
UNIVERSITY of SZEGED

Faculty of Science and Informatics

Doctoral School in Mathematics and Computer Science

Department of Computer Algorithms and Artificial Intelligence

Characterization of special classes

of tree automata

– abstract of the Ph.D. Thesis –

by György Gyuricza

Supervisor: Dr. Ferenc Gécseg

Szeged, 2010



Introduction

Deterministic root-to-frontier tree languages (DR-languages in short)
were given special attention in the past mainly because they form a proper
subclass of all regular tree languages. This means that some properties of
regular tree languages do not necessarily remain valid on DR-languages.
Moreover, we do not know too much about DR-languages in general. We
wanted therefore to aim our focus on a well defined specific area. Some sub-
classes of DR-languages (like monotone, nilpotent, definite, etc.) have been
already studied and they were characterized in various ways, for example
by means of syntactic monoids. For monotone string languages (where
by string languages we mean the languages recognized by classical finite
recognizers) Gécseg F. and Imreh B. gave a characterization by means of
regular expressions (cf. [5]). This gave the idea of examining monotone
DR-languages and nilpotent (DR-)languages to give similar characteriza-
tion by means of regular expressions. The result of our research on this
topic represents the basis of the dissertation.

In the first chapter of the thesis we defined the basic concepts that
are essential in order to follow and understand the results. We have also
done some preparation as well, for example, here we defined the concept of
reduced regular expressions. Beyond the basic concepts we needed some
algebraic concepts that we assumed the Reader is familiar with.

Gécseg and Imreh stated in [5] that a string language is monotone if
and only if it can be given as a finite union of seminormal chain languages.
We wanted to follow the same approach when characterizing monotone
DR-languages, that is, to identify the sequences of states of a monotone
recognizer while it is recognizing a tree. Ultimately we wanted to reuse
these sequences to characterize the recognized language.

Nilpotent languages were also studied by Gécseg and Imreh, in [4] for
example they characterized nilpotent DR-languages by means of syntac-
tic monoids, however characterization by regular expressions did not take
place. Therefore our goal here was to give a characterization for both
nilpotent string languages and nilpotent DR-languages by means of regu-
lar expressions.

During our research we had to use some closure properties – or con-
ditions that guarantee closedness – in order to characterize monotone-
and nilpotent DR-languages. In the last chapter therefore we summarized
these closure properties of DR-languages (with respect to monotone- and
nilpotent subclasses) under Boolean- (union, intersection, complementa-
tion) and regular operations (union, x-product, x-iteration, σ-product).

1



In some cases we identified various conditions that were needed in order
to preserve closedness under a particular operation. The majority of our
results in this chapter are taken from [3], [10], [11] and [12].

Results

As we have referred to it in the introduction, the focus of our study was
directed towards the monotone- and nilpotent languages. This research re-
sulted in characterization of the above classes by means of regular expres-
sions both for string languages and DR-languages. We have also studied
some closure properties of these classes under Boolean- and regular opera-
tions. The goal of the thesis is to present these results where the primary
focus was on the characterization by means of regular expressions so the
study of closure properties was secondary. The thesis however does not
aim to examine other properties of monotone- and nilpotent languages so
we do not refer to them either.

The results are presented in the following chapters:

1. Preliminaries – some of the concepts in this chapter were intro-
duced in [10].

2. Monotone languages – the characterization of monotone languages
was published in [10].

3. Nilpotent languages – the characterization of nilpotent languages
comes from [11].

4. Closure properties – majority of the results on closure properties
were published in [3] although two of them are coming from [10] and
[11].

1 Preliminaries

Before we detail the results we need to introduce some basic concepts
like alphabet, languages, recognizers and regular expressions. These are
substantial concepts that we need to clarify in order to understand the
results. For regular expressions we introduce the concept of redundant
subexpressions which are those parts of regular expressions that can be
omitted without changing the languages they represent. This will be used
then to define reduced regular expressions as those expressions that do not
contain redundant subexpressions.

