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Introduction

When designing pattern recognition systems[8; 20; 30] the goal is to construct a classifier that will

model the behaviour of a system. For each pattern of a pattern space the classifier has to select

a class label from the set of available labels. The construction of a classifier (i.e. the learning

process) is based on a set of labelled examples, and strongly depends on prior knowledge about the

pattern space and the characteristics of the given examples. Given infinite training data, consistent

classifiers approximate the Bayesian decision boundaries to arbitrary precision, hence providing a similar

generalization. However, often only a limited portion of the pattern space is available or observable.

Given a finite and noisy data set, different classifiers typically provide different generalizations. It is

thus necessary to train several networks when dealing with classification problems so as to ensure that

a good model or parameter set is found. However, selecting one from among the classifiers is not

necessarily the ideal solution since potentially valuable information may be wasted by discarding the

results of the other classifiers. In order to avoid this kind of loss of information, various techniques

can be employed for combining the output of all available classifiers.

A large number of combination schemes have been proposed in the literature [7; 20; 21], these

schemes differing from each other in their architecture, the characteristics of the combiner, and the

selection of the individual classifiers. Static strategies, such the “Prod”, “Max”, “Min” rules, are

frequently used in multiple-classifier systems, due to their simplicity and the small resource require-

ments, but these systems cannot provide any significant improvement in the classification quality. On

the other hand, the Adaboost algorithm and its variants can dramatically increase the performance

of the original classifier, especially in the cases of “weak” classifers, but for the final solution they

require hundreds or thousands of iterations. In practice, most of the applications cannot provide

the huge amount of resources required for applying a very large number of classifier instances. In

this dissertation an effective combination method will be proposed that ensures a good combination

performance for these kind of applications.

In the applications of Automatic Speech Recognition the system use machine learning methods,

like Artificial Neural Networks (ANNs) or Gaussian Mixture Models (GMMs), to assign labels to speech

segments or frames. Improving the quality of this phone classification would also have an effect on the

overall recognition quality. Thus it is important to examine the effects of the combination strategies

on the overal system performance.

Another promising area for applying the combination techniques is Natural Language Processing.

In Part-Of-Speech tagging and Noun Phrase parsing, applying static combinations like “Majority

Voting” and “Prod” rules has proved to be effective in improving the performance of the overall

system. The more advanced adaptive techniques, however, cannot be used directly for context-

dependent applications. In this thesis we will examine the kind of adaptive combination strategies

that can be applied to handle the special needs of these NLP tasks.

Classifier Systems

Given a set of independent inducers, the simplest way of building a classifier system is to select one

with the best behaviour on a given testing database. During the classification process just the output

of the selected classifier is computed, and only this will affect the resulting decision. This selection
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is an “early” combination scheme widely used in pattern recognition tasks. However, selecting such

a classifier is not necessarily the ideal choice since potentially valuable information may be wasted by

discarding the results of the other classifiers. In order to avoid this kind of loss of information, the

output of each available classifier should be examined to make the final decision.

Types of Knowledge Sources

The goal of designing a classifier combination scheme is to assign a class label for an input pattern

using the information coming from the individual classifier instances. Each of the trained inducers

has to be able to provide the label that it prefers, but a number of machine learning methods can

supply more information that the combiner can exploit. Combination strategies can incorporate the

following types of classifiers based on the kind of information they provide:

• Abstract: Just the assigned class label is provided. Combiners which only need this information

as input are, for instance, the voting combiners like Bagging and Boosting.

• Ranking: Instead of merely providing the best class label associated with the given pattern,

the list of labels is supplied, ranked in order of probability. This more general information type

can be used as input for combiners like the Borda count rule.

• Measurement or Confidence: In the most general case, each of the a posteriori probabilities

is provided. Combiners can aggregate these probabilities from different inducers and make a

final decision. Examples of combiners which use the measurement information type are Prod,

Sum, and Max Rules.

