TSZ: tömegáramlás-szabályozó}). A fényutat a fény hullámhosszának megfelelő színekkel jelöltem: \(\text{-} \text{532 nm és -} \text{266 nm}.

Az impulzus üzemmódú gerjesztés során kapott fotoakusztikus jel (a II.3.b. fejezetben ismertetettek szerint) exponenciálisan csökkenő amplitúdójú oszcillációkból állt (VI.8. ábra). Adott \(O_3\) koncentrációhoz tartozó fotoakusztikus jelet vagy az első oszcillációk csúcsától völgyig tartó nagyságával (az első maximum és az öt követő minimum közötti különbség), vagy a jel FFT (gyors Fourier transzformáció) analízisével kapott spektrumának maximális (ami a fotoakusztikus kamra rezonancia-frekvenciához tartozó) amplitúdójával lehet meghatározni, természetesen az előző bekezdésben ismertetett átlagolás és normálás elvégzése után. Mivel a kétféle jelmeghatározás eredményei nagyon hasonlók voltak, a továbbiakban csak az első módszer eredményeit ismertetem.
VI.3.b. Kvázifolytonos modulált üzemmódú rendszer

A kvázifolytonos modulált üzemmódú fotoakusztikus rendszer sematikus felépítése a VI.5. ábrán látható. A lézer (II.4.b. fejezet) ismétlési frekvenciája megegyezett a fotoakusztikus kamra levegőre vonatkozó (akusztikus) rezonancia-frekvenciájával (3865 Hz). Ezen az ismétlési frekvencián a lézer maximális teljesítménye 400 mW, a kibocsátott impulszusok hossza 23 ns, a nyaláb divergenciája pedig 0,908 mrad. A főkuszáláshoz használt lenkes, valamint az alkalmazott optikai elemek egymáshoz viszonyított elhelyezkedését a VI.2. fejezetben részletesebben számoltam ki. Az optikai elemek pontos pozicionálását manuálisan végeztem el a felharmonikus fénysugár teljesítményének maximalizálásával.

VI.5. ábra. A kvázifolytonos modulált üzemmódú fotoakusztikus rendszer sematikus felépítése (L₁, L₂, L₃: -100 mm, 75 mm és 50 mm fókusztávolságú lenkes; LBO: nemlineáris kristály; T₁: dikroikus tükrő 532 nm-es reflexióval; R: félhullám- (λ/2) lemez; Sz: infravörös fénszűrő; CLBO: nemlineáris kristály; T₂: dikroikus tükrő 266 nm-es reflexióval; Pin: pin dióda; L₄: 150 mm fókusztávolságú kvarclencse az UV fény fotoakusztikus kamra (PA k.) rezonátorába történő főkuszálásához; P: kvarcprizma; TM: teljesítménymérő). A fény terjedése színek szerint a követhető: 1064 nm, 532 nm és 266 nm folytonos vonal.

A frekvenciakétszerezéshez a lézer infravörös (1064 nm) fénsugarát egy lítiumtriborát (LiB₃O₅ vagy ismertebb nevén LBO) nemlineáris kristályra fókuszáltam egy -100 mm fókusztávolságú szórólencse (L₁) és egy 75 mm fókusztávolságú (L₂) gyújtőlence segítségével. Az LBO kristály mérete: 6x6x8 mm³. A frekvenciakétszerezés után a fényúttal maradt infravörös fényt egy dikroikus tükrő (T₁) – ami szinte teljes mértékben visszaverte a keltett zöld színű fényt, míg az infravörösöt átengedte – és egy infravörös szűrő (Sz) segítségével távolítottam el. Az 532 nm hullámhosszú fény, melynek polarizációs síkját egy félhullám-
(λ/2) lemezzel (R) állítottam be, második frekvenciakétszerezése ugyanazzal a CLBO nemlineáris kristályval történt, mint az impulzus üzemmodú rendszernél. A zöld színű fényt az 50 mm fókusztávolságú lencse (L₁) a CLBO kristályra fókuszálta. A negyedik harmonikus generálása után az UV fény sugár és a zöld színű fény szétválasztása egy dikroikus tükör (T₂, ami a zöld színű fényt átengedte, az UV fényt pedig visszaverte) és egy 60°-os kvarcprisma (P) kombinációval történt. A T₂ tükör után elhelyezett 150 mm fókusztávolságú kvarclencse (L₄) fókuszálta az UV fénynyalábot a fotoakusztikus kamra (PA k.) rezonátoraiba, kb. 2 mm nyalábátmérővel. A fotoakusztikus kamrából kijövő lézerfény teljesítményének mérését a fotoakusztikus kamra után elhelyezett teljesítménymérő (TM) (Power Max 5200, Molelectron, Portland, OR, USA) végezte. Ez a rendszer egy 40x80 cm² területű optikai asztalra épült, fényképe a VI.6. ábrán (balról) látható.

![VI.6. ábra. A kvázifolytonos modulált üzemmódú fotoakusztikus rendszer fényképe (balról) a sugármenetek grafikus ábrázolásával, valamint a rendszer működéséhez szükséges elektronikai készülékek fényképe (jobbról) (LT: lézer tápegység; PC: számítógép; Erősítő: a mért fotoakusztikus jelek felerősítéséhez; Lock-in: a fotoakusztikus jelek fázisérzékeny detektálásához)](image)

A jel feldolgozásához használt elektronikai rendszer fényképe a VI.6. ábrán látható (LT a lézer tápegysége). A mikrofonjelek felerősítése ugyanazzal a mikrofonerősítővel történt, mint az impulzus üzemmodú fotoakusztikus rendszernél. A felerősített jeleket egy lock-in erősítővel (EG&G Instruments model 5110, Princeton, NJ, USA) mért, melynek időállandóját 3 s-ra állítottam. A mért adatokat egy számítógép (PC) segítségével rögzítettem. A
lock-in erősítő referencia jelét a felharmonikus (532 nm) fény töredékét detektáló pin dióda (ET 2010, Electro-Optics Technology, Traverse City, MI, USA) szolgáltatta.

VI.3.c. Kvázifolytonos szaggatott üzemmódú rendszer

A kvázifolytonos szaggatott üzemmódú fotoakusztikus rendszer felépítése a modulációt biztosító fényszaggató alkalmazásától eltekintve teljesen megegyezett a kvázifolytonos modulált fotoakusztikus rendszerrel. A két rendszer egyetlen eltérését az alkalmazott lézer különböző ismétlési frekvencián történő működése jelentette. A kvázifolytonos szaggatott üzemmódú rendszerben a lézer ismétlési frekvenciája 15 kHz volt, ugyanis ezen az értéken lehetett elérni a maximális 532 nm hullámhosszú fényteljesítményt. Mivel a lézer által kibocsátott fény átlagteljesítménye és impulzusnak szélessége nő az ismétlési frekvencia növelésével, a csúcsintenzitás – ami a frekvencia-kétszerezés szempontjából alapvető paraméter – csökken. Létezik egy optimális ismétlési frekvencia (jelen esetben 15 kHz), amelyen maximális a keltett 532 nm fényugárt teljesítménye. Ezt a VI.7. ábra támasztja alá, ahol a lézer ismétlési frekvenciájának függvényében ábrázoltam a keltett felharmonikus fényteljesítményét. Ebben az esetben egy mechanikus fényszaggató segítségével állítottam elő a 3865 Hz értékű akusztikus rezonancia-frekvenciával megegyező fénymodulációt. A fényszaggatót (300CDU model, Scitec Instruments, Svájc) közvetlenül a negyedik harmonikust képző CLBO kristály mögé helyeztem.

