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Preface

Image registration is the process of aligning images of a scene, and the aim is to com-
pensate for image di�erences introduced by di�erent poses. In many studies, multiple
images are acquired from objects at di�erent times, and often with di�erent imaging
modalities. The alignment process places the images in a common frame of reference
that enables the fusion of information in the images and the determination of scene
changes. Of course there are a large number of application areas which demand im-
age registration. Image registration is a critical component of many remote sensing,
medical, and industrial image analysis systems and it is one of the main challenging
problems in image processing. In the past two decades great progress has been made
in medicine, resulting in a tremendous increase in the utilization of various modalities,
and more can be expected in the future.

In many applications the variability of image features is so complex that the only
feasible way to register such images is to reduce them to a binary representation and
solve the registration problem in that context. Therefore binary registration is an impor-
tant problem in itself for many complex image analysis tasks. While the registration of
greyscale and colour images has been extensively investigated, the alignment of binary
shapes has received less attention. In real situations, the obtained images are related
by a projective transformation. Although the projective transformation is nonlinear, it
can often be successfully modelled by an a�ne transformation, which is linear. Owing
to its linear property, the a�ne transformation is of great importance in image registra-
tion. In this dissertation we will investigate and address the problem of the parametric
estimation of a�ne deformations on binary images.
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Chapter 1

Introduction

'To discover something is to see what everyone sees and,
think what no one has thought before.'

Albert Szent-Györgyi

Image registration is a crucial step in almost every image processing application
where images of di�erent views or sensors of an object need to be compared or com-
bined. Typical application areas include visual inspection [105], object recognition [7],
target tracking in video sequences [91], monitoring land usage on satellite images [29],
super resolution [33], image mosaicking [37], and medical image analysis [47]. In a
general setting, one is looking for a transformation which aligns two images such that
one image (called the observation) becomes similar to the second one (called the tem-
plate). Due to the large number of possible transformations, because of the di�erent
imaging conditions, there is a huge range of variations of the object signature. In fact,
each observation is an element of the orbit of the transformations applied to the tem-
plate. Hence the problem is inherently ill-de�ned unless this variability is taken into
account. The registration process itself is an important problem, and is regarded as
one of the main areas of image processing, hence there is a great deal about it in the
literature [13; 47; 66; 88; 115].

In the simplest case Euclidean and similarity deformations are assumed. In many
medical applications (e.g. bone fracture examination) these kinds of transformation are
considered because of the biomechanical properties of the objects. In real situations, the
images obtained are related by a projective transformation (also called planar homogra-
phy). Although the projective transformation is nonlinear, it can often be successfully
modelled by an a�ne transformation, which is linear. Owing to its linear property, the
a�ne transformation is of great importance in image registration. When radiometric
degradation is also expected, but the segmentation of the images is available, then bi-
nary image registration could be a valid alternative. When highly nonlinear radiometric
distortion is considered, then the images deformed by a linear transformation can still
be registered. Fig. 1.1 shows an example of the binary registration problem.

1



2 Introduction

?

Template Observation

Figure 1.1: An example of binary image registration.

This dissertation summarizes the author's research results in binary image registra-
tion, where a given transformation between the shapes is a globally linear or nonlinear
transformation that is made from by di�erent linear transformations. Binary registra-
tion is an important problem in itself for many complex image analysis tasks. In many
situations the variability of image features is so wide that the only feasible way to regis-
ter such images is to reduce them to a binary representation and solve the registration
problem in that context. On the other hand, a linear transformation is often considered
as it has nice properties and it is a good approximation to a more complex nonlinear
deformation (e.g. a projective transformation).

1.1 Summary by Chapters
In Chapter 2 we give a brief overview of the area of binary image registration. This
review includes the state-of-the-art image registration methods and the best, relevant
binary image registration techniques. This chapter will also present the preliminary
notations used in the image registration �eld and the key ideas behind the proposed
methods that will be used in the subsequent chapters.

The next two chapters address the problem of the parameter estimation of a global
a�ne transformation of binary shapes. These chapters present novel methods which
provide accurate and computationally simple solutions to the a�ne registration of
shapes. Chapter 3 shows how the binary registration problem can be formulated as
the solution of a system of polynomial equations obtained by integrating a set of poly-
nomial functions over the shape domains. This novel method provides a direct solution
without established correspondences or optimization. Moreover, the robustness of the
resulting algorithm in the presence of i.i.d. Gaussian noise on the point coordinates
and also segmentation errors is demonstrated. Comparative tests on partially occluded
shapes reveal, however, that other area-based state-of-the-art methods cannot cope
with occlusion either. Its performance on real images is demonstrated and the method



1.1 Summary by Chapters 3

is applied to align pairs of hip prosthesis X-ray images. The advantage of the pro-
posed solution is that it has a linear time complexity, is fast, easy to implement, works
without established correspondences and it provides an exact solution regardless of the
magnitude of the transformation.

The main di�culty with binary images is that they do not contain radiometric infor-
mation; just the foreground pixel coordinates are available for the registration algorithm.
Chapter 4 will show that in spite of the absent radiometric information, the registra-
tion problem can still be formulated as the solution of a linear system of equations,
where all the available geometric information is used. The basic idea is to generate a
pair of covariant functions that are related by the unknown transformation. The main
contribution is the construction of these relations between shapes without establishing
correspondences of any kind. The unknown transformation parameters are then found
from the least-squares solution of an overdetermined system of equations. When the
images contain compound shapes, an elegant and robust solution is proposed, where
linear equations are constructed by integrating nonlinear functions over corresponding
domains derived from compound shapes. This method is more robust and numerically
more e�cient than the previous approach, when images contain just a single object.
The performance of the proposed methods were tested on a large synthetic dataset as
well as on real images. The resulting algorithms are fast and provides a direct solution
without establishing correspondences.