Static Combination Schemes

In the following, we will concentrate on the combinations of classifiers that provide confidence level

information. Consider a pattern recognition problem where the pattern x is to be assigned to one

of M possible classes (ω1, . . . , ωm). Let us assume that we have R classifiers, each representing the

given pattern by a different feature vector. Next, denote this feature vector (employed by the ith

classifier) by x
(i). In the feature space each class ωk is modelled by the probability density function

p(x(i)|ωk) and its a priori probability of occurrence P (ωk). According to Bayesian theory, for given

features x
(i), i ∈ {1, . . . , R} the pattern x should be assigned to class ωj with the maximal value of

the a posteriori probability such that

f(x) = ωj , j = argmax
k

P (ωk|x1, . . . ,xR).

The combination strategies differ in how they approximate the a posteriory probabilities from the

values p(ωk|x
(i)), and usually assume that the class priors are all equal. In the following we list some

of the most frequently used combination rules:

• Product Rule:

f(x) = ωj , j = argmax
k

P (ωk)
∏

i

p(x(i)|ωk),
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• Sum Rule:

f(x) = ωj, j = argmax
k

[

(1 + R)P (ωk) +
∑

i

p(ωk|x
(i))

]

.

• Max Rule:

f(x) = ωj, j = argmax
k

[

(1 + R)P (ωk) + R max
i

p(ωk|x
(i))

]

,

• Min Rule:

f(x) = ωj , j = argmax
k

[

P 1−R(ωk) + R max
i

p(ωk|x
(i))

]

.

• Median Rule:

f(x) = ωj , j = argmax
k

med
i

p(ωk|x
(i)).

• Majority Voting Rule Hardening a posteriori

f(x) = ωj , j = argmax
k

∑

i

∆ki,

where ∆ki are the hardened probabilities P (ωk|x
(i):

∆ki =

{

1 if P (ωk|x
(i)) = max

j
P (ωj|x

(i))

0 otherwise,

• Borda count:

f(x) = ωj, j = argmax
k

∑

i

ρki,

where ρki are the ranking information coefficients:

ρki =
1

C

∑

j:P (ωj |x(i))≤P (ωk|x(i))

1

Additive Combintation Models

Although the simple static combination techniques have become popular in multiple-classifier systems,

owing to their simplicity they cannot be adapted to the special characteristics of particular applica-

tions. For this reason, adaptive methods like additive combination schemes have become the focus

of research.

These combination methods calculate the weighted sum of the output of the standalone classifiers.

Assuming that the classifier supplies confidence information type, it can be represented by:

f̂i(x) =

N
∑

j=1

wjf
j
i (x),
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where f j
i (x) is output of the classifer Cj for class ωj .

To achieve the best combination performance the parameters of the combiner can be trained on a

selected training data set. The form of linear combinations we deal with is quite simple, the trainable

parameters being just the weights of classifiers. Thus the various linear combinations differ only in

the values of these factors. In the following we give some examples of methods commonly employed.

1. Simple Averaging. In this simplest case, the weights can be selected so that they all have the

same value:

wj =
1

N
.

2. Weighted Averaging. Experiments show [26] that Simple Averaging can be out-performed when

the chosen weights are inversely proportional to the error rate of the corresponding classifier:

wj =
1

Ej
,

where Ej is the error rate of the classifier Cj , i.e. the ratio of the number of correctly classified

patterns and total number of patterns on a selected data set for training the combiner.

3. Hierarchical methods. To calculate the weights wj one can take those values that minimize

some kind of distance function between the computed and expected a posteriory probabilities:

min
w

∑

x∈X

l
∑

i=1

L(f̂i(x), pi(x)),

where L(f̂i(x), pi(x)) is the loss function. Since machine learning algorithms can be regarded

as optimization methods that minimize the expected value of a loss function on the training

database, this optimization can be done by applying an appropriate ML method.