VI.7. ábra. A nagy ismétlési frekvenciájú Nd:YAG lézerrel és az LBO nemlineáris kris- tállyal keltett felharmonikus fényugárt teljesítményének függése a lézer ismétlési frekvenciájától
Ennél a rendszernél a jelkiértékelés is megegyezett a kvázifolytonos modulált fotoakusztikus rendszernél megismertekkel, azzal a különbséggel, hogy ebben az esetben a lock-in erősítő referencia jelét a mechanikus szaggató vezérlője biztosította.

VI.4. Mérési módszerek

VI.4.a. Az ózonmérő rendszerek kalibrálása

VI.4.a. A kvázifolytonos modulált ózonmérő rendszer terepi tesztelése

A frekvencianégyszerezett kvázifolytonos modulált üzemmódú fotoakusztikus rendszert tesztelés céljából az Alsó-Tisza-vidéki Környezetvédelmi, Természetvédelmi és Vízügyi Igazgatóság által fenntartott és működtetett levegőtiszaság-védelmi méréseket végző monitorállomására szállítottuk. Ez a mérőállomás az Országos Légszennyezettségi Mérőhálózat részegységeként számos légszennyező és környezetminőséget jellemző komponens mérését (O₃, NO, NO₂, NOₓ, CO, SO₂, PM₁₀, PM₂,₅, BTEX, szálló por, korom, valamint meteorológiai paraméterek detektálását, mint pl. az UV sugárzás mértéke, a levegő hőmérséklete és páratartalma) végzi. Ezek mellett folyamatos adatszolgáltatást végez a European Topic Centre on Air and Climate Change és a Topic Centre of European Environment Agency intézményeknek. A
fotóakusztikus rendszerünk párhuzamos méréseket végzett a mérőállomáson folyamatosan működtetett ózonmérővel (49C Ozone Analyzer, Thermo Environmental Instruments Inc., Franklin, USA). A referenciakészülék ózonkoncentráció meghatározása UV fotometriás módszeren alapult [134]. Mivel a referenciakészülék zéró túlnyomáson vett mintát a környezeti levegőből, a fotoakusztikus rendszert egy pumpával (NMP830KVDC, KNF Neuberger, Trenton, USA) kellett kiegészítenem, ami a fotoakusztikus kamra után elhelyezve biztosította a fotoakusztikus mérésekhez szükséges megfelelő gázáramot. A fotoakusztikus kamra szempontjából optimális 200 cm³/perc gáz áramerlési sebességét a fotoakusztikus kamra és a pumpa közé elhelyezett tűszelep segítségével állítottam be.

VI.5. Mérési eredmények

A fentiekben ismertetett ózonmérő rendszerek fényforrásainak energia, illetve teljesítményparaméterei a következők voltak. Az impulzus üzemmodű optikai rendszer 25 mJ energiájú 532 nm hullámhosszú fényenergiából 3 mJ energiájú 266 nm hullámhosszút állított elő. A kvázi-folytonos modulált rendszer a 400 mW teljesítményű 1064 nm alap-hullámhosszú fényt 1,5 mW teljesítményű UV fényenergiára konvertálta. A kvázi-folytonos szaggatott üzemmodű rendszer pedig az 1500 mW alapharmonikusból 5,5 mW teljesítményű negyedik harmonikust állított elő [135, 136].

VI.5.a. Az ózonmérő rendszerek kalibrálása

A VI.8. ábrán az impulzus üzemmodű fotoakusztikus rendszer különböző ózonkoncentrációkon rögzített jeleinek időfüggése látható: 0 ppb, 25,3 ppb, 36,1 ppb és 92 ppb O₃. A három ózonmérő rendszer kalibrációs mérési pontjai a rájuk illesztett kalibrációs egyenesekkel a VI.9. ábrán láthatók (az impulzus, a kvázi-folytonos modulált és a kvázi-folytonos szaggatott üzemmodű fotoakusztikus rendszerek). Az ábra bal oldali kék színű skálája az impulzus üzemmodű rendszerrel mért értékekre vonatkozik, míg a jobb oldali fekete színű a kvázi-folytonos üzemmodű ákára. Az ábrázolt fotoakusztikus jelek megfelelnek az erősítéssel visszaosztott mikrofonjeleknek. A kapott kalibrációs görbék meredekségével osztva a háttérjelek (ózonmentes levegő fotoakusztikus jele) ingadozásának háromszorosát, megkapjuk a különböző rendszerek által kimutatható legkisebb ózonkoncentráció értékeket, amelyek az impulzus üzemmodű rendszerre 2,8 ppb, a kvázi-folytonos modulált és szaggatott üzemmodű fotoakusztikus rendszerekre pedig 2,9 ppb és 4,4 ppb [136].
VI.8. ábra. Az impulzus üzemmódú fotoakusztikus rendszer különböző ózon-konzentrációkon mért jelei (0 ppb, 25,3 ppb, 36,1 ppb és 92 ppb O₃)

VI.9. ábra. A különböző (az impulzus, a kvázifolytonos modulált és a kvázifolytonos szaggatott) üzemmódú fotoakusztikus rendszerek kalibrációs mérései pontjai a rájuk illesztett kalibrációs egyenesekkel. A bal oldali kék színű skála az impulzus üzemmódú rendszer rel mért értékekre vonatkozik, míg a jobb oldali fekete színű a kvázifolytonos üzemmódúakéra.
VI.5.b. A kvázifolytonos modulált üzemmódú ózonmérő rendszer terepi mérése

VI.6. A mérési eredmények kiértékelése

Az általunk kifejlesztett mindegyik ózonmérő rendszerrel elért legkisebb kimutatható koncentráció a néhány ppb tartományba esik [136]. Látszólag ez meglepő, hiszen az impulzus üzemmódú fotoakusztikus rendszer kalibrációs görbéjének meredeksége sokkal nagyobb, mint a kvázifolytonos üzemmóduaké. Ezzel párhuzamosan azonban az impulzus üzemmódú rendszerrel a mérés bizonytalansága is nagyobb. Ez a mérési bizonytalanság nem akusztikus eredetű, ugyanis a lézerfényt kitakarva a fotoakusztikus jel 100 nV alá csökkent, az impulzus üzemmódú lézer működése következtében keltett igen zajos környezet ellenére. Sokkal valószínűbb, hogy ez a bizonytalanság az UV fotonok energiájának (impulzusról impulzusra történő) ingadozásából ered. Annak ellenére, hogy a mért fotoakusztikus jeleket az impulzus energiájával történő lövésenkénti normalizálás után átlagoltam, azok szórása nagyjából két nagyságrenddel nagyobb volt, mint a kvázifolytonos rendszerek estében. Az elért érzékenység tekintetében mind a három fotoakusztikus rendszer alkalmas környezetvédelmi megfigyelések végzésére, habár az impulzus üzemmódu fotoakusztikus rendszer széleskörű elterjedését robbanói mérete valószínűleg megakadályozza.