In Chapter 5 we propose a general framework to solve the realignment problem of
deformed shape fragments without �xing the dimension of the input images (generally
n = 2, 3). Given a template image with a set of shapes, and their a�ne distorted
versions on the observation image, we would like establish a geometric correspondence
between these images. This chapter introduces our registration problem followed by the
basic ideas of the general solution with the assumption that only the overall segmen-
tation of the template is known, i.e. its partitioning is hidden. The proposed method
directly provides the parameters of the alignment by solving a polynomial system of
equations. We also conduct an extended analysis of the numerical stability of the pro-
posed algorithm. The performance and robustness of our method was investigated using
large 2D and 3D synthetic benchmark datasets as well as in di�erent real applications
contexts (e.g. 2D Tangram, bone fracture alignment). In contrast to classical solutions
based on landmark extraction and correspondences, the proposed solution �nds the
aligning transformations without any additional information. The main advantages are
that the proposed method does not require correspondence, it is quite fast and easy to
implement.

In Chapter 6 we draw some pertinent conclusion and discuss some interesting di-
rections for future research.



4 Introduction

1.2 Summary by Results
In the following a list of the most important results of the dissertation is given. Table 1.1
shows which thesis point is described in which publication by the author.

[21] [20] [16] [17] [19] [18]
I. • •
II. • • •
III. •

Table 1.1: The connection between the thesis points and the corresponding publica-
tions.

I. ) The author addresses the problem of the estimation of a�ne transformations for
aligning a known 2D shape and its distorted observation. A novel approach is
proposed where the exact transformation is obtained as the solution of a poly-
nomial system of equations. The method was tested on synthetic as well as on
real images and its robustness in the presence of segmentation errors and ad-
ditive geometric noise was also demonstrated. The author successfully applied
the method to the registration of hip prosthesis X-ray images. The advantage
of the proposed solution is that it has a linear time complexity, is fast, easy to
implement, works without established correspondences, and it provides an exact
solution regardless of the magnitude of the transformation.

II.) The author proposes a novel approach for the estimation of 2D a�ne transfor-
mations for aligning a planar shape and its distorted observation. The exact
transformation is obtained as a least-squares solution of a linear system of equa-
tions constructed by �tting Gaussian densities to the shapes which preserve the
e�ect of the unknown transformation. In the case of compound shapes, the au-
thor also presents a robust and e�cient numerical scheme and achieves a near
real-time performance. The proposed method was tested on synthetic as well as
on real images. The robustness in the case of missing pixels, boundary errors,
and modelling error is also demonstrated. The proposed method does not re-
quire point correspondences nor the solving of a complex optimization problem.
It has a linear time complexity and provides an exact solution regardless of the
magnitude of the deformation.

III. ) The author considers the problem of realigning broken objects without corre-
spondences, where the segmentation of the overall template is known, but the
segmentation of the object parts is unknown. The author applies linear transfor-
mations between the object fragments and presents the method by using 2D and
3D a�ne transformations. The basic idea is to construct and solve a polynomial
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system of equations that provides the unknown parameters of the alignment. Here
he quantitatively evaluated the proposed algorithm on a large synthetic dataset
containing 2D and 3D images. The results show that the method performs fairly
well and is robust against segmentation errors. He also presents the results of
experiments on 2D real images as well as on volumetric medical images applied
to surgical planning.





Chapter 2

Image Registration: Review and
Problem Statements

In this chapter we will give a brief review of the state-of-the-art registration methods
and we introduce some preliminary notations and ideas for the solution of the problem.
Essentially, registration algorithms fall into two main categories: Feature-based and
Area-based methods.

The Feature-based methods, as outlined in [7; 39; 71; 112], seek to establish point
correspondences between two images. To do this, they extract several easily detectable
features (like the intersection of lines and corners) from the images and then they use
these points to compute the best transformation based on a similarity metric, or the
aligning transformation is recovered directly as a solution of a system of equations con-
structed from the given correspondences based on these features. Therefore, to make
this approach feasible, the correspondence problem must �rst be solved. Unfortunately,
the solution to this problem is far from trivial and it usually relies on the assumption
that the deformation is close to the identity (i.e. the size of the deformation is limited)
and assumption that features provide strong contextual evidence for matching landmark
points. Other approaches based on �continuous landmarks�, such as curves representing
the boundaries of objects, usually lead to a complex, non-convex optimization problem
that requires computationally expensive algorithms to solve it. Searching for the best
transformation usually requires an iterative algorithm like the Iterative Closest Point
(ICP) algorithm [8; 25]. The main drawback of these methods is that an optimization
procedure has a high computational cost. Radiometric information plays a crucial role
in establishing correspondences, hence in the case where radiometric information is not
available (e.g. binary images) or it has been distorted by a highly nonlinear transfor-
mation, then the correspondence problem itself becomes quite challenging. The main
advantage of these methods is that as long as a su�cient number of point matches are
available, one can usually �nd an optimal aligning transformation, which suggests that
these algorithms are less sensitive to occlusions.

7
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Area-based (or featureless) methods [1; 16�18; 20; 21; 29; 41; 46; 57; 68; 95] treat
the problem without attempting to detect well-de�ned points. Instead, the problem
is solved by computing global descriptors [29] or invariants of the objects [46; 57],
or by estimating the transformation parameters directly from image intensity values
over corresponding regions [68] or de�ning a cost function based on a similarity metric
and �nding the solution via a complex nonlinear optimization procedure [44]. These
methods are sometimes called correlation-like methods because they use a rectangular
window to get some preliminary information about the distortion. They search for the
position in the observation where the matching of the two windows is the best and then
look for a good alignment between the windows in the template and in the observation.
When the distortion is small, mutual information [58] as a similarity measure is often
used. The drawback of this family of methods is the high computational cost and the
restricted range of distortions (as with strong deformations, they may get stuck in a
local minimum).

2.1 State of the Art
Several techniques have been proposed to address the a�ne registration problem. By
thresholding the magnitude of the Fourier Transform of the images, Zhang et al. [114]
construct a�ne invariant features, which are insensitive to noise, in order to establish
a point correspondence. Several Fourier domain-based methods [54; 63] represent
images in a coordinate system in which the a�ne transformation is reduced to an
anisotropic scaling factor, which can be computed using cross-correlation methods. A
novel one-element voxel attribute, the distance intensity (DI) is de�ned in [35]. This
feature encodes spatial information at a global level, and the distance of the voxel
to its closest object boundary, together with the original intensity information. Then
the registration is obtained by exploiting mutual information as a similarity measure
on the DI feature space. Govindu and Shekar [38] develop a framework that uses
the statistical distribution of geometric properties of image contours to estimate the
transformation parameters. The main advantages of these methods is that they do not
need point correspondences across views and images may also di�er by the overall level
of illumination.