Bagging

The Bagging (Bootstrap aggregating) algorithm[4] takes a vote on classifiers generated by different

bootstrap samples (replicates). A bootstrap sample is generated by uniformly sampling m instances

from the training set with replacement. T bootstrap samples B1, B2, ..., BT are generated and a

classifier Ci is built from each bootstrap sample Bi. A final classifier C∗ is built from C1, C2, ..., CT

whose output is the class predicted most often by its sub-classifiers (majority voting).

For a given bootstrap sample, an instance in the training set will have a probability 1−(1−1/m)m

of being selected at least once from the m instances randomly selected from the training set. For large

m, this is about 1-1/e = 63.2%. This perturbation causes different classifiers to be built if the inducer

is unstable (e.g. ANNs, decision trees) and the performance may improve if the induced classifiers

are uncorrelated. However, Bagging can slightly degrade the performance of stable algorithms (e.g.

kNN) since effectively smaller training sets are used for training.
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Algorithm 1 Bagging algorithm

Require: Training Set S, Inducer I
Ensure: Combined classifier C∗

for i = 1 . . . T do

S ′ = bootstrap sample from S
Ci = I(S ′)

end for

C∗(x) = argmax
j

∑

i:Ci(x)=ωj

1

Boosting

The underlying idea of boosting is to combine classifiers rules iteratively to form an ensemble that

will improve the performance of each single member. Boosting theory has its roots in Probably

Approximately Correct (PAC) learning [29]. PAC provides a nice formalism for deciding how much

training data we need in order to achieve a given probability of correct predictions on a given fraction

of future test data. In [29], Valiant showed that simple classifiers, each performing only slightly better

than random guessing, can be combined to form an arbitrarily good ensemble. The challenge of

boosting is to find a PAC algorithm with arbitrarily high accuracy.

The most polular Boosting method is the AdaBoost (Adaptive Boosting) algorithm [12]. Adaboost

is adaptive in the sense that a new hypothesis is selected given the performances of the previous

iterations. Unlike bagging, this allows the algorithm to focus on the hard examples. This adaptive

strategy is managed by a weight distribution D over the training samples. A weight D(i) is given to

each training pattern xi. Examples with large weights will have more impact on choosing the weak

hypothesis than those with low weights. Then after each round, the weight distribution is updated in

such a way that the weight of each misclassified example is increased.

In the following we shall deal with only the case of binary classification, i.e. when only two class

labels {−1, +1} are available. Let us consider a training set ZN = (x1, y1), (x2, y2), ..., (xN , yN ). We

suppose that we have a base learning algorithm (or weak learner) which accepts as input a sequence

of training samples Zn along with a distribution D over the training samples. Given such an input,

the weak learner constructs a weak hypothesis C. The predicted label y is given by sign(C(x)), while

the confidence of the prediction is given by ‖C(x)‖. We shall also assume that the corresponding

weighted training error is smaller than 1/2. This means that the weak hypotheses have to be at least

slightly better than random guessing with respect to the distribution D. The distribution D is first

initialized uniformly over the training samples. Then it is iteratively updated in such a way that the

likelihood of the objects being misclassified in the previous iteration is increased.

The loss function L used for updating the weights is usually an exponential loss function, but

other loss functions have been also proposed in the literature, as in the cases of Logitboost [13] and

Arcing [5].

Analytic Hierarchy Process

Linear combination schemes, especially Boosting algorithms, are frequently used in machine learning

applications due to their ability to improve the classification performance. The Adaboost algorithm
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Algorithm 2 Boosting algorithm

Require: Training Set ZN = (x1, y1), (x2, y2), ..., (xN , yN), number of iterations T , Inducer I
Ensure: Combined classifier C∗

D
(1)
n = 1/N for all n = 1, . . . , N .

for t = 1 . . . T do

S ′ = bootstrap sample from ZN with distribution Dt
n

Ct = I(S ′)
ǫt = 1

n

∑N
n=1 L1/0(yn, C(xn))

if ǫt > 1/2 then Exit
select optimal wt

update weights D
(t+1)
n = D

(t)
n L(yn,C(xn))

Nt
,

where Nt is a normalization factor such that
∑N

n=1 D
(t+1)
n = 1.

end for

C∗(x) = sign(
∑T

t=1 wtCt(x))

and its variants create a sequence of classifier instances by training the same classifier algorithm on

special bootstrap-samples of the training database. The classification performance of the original

classifier method can be dramatically increased, especially in the cases of “weak” classifers, but for

the final solution it requires hundreds or thousands of iterations. In the practice, however, most of

the applications cannot provide the huge amount of resources needed for applying such a very large

number of classifier instances.