2



Similarly, we introduce the concept of deterministic root-to-frontier
algebras, tree automata and tree languages, and then we define the usual
and reduced regular ΣXn-expressions. We recall the concept of x-paths
(the set of which is denoted by gx) that is a very useful tool in studying
DR-languages. Furthermore, we highlight some functions on trees like
root, height, leaves and Sub, these are used quite commonly. Note that
we exclude nullary operational symbols from our ranked alphabets due to
practical reasons.

2 Monotone languages

2.1 Monotone string languages

It was proved by Gécseg and Imreh that a string language is mono-
tone if and only if it can be given as a finite union of seminormal chain
languages. This representation indeed describes the sequence of states a
monotone recognizer would use to process a word, and each of these po-
tential state sequences corresponds to a seminormal chain language in the
representation. Hence came the idea that monotone DR-languages could
be characterized using a similar approach.

Then we established the concept of iterational height for both regular
expressions and string languages. Iterational height identifies the length
of the longest word that will be used in the iteration of a particular string
language. The importance of iterational height will come up when studying
monotone DR-languages although the corresponding results are valid for
the string case, too.

Lemma 2.1.7 If a reduced regular expression is in form (ζ)∗ and it repre-
sents a monotone string language, then its iterational height is not greater
than 1.

2.2 Monotone DR-languages

In case of DR-languages we define (x-based) iterational height as the
length of the longest x-path that will be used in an x-iteration of a partic-
ular tree language. Similarly to monotone string languages we show the
relationship between monotonicity and iterational height of regular ΣXn-
expressions. This will be important later when we examine the closure
properties of monotone DR-languages under x-iteration.

3



Lemma 2.2.5 If a reduced regular ΣXn-expression is in form (ζ)∗,x and
it represents a monotone tree language, then its (x-based) iterational height
is not greater than 1.

Let us now take a monotone DR-recognizer A. As we have seen it in
the string case, A has a sequence of states that are used for processing
trees. To describe this, we have established the trivial regular expression
belonging to A as

ηA = ηk ·ξk
ηk−1 ·ξk−1

. . . ·ξ1
η0,

where every ηi is in form

ηi = (pi
1 + . . . + pi

li
+ yi

1 + . . . + yi
ri

) ·ξi
(ti1 + . . . + tiji

)∗,ξi .

This form, reading it from right to left, indeed describes the processing
in A. Every single ηi simulates the functionality of a state ai, where tis
represent trees in form σ(ξ, . . . , ξ) for which the state ai appears at least
once among the elements of σ(ai) and pis represent trees in form ω(ξ, . . . , ξ)
for which the state ai does not appear among the elements of ω(ai). Each
of the ξs is a member of the auxiliary variable set {ξ0, . . . , ξk}, they are
corresponding exactly to the states of A. The yis are the variables that
can be derived from the state ai. The trees of tis are encapsulated into a
ξi-iteration because the application of the operational symbols of the tis
any number of times will still keep ai in the resulting state vector. For
easier reference, we will call the entire expression of ηA as chain, moreover,
the part containing the tis will be called the iterating part of ηi, and the
part containing pis and yis will be called the terminating part of ηi. We
have showed that ηA represents the tree language T (A).

Lemma 2.3.1 For any monotone DR-recognizer A the equality T (A) =
T (ηA) holds.

Most of the time the recently introduced trivial representation can be
simplified because there are many different DR-recognizers recognizing the
same DR-language. It justifies the examination of equivalent transforma-
tions on ηA since it may lead to a more general form. One of the obvious
transformations would be a decomposition in ηi, if it is possible at all. The
research on this led to the following theorem.

Theorem 2.4.3 The expression η = ηk ·ξk
. . . ·ξ1

η0 can be decomposed in
the ηi part if and only if every tree in the iterating part of ηi contains the
auxiliary variable ξi at most once among its leaves.