An a�ne registration algorithm for matching 2D feature points is presented in [49],
which recovers both the aligning a�ne transformation as well as the unknown correspon-
dences. The algorithm consists of two steps. First, the general a�ne case is reduced
to the orthogonal case, then the unknown rotation is computed using the roots of a
low-degree polynomial with complex coe�cients. Another direct approach [84] extends
the given pattern to a set of a�ne covariant versions, each having slightly di�erent
information, and then extracts features for registration from each of them separately.



2.1 State of the Art 9

In [74] the transformation is parameterized at di�erent scales, using a decomposition
of the deformation vector �eld over a sequence of nested (multiresolution) subspaces.
A novel segment-based shape matching algorithm is presented in [72] which avoids
problems associated with purely global or local methods. This approach generalizes the
idea of �nding a point-to-point correspondence between two shapes to that of �nding
a segment-to-segment correspondence.

In [29], an image registration algorithm based on a�ne moments is proposed. First,
some representative regions are extracted which are matched based on the similarity of
their moments. Then point correspondences are established as the centres of the region
pairs and the transformation is recovered in the classical way by solving a system of
equations constructed from the point correspondences. Although the resulting system
is also linear, the solution is inherently less precise as in each equation only a part
of the available information can be used. Flusser and Suk [28] propose a novel image
normalization process in order to obtain unknown a�ne transformations based on a�ne
moment invariants (AMI). Moments and invariants also provide an e�cient tool for
recovering linear deformations [95].

In many applications, registration appears as the problem of aligning a set of points.
In [53], a robust approach is proposed, where each point set is represented by a mixture
of spherical Gaussians and the point set registration is treated as a problem of aligning
the two mixtures. For this purpose, the authors derived a closed-form expression for the
L2-distance between two Gaussian mixtures, which in turn leads to a computationally
e�cient registration algorithm. Coherent Point Drift (CPD) [75] is a probabilistic
approach for the non-rigid registration of point sets. CPD simultaneously recovers the
non-rigid transformation and the correspondence between the point sets without making
any prior assumption on the transformation model, except that of motion coherence.
The registration is treated as a Maximum Likelihood estimation problem with a motion
coherence constraint over the velocity �eld such that one point set moves coherently
to align with the second set.

An energy function describing the interactions between the images is then minimized
under a set of constraints, ensuring that the transformation maintains the topology in
the deformed image. Manay et al. [67] explore an optimization framework for comput-
ing the shape distance and shape matching from integral invariants, which are employed
for robustness to high-frequency noise. Shape warping by the computation of an op-
timal reparameterization allows this method to accommodate large localized changes
such as occlusions and con�guration changes. In [48], a method for identifying silhou-
ettes from a given set of Radon projections is presented. The authors study how the
Radon transform changes when a given 2D function is subjected to a rotation, scal-
ing, translation, and re�ection. Using these properties, the parameters of the aligning
transformation are expressed in terms of the Radon transform.
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Most of the existing approaches assume a linear transformation (rigid-body, similar-
ity, a�ne) between the images, but in many applications nonlinear deformations [113]
(e.g. projective, polynomial, elastic) need to be considered. An important class of non-
linear transformations is the plane-to-plane homography which aligns two images of the
same planar object taken from di�erent views. Lepetit and Fua proposed a method [64]
for keypoint recognition on greyscale images. The main idea is to �nd keypoints dur-
ing a training phase where a projectively di�erent image set of target objects is used.
Although the recognition of keypoints becomes very fast, the training phase is very
time-consuming. In [52], planar homography is computed in the Fourier domain from a
starting a�ne estimation using the shape contours. In [109], the concept of a charac-
teristic line is employed to show some useful properties of a planar homography matrix,
which is related to Euler angles of the planar pattern.

In [39], Guo et al. propose a method for registering shapes that have undergone
di�eomorphic distortions1, where simulated annealing is used to estimate point corre-
spondences between the boundary points of the shapes. A Brownian motion model
in the group of di�eomorphisms was introduced in [78]. The authors exploit a prior
for warps based on a simple invariance principle under warping. An estimation based
on this prior guarantees an invertible, source-destination symmetric, and warp-invariant
warp. The maximum-likelihood warp is then computed via a Partial Di�erential Equa-
tion scheme. The authors of [89] use a Markov Random Field model to solve the
registration problem. The deformation is described by a �eld of discrete variables,
representing displacements of (blocks of) pixels. As �nding the exact maximum a pos-
teriori is intractable, a linear programming relaxation technique is used. In [101], the
registration problem is formulated as a probabilistic inference using a generative model
and the expectation-maximization algorithm. The authors de�ne a data-driven tech-
nique which makes use of shape features. This gives a hybrid algorithm which combines
generative and discriminative models. The measure of similarity is de�ned in terms of
the degree of transformation required. The shapes are represented by sparse-point or
continuous-contour representations depending on the form of the data. Klein et al.
presented a stochastic gradient descent optimization method with adaptive step size
prediction [59]. This method employs a stochastic subsampling technique to accelerate
the optimization process. The selection mechanism for the method's free parameters
takes into account the chosen similarity measure, the transformation model, and the
image content, in order to estimate proper values for the most important cases.

1A di�eomorphism is a bijective map such that both the map and its inverse are di�erentiable.
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2.2 Binary Image Registration

In many situations the variability of image features is so complex that the only feasible
way to register such images is to reduce them to a binary representation and solve
the registration problem in that context [90]. X-ray images are good examples as they
usually exhibit highly nonlinear radiometric distortions [22; 26], making registration
hard to solve. Therefore binary registration is an important problem in itself for many
complex image analysis tasks. While the registration of greyscale or colour images
has been extensively investigated [3; 59; 63; 64; 78; 89], the alignment of binary
shapes [7; 11; 20; 52; 95; 96; 109] has received less attention.