In this dissertation we present an effective combination solution for these kinds of applications,

based on the Analytic Hierarchy Process method, a popular tool for Multi-Ccriteria Decision Making.

These applications finds the best possible decision based on the criteria given by pairwise comparisons.

To compute the importance of possible choices, pairwise comparison matrices are utilized for each

criterion. The element aij of the comparison matrix A represents the relative importance of choice i

against the choice j, implying that the element aji is the reciprocal of aij . Let the importance value

v of choice y be expressed as a linear combination of the importance values for each applied criterion:

v(y) =

n
∑

j=1

wjv(yj),

where wj is the importance of choice y with respect to the criterion yj . Using comparison matrices

AHP propagates the importance values of each node from the topmost criteria towards the alternatives,

and selects the alternative with the greatest importance value as its final decision.

Let us define the matrix of weight ratios W by

wij =
wi

wj
.

It is straightforward to verify that the vector w is an eigenvector of matrix W corresponding to

the maximum eigenvalue n:

(Ww)i =

n
∑

j=1

Wijwj
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=

n
∑

i=1

wi

wj
wj =

n
∑

j=1

wi

= nwi.

The aim of AHP is to resolve the weight vector w from a pairwise comparison matrix A, where

the elements of A correspond to the measured or estimated weight ratios:

aij ≈
wi

wj
.

Here the elements of the unknown vector w are the importance values. Following Saaty we shall

assume that

aij > 0,

and

aij =
1

aji
.

From matrix theory it is known that a small perturbation of the coefficients implies a small

perturbation of the eigenvalues. Hence we still expect to find an eigenvalue close to n, and select the

elements of the corresponding eigenvector as weights.

In linear classifier combinations the combined a posteriory probabilities are computed as weighted

sums of the probability values from each classifier, so

fi(x) =

N
∑

j=1

wjf
j
i (x).

Noting the similarities between these two methods, it is clear that, by applying pairwise comparisons

on classifiers performance, AHP provides a way of computing the weights of inducers in classifier

combinations.

In the experiments we compared the performance of linear combination schemes with different

weights computation methods. We examined 2 schemes of averaging, called “SA” and “WA” (simple

and weighted averaging), and 4 schemes of “AHP”, which differed in the database sizes when their

comparison matrices were calculated. The results demonstrate that all the combinations here improved

the generalization performance of the simple classifier. In almost every case AHP-based combinations

outperformed the weighted averaging combinations.

Set1 Set2 Set3 Set4 Set5

SA 8.70 8.34 7.88 7.26 7.78
WA 7.56 7.64 7.64 7.06 7.68
AHP1 6.84 7.26 7.04 6.76 7.48

AHP2 6.74 6.90 6.98 6.82 7.56
AHP3 6.67 6.94 6.96 6.80 7.58
AHP4 6.78 7.00 6.88 6.82 7.54

Table 1: Classification errors [%] on the UCI Letter database. The error of the standalone ANN
classifier was 13.78%
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The design of the AHP combination method and the experiment were published in [10].

Phoneme Classification

Speech recognition is a pattern classification problem in which a continuously varying signal has

to be mapped to a string of symbols (the phonetic transcription). Speech signals display so many

variations that attempts to build knowledge-based speech recognizers have mostly been abandoned.

Currently researchers tackle speech recognition only with statistical pattern recognition techniques.