Az impulzus és a kvázifolytonos fotoakusztikus technikák összehasonlításához a (21) vagy (22) egyenletek alapján kiszámítható ekvivalens lézerteljesítmény ($W_{E_{kv}}$) bevezetésével
kapcsolatot lehet teremteni a lézer energiája és teljesítménye között. Az ekvivalens lézerteljesítmény kiszámolásához a (22) egyenlet alapján ismerni kell a rezonanciagörbe félértékszélességét (Δf), amit vagy kísérleti úton vagy az irodalom [15] alapján számolással lehet meghatározni. Az általam használt fotoakusztikus kamra rezonancia gőrbéjének félértékszélessége 100 Hz-nek adódott. Mivel 3 mJ energiájú UV lézerimpulzusokkal történt a fotoakusztikus jelkeltés, az impulzus üzemmódtú fotoakusztikus rendszer ekvivalens lézerteljesítménye 300 mW volt. Ezek után meghatároztam az effektív fotoakusztikus jelet (EPAS), ami a fotoakusztikus jelgenerálás hatásfokának mértékére jellemző paraméter. Az EPAS megfelel annak a jelszintnek, ami egységnyi ózonkoncentrációjú mintában egységnyi lézerteljesítmény abszorpciójának hatására keletkezik. Könnyen belátható, hogy ez az érték nem más, mint a kalibrációs pontokra illesztett egyenes meredekségének (VI.9. ábra) és a lézer teljesítményének a hányadosa. Megjegyzendő, hogy a kvázifolytonos szaggatott fotoakusztikus rendszer esetében a nemlineáris kristályban gerjesztett 5,5 mW fényteljesítmény fele jutott csak a fotoakusztikus kamrába, a kamra előtt elhelyezett mechanikus fényszaggató modulációja miatt. A fentiek ismeretében az EPAS érték az impulzus üzemmódtú fotoakusztikus rendszerre 25 nV ppb⁻¹mW⁻¹, míg a két kvázifolytonos ózonmérő rendszer esetében 40 nV ppb⁻¹mW⁻¹ értéknek adódott. Az impulzus üzemmódtú fotoakusztikus rendszer kisebb EPAS értékének magyarázata az optikai telítődésben rejlik. Az impulzus üzemmódtú rendszer fotoakusztikus kamrájában a becsült energiasűrűség kb. 200 mJ/cm², ami a 266 nm hullám-

![VI.12. ábra. Konstans ózonkoncentráció fenntartása mellett különböző teljesítményű lézerfény által keltett (• kvázifolytonos és ■ impulzus üzemmódtú) fotoakusztikus jelek. Az ábrázolt lézerteljesítmények az impulzusenergiákból a szövegben ismertetett ekvivalens lézerteljesítmény módszer segítségével számolhatók.](image-url)
hosszra vonatkozó 300 cm\(^3\) optikai abszorpcióss együtthatóval [130] számolt 75 mJ/cm\(^2\) telítődési energiasűrűségnek több mint a duplája. Az optikai telítődés kísérleti igazolásának érdekében, konstans ózonkoncentráció fenntartása mellett megmért a különböző teljesítményű lézerfény által keltett fotoakusztikus jelet (az impulzus üzemmodú rendszer esetében ez a teljesítmény az ekvivalens lézerteljesítmény \(W_{Evk}\) volt). Ezen mérési eredmények két szerves logaritmikus skálán történő ábrázolásából (VI.12. ábra) látható, hogy a nagyobb lézerteljesítmények esetében mért fotoakusztikus jelekre (impulzus üzemmodú rendszer) illesztett görbé meredeksége kisebb, mint az alacsonyabb lézerteljesítmények esetében keltett fotoakusztikus jelekre (kvázifolytonos üzemmodú rendszer) illesztett egyenes meredeksége [135], ami kísérleti úton is alátámasztja a feltételezést, azaz az optikai telítődés bekövetkezését.

VI.7. Összefoglalás

266 nm hullámhosszú fényforrást állítottam elő különböző típusú Q-kapcsolású Nd:YAG lézerek fényének frekvenciatöbbszörözésével, melyet ózonkoncentráció fotoakusztikus mérésére alkalmaztam. Az általam megépített három különböző felépítésű ózonmérő fotoakusztikus rendszer működését hasonlíttottam össze ppb koncentrációtartományban történt ózonmérések alapján. Megállapítottam, hogy a nagy energiájú, impulzus üzemmodú lézeren alapuló fotoakusztikus rendszerrel elért érzékenység jóval rosszabb, mint azt az előzetes számolások alapján várt lehetne. Az általam adott magyarázat szerint ez a nem optimális működés részben az ózon gerjesztett vibrációs átmenetének optikai telítődéséből adódott, amit kísérleti úton és az effektív fotoakusztikus jel (EPAS) kiszámolásával is bizonyítottam. A néhány kHz ismétlési frekvencián működő kvázifolytonos modulált üzemmodú rendszer terepi tesztelése során bebizonyosodott, hogy alkalmas alacsony ppb szintű mérésekre és így felve-szi a versenyt a kereskedelmi forgalomban kapható ózonmérő műszerekkel.
VII. Nd:YAG LÉZER ALAPÚ FOTOAKUSZTIKUS MÉRŐRENDSZER AEROSZOLOK MÉRÉSÉRE

VII.1. Az ózonmérő fotoakusztikus rendszer átalakítása aeroszolok optikai absorpciójának mérésére alkalmas fotoakusztikus rendszerre

Az előző fejezetben ismertetett kvázifolytonos üzemnódú fotoakusztikus rendszert az alábbiak szerint tettem alkalmassá több hullámhosszon működő aeroszolok abszorpciójának mérésére [133]. A rendszer méretének minimalizálása céljából a fénynyaláb terelését és mintegy „összehajtogatását” dikroikus tükrökkal végeztem. Mivel a dikroikus tükör az egyik hullámhosszú fényugatrat átengedi, a másikat pedig reflektálja, szükségtehené vált az ózonmérőben alkalmazott fényugár egysínűségét biztosító színszürő, illetve prizma használata. A tükrök fényútba való elhelyezése nem módosítja a nyalalbnyak transzformációját leíró mátrix alakját, így a lencsék fókusztávolságára és relatív helyzetükre vonatkozó korábban elvégzett számítások (VI.2. fejezet) továbbra is helytállók. Az optikai elemek pontos elhelyezését kíséreleti úton, a keltett fényugarak teljesítményének maximalizálásával állítottam be. Az optikai elemek mechanikai stabilitását az alacsony fényüt és az alkalmazott stabil elemartók biztosították. A nagyobb UV fényteljesítmény elérése céljából a frekvencianégyszerezésre használt CLBO kristályt kálium-dideutérium-foszfátra (KD$_2$PO$_4$ vagy ismertebb nevén DKDP) cserétem, ugyanis a DKDP kristály konverziós hatásfoka kevésbé érzékeny a fényugarak fókuszálásánál fellépő nyalábdivergenciára. A nemlineáris kristályokat egy általunk fejlesztett hőmérséklet-stabilizált kristálytartóban helyeztem el abból a célból, hogy a környezet hőmérséklet-változása ne befolyásolja a frekvenciatöbbszörözs stabilitását. A lézerfény polarizációs síkjának félhullám-lemezzel történő beállítása helyett a DKDP kristályt úgy pozicionáltam, hogy a fázisillesztés szöge egybeessen az 532 nm hullámhosszú fény polarizációs síkjával. A rendszerbe a korábbival szemben egyrezonátoros és csökkentett térfigatú (II.5. fejezet) három darab fotoakusztikus kamra került beépítésre, fényutanként egy-egy [133]. A három kamra lényegében egyenlő rezonancia-frekvenciával rendelkezett (levegő vivógázra vonatkozóan 4 kHz). A fotoakusztikus kamrák elhelyezésénél figyelmet fordítottam arra, hogy a rezonázor középpontja essen egybe a kamrán átmenő fény fókuszpontjával. Minden egyes hullámhossz fényteljesítményét a fotoakusztikus kamrák után elhelyezett teljesítménymérők mérték. Ezáltal azonnal lokalizálhatóvá vált bármelyik fényugár teljesítményének csökkenése, valamint kiküszöbölhetetővé vált a fényteljesítmény ingadozásából származó fotoakusztikus jelek instabilitása. A fentiekben leírt változtatások által az optikai rendszer alapterületét 40x60 cm2-re csökkentettem. A három hullámhosszú rendszer sematikus elrendezése a fotoakusztikus
VII.1. ábra. A három hullámhosszon működő fotoakusztikus rendszer sematikus elrendezése (L_1, L_2, L_3, L_4: -100 mm, 75 mm, 50 mm és 40 mm főkusztávolságú lencsék; D_1: dikroikus tükrőr 1064 nm-es reflexióval; LBO: nemlineáris kristály; D_2: dikroikus tükrőr 532 nm-es reflexióval és 1064 nm-es transzmisszióval; DKDP: nemlineáris kristály; D_3: dikroikus tükrőr 266 nm-es reflexióval és 532 nm-es transzmisszióval; TM: teljesítménymérő; K1, K2 és K3: fotoakusztikus kamrák). A fekete nyílak jelölik a kamrák gáz be- és kivezetését. A fény terjedése színek szerint a követettő: 1064 nm, 532 nm és 266 nm folytonos vonal.