4



Another potential simplification would be the reduction of the number
of the auxiliary variables. This can be achieved by reusing some (auxiliary)
variables in the trivial form above. For example, if there is an auxiliary
variable ξj appearing the first time in the terminating part of ηi (when
reading the chain from right to left), then every occurrence of ξj in the
chain can be replaced with ξi. This replacement can be done because ξi is
not used in the terminating part of ηi or in any further parts of the chain.
There is an interesting statement regarding this in the case Σ = Σ1 as
follows.

Lemma 2.5.2 For every monotone DR-recognizer A one auxiliary vari-
able is enough to represent ηA.

It is a well known fact that the class of (monotone) DR-languages is
closed under σ-product but it is not closed under other regular operations.
This is why it was necessary to find conditions beside which the class
of monotone DR-languages is closed under x-product and x-iteration. In
order to find them, let ΣS,x be the set of those σ operational symbols for

which there exists an x-path in S that we can extend by a letter from Σ̂σ

and then by any applicable word from Σ̂∗ so that we end up in a path in
S. Using this concept we stated the following important theorem.

Theorem 2.6.5 If S and T are monotone DR-languages with ΣS,x ∩
root(T ) = ∅, then T ·x S is monotone.

Another important concept is the x-homogeneous property. We say
that a tree language T is x-homogeneous if there is no such tree p ∈ T for
which there exist u, v ∈ gx(p), w ∈ Σ̂∗ and z ∈ Xn, where uw ∈ gz(T ) but
vw 6∈ gz(T ). This will guarantee us that if there are two different states
in a DR-recognizer from which we can derive the variable x, then from
these two states we can derive exactly the same set of trees. The following
statements are also valid.

Corollary 2.6.11 For any DR-language T if T ∗,x is a monotone DR-
language, then T is x-homogeneous and the iterational height of T ∗,x is
not greater than 1.

Theorem 2.6.12 If a monotone DR-language T is x-homogeneous, the
iterational height of T ∗,x is not greater than 1 and ΣT,x ∩ root(T ) = ∅,
then T ∗,x is a monotone DR-language.

5



Now we have all the necessary concepts to characterize monotone DR-
languages. A tree language η = ηk ·ξk

. . . ·ξ1
η0 is called R-chain language if

every ηi is given in the form (Ti) ·ξi
(Si)

∗,ξi , where Si and Ti are finite DR-
languages, Si is ξi-homogeneous, the iterational height of (Si)

∗,ξi is not
greater than 1, root(Si)∩ΣSi,ξi

= ∅ and root(Ti)∩ (root(Si)∪ΣSi,ξi
) = ∅

(0 ≤ i ≤ k). The above R-chain language is said to be generalized if
root(T (ηi))∩ΣT (ηi−1·ξi−1

...·ξ1
η0),ξi

= ∅ for every i ∈ {1, . . . , k}. This helps

us to state the main result of this section.

Theorem 2.6.15 A DR-language is monotone if and only if it can be
given as a generalized R-chain language.

3 Nilpotent languages

3.1 Nilpotent string languages

It is common across all nilpotent recognizers that they have a nilpotent
element (also known as trap state) and the processing of every word not
shorter than the degree of nilpotency of the given recognizer will lead to
this element. What is more, no other states are reachable from this state
and this is the only state from which there is transition into itself. This
means that if we would describe the potential sequences of states that
a nilpotent recognizer would go through when reading a word, then we
would get a monotone sequence, this is why every nilpotent language is
monotone. We would use this normality when characterizing nilpotent
languages.

We say that an L0x1L1x2 . . . xkLk ⊆ X∗ chain language is plain if for
every index i (< k) Li = {e} holds and if Lk = Y ∗, where Y = ∅ or
Y = X . Plain chain languages are therefore in form ζ = x1x2 . . . xkLk.
We say that ζ is finite if Lk = {e} or ζ is infinite when Lk = X∗, moreover,
the length of ζ is k. A plain chain language ζ′ = x1x2 . . . xj is called to
be a prefix of ζ if either 1 ≤ j ≤ k or j > k with xk+1 . . . xj ∈ Lk. This
also means that every word in X∗ is a plain chain language. Furthermore,
every finite string language can be given as a finite union of plain chain
languages.