Here, however a number of special problems arise that have to be dealt with. The first one is the

question of the recognition unit. The basis of the statistical approach is the assumption that we have

a finite set of units (in other words, classes), the distribution of which is modelled statistically from

a large set of training examples. During recognition an unknown input is classified as one of these

units using some kind of similarity measure. Since the number of possible sentences or even words

is potentially infinite, some sort of smaller recognition units have to be chosen in a general speech

recognition task. The most commonly used unit of this kind is the phoneme, hence in the following

we will focus on the classification problem of phonemes.

All the experiments were performed using our segment-based speech recognizer system called

“OASIS” as a testing environment. In the first step of testing we combined the outputs of the

selected classifiers (SVM, ANN, and kNN) by applying various combination rules. Table 2 suggests

that there is no definite optimal rule for combining classifiers using this database. Combiners which

applied the Sum rule performed the best, but the improvement compared to the others was only

marginal.

Prod Sum Max Min Borda Voting

g1set1 12.00% 11.64% 12.59% 12.77% 12.77% 13.23%
g1set2 11.76% 11.41% 12.06% 13.06% 12.06% 11.47%
g1set3 11.70% 11.35% 13.18% 12.29% 11.64% 10.87%
g1set4 12.77% 12.41% 14.24% 12.35% 12.59% 11.41%
g1set5 10.87% 10.70% 11.88% 11.17% 11.41% 11.17%
g2set1 8.63% 8.45% 9.22% 9.10% 8.87% 9.16%
g2set2 8.75% 8.57% 9.87% 9.16% 9.10% 9.04%
g2set3 7.03% 7.09% 8.04% 7.33% 7.80% 7.15%
g2set4 8.98% 7.98% 9.87% 9.34% 8.69% 7.74%
g2set5 8.51% 8.22% 8.98% 7.98% 8.81% 8.51%
g3set1 5.14% 5.14% 6.32% 5.61% 5.61% 5.56%
g3set2 5.02% 5.50% 5.73% 4.85% 5.08% 5.08%
g3set3 5.14% 4.91% 5.26% 5.20% 5.08% 4.91%
g3set4 4.67% 4.61% 5.02% 4.79% 5.02% 4.91%
g3set5 5.02% 4.96% 5.08% 5.14% 5.14% 5.14%

Table 2: Classification error of hybrid combinations using classifiers ANN, SVM, and kNN. The rows
represent databases with different feature sets

The following steps examined the efficiency of Bagging and Boosting. Bagging could improve

classification performance, almost to the same level of the previous combination methods, but it
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required more processing time. Since Boosting is an improvement on Bagging, we expected a better

performance. Testing Boosting on this data-set, however, produced roughly the same classification

error values. The explanation for this is that the classifiers we applied were “too strong”; they

generated very small classification errors when using the training set. After the first step of Boosting,

only the “noise” remained in the bootstrap sample, which was too difficult to separate, and the

classification error on this sample generally hit the 50% limit.

The experiments on Phoneme Classifications were published in [11].

Vocal Tract Length Normalization

The efficiency of a speech recognizer application is highly dependent on the performance of the given

phoneme classifier module. Also, it is even more important for phonetic teaching system like our

Phonological Awareness Teaching System called “Speech-Master”. Since the system should work

reliably both for children and adults of different ages, the recognizer has to be trained with the voices

of users of both genders and of practically any age. The task is also special because it has to recognize

isolated phones, so it cannot rely on language models. Consequently, there is a heavy burden on the

acoustic classifier, and we need to apply any helpful trick that might improve the overall performance.

One of these techniques is Vocal tract length normalization (VTLN), which proves very useful when

the targeted users vary greatly in age and gender. Applying (off-line) vocal tract length normalization

algorithms [6; 9; 31] one can build recognizers that work robustly with voice samples from males,

females and children.

Nasal Cavity

Lips

Tongue Body Vertebral
Column

Larynx Frequency

Man

Girl

Spectrum

Figure 1: Vocal Tract Length and its frequency shifting. The graph drawn with solid and dashed line
shows the spectrum of a vowel uttered by a man and a girl, respectively.