VII.2. ábra. A három hullámhosszon működő fotoakusztikus rendszer optikai elrendezésének és gázkezelésének fényképe, a VII.1. ábrán ismertetett jelölésekkel (MK: mágneskapcsoló)
kamrákkal együtt a VII.1. ábrán, míg a megvalósított változat fényképe a gázkezeléssel együtt a VII.2. ábrán látható, a fénysugarak terjedését a hullámhosszaiknak megfelelő színekkel történő ábrázolásával.

A fotoakusztikus készülék gázkezelési rendszerébe épített részecskeszűrő abszorpció-mentes gázáramot állított elő, ami lehetővé tette a háttérjel közvetlen mérését. A környezeti levegőből vett minta fotoakusztikus jelből kivonva a háttérjel értékét, megkapjuk a minta fotoakusztikus jelét, amelyből megfelelő kalibrálás elvégzése után meghatározhato a mért minta optikai abszorpciója. Egy mágneskapcsoló vezérelte a mintavételezett gáz áramerlési irányát vagy közvetlenül, vagy pedig a szűrőn keresztül a fotoakusztikus kamrákba.

Az ózonmérőhöz képest jelentős változás, hogy olyan elektronikát alkalmaztam, ami elvégezte a lézer tápegségének vezérlését, valamint a mikrofonjelek felerősítését és kiértékelését. Ez a műszer a Videoton Zrt-vel való együttműködés keretében készült. Az elektronika szoftvere képes volt párhuzamosan két frekvenciával modulálni a lézert. A gyakorlatban ez úgy valósult meg, hogy a 16 kHz-es ismétlési frekvenciával (ami megfelelt a maximális frekvenciakétszerezés feltételének) kijövő impulzusok egy 4 kHz-es modulációknak (ami a kamrák akusztikus rezonancia-frekvenciájának felelt meg) lettek kitéve, azaz két impulzus kijött a lézerből, kettő pedig nem. Ezzel kiküszöbölttem az akusztikai szempontból zajos fényszaggató használatát. Ez az elektronika vezérelte a mágneskapcsolót és a nemlineáris kristályok hőmérsékletének stabilizálását is.

A fentiekben leírt rendszert egy 70x65x53 cm³ méretű hordozható műszerszere-kénybe integráltuk, amelynek fényképe a VII.3. ábrán látható. A teljes rendszer tömege 70 kg volt. A műszer felépítése a kihúzható optikai asztal (fényképe a VII.2. ábrán látható) révén lehetővé tette az esetleges szervizmunkákat, karbantartási eljárással és, ha szükséges volt, az optikai elemek (pl. nemlineáris kristály) cseréjének elvégzését.

VII.3. ábra. Az aeroszolok mérésére alkalmas kompakt, három hullámhosszon működő fotoakusztikus mérő-készülék fényképe
VII.2. Mérési módszerek

VII.2.a. A rendszer kalibrálása

A három hullámhosszon működő fotoakusztikus rendszer kalibrálása Németországban történt, a Karlsruhei Kutatóközpont Meteorológiai és KLímakutató Központjában lévő AIDA (Aerosol Interaction and Dynamics in the Atmosphere) rendszer képző NAUA aeroszol kamra segítségével [137]. A NAUA kamra rozsdamentes acélból készült, térfogata 3,7 m³. Minden egyes kísérletsorozat megkezdése előtt teljesen kiürítettük, majd szintetikus levegővel újratöltöttük a NAUA kamrát. Ez a folyamat 2 cm³ háttérértékű részecskekoncentrációt eredményezett. Ezek után került a mérendő aeroszol a NAUA kamrába, amelynek homogén eloszlatása a kamrában lévő ventilátor segítségével nagyjából 30 percet igényelt. Ezt követte a kamra tartalmának mintavételezése a hozzácsatlakoztatott mérőkészülékekkel. A kamrába bejutó 2 m³/h állandó értékű szintetikus levegőram tartotta egyensúlyban a mintavételezésből származó veszteségeket, valamint a mért minta folyamatos hígítását biztosította a kísérletek alatt.

A K3 fotoakusztikus kamrát 266 nm hullámhosszon ózongenerátorral (Sorbios), a K2 fotoakusztikus kamrát 532 nm hullámhosszon 1000 ppm NO₂ tartalmú gázpalack és szintetikus levegővel megfelelő arányú keverékével kalibráltuk. Az O₃ és NO₂ koncentrációjának mérése kereskedelmi forgalomban kapható gázelemzékekkel (Ansyco, O₃ 41M és Horiba, APNA-300E) történt. Mivel a továbbiakban nem koncentráció, hanem optikai abszorpciő mérése volt a cél, ennek megfelelően történtek a kalibrációs görbék megszerkesztése. Az O₃ és NO₂ ismert abszorpciós hatáskeresztmetszetének (σ_{O₃} = 9.44·10⁻¹⁸ cm²/molekula @ 266 nm [131] és σ_{NO₂} = 1.47·10⁻¹⁹ cm²/molekula @ 532 nm [138], 293 K hőmérsékleten és 1000 mbar nyomáson) és részecskeszámm koncentrációinak (N [molekula/cm³]) ismeretében kiszámoltam az optikai abszorpciós együttható (α_{abs}) értékét:

\[α_{abs} = σ \cdot N \],

amelynek függvényében ábrázoltam a mért és a fényteljesítménnyel normált fotoakusztikus jelek nagyságát.