Plain chain languages and their prefixes can be used effectively to cha-
racterize nilpotent string languages. We proved that if an infinite string
language is given as a finite union of plain chain languages and every
word in X∗ is a prefix of a plain chain language from this union, then the
string language in question is nilpotent. Moreover, we proved the converse,

6



that is, every nilpotent string language can be given as a finite union of
plain chain languages so that in case the language in question is infinite,
then every word in X∗ is a prefix of a plain chain language from the
above representation. Thus we got the representation of nilpotent string
languages by means of regular expressions.

Theorem 3.1.18 A regular language is nilpotent if and only if it can be
given as a finite union of plain chain languages so that in case the language
in question is infinite, then every word in X∗ is a prefix of a plain chain
language from the above representation.

3.2 Nilpotent DR-languages

Since nilpotent DR-languages are monotone it seems obvious to exam-
ine the trivial regular expression belonging to a nilpotent DR-recognizer
A. Let us take the resulting chain ζA = ηk ·ξk

ηk−1 ·ξk−1
. . . ·ξ1

η0. It is clear
that apart from ηk the iteration part in every ηi is empty because there
are no such operational symbol σ and state a different from the nilpotent
element for which σ(a) contains a. This means that we can omit these
iterational parts from ζA hence we simplified the trivial regular expres-
sion belonging to A. We will call the result the plain regular expression
belonging to A.

Now we have to study those conditions that will make nilpotent DR-
languages closed under x-product. We will need the following concepts. A
tree language S is called path complete if in any prefix of any path in S

we replace the last letter with any other letter, we get a prefix of a path
in S. We have proved the following.

Lemma 3.3.4 The x-product of two path complete tree languages is path
complete.

Another important concept is the following. A tree language S is said
to be x-terminating if every path u in S is an x-path in S provided u is
not a proper prefix of any other paths in S. These concepts help us to
state conditions by which the x-product of two nilpotent DR-languages is
nilpotent.

Theorem 3.3.6 Let S and T be nilpotent DR-languages where S is finite,
path complete and x-terminating, and let ΣS,x ∩ root(T ) = ∅. Then T ·x S

is nilpotent.

7



The only thing remained is to characterize nilpotent DR-languages by
regular expressions. A tree language represented by η = ηk ·ξk

. . . ·ξ1
η0

is called plain R-chain language if for every i ∈ {0, . . . , k − 1} T (ηi) is
finite and path complete, the set of leaves of the trees from T (ηi) \Xn is a
nonempty subset of {ξi+1, . . . , ξk}, root(T (ηi+1)) ∩ΣT (ηi·ξi

...·ξ1
η0),ξi+1

= ∅
and T (ηk) = Z ·ξk

TΣ(Y ∪ {ξk}), where Y and Z are subsets of the set of
variables. Using this we stated the main result regarding characterization
of nilpotent DR-languages.

Theorem 3.3.9 A DR-language is nilpotent if and only if it is a plain
R-chain language.

4 Closure properties

Since we had to use some closure properties of DR-languages under
Boolean- and regular operations (with respect to the monotone- and nilpo-
tent subclasses), it was reasonable to summarize (or even to examine) these
properties. In some cases when a class was not closed under an operation,
we gathered conditions that guarantee closedness of that particular class
under that particular operation. Let us clarify beforehand that the direct
product of DR Σ-algebras A = (A, Σ) and B = (B, Σ) is the DR Σ-algebra
A × B = (A × B, Σ) where for every σ ∈ Σm and (a, b) ∈ A × B it holds
that σA×B((a, b)) = ((π1(σ

A(a)), π1(σ
B(b))), . . . , (πm(σA(a)), πm(σB(b))))

and where πi is the i-th projection.