Radiometric information plays a crucial role in establishing correspondences. Land-
mark-based methods rely on the availability of rich radiometric information, i.e. they
usually match local brightness patterns around salient points [65]. Although there are
some time-consuming methods available to cope with brightness changes across image
pairs [56] and there are robust keypoint detectors like SIFT [65] and SURF [5], such
image degradations are di�cult to handle. In many cases, however, such information
may not be available, thus their use is limited in binary registration, since the correspon-
dence problem becomes quite challenging. One can only use geometric information,
but invariant geometric features (e.g. corners, junctions) might be di�cult to extract
(a circular shape, for instance). While these issues make classical brightness-based
features unreliable, the segmentation of such images can be straightforward or readily
available within a particular application. Therefore a valid alternative is to solve the
registration problem using a binary representation (i.e. segmentation) of the images.

A recent approach for the binary registration of images was presented in [90]. Actu-
ally, the method addresses the registration of images taken under very di�erent lighting
conditions or in di�erent seasons. Hence it is not possible to directly measure an in-
variant image feature. To overcome this di�culty, the authors extract edges from the
images and compute some statistics of the edges, which is then used as a similarity
metric for matching features. Although we are dealing with a di�erent problem, this
approach demonstrates the importance of the registration of binary images.

Belongie et al. proposed a novel approach for shape matching [7]. The method �rst
searches for point correspondences between the two objects, then estimates the trans-
formation using a generic thin plate spline model. The point matches are established
using a novel similarity metric, called the shape context, which involves constructing a
log-polar histogram of surrounding edge pixels. The advantage compared to traditional
landmark-based approaches is that landmarks need not be salient points and radiomet-
ric information is not required. In essence, the method can be regarded as matching
two points sets, each of them being a dense sample from the corresponding shape
boundary. Obviously, there is no guarantee that point pairs will exactly correspond
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because of the sampling procedure. However, having a dense sample will certainly keep
mismatch error to a minimum. The correspondences are simply established by solving a
linear assignment problem, which requires time-consuming optimization methods. For
example, the complexity of the Hungarian method adopted in [7] is O(N3), where N

is the number of foreground pixels.
If perfect greylevel images were available without any radiometric distortion, the

estimation of an aligning transformation would be reduced to �nding the solution of
a linear system of equations [40]. In real applications, however, such a strict require-
ment cannot be satis�ed. Nevertheless, in the following chapters, we will show that
registration can be solved without making use of any intensity information.

2.2.1 Related Approaches
Here, we describe some related binary image registration approaches. In the following
chapters, we will compare our proposed methods to these methods. Probably the
most closely related approach to ours is the binary registration algorithm proposed by
Kannala et al. [57]. The fundamental di�erence is that the algorithm described in
[57] constructs a system of equations by basically looking at the images at 3 di�erent
scales. Although the resulting system is linear, the solution is inherently less precise as
in each equation the algorithm can only utilize part of the available information. But,
our approach constructs the kind of equations that use all the available information in
the images.

Flusser et al. presented an image registration algorithm based on a�ne moments [29].
First they extract some representative regions and compute their moments, then the
regions from the template and observation are matched based on the similarity of their
moments. After, point correspondences are established as the centres of the region
pairs and the transformation is recovered in a classical way by solving a system of
equations constructed from the point correspondences. While both methods make use
of moments, the fundamental di�erence is that our method provides a direct solution
without any point correspondences.

Another class of related methods consists of object matching based on image mo-
ments [46; 95]. Suk and Flusser [95] construct a�ne normalized images by employing
image moments. An a�ne transformation is decomposed into elementary transforma-
tions, and then they are successively eliminated by central and complex moments. The
aligning transformation of two objects is then obtained by a�ne normalizing (see Sec-
tion 4.2.1) both images. This approach works well on synthetic images and on real
images. We should add that the method described in [95] allows mirroring too, which
is excluded in our model. In [46], Heikkilä constructs a�ne descriptors using higher
order moments and moment invariants. Similar to the previous method, the transfor-



2.3 Realignment of Deformed Object Fragments 13

mation parameters are eliminated one by one. However, in many cases this may result
in increased registration error as erroneous parameter values are �xed and propagated
towards the computation of subsequent parameters.

2.3 Realignment of Deformed Object Fragments
Suppose we have the following general problem. Given a template image with an
object, and linear (a�ne) distorted versions of its broken fragments on the observation
image, we would like establish a geometric correspondence between these images (see
Fig. 2.1). The overall distortion is a global nonlinear transformation with the following
constraints:

• The object parts are distinct.

• All fragments of the template are available.

• Each of them is subject to a di�erent a�ne deformation.

Figure 2.1: An example of realignment deformed shape fragments.

This is also known as the puzzle problem, which is not only interesting from a theo-
retical point of view [15; 62; 80; 110], but also arises in many application domains like
archaeology [2; 51; 55; 70] and medical imaging [14; 47], e.g. bone fracture reduc-
tion [23; 82; 111]. Our goal is to reassemble the complete template object from its
deformed parts. In general, most authors assume that fragments could be aligned by
rigid-body transformations, since the purpose of these methods is to reassemble broken
parts of the original object.

Although classical approaches may account for a template object by incorporating
a set of constraints to improve the overall performance, they are usually applied to
problems where a template is not available e.g. in archaeology [15; 51]. But, there are
many applications where a template object is available. Often in industrial applications
3D models of manufactured parts can easily be produced. In this thesis, we will assume
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that the overall segmentation of the template is unknown, i.e. its partitioning is hidden.
In medical imaging an atlas can be used or, by taking advantage of the symmetry of
the human body, the intact bone can provide a template for bone fracture reduction
(see Section 5.3.3).

2.3.1 Related Approaches

In the past few decades, the problem of reassembling broken objects in an automatic
way has gained increasing importance, and is mainly motivated by archaeology and
medical applications. However, this problem is closely related to several challenging
problems such as surface analysis, shape matching and object alignment.