In [6] the average vocal tract length for men was reported to be 17 cm, for women it was 15 cm,

and for children it was 14 cm. The formant frequency positions are inversely proportional to the vocal

tract length and this causes a shift of the formant centre frequencies. Consequently, VTLN is usually

performed by warping the frequency scale. Modelling the vocal tract as a uniform tube of length L,

the formant frequencies are inversely proportional to L. Thus the simplest approaches use a linear

warp. In reality, however, the vocal tract is more complex than a uniform tube. That is why many

more sophisticated warping functions have been proposed in the literature [9; 31].

Given a warping function, normalization can be implemented either by re-sampling and interpolat-

ing the spectrum or modifying the width and centre frequencies of the mel (Bark) filter bank. There
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are numerous techniques for estimating the warping parameters, e.g. linear discriminant method (LD-

VTLN) that minimizes the fraction of between-class and within-class covariance. These optimization

methods, however, work off-line, and they require all the utterances in advance. To have the ad-

vantages of speaker normalization in on-line systems, machine learning methods can be applied for

the estimation of the correct parameters. Out of the many possible regression techniques we chose

to experiment with neural nets. The task of this real-time vocal tract length normalization method

(RT-VTLN) is to estimate the optimal LD-VTLN warping parameter for each speaker based on the

actual spectral frame without warping.

To improve the performance of the on-line system RT-VTLN, we employed static classifier combi-

nation strategies “Prod”, “Sum”, “Max”, “Min”, and “Majority Voting”, and the advanced schemes

“AHP”, “Bagging”, and “Boosting”. The experimental results are shown in Table 3.

For each combiner the recognition accuracy was measured on 3 different databases: “All”, “RT-

VTLN”, and “Concat”, which besides the warped features, contain the original features as well. The

effect of a combination depends on the database complexity. With the “All” database, each of the

combiners gives a better performance than that for the original classification. On the warped databases

(“RT-VTLN” and “Concat”) the traditional combinations have less of an influence. Bagging and

Boosting gave the best scores due to the large number of classifiers used.

88 89 90 91 92 93 94

Boosting

Bagging

AHP

Voting

Sum

Prod

Min

Max

−

Recognition accuracy
Base
RT−VTLN
Concat

Table 3: Recognition accuracy on the databases with combination (in %). The various bars in each
triplet correspond to the databases, and bar-triplets show the results for a given combiner.

Comparing the above results with the reference figure of LD-VTLN (92.55%), we may conclude

that with a properly chosen combination scheme the regression based real-time VTLN method (Boost-

ing on Concat, 92.67%) can outperform even the results of the off-line method LD-VTLN.

The experiments with Vocal Tract Length Normalization were published in [25].

POS Tagging

Part-of-speech tagging (POS tagging or POST), also called grammatical tagging, is the process of

marking words in a text that correspond to a particular part of speech, based on both their definition,
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as well as its context, i.e. the relationship between adjacent and related words in a phrase, sentence,

or paragraph. A simplified form of this is commonly taught to schoolchildren, in the identification of

words as nouns, verbs, adjectives, adverbs, and so on.

An exhaustive investigation on combinations of different POS taggers is available in [15]. Voting

strategies and multi-level decision methods (stacking) have been investigated also. For Hungarian,

a third possible approach was studied by Horvath et. al [19]. According to the results in [24], the

combinations outperformed their component taggers in almost every case. However, in the various

test sets, different combinations proved the best, so no conclusion could be drawn about the best

combination. To build more robust combination strategies we need to investigate how to adapt the

more sophisticated adaptive techniques like “Boosting” to POS tagging applications.

The Boosting algorithm is based on weighting the independent instances based on the classification

error of the previously trained learners. It builds classifiers, during each iteration, which work well on

the data instances with high weights, while the instances with lower weights have less importance in

the learning process. Most of the algorithms like TBL[3] cannot handle data instance weights directly.