4.1 Union

We know that DR-languages are not closed under union and so neither
monotone- nor nilpotent DR-languages are closed under union. There
can be identified however such a condition beside which closedness can
be ensured. To achieve this, we need to introduce the following concept.
The union direct product of DR ΣXn-recognizers A = (A, a0,a) and B =
(B, b0,b) is the DR ΣXn-recognizer A ×∪ B = (A × B, (a0, b0),a ×∪ b)
such that a ×∪ b ∈ p(A × B)n and (a ×∪ b)(i) = (A(i) × B) ∪ (A × B(i))
hold (1 ≤ i ≤ n).

Theorem 4.1.4 Let A and B be two normalized DR ΣXn-recognizers.
Then T (A)∪T (B) is deterministic if and only if T (A)∪T (B) = T (A×∪B).

8



Using the above theorem we can conclude that for any two nilpotent
(monotone) DR-languages their union is nilpotent (monotone) if and only
if it is deterministic.

Later we give conditions beside which the union of two DR-languages
is not deterministic.

Theorem 4.1.7 Let S and T be DR-languages. Then S ∪ T is not de-
terministic if and only if there are a tree p, two variables x, y, and two
different paths u ∈ gx(p) and v ∈ gy(p) such that u ∈ gx(S) \ gx(T ) and
v ∈ gy(T ) \ gy(S).

Since the trees satisfying the conditions of the above theorem are not
unary, we can conclude the following. If for any DR-languages S and T

one of them differs from the other one only in unary trees then S ∪ T is
deterministic. The same statement is valid for monotone- and nilpotent
DR-languages. The previous theorem also implies that if the sets of root
symbols of two (monotone, nilpotent) DR-languages are disjoint then the
union of these DR-languages is a (monotone, nilpotent) DR-language.

Then we gave conditions beside which the union of two nilpotent DR-
languages is not nilpotent. For example, if S and T are nilpotent DR-
languages for which S \ T contains at least one non-unary operational
symbol and there is a variable x such that gx(T ) \ gx(S) is infinite, then
S ∪T is not nilpotent. Or if S and T are finite- and infinite nilpotent DR-
languages respectively and S \ T contains at least one operational symbol
with arity greater than 1, then S ∪ T is not nilpotent.

4.2 Intersection

Similarly to union direct product we can define intersection direct
product. The intersection direct product of two DR ΣXn-recognizers
A = (A, a0,a) and B = (B, b0,b) is the DR ΣXn-recognizer A ×∩ B =
(A×B, (a0, b0),a×∩ b) for which (a×∩ b) ∈ p(A×B)n and (a×∩ b)(i) =
A(i) × B(i) hold (1 ≤ i ≤ n). Then we have the following theorem.

Theorem 4.2.2 Let A and B be DR ΣXn-recognizers. Then T (A) ∩
T (B) = T (A ×∩ B) holds.

This means that the class of DR-languages is closed under intersection.
The structure of T (A×∩B) also implies that both monotone- and nilpotent
DR-languages are closed under intersection.

9



4.3 Complementation

It is a known fact that the class of DR-languages is not closed under
complementation and so neither monotone DR-languages nor nilpotent
DR-languages are closed under complementation. In case of nilpotent DR-
languages however we have identified some conditions that ensure closed-
ness. For any given tree language T let T (x) be consisted of all (unary)
trees from T whose leaves are x. Let us also denote the complement of
T by c(T ). In case the ranked alphabet is consisted of unary operational
symbols, we proved that T is nilpotent if and only if T (x) or c(T )(x) is
finite. Moreover, still in the unary case, T is nilpotent if and only if c(T )
is nilpotent.

Let us now assume that there is at least one operational symbol in
Σ with arity greater than 1. Then a tree language consisted of unary
operational symbols is nilpotent if and only if it is finite. Moreover, if it
is nilpotent, then its complement is nilpotent, too. We have also stated
that if T is an infinite nilpotent tree language and the complement of
T contains at least one non-unary tree, then c(T ) is not nilpotent. The
following theorem also holds.