A K1 fotoakusztikus kamrát infravörös (1064 nm) hullámhosszon poli-diszperz korom aeroszolokkal kalibráltuk, amit propán és levegő megfelelő arányú keverékének „co-flow” diffúz elégetésével kaptunk (Combustion Aerosol Standard, CAST, Jing-CAST Technologies). A propán és a levegő keverékét C/O atom arányban határozták meg [139], ami a kalibrációs mérések során 0,29 értékre állítottunk. Az így előállított korom hullámhosszfüg-gő ab-
szorpciós hatáskeresztmetszete a 450-700 nm hullámhossz tartományban a hullámhossz reciprokával arányos [139]. Ezt felhasználva extrapolációval határoztuk meg a fotoakusztikus rendszer 1064 nm hullámhosszra vonatkozó abszorpcióját.

VII.2.b. Laboratóriumi mérések

A NAUA kamrában lévő aeroszol részecskék fotoakusztikus módszerrel történő abszorpciós méréseivel párhuzamosan azok egyéb fizikai paramétereinek meghatározása is folyamatos volt. Az előállított aeroszol minta extinkciós együtthatóját \((\alpha_{ext}) \) LOPES extinkciós spektrométer mérete 230 - 1000 nm hullámhossz tartományban 2,5 nm felbontással [140]. A szórás együttható \((\alpha_{sc}) \) meghatározását 450, 550 és 700 nm hullámhosszakon egy kereskedelmi forgalomban kapható integrált nephelométer (TSI, 3653) végezte. Az aeroszolok részecskeszám koncentrációjának meghatározása egy kondenzációs számlálóval (TSI, CPC 3022A), a részecskék méreteloszlásának meghatározása pedig egy aerodinamikus méret-meghatározóval (APS 3321, TSI) történt. Az extinkciós és szórási mérésekből differenciális módszerrel [140] kiszámolható a minta optikai abszorpciós együtthatója \((\alpha_{abc}) \):

\[
\alpha_{abc} = \alpha_{ext} - \alpha_{sc}.
\] \((48) \)

A gyengén abszorbeáló részecskék nephelométerrel történő szórási együtthatóinak mérése korrekcióra szorult [140]. Mivel ez a korrekción nem csak a részecskék méretétől, hanem azok alakjától is függ, a nephelométer nem alkalmas a szórási együttható, és következésképpen a differenciális módszeren alapuló abszorpciós együttható precíz meghatározására. Ebből kifolyólag a differenciális módszert csak erősen abszorbeáló koromrészecskékre alkalmasztuk abból a célból, hogy igazoljam a fotoakusztikus módszer alkalmazhatóságát az abszorpció közvetlen mérésére.

A fotoakusztikus rendszerrel és a differenciális módszerrel meghatározott abszorpciós együtthatók korrelációjának vizsgálatát eltérő koncentrációjú tiszta ún. CAST korom, valamint CAST korom és nátrium-nitrát (ami közutódottan nem abszorbeáló, hanem szóró részecské) különböző összetételű keverékeivel végeztük. CAST korom és nátrium-nitrát különböző keverékeinek 266 nm és 532 nm hullámhosszakra vonatkozó abszorpciós együtthatóját a differenciális módszerrel 450 - 700 nm hullámhosszakra meghatározott abszorpciós Angström-együttható segítségével határoztuk meg, a 450 nm és 550 nm hullámhosszakra vonatkozó abszorpciós együtthatók extrapolációval és interpolációjával. Az aeroszolok abszorpciójának hullámhosszfüggőségét leíró:
\[
\alpha_{abc} = a \lambda^{-A}
\]
(49)

eyenletben \((a \text{ egy hullámhossz független állandó})\) a hullámhossz \((\lambda)\) kitevőjét \((A)\) nevezzük abszorpciós Angström-együttthatónak.

Ezután két homokminta (Cairo 2 és Marokkó) tömegspecifikus abszorpciós hatáske-
resztmetszetet \((\sigma_{abc})\) és egyszeres szórási albedó (SSA) értékét határoztuk meg a következők szerint. A három hullámhosszon működő fotoakusztikus rendszerrel mért fotoakusztikus je-
lekől a kalibrációs görbék felhasználásával kiszámoltuk az abszorpciós együtttható értékét \((\alpha_{abc})\). Az abszorpciós együtttható és a részecskeszám-koncentráció \((N)\) ismeretében a (48)
eyenlet szerint meghatároztuk a minta abszorpciós hatáskeresztmetszetét \((\sigma)\). Ezt az értéket osztra a mintha tömegkoncentrációjával megkapjuk a tömegspecifikus abszorpciós hatása-
resztmetszetet \((\sigma_{abc})\). Az egyszeres szórási albedó (SSA: single scattering albedo) pedig a szórás és a teljes extinkció hányadosa. Megmutatja, hogy az adott aeroszol típusú részecskék inkább reflexiós (SSA > 0,5) vagy abszorpciós (SSA < 0,5) tulajdonságúak.

A Cairo 2 minta Kairótól északkeleti irányban, attól 70 km-re fekvő terület 0,5 m mélységéből származott. Ennek színe a halvány sárgától a halvány barnáig terjedt. A Marok-
kóból származó homokmintát a Mainzi Egyetem munkatársa Lothar Schütz bocsátotta a ren-
delkezésünkre. Ez a homokminta sötétebb volt a Cairo 2 mintától, színe a sárgától a vöröses barnáig terjedt. A mintákat három szemcseméretű részre (20 \(\mu m\) alatti, 20-75 \(\mu m\) közötti és 75 \(\mu m\) felettiek) válogatták. Az abszorpciós kísérletek a 20 \(\mu m\) alatti szemcseátmerőjű mintákkal történtek. A diszpergáló után elhelyezett négy egymást követő tehetetlenségi impaktorok következtében a NAUA kamrába csak az 1,2 \(\mu m\) (aerodinamikus) átmérőnél kí-
sebb méretű homok szemcsék kerültek, amivel minimalizáltuk a horizontális ülepedést.

VII.2.c. A rendszer terepi tesztelése

A három hullámhosszon működő fotoakusztikus rendszer terepi tesztelése a Svájci Alpok területén (Roveredo) 2005. november 25.-től december 15-ig megszervezett mérési kampány keretén belül történt. A kampány célja az volt, hogy az adott helyen elvégzett méré-
sekből megállapítsa a közlekedésből és a fa alapanyagú tüzelésből származó aeroszolok ará-
nyát.

Roveredo az Alpok déli részén, a Mesolcina-völgyben fekszik 298 m tengerszint felet-
ti magasságon, 2200 lakossal. A falu háztartásainak több mint \(\frac{3}{4}\)-ben fával fütenek. A települ-
lése egy 2x1 sávos autóút halad keresztül, amit egy 3 m magas betonfal választ el a lakott
területtől. Roveredoban és környékén ipari tevékenységet nem folytattak. A téli időszakban (decembertől januárig) a falut a környező meredek hegyek nagy részben leárnékolják a nap-sütéstől, így kedvező körülmények alakulnak ki a folyamatos és jelentős hőmérsékletinverzió kialakulásához. A hőmérsékletinverzió, a gyenge szél és a napközbeni kevés napsütés hatására az aeroszol részecskék felülsülnek a környezeti levegőben. Ezen a területen az utóbbi 8 évben mért évi átlagos PM$_{10}$ koncentráció (25 μg m$^{-3}$) állandó volt [141]. A fentiekből kifolyólag ezen a területen a téli időszakban az átmenő közlekedés és a helyi tüzelés az aeroszolok fő forrásai és egyéb háttérősszetevők elhanyagolhatóak. Ez ideális helyszínt biztosított a mérési kampány céljának.