Most of the existing solutions to the puzzle problem [15; 51; 62; 70; 80; 100] consist
of matching fragment-pairs to �nd neighbours, which are then reassembled by a rigid
body transformation. A general method for the automatic reassembly of broken 3D
objects is presented in [51]. This method consists of a graph-cuts based segmenta-
tion for identifying potential fracture surfaces, and a feature-based global registration,
which is based on integral invariants, for the pairwise matching of fragments. The local
registration of multiple fragments is based on forward search techniques and surface
consistency, where ICP [8] algorithm is also used. In [62], Kong and Kimia propose a
2D curve-matching technique based on the geometric features of puzzle pieces. The
solution is obtained by a recursive grouping of triples using a best-�rst search strat-
egy. The method can be extended to 3D fragments scanned by a laser range �nder,
where a pair of ridges are matched using a generalization of the 2D curve-matching
approach. In [70], the rather high computational complexity of curve matching is re-
duced by adopting a multiscale technique. Papaioannou et al. addressed the problem
of 3D object reconstruction by just using the surface geometry of fragments, without
assuming anything about the �nal model to be reconstructed [80]. The basic idea
behind the method is that the best �t of two 3D fragments is likely to occur at their
relative overlaps, which minimizes the point-by-point distance between the mutually
visible faces of the fragments. The matched pieces are then glued via a rigid-body
transformation. In [100], a multiple-feature approach for determining matches between
small fragments of archaeological artifacts is presented. The authors introduced a set
of feature descriptors that are based not only on colour and shape, but also normal
maps, which are easy to acquire. An e�cient procedure for reassembling planar objects
that have been broken into a large number (more than 1000) of irregular fragments
is described in [15]. The procedure [15] compares the curvature-encoded fragment
outlines, at progressively increasing scales of resolution, using an incremental dynamic
programming sequence-matching algorithm. The method, proposed in [2], is based
on the information extracted from the outlines and from the colour contents of the
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fragments, without relying on any knowledge of the �nal image.

In [14], the problem of the computer vision-guided reconstruction of a fractured
human mandible from a CT image sequence exhibiting multiple broken fragments is
addressed. In the �rst phase of the proposed solution, the opposable fracture surfaces
are identi�ed using the Maximum Weight Graph Matching algorithm. Then identi�ed
pairs of opposable fracture surfaces are registered in the second phase using the ICP
algorithm. In [36], a new algorithm for automatically solving jigsaw puzzles is presented.
The algorithm [36] is able to solve more di�cult puzzles and can handle puzzles in
which pieces border more than four neighbours. A fast, robust, and accurate method for
reassembling fragmented digital images is described in [32] and implemented by discrete
Circular Harmonic expansions based on sampling theory. The computational e�ciency
of the algorithm [32] is given by the combined use of the correlation implemented
by fast Fourier transforms for the location detection, and computation of the mutual
angle by exploiting self-steerability properties of Circular Harmonic functions. In [102],
a coordinate independent representation for the crack curves is developed and a new
robust matching algorithm is proposed which �nds matching pieces even when some
brittle pieces are missing.

A related problem is the partial matching of shapes [11; 100], which addresses a
particularly challenging issue of classical shape matching, where two shapes are in gen-
eral dissimilar, but have several similar parts. In this context, our problem would require
�nding a partial matching between the template and each fragment of the observation.
Current approaches are usually based on the Laplace-Beltrami framework [86; 87], but
Bronstein et al. [11] proposed an elegant, ICP-based solution for the partial matching
problem, where a non-rigid transformation is performed between 3D objects. In [11]
the objective function is modi�ed, where the dissimilarity, partiality and regularity are
also controlled. The method solves the partial matching problem for one object. How-
ever, by successively applying this method, the problem can be solved for each shape
fragment. Nevertheless, it requires precise parameter adjustment for each di�erent
shape, and considering the rather high computational complexity of these algorithms,
the solution is far from optimal for our problem.

Another related problem, mainly found in medical imaging, is the piecewise ap-
proximation of nonlinear deformations by locally linear transformations. In [81], the
distortion is modelled as a locally a�ne but globally smooth transformation, which
accounts for local and global variations in image intensities. The classical solution [24]
consists of identifying point correspondences based on salient points between the im-
ages and then either a time-consuming optimization procedure or the solution of a
system of equations provides the parameters of the unknown deformation.
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2.4 Contributions

In the following chapters we will propose novel methods which provide an accurate
and computationally simple solution for the a�ne registration of planar shapes. The
main di�culty with binary images is that they do not contain radiometric information;
only the foreground pixel coordinates are available for the registration algorithm. We
will show how the binary registration problem can be formulated as the solution of a
system of polynomial/linear equations obtained by integrating a set of nonlinear func-
tions over the shape domains. The proposed methods (see chapters 3-5) provide a
direct solution without established correspondences or optimization. The basic idea is
to generate enough relations that are related by the unknown transformation. More-
over, the robustness of the resulting algorithm in the presence of i.i.d. Gaussian noise
on the point coordinates as well as segmentation errors are also demonstrated. But,
being area-based, they are sensitive to occlusions. Comparative tests on partially oc-
cluded shapes reveal, however, that other area-based state-of-the-art methods cannot
cope with occlusion either. Next, we demonstrate how well they work on real images
and in various medical applications (e.g. registration of a hip prosthesis X-ray image,
registration of tra�c signs, bone fracture alignment). The main advantage of the pro-
posed solution is that it has a linear time complexity, is fast, easy to implement, works
without established correspondences and it provides an exact solution irrespective of
the magnitude of the transformation.

The parametric estimation of two-dimensional a�ne transformations between two
grey-level images was addressed by Hagege and Francos in [40�42], which provides
an accurate and computationally simple solution that avoids both the correspondence
problem as well as the need for optimization. The original problem was reformulated
as an equivalent linear parameter estimation one having a unique and exact solution.
However, the method relies on the availability of rich radiometric information, which is
clearly not available in the binary case.