In such cases Boosting creates bootstrap versions of the database, where the instances are drawn

randomly with replacement according to a distribution determined from the weights. Training the

classifier algorithm on the bootstrapping databases simulates the weighted training, but this strategy

cannot be applied to context-dependent applications like POS tagging. Here the words of the corpus

are not independent instances because their context and the position in the sentence both affect their

meaning.

In this thesis we propose a general solution for these kind of applications. We will treat the

classifier as a black box that assigns class labels for a sequence of instances, where the sequences

are handled independently, but the context of the instances in the sequence can have an effect on

the labelling process. For context-free applications the sequences contain just one instances, while in

POS-tagging the sequences represent the sentences.

The generalized version of Boosting assigns weights to the sequences instead of the instances, and

creates bootstrap samples by drawing sequences from the original datasets. The classification error of

the sequences can then be calculated from the errors of the instances in the sequence. In the current

implementation we use the arithmetic mean, and the combined final error is expressed as the relative

number of misclassified instances.

For the experiments, the training and testing datasets were chosen from the business news domain

of the Szeged Corpus. The results of the training and testing error rates are shown in Figure 2. The

classification error of the standalone TBL algorithm on the test dataset was 1.74%. Boosting is

capable of reducing it to below 1.31%, which means a 24.7% relative error reduction. As the graphs

show, boosting achieves this during the first 20 iterations, so further processing steps cannot make

much difference to the classification accuracy. Bagging achieved only a moderate gain in accuracy,

its relative error reduction rate being 18%.

The experiments with Part-of-Speech tagging were published in [22].
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Figure 2: Classification error of Bagging and Boosting algorithm on the training and training datatsets
( dashed: Bagging, solid: Boosting).

NP Parsing

Syntactic parsing is the process of determining whether sequences of words can be grouped together.

It is an important part of the field of natural language processing and it is useful for supporting

a number of large-scale applications including information extraction, information retrieval, named

entity identification, and a variety of text mining applications.

In this thesis we concentrated on the NP parsing of Hungarian texts, and applied PGS alorithm[17]

on sentences from the Szeged Corpus. To make the method more robust, we investigated how the

combination strategies affect its overall performance.

Since the PGS parser algorithm provides confidence information type, the majority of the com-

bination schemes can be employed. The overall syntax parser generates all the possible syntax tree

for the input test, queries all the the parser instances for the scores on these tree structures, then

based on the scores it selects the syntax tree with the best overall combined scores. This framework

allows the static combination techniques like “Prod”, “Sum”, “Max”, “Min” and “Borda Count” to

be integrated into the parser system. In the case of adaptively trainable combiner methods like “Bag-

ging” and “Boosting”, the algorithm generates several parsers that should concentrate on instances

that behaved badly in previous iterations. Treating sentences as data instances, Boosting forces the

parsers to focus on the tree structures in problematic sententes, and then it creates better parsing

systems.

Parser Fβ=1

Standalone parser 78.5
Prod Rule 79.4
Max Rule 77.5
Min Rule 78.7
Sum Rule 82.4
Borda Count 81.9
Bagging 83.6
Boosting 86.2

Table 4: Results achieved by combining PGS parsers
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In the experiments the training and test datasets were converted from a subset of the business

news domain of the Szeged Corpus. During the experiments we generated 50 learners by training the

PGS algorithm on different training sets, these sets being created by randomly drawing 4000 instances

with replacement from the original training set.

The syntactic tree pattern recognition accuracy of the standalone PGS parser was Fβ=1 = 78.5

on the business-news domain using 10-fold cross-validation.

The schemas “Max”, “Min”, and “Prod” have roughly the same performance: they cannot signif-

icantly improve the classification accuracy of the PGS learner. The “Borda Count” and “Sum rule”

can take advantage of combinations, and produce an Fβ=1=82 score on the test data-set. The best

classification was obtained by using the Boosting algorithm, achieving the value Fβ=1=86. Comparing

these results with the performance of the standalone learner, we see that combinations can improve

the classification scores by some 10%.