A mérési kampányon részt vevő műszerek két egymás mellett álló hőmérséklet-stabilizált (25°C) mérőkonténberen helyezkedtek el nagyjából a falu közepén, az autóutat elválasztó faltól kb. 10 m távolságra. A központi mintavevő egységből a VI.4.a. fejezetben említett pumpa biztosította a fotoakusztikus mérésekhez szükséges levegőminta 200 cm3/perc áramlási sebességét.

VII.3. Mérési eredmények

A három hullámhosszon működő fotoakusztikus rendszer fényforrása rendre 750 mW infravörös, 80 mW zöld és 4 mW UV fényteljesítményű gerjesztéssel rendelkezett az aeroszolok optika abszorpciójának mérésére [137].

VII.3.a. A rendszer kalibrálása

A három hullámhosszon működő fotoakusztikus rendszer három hullámhosszára vonatkozó kalibrációs mérési pontok a rájuk illesztett kalibrációs egyenessel együtt rendre a VII.4. - VII.7. ábrákon láthatók. A kalibrációs egyenesek meredekségéből és a mérések szórásából meghatározott a fotoakusztikus rendszer legkisebb kimutatható optikai abszorpcióját, ami mind a három hullámhosszra 10^{-5} m$^{-1}$ értéknek adódott, ± 2% bizonytalansággal [137].
VII.4. ábra. A három hullámhosszon működő fotoakusztikus rendszer 266 nm hullámhosszú abszorpciójára vonatkozó kalibrációs mérési pontok a rájuk illesztett kalibrációs egyenessel.

VII.5. ábra. A három hullámhosszon működő fotoakusztikus rendszer 532 nm hullámhosszú abszorpciójára vonatkozó kalibrációs mérési pontok a rájuk illesztett kalibrációs egyenessel.
VII.6. ábra. A három hullámhosszon működő fotoakusztikus rendszer 1064 nm hullámhosszú abszorpciójára vonatkozó kalibrációs mérési pontok a rájuk illesztett kalibrációs egyenesszel

VII.3.b. A laboratóriumi mérések eredményei

Az VII.7. ábrán látható a fotoakusztikus rendszerrel és a differenciális módszerrel meghatározott abszorpciós együtthatók korrelációja eltérő koncentrációú tiszta ún. CAST koromra (■), valamint CAST korom és nátrium-nitrát különböző összetételű keverékeire (*) 266 nm (felső görbe) és 532 nm (alsó görbe) hullámhosszakon. A fotoakusztikus rendszerrel és a differenciális módszerrel kapott abszorpciós értékek jó egyezést mutattak.

Az előállított két porminta (Cairo 2 és Marokkó) fotoakusztikus mérések alapján meghatározott specifikus abszorpciós hatáskeresztmetszet \(\sigma_{abc} \) értékeit a VII.1. táblázat tartalmazza az egyszeres szórási albedó értékekkel együtt, amelyeket a számolt specifikus abszorpciós hatáskeresztmetszet és a mért extinkció ismeretében határoztunk meg. A Cairo 2 homokminta specifikus abszorpciós hatáskeresztmetszet 0,02 m²g⁻¹ (@ 532 nm) értékéről 0,81 m²g⁻¹ (@ 266 nm) értékre növekedett, míg a Marokkó minta 0,06 m²g⁻¹ értékéről 1,10 m²g⁻¹ értékre. Ennek megfelelően 532 nm hullámhosszon a pormintákrá viszonylag nagy (0,99 és 0,98) SSA értékeket, míg az UV tartományban (266 nm) jóval kisebb (0,76 és 0,63) értékeket kaptunk. A Cairo 2 minta infravörös hullámhosszára számított specifikus abszorpciós hatáskeresztmetszete 0,03 m²g⁻¹, a hozzáartozó SSA érték
pedig 0,99. A Marokkó minta vonatkozásában 1064 nm hullámhosszon a mérések sikertelennek bizonyultak.

\[m = 0.985 \pm 0.024 \]
\[R = 0.993 \]

\[m = 1.007 \pm 0.016 \]
\[R = 0.998 \]

VII.7. ábra. A fotoakusztikus módszerrel és a differenciális módszerrel 266 nm (felső ábra) és 532 nm hullámhosszon (alsó ábra) mért adszorciók összehasonlítása eltérő koncentrációjú korom (■), valamint korom és nátrium-nitrát (*) különböző arányú keverékére. Az ábra bal felső sarkában látható a mérési pontokra illesztett egyenes meredeksége (m) és a regressziós tényező (R).
VII.1. táblázat. Két különböző homokminta (Cairo 2 és Marokkó) tömegspecifikus abszorpciós hatáskeresztmetszet (σ_{abc}) és egyszeres szórású albedó (SSA) értékei

<table>
<thead>
<tr>
<th>Minta</th>
<th>σ_{abc} [m2 g$^{-1}$]</th>
<th>SSA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>266 nm</td>
<td>532 nm</td>
</tr>
<tr>
<td>Cairo 2</td>
<td>0,81±0,16</td>
<td>0,02±0,004</td>
</tr>
<tr>
<td>Marokkó</td>
<td>1,10±0,26</td>
<td>0,06±0,014</td>
</tr>
</tbody>
</table>

VII.3.c. A rendszer terepi tesztelésének eredményei

A három hullámhosszon működő fotoakusztikus rendszer terepi körülmények között történt kétethes folyamatos méréseből 3 napot (november 30., december 11. és december 13.) ábrázoltam 1 perces futóátlagolás után az VII.8. ábrán (UV, 532 nm és IR abszorpció). A mérési eredmények szerint az UV abszorpció a délutáni és az esti órákban megerősödött (maximális értéke a 2-3·10$^{-4}$ m$^{-1}$ tartományban mozgott), majd az éjszaka folyamán lassan csökkent [142]. Minimális értékeket a hajnali órákban lehetett mérni. Az ábrán jól látható, hogy a 266 nm hullámhosszon mér optikai abszorpció jellemzően többszöröse az 532 nm-en mértnek, az infravörös abszorpció pedig szinte elhanyagolható.

VII.8. ábra. Részlet a három hullámhosszon működő fotoakusztikus rendszer Alpok völgyében mért optikai abszorpciós méréseből (− UV, - látható és - infravörös hullámhosszakon)

VII.4. A mérési eredmények kiértékelése

A fotoakusztikus rendszerrel és a differenciális módszerrel kétféle mintára (tiszta CAST korom, valamint CAST korom és nátrium-nitrát különböző összetételű keveréké) kapott és egymás függyvényében ábrázolt abszorpcióira illesztett egyenesek meredekségei 0,985±0,024 (266 nm hullámhosszon) és 1,007±0,016 (532 nm hullámhosszon), regressziós
tényezői pedig 0,993 (@ 266 nm) és 0,998 (@ 532 nm). Mivel az egyenes meredeksége nagyjából 1, megalapítható, hogy a kétféle módszerrel kapott optikai abszorpció hasonló. Az aeroszol keverékekkel végzett kísérletek az elvárásoknak megfelelően alátámasztották, hogy az erősen fényszóró részecskék jelenléte nem befolyásolja a fotoakusztikus rendszer abszorpció mérését [137]. A használt aeroszol koncentrációkon a fotoakusztikus mérések teljes bizonytalansága 5 % volt.