The methodology adopted here to solve the realignment problem is similar in spirit
to the a�ne registration methods of [20] (see Chapter 3) and [43]. However, neither of
these addresses the puzzle problem. In [43], it is assumed that radiometric information
is available. Using this information, a linear system of equations is constructed, then
its solution provides the parameters of the aligning transformations. Although the
partitioning of the template is not available, this method [43] could be used here, but
it requires rich radiometric information which is generally not available in the binary
case. In [20], an elegant solution is presented to recover a�ne deformations between
2D shapes. The method [20] is also not able to solve the puzzle problem because
the deformation is nonlinear. Moreover there is no direct correspondence between the
template and its observed fragments.
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2.5 Basic Solution

Here we will introduce our preliminary notations and also formulate the basic solution of
the problem. From now on we shall just consider a�ne transformations. To this end, let
us denote the homogeneous coordinates of the n dimensional template and observation
points by x = [x1, x2, . . . , xn, 1]T , y = [y1, y2, . . . , yn, 1]T ∈ Pn, respectively. The
identity relation between the shapes is then as follows [18; 20; 21]

y = Ax ⇔ x = A−1y , (2.1)

where A is the unknown a�ne transformation that we want to recover [18; 20; 21]:

A =




a11 . . . a1n a1(n+1)

... . . . ... ...
an1 . . . ann an(n+1)

0 . . . 0 1




, and A−1 =




q11 . . . q1n q1(n+1)

... . . . ... ...
qn1 . . . qnn qn(n+1)

0 . . . 0 1




.

Note that A−1 always exists and it is also an a�ne transformation since A is a�ne.
Classical landmark-based approaches would now identify at least n(n+1)/2 point pairs
{xi,yi}m≥n(n+1)/2

i=1 then solve the system of linear equations represented by Eq. (2.1).
However, here we are interested in a direct approach that does not involve solving the
correspondence problem.

When we observe some image features (e.g. grey-levels of the pixels [42]) that are
invariant under this transformation, we can de�ne an additional relation [16; 17; 19]

f(x) = g(Ax) = g(y), (2.2)

where f, g : Pn → R are covariant functions under the transformation A, de�ned on
these observed features.

The above relations are still valid when a matrix function acts on both sides of
Eq. (2.1) [20; 21; 42] (see Fig. 3.2) and Eq. (2.2) [16; 17; 19]. Indeed, for a properly
chosen ωp : Pn → R and ωc : R→ R, we get

ωp(y) = ωp(Ax), and (2.3)
ωc (g(y)) = ωc (g(Ax)) = ωc (f(x)) . (2.4)

Starting from either Eq. (2.3) or Eq. (2.4), we can generate as many linearly independent
equations as needed by making use of the nonlinear ωp and ωc functions, respectively.
There is a fundamental di�erence between the above two equations, though. The
nonlinear function ωp acts directly on the point coordinates, and hence on the unknown
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parameters of A, and results in a nonlinear system of equations [20; 21]; in contrast ωc

acts on the covariant functions f and g that give rise to a linear system of equations [16;
17; 42]. Note that these equations do not contain any new information; they simply
impose new linearly independent constraints required for a unique solution.

In addition, let concrete shapes be represented by their characteristic function 1 :

Pn → {0, 1}, where 0 and 1 correspond to the background and foreground, respectively.
If we denote the template by 1t and the observation by 1o, then Eq. (2.1) implies that

1t(x) = 1o(Ax) = 1o(y) . (2.5)

2.6 Registration vs. Matching
There is a fundamental di�erence between the problem of registration and shape match-
ing. In either case, we �x the family of possible transformations. In the case of match-
ing, we need to determine whether the two objects are from the same class or not. It
is enough to ask whether there exists a transformation which aligns the objects (i.e.
whether they are on the same orbit of the �xed transformation class), but the aligning
transformation is not of interest. However, in the registration problem we always assume
that there exists a transformation which aligns the objects and we need to estimate its
parameters. This explains why the multiple object matching algorithm makes use of
invariants, ignoring the e�ect of the unknown transformation, and why covariance is
used to solve the registration problem.

2.7 Invariance vs. Covariance
Moment invariants [50; 104] have been extensively studied as they provide a powerful
tool for shape matching. Essentially, invariants are functions immune to the action of a
particular deformation. There is a well-established theory on a�ne invariants [28], but
invariants of higher order deformations are hard to construct. Not long ago, important
results on the existence of projective moment invariants [30], as well as on generalized
invariants called Implicit Moment Invariants [27], were reported. However, we are not
interested in constructing invariants as, being immune to deformations, they do not
provide constraints on the actual transformation parameters. Instead, we shall use co-
variant functions that vary with the transformation, hence constraining its parameters.
Indeed, invariance and covariance play a complementary role: While invariants identify
a shape regardless of its deformation, covariants identify the actual deformation.



Chapter 3

Parametric Estimation of A�ne
Deformations of Binary Images:
Polynomial Solution

In this chapter we focus on the estimation of a�ne transformations by aligning a known
shape and its distorted observation. The classical way to solve this registration problem
is to �nd correspondences between the shapes and then compute the transformation
parameters from these established correspondences. Here, we propose a novel approach
where the exact transformation is obtained as the solution of a polynomial system of
equations. Our method has been tested on synthetic as well as on real images, and
its robustness in the presence of segmentation errors and additive geometric noise
was also demonstrated and analyzed. The method was successfully applied in the
registration of hip prosthesis X-ray images as well as for real images. The advantage
of our solution is that it has a linear time complexity, is fast, easy to implement, works
without established correspondences and provides an exact solution regardless of the
magnitude of the transformations.

3.1 Estimation of A�ne Transformations
Here we will use the notations introduced in Section 2.5. We will start with the identity
relation de�ned by Eq. (2.1). Classical landmark-based approaches would identify at
least n + 1 point pairs

({xi,yi}m≥n+1
i=1

)
and solve the system of linear equations in

Eq. (2.1). However, we are interested in a direct solution without solving the corre-
spondence problem. For this reason, we will take the Lebesgue integral of both sides
of the identity relation [20; 21]

∫

Pn

x dx =
1

|A|
∫

Pn

A−1y dy , (3.1)
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where the integral transformation

x = A−1y, dx = |A−1|dy =
dy
|A|

has been applied. Although we write these integrals in Pn, they are equivalent to the
corresponding Lebesgue integrals in Rn (i.e. integration is actually performed in the
corresponding Cartesian coordinate system). This is because by using homogeneous
coordinates, the real plane Rn is mapped to the w = 1 plane in real projective space
Pn and a�ne transformations do not alter the homogeneous component w. One can
therefore safely assume that it is always 1 and ignore it.

A B

CC

B A|J|<0 |J|>0

Figure 3.1: Sign ambiguity of the Jacobian determinant.