Theorem 4.3.7 Let us suppose that there is at least one operational sym-
bol in Σ with arity greater than 1. Then a tree language T and its comple-
ment c(T ) are simultaneously nilpotent if and only if T or c(T ) is consisted
of finitely many unary trees.

4.4 x-product

We know that the class of DR-languages is not closed under the oper-
ation of x-product and so neither monotone DR-languages nor nilpotent
DR-languages are closed under the same. In both cases however we gave
conditions that guaranteed closedness under x-product, theorems 2.6.5.
and 3.3.6. are dealing with these, respectively.

4.5 x-iteration

x-iteration is yet another operation that the class of DR-languages is
not closed under. It is clear that none of monotone- or nilpotent DR-
languages are closed under x-iteration either. In case of monotone DR-
languages we had to identify such a condition that helped preserving mono-
tonicity under x-iteration, theorem 2.6.12. refers to the result on the same.

10



For nilpotent DR-languages we did not need such a condition so we have
not dealt with it either.

4.6 σ-product

The study of closure properties regarding σ-product brought interest-
ing results. It turned out that unlike the previously mentioned opera-
tions here we observed difference between the examined classes of DR-
languages. Namely, it is known that the class of DR-languages is closed
under σ-product and so is the class of monotone DR-languages. However
the class of nilpotent DR-languages is not closed as we have showed it
using a counter example.

4.7 Summary of closure properties

The below table summarizes the closure properties of DR-languages
under Boolean- and regular operations with respect to the monotone- and
nilpotent DR-languages.

Closed ∪ ∩ \ x-product x-iteration σ-product

DR false true false false false true
nilpotent false true false false false false
monotone false true false false false true

11



References

[1] Courcelle, B.: A representation of trees by languages I, Theoretical
Computer Science, 6 (1978), 255-279.

[2] Gécseg, F.: On some classes of tree automata and tree languages,
Annales Academiæ Scientiarum Fennicæ, Mathematica. 25 (2000),
325-336.

[3] Gécseg, F. and Gyurica, Gy.: On the closedness of nilpotent DR tree
languages under Boolean operations, Acta Cybernetica, 17 (2006),
449-457.

[4] Gécseg, F. and Imreh, B.: On definite and nilpotent DR tree lan-
guages, Journal of Automata, Languages, and Combinatorics. 9:1
(2004), 55-60.

[5] Gécseg, F. and Imreh, B.: On monotone automata and monotone
languages, Journal of Automata, Languages, and Combinatorics. 7

(2002), 71-82.

[6] Gécseg, F. and Peák, I.: Algebraic Theory of Automata, Akadémiai
Kiadó, Budapest 1972.

[7] Gécseg, F. and Steinby, M.: Minimal ascending tree automata, Acta
Cybernetica, 4 (1978), 37-44.

[8] Gécseg, F. and Steinby, M.: Minimal Recognizers and Syntactic
Monoids of DR Tree Languages, in Words, Semigroups, & Trans-
ductions, World Scientifics (2001), 155-167.

[9] Gécseg, F. and Steinby, M.: Tree Automata, Akadémiai Kiadó, Bu-
dapest 1984.

[10] Gyurica, Gy.: On monotone languages and their characterization by
regular expressions, Acta Cybernetica, 18 (2007), 117-134.

[11] Gyurica, Gy.: On nilpotent languages and their characterization by
regular expressions, Acta Cybernetica, 19 (2009), 231-244.

[12] Jurvanen, E.: On Tree Languages Defined by Deterministic Root-to-
frontier Recognizers, Ph.D. Thesis, University of Turku, Turku, 1995,
ISBN 952-90-7096-9.

12



[13] Jurvanen, E.: The Boolean closure of DR-recognizable tree languages,
Acta Cybernetica, 10 (1992), 255-272.

[14] S̆evrin, L. N.: On some classes of abstract automata. Uspehi matem.
nauk, 17:6 (108) (1962), 219.

[15] Virágh, J.: Deterministic ascending tree automata I, Acta Cybernet-
ica, 5 (1980), 33-42.

13