A három hullámhosszszon működő fotoakusztikus rendszer és a LOPES extinkciós spektrométer mérési eredményeiből meghatározott tömegspecifikus abszorpciói hatáskeresztmetszet és SSA értékek jó egyezést mutatnak más laboratóriumi mérési eredményeivel [143, 144]. Az összehasonlított SSA értékek 2 %-os eltérése az SSA jelentős méretfüggéséből eredhet [105]. Illetve abból, hogy az összehasonlításhoz használt SSA értékek kissé eltérő hullámhosszakra (660 nm és 530 nm) vonatkoznak.

Az 532 nm hullámhosszson kapott viszonylag nagy SSA értékek az UV tartományban jóval kisebbnek adódtak. Az egyszeres szórási albedó ilyen mértékű hullámhosszfüggése a tömegspecifikus abszorpció hatáskeresztmetszet igen jelentős hullámhosszfüggéséből származik, ami a Cairo 2inta esetében $A = 5,3$, míg a Marokkóinta esetében $A = 4,2$ abszorpciós Angström-együtthatót eredményezett [137]. Természetes eredetű homokminták néhány hullámhosszson elvégzett méréséiből számolt abszorpció Angström-együtthatóinak összehasonlítása során nem szabad megfeledekéznünk arról, hogy a korom széles és strukturálisan abszorpciói elnyelési sávjával ellentétben [145] a homok aeroszolok spektruma rendelkezhet jelentős strukturáltsággal.

Megvizsgálva a homokminták kémiai és ásványtani összetételét, arra lehet következtetni, hogy a homokszemcsékben lévő vasofoxid (mint amilyen a hematit [Fe$_2$O$_3$] és a geothit [FeO(OH)]) növeli meg jelentősen az ásványi homok abszorpciói hatáskeresztmetszetét a látható, de különösen az UV hullámhossz tartományban [137].

A téli időszakban az Alpok egyik völgyében fekvő falu légkörí aeroszoljainak a délutáni és esti órákban mért nagyobb UV abszorpciója (VII.8. ábra) abból származott, hogy ezekben az időszakokban a levegőben feldúsult a fa elégetéséből származó aeroszolok menyisége. Ezek köztudottan erősabb UV abszorcióval rendelkeznek, mint a közlekedésből származó aeroszolok [113]. A fútés leállása és a forgalom megszűnése az UV abszorció csökkenését eredményezte. Ehhez az abszorció csökkenéshez hozzájárult a levegő tisztlulása és hígulása, a légréteg magasabb részein lévő tiszta levegő leáramlásának következtében. A reggeli csúcsforgalom hatása nem érzékelhető. A fentiek, valamint az infravörös hullámhosszon mért jelentéktelen abszorpció alapján kijelenthető, hogy az ilyen területeken az aeroszo-
lok legjelentősebb mennyisége a fa alapanyagú tüzelésből származik, ami mellett elhanyagolható a közlekedésből eredő aeroszolok mennyisége. Ez a megállapítás jó egyezést mutat a mérési kampány során más műszerrel (több hullámhosszon (370 - 950 nm) működő aethalométer) mért abszorpcióértékekkel [145].

Megtörtént a három hullámhosszon működő fotoakusztikus rendszer továbbfejlesztése négy hullámhosszon történő abszorpciómérésre [146].

VII.5. Összefoglalás

Három hullámhosszon működő fotoakusztikus rendszert építettem a frekvenciáobb-szörözés segítségével egyetlen lézeres fényforrás felhasználásával. Ez a rendszer alkalmasnak bizonyult aeroszolok optikai abszorpciójának hullámhosszfüggő mérésére. Ezáltal az eddig extinkciós és szórási mérésekből differenciális módszerrel meghatározott abszorpció mérése nagymértékben leegyszerűsödik. Bebizonyosodott, hogy a fotoakusztikus módszerrel történő abszorpciómérést a fellépő fényiszórás nem befolyásolja.

A három hullámhosszon működő fotoakusztikus rendszerrel és a LOPES extinkciós spektrométerrel gyengén abszorbeáló aeroszol (homok) meghatározott tömegspecifikus abszorpciós hatáskeresztmetszet jó egyezést mutat más laboratóriumok mérési eredményeivel.

Terepi körülmények között elvégzett mérésekkel igazoltam, hogy a laboratóriumban kalibrált műszer alkalmas terepei körülmények között is a levegőben lévő aeroszolok optikai abszorpciójának mérésér.
VIII. ÖSSZEFOGLALÁS

Az alábbiakban összegzem az elért új tudományos eredményeimet.

2. Rizsnövények alkoholos erjedésének anyagcseretermékeit követtem nyomon CO lézer alapú fotoakusztikus rendszerrel, amely alkalmas az etanol és az acetaldehid érzékelésére a nl l⁻¹ tartományban. Megállapítottam, hogy külső oxigén hiányában a rizspalánták erjedése 30 percen belül kezdődött. Arra a következtetésre jutottam, hogy az előzetes várakozásokkal szemben nincs észrevehető különbség az áradást törő (FR13A) és az arra érzékeny (CT6241) rizsfajták anaerob körülmények alatt és az azt követő levegő hatására mutatott reakciója között, az általuk kibocsátott etanol, acetaldehid és CO₂ részletes kinetikáinak összehasonlítása alapján [122].

Mikro-aerob körülmények (különösen 0,05 % O₂) alatt és az azt követő szintetikus levegővel történő öblítés hatására a fokozott acetaldehid termelődés csökkentett etanol termelődéssel párosult. Ez a jelenség sokkal jellegzetesebb volt az áradást törő fajtánál (FR13A), mint az áradásra érzékeny fajtánál (CT6241). Ez a megfigyelési eredmény a lipidmembránok kisebb mértékű peroxidációjával hozható összefüggésbe, amit a lassabb etánkibocsátás alátámaszt. Megállapítható, hogy FR13A rizsfajtánál a kisebb mértékű lipidkárosodás annak köszönhető, hogy a reaktív oxigén gyökök a membránkárosító hatásuk kifejtése előtt hidrogén-peroxiddá alakulnak, ami egy kevésbé károsító anyag és az etanol acetaldehidde történő peroxidáció egyik alapanyaga [122].

3. Megállapítottam, hogy mindkét rizsfajta esetében 0,3 % feletti külső O₂ koncentráció elégséges a normál aerob légzés fenntartásához, azaz az alkoholos erjedés gátlásához, továbbá, hogy mikro-aerob körülmények oxigénszintjének növelése, illetve fény jelenléte
hasonló hatást váltott ki, mindkettő késleltette az alkoholos erjedés megjelenését és annak mértékét [122].

4. 266 nm hullámhosszú fényforrást állítottam elő különböző típusú Q-kapcsolású Nd:YAG lézerek fényének frekvenciatabozszerzésével [133], melyet ózonkoncentráció fotoakusztikus mérésére alkalmaztam. Az általam megépített három különböző felépítésű ózonmérő fotoakusztikus rendszer működését hasonlítottam össze ppbV koncentráció tartományban történt ózonmérések alapján. Megállapítottam, hogy a nagy energiájú, impulzus üzemmó- dú lézereken alapuló fotoakusztikus rendszerrel elért érzékenység jóval rosszabb, mint azt az előzetes számolások alapján várt lehetne. Az általam adott magyarázat szerint ez a nem optimális működés részben az ózon gerjesztett vibrációs átmenetének optikai telítődéséből adódott, amit kísérleti úton és az effektív fotoakusztikus jel (EPAS) kiszámolásával is bizonyítottam. A néhány kHz ismétlései frekvenciát működő kvázifolytonos modulált üzemmódu rendszer terepi tesztelése során bebizonyosodott, hogy alkalmas alacsony ppbV szintű mérésekre és így felveszi a versenyt a kereskedelmi forgalomban kapható ózonmérő műszerekkel [135].