The determinant |A| is the Jacobian which corresponds to the measure of the
transformation. Hence, it can be evaluated by integrating [20; 21]

∫

Pn

1t(x) dx =
1

|A|
∫

Pn

1o(y) dy ⇔ |A| =
∫
Pn 1o(y) dy∫
Pn 1t(x) dx .

Since the characteristic functions only take values from {0, 1}, we can further simplify
the above integrals by making use of the relation [20; 21]:

∫

Pn

1t(x) dx ≡
∫

Ft

dx ,

where the �nite domain Ft consists of the template foreground regions: Ft = {x ∈
Pn|1t(x) = 1}. Similarly, we can restrict the integral of 1o(y) to the observation fore-
ground regions Fo. Therefore evaluating the integrals yields the area of the foreground
regions. From this point of view, the measure of the transformation |A| corresponds
to the ratio of the area of the observation and template shapes [20; 21]

|A| =
∫
Fo

dy∫
Ft

dx , (3.2)

which can be directly computed from the input images. The sign ambiguity of the
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determinant is also easily eliminated. A negative Jacobian would mean that the trans-
formation is not orientation-preserving, i.e. the �ipping of coordinates is allowed (see
Fig. 3.1). In practice, however, physical constraints will usually prevent such a trans-
formation, hence we can assume that |A| is always positive.

Now multiplying Eq. (3.1) by Eq. (2.5), we get a �nite integral equation [20; 21]:
∫

Pn

x1t(x) dx =
1

|A|
∫

Pn

A−1y1o(y) dy

m∫

Ft

x dx =
1

|A|
∫

Fo

A−1y dy . (3.3)

This equation implies that the �nite domains Ft and Fo are also related via Fo = AFt;
i.e. , we match the shapes as a whole instead of point to point correspondences. In
fact, Eq. (3.3) is a linear system of n equations for k = 1, . . . , n [20; 21]

|A|
∫

Ft

xk dx = qk1

∫

Fo

y1 dy + · · ·+ qkn

∫

Fo

yn dy + qk(n+1)

∫

Fo

dy .

It is clear that both sides of the equation as well as the Jacobian can be easily computed
from the input shapes. Unfortunately, n equations alone are not enough to solve for
n(n + 1) unknowns.

3.1.1 Construction of the Polynomial System

We will use Eq. (2.3) and get the following integral equation from Eq. (3.3) [20; 21]
∫

Ft

ω(x) dx =
1

|A|
∫

Fo

ω(A−1y) dy . (3.4)

The basic idea behind this approach is to generate enough linearly independent equa-
tions by making use of nonlinear ω functions. Note, however, that the generated
equations contain no new information; they simply impose new linearly independent
constraints. Indeed, from a geometric point of view, Eq. (3.3) simply matches the
centre of mass of the template and observation, while the new equations of Eq. (3.4)
match the centre of mass of the shapes obtained by the nonlinear ω transformations
(see Fig. 3.2). Since the ωs are also applied to the unknowns, the resulting equations
will be nonlinear. The simplest nonlinear system is a low order polynomial system, thus
we need to �nd an ω such that Eq. (3.4) is a polynomial. The following proposition
states that this can be achieved when ω is a polynome [20].
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ω(x) = x ω(x) = [x2
1, x

2
2, 1]T ω(x) = [x3

1, x
3
2, 1]T

Figure 3.2: The e�ect of the ω functions.

Proposition 3.1 Let ω : Pn → Pn and x ∈ Pn (n ∈ N). If the kth coordinate of
ω(x), denoted by ω(k)(x) = pk is a real n-variate polynome, 1 ≤ k ≤ n, then applying
ω in Eq. (3.4) results in a polynomial system of equations of degree deg(pk) at most.

Proof
Let k be a �xed, arbitrary integer such that 1 ≤ k ≤ n. We shall assume that ω(k)(x)

is polynomial, i.e. there exists an n-variate real polynome pk with deg(pk) ≥ 1, such
that

ω(k)(x) = pk(x1, . . . , xn) =

uk∑
i=1

si(A
−1
1,: y)αi1 . . . (A−1

n,:y)αin , (3.5)

where uk =
(
deg(pk)+n

deg(pk)

)
, and A−1

j,: denotes the jth row of A−1. One term of Eq. (3.5)
can be expanded by making use of the Multinomial theorem [73]. For a given i and for
all 1 ≤ j ≤ n, we have

(A−1
j,: y)αij = (qj1y1 + · · ·+ qjnyn + qj(n+1))

αij

=
∑

βij1, . . . , βij(n+1) ∈ N0

βij1 + · · ·+ βij(n+1) = αij

αij!

βij1! . . . βij(n+1)!
q

βij1

j1 . . . q
βijn

jn q
βij(n+1)

j(n+1) y
βij1

1 . . . yβijn
n ,

hence we get an (n + 1)-variate real polynome. In fact, we should compute the sum of
the product of n pieces of the (n+1) - variate polynome in Eq. (3.5). Let m = n(n+1)

and let us treat these products as an m-variate polynome. Moreover, the sum of m-
variate polynoms is also an m-variate polynome. Integrating and noting the previous
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result, we can rewrite Eq. (3.5) as

∫

Fo

uk∑
i=1

si(A
−1
j,: y)αi1 . . . (A−1

n,:y)αin dy ≡
∫

Fo

vk∑
i=1

tiq
γi1
1 . . . qγim

m yδi1
1 . . . yδin

n dy ,

where vk =
(
deg(pk)+m

deg(pk)

)
. It is obvious from the above equation that the system of

equations is of degree deg(pk) at most. Furthermore, by making use of the basic
properties of the Lebesgue integral, we get

∫

Fo

vk∑
i=1

tiq
γi1
1 . . . qγim

m yδi1
1 . . . yδin

n dy =

vk∑
i=1

∫

Fo

tiq
γi1
1 . . . qγim

m yδi1
1 . . . yδin

n dy

=

vk∑
i=1

tiq
γi1
1 . . . qγim

m

∫

Fo

yδi1
1 . . . yδin

n dy

=

vk∑
i=1

wiq
γi1
1 . . . qγim

m .

The last term is indeed a real polynome rk with variables q1, . . . , qm yielding
∫

Ft

ω(k)(x) dx ≡ rk(q1, . . . , qm) .