The experiments with Syntactic Parsing were published in [18].

Conclusions

Combination algorithms, especially boosting methods, have proved useful in improving classification

scores. However, despite their success in theoretical investigations, applying the boosting algorithms is

not always efficient in practice. In cases like speech recogition applications in mobile devices, simpler

combination strategies should be applied. The proposed strategy, based on the Analytic Hierarchy

Process, can be an alternative solution for these problems, providing a better performance than that

for the averaging methods.

As shown in this thesis, applications of Speech Technology can exploit the benefits of classification

improvements of the combination techniques. In the evaluation tests on our speech recognizer system

called “OASIS”, we investigated the efficiency of the combination strategies of phoneme classifiers.

Recognizing the importance of phoneme classification, we examined another promising method for this

task, namely the Vocal Tract Length Normalization procedure. We found that combination strategies

can be applied successfully both for adapting the model for the speakers in real-time and for improving

the overall phoneme classification. Following our successful results, these structures were integrated

into our award-winning Phonological Awareness Teaching System “SpeechMaster”.

Other tasks of Human Language Processing, like POS tagging and NP parsing, are also known to

be sensitive to the performance of the machine learning method applied. To achieve better results,

simple static combination techniques are available in the literature. But due to the context depen-

dence of these applications, more advanced boosting methods cannot be used directly. The proposed

context-dependent versions of the boosting algorithm offer a solution for these problems, and the

results demonstrate that they can undoubtedly improve the parsing scores in the given Hungarian

POS tagging and NP parsing applications.

13



Summary of the Author’s Contributions

In the following we summarize the results of the author by arranging them into five thesis points.

I. ) The author developed a new linear combination strategy, based on the Analytic Hierarchy

Process method, which is able to improve the classification performance using a small number

of classifiers. He compared the results of other competing algorithms and demonstrated that in

most cases it results in better classification scores than those for the conventional strategies.

II. ) The author designed and implemented the kernel parts of the speech recognition framework

called Oasis Speech Lab. Using the integrated combination module, he compared the efficiency

of various combination techniques in speech recognition tasks. The experments justify that

combining the results of multiple classifier algorithms effectively enhances the quality of phoneme

recognition.

III.) The author investigated the application of classifier combinations in Vocal Tract Length Normal-

ization to improve the phoneme recogniton performance. The proposed schemas were integrated

into the award-winning Phonological Awareness Teaching System “SpeechMaster”.

IV. ) The author developed a novel context-dependent variant of the Adaboost algorithm. Applied

on a POS tagging application of Hungarian text and compared with the existing combinations

techinques, he found that the proposed method resulted in a significant improvement in the

classification accuracy.

V. ) The author examined the efficiency of several combination strategies applied in Syntactic pars-

ing. Hhe adapted the combination algorithma to the special requirements of the problem. In

experiments he found that the proposed combination strategies were indeed capable of enhanc-

ing the accuracy of tree pattern recognition.

[10] [11] [25] [22] [18]
I. •
II. • •
III. •
IV. • •
V. •

Table 5: The relation between the thesis topics and the corresponding publications.
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[11] Felföldi, L., Kocsor, A., Tóth, L.: Classifier Combination in Speech Recognition, Per. Pol. Elec.

Eng., Vol. 47, No. 1-2, pp. 125-140, 2003.

[12] Freund, Y., Shapire, R., A decision-theoretic generalization of on-line learning and an application

to boosting, Journal of Computer and System Sciences, Vol. 55, pp. 119-139, 1997.

[13] Friedman, T. H. J., Tibshirani, R., Additive logistic regression, a statistical view of boosting,

The Annals of Statistics, Vol. 28, No. 2, pp. 337-374, 2000.
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[22] Kuba A. Jr., Felföldi L., Kocsor, A., POS tagger combinations on Hungarian text, Proceedings of

the 2nd International Joint Conference on Natural Language Processing, IJCNLP, pp. 191-196,

2005.
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