5. Három hullámhosszon működő fotoakusztikus rendszert építettem a frekvenciatabozszerzés segítségével egyetlen lézeres fényforrás felhasználásával [133]. Ez a rendszer alkalmasnak bizonyult aeroszolok optikai abszorpciójának hullámhosszfüggő mérésére. Bebizonyítottam, hogy a fotoakusztikus módszerrel történő abszorpciómérés a fellépő fényszőrás nem befolyásolja [137]. Terepi körülmények között elvégzett mérésekkel igazoltam, hogy a laboratóriumban kalibrált műszer alkalmas terepei körülmények között is a levegőben lévő aeroszolok optikai abszorpciójának mérésére [141].
VIII. SUMMARY

From the beginning of its initial application, photoacoustic spectroscopy has undergone a tremendous development; however, it still has considerable development potential. One way is to find novel solutions for signal generation and signal detection. The measurement of gas mixtures is especially challenging, when individual components create significant PA signal at the excitation wavelength. Other possibilities for development of the PA spectroscopy are the application of new lasers as excitation sources or finding new application areas for existing systems. My thesis is focusing on these above-mentioned areas of search.

1. An external cavity diode laser based photoacoustic set-up was built to investigate and eliminate the molecular relaxation effect of carbon dioxide at the wavelength of 1430 nm. The molecular relaxation effect can be avoided by applying controlled wetting of the gas flow but as a side effect spectral overlapping of carbon monoxide and water vapor occurred. A successful method was developed for the elimination of the spectral overlapping of carbon monoxide and water vapor. With this method the minimum detectable concentration can be improved by an order of magnitude [115].

2. Alcoholic fermentation products released from young rice seedlings into the gas flow were detected with CO laser-based photoacoustic trace gas detector, which is able to measure ethanol and acetaldehyde down to nl l\(^{-1}\) concentration range. It was proved that alcoholic fermentation began within 30 minutes after imposing an oxygen-free gas phase environment. Detailed comparison of the kinetics of ethanol, acetaldehyde and CO\(_2\) releasing revealed no marked difference in anoxia and in re-exposure of air response between a submergence-tolerant (FR13A) and a more susceptible one (CT6241) [122]. During micro-aerobic treatment (notably 0.05 % O\(_2\)), and after re-aeration of rice seedlings acetaldehyde production is strongly enhanced while ethanol production was diminished. The effect was more pronounced in submergence-tolerant FR13A, and is linked to smaller level of peroxidation in lipid membranes as revealed by reports on slower ethane efflux. It was pointed out that lipid damage in a lower extent for FR13A is a result of diversion of more reactive oxygen species away from membrane attack by enhancing the production of less harmful H\(_2\)O\(_2\), which serves as substrate in the conversation of ethanol to acetaldehyde [122].
3. It was established that O₂ concentrations above 0.3 % are required in gas phase to inhibit alcoholic fermentation and to maintain normal aerobic respiration in both rice genotypes. Furthermore, increasing the oxygen concentration of micro-aerobic treatment and illumination of the plants had very similar effects; both delayed the onset of fermentation and reduced its strength.

4. Three different types of excitation schemes were constructed for the photoacoustic measurement of ozone concentration. All of them based on the application of the fourth harmonic (266 nm) of Q-switched Nd:YAG lasers [133]. The measured ozone concentrations down to ppb level were compared for all these three photoacoustic systems. The detection limit of the pulsed system was found not to be as low as was expected, due to large signal fluctuation arising from laser energy instability and optical saturation effect. Field tests of the modulated quasi-continuous wave system operating at few kHz repetition rate showed that it has a performance comparable to that of commercial ozone measuring instruments [135].

5. A three wavelength photo-acoustic system was developed based on a single laser source with nonlinear wavelength conversion [133]. This system was able to measure wavelength dependent optical absorption of aerosols. It was shown that the presence of a strongly scattering aerosol fraction does not influence significantly the PA absorption measurement [137]. Field test showed that the multiwavelength PA system calibrated at laboratory was able to measure optical absorption of aerosols in the air under field conditions [142].
KÖSZÖNETNYILVÁNÍTÁS

Mindenekelőtt témavezetőimnek Prof. Szabó Gábornak és Dr. Bozóki Zoltánnak tartozom köszönnettél azért, hogy éveken át keresztül támogatták és egyengették tudományos pályámat. Köszönöm a szakmai irányításukat és a rengeteg hasznos tanácsukat.

Köszönöm Prof. Bor Zsoltnak és Prof. Rácz Bélának a Szegedi Tudományegyetem Optikai és Kvantumelektronikai Tanszékének tanszékvezetőinek a tanszék által doktori munkához biztosított hátteret.

Köszönettel tartozom a szegedi fotoakusztikus kutatócsoport minden tagjának a ki-egyensúlyozott, eredményes közös munkáért, és azt, hogy mindig készek voltak segítséget nyújtani bármilyen problémában.

Hálás vagyok az SZTE Optikai és Kvantumelektronikai Tanszék, valamint az MTA Lézerfizikai Tanszéki Kutatócsoport munkatársainak és dolgozóinak a munkához nyújtott önzetlen segítségükért, építő kritikájukért és szakmai eszmecseréjükért.

Szeretném megköszönni Dr. Frans Harrennek a Nijmegeni Egyetem fotoakusztikus csoport vezetőjének a lehetőséget, hogy bekapcsolódhattam a fotoakusztikus spektroszkópia biológiai alkalmazásaiba. Köszönettel tartozom Dr. Motika Gábornak az ATI-KTVF munkatársának az ózonmérés során nyújtott segítségéért és a levegőtisztaság-védelmi méréseket végző monitorállomás használatáért. Szintén köszönöm Dr. Ottmar Möhlernek a Karlsruhei Kutatóközpont Meteorológiai és Klímakutató Központ munkatársának a lehetőséget a laboratóriumi abszorpcióis mérések elvégzésére, valamint Dr. Urs Baltenspengernek és Dr. André Prévötnak a Roveredóban megszervezett mérési kampányon való részvétel lehetőségéért.

Végül, de nem utolsó sorban köszönöm szüleim, húgornak és férjemnek az évek során nyújtott folyamatos támogatást, biztatást, és az általuk nyújtott nyugodt hátteret.
IRODALOMJEGYZÉK

[44] J. Sneider, Z. Bozóki, Á. Mohácsi, M. Szakáll, G. Szabó, Zs. Bor, Developement and

[51] F. Bijnen, Refined CO-laser photoacoustic trace gas detection; Observation of anaerobic processes in Insects, Soil and Fruit, Ph.D. dissertation (University of Nijmegen, Nijmegen, The Netherlands, 1995.)

nuclei concentrations in European background (Mt. Sonnblick) and urban (Vienna) aerosols, *Atmos. Environ.* **33**, 2647-2659, 1999.

[132] SNLO szoftver