Hence the system of equations is indeed polynomial, which completes the proof. 2

From now on we will consider the 2-dimensional case (i.e. n = 2), where x =

[x1, x2, 1]T and y = [y1, y2, 1]T ∈ P2 denote the homogeneous coordinates of the
template and observation points, respectively (as stated in Section 2.5). It is thus
apparent that the class of xl(l ∈ N0) functions is an ideal choice for ω. Hence, we have
the following polynomial equations for k = 1, 2 [20; 21]:

|A|
∫

Ft

xl
k dx =

l∑
i=1

(
l

i

) i∑
j=0

(
i

j

)
ql−i
k1 qi−j

k2 qj
k3

∫

Fo

yl−i
1 yi−j

2 dy l = 1, 2, 3 . (3.6)

This system of equations contains six polynomial equations of order three at most,
which is enough to solve for all the unknowns. Actually, we have two separate systems
for k = 1, 2, as shown in equations (3.7)�(3.9) [20; 21] below:

|A|
∫

Ft

xk dx = qk1

∫

Fo

y1 dy + qk2

∫

Fo

y2 dy + qk3

∫

Fo

dy , (3.7)

|A|
∫

Ft

x2
k dx = q2

k1

∫

Fo

y2
1 dy + q2

k2

∫

Fo

y2
2 dy + q2

k3

∫

Fo

dy + 2qk1qk2

∫

Fo

y1y2 dy

+2qk1qk3

∫

Fo

y1 dy + 2qk2qk3

∫

Fo

y2 , (3.8)
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|A|
∫

Ft

x3
k dx = q3

k1

∫

Fo

y3
1 dy + q3

k2

∫

Fo

y3
2 dy + q3

k3

∫

Fo

dy + 3q2
k1qk2

∫

Fo

y2
1y2 dy

+3q2
k1qk3

∫

Fo

y2
1 dy + 3q2

k2qk3

∫

Fo

y2
2 dy + 3qk1q

2
k2

∫

Fo

y1y
2
2 dy

+3qk1q
2
k3

∫

Fo

y1 dy + 3qk2q
2
k3

∫

Fo

y2 dy

+6qk1qk2qk3

∫

Fo

y1y2 dy . (3.9)

3.1.2 Discussion
However, we may have several possible solutions for each unknown qki due to the
cubic polynomial terms. Out of these potential solutions, we can select the right one
by dropping the complex roots and choosing the transformation whose determinant
matches the Jacobian computed via Eq. (3.2).

Note that an exact solution always exists whenever Eq. (2.1) is satis�ed. In prac-
tice, however, a solution may not exist due to discretization errors or noise on the
point coordinates. We can always check for the existence of a solution by computing
the resultant of the system, which is a second order polynome. Still, the solution is
not unique (but it exists!) when the shape is a�ne symmetric. An object is a�ne
symmetric, or it has a�ne symmetry, when there exists an a�ne transformation that
is invariant when applied on it, and it is not the identity transformation.

We note that this method could also be extended to higher dimensions at the price of
adding higher order polynoms or restricting the space of admissible transformations. For
example, in many medical applications 3-dimensional volume images are used. Hence,
we should add a fourth-order equation and solve three systems. This is obviously more
di�cult and higher powers may compromise numerical stability. In [98], using the same
idea as that presented here, a 3D binary registration method was given to �nd a�ne
transformations by constructing and solving an overdetermined system of polynomial
equations.

Another possibility is to use ωs of mixed coordinates (e.g. ω(x) = [x1x2, x2, 1]T ).
This will generate new equations without increasing their order, but we lose the bene�t
of being able to handle the coordinates separately, i.e. we have to solve one large
polynomial system of equations instead of three smaller ones. In order to retain this
advantage (i.e. we have to solve the system of equations separately) we should only
make use of univariate polynoms for ωs instead of mixed polynoms. Unfortunately, this
makes this method numerically unfeasible, as there is no guarantee that we can apply
a direct solver in a higher dimension to get a solution of the polynomial system of
equations de�ned by Eq. (3.4).

Although the derivations are not moment-based per se, it is interesting to see how
the resulting Eq. (3.6) is related to moments. Image moments and invariants [31] were
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�rst introduced by Hu [50] for 2D pattern analysis. Since then, they have become one of
the most popular region-based descriptors because any shape can be reconstructed from
an in�nite set of moments [34]. Traditional two dimensional (i + j)th order moments
of a function % : R2 → R are de�ned as [97]

mij(%) =

∫

R2

%(x)xi
1x

j
2 dx ,

where i, j ∈ N0. When % is an image function, then these moments are also referred to
as image moments. In the binary case, where objects are represented by their silhouette,
% becomes a characteristic function producing [97]

mij(F) =

∫

F
xi

1x
j
2 dx (3.10)

with F = {x ∈ R2 : %(x) = 1}. This is often called the shape or geometric moment
as it only uses polynomials of the coordinates. Generally, orthogonal moments, such
as Legendre [34] or Zernike moments [99], are numerically more stable than regular
moments. We should remark, however, that orthogonal moments can be expressed
by regular moments. Similar to Legendre or Zernike moments, our functions could
also be expressed in terms of shape moments whenever the ω functions adopted are
polynomials. In this sense, our functions could be considered as shape moments. When
ω is not a polynome, then its Taylor expansion results in an approximating polynome,
which in turn yields an in�nite sum of shape moments. Independently of the choice
of ω, it can only be expressed in terms of shape moments by expanding it as a Taylor
series. This result corresponds to similar �ndings reported in [30; 104] in the context
of projective invariants. What we propose in this chapter is another approach, which,
starting from the identity relation in Eq. (2.1), an elegant framework is constructed to
generate an arbitrary set of linearly independent equations.

3.2 Numerical Implementation

Although we have constructed our equations in the continuum, in practice we only
have a limited precision digital image. This means that the integrals, which are in fact
the coe�cients of the unknowns in equations (3.7)�(3.9), can only be approximated
by a discrete sum over the foreground pixels and this introduces an inherent, although
negligible error into our computation. In [60; 61], the e�ect of such errors on moment
computation was analyzed and a number-theoretical estimation of quantization errors
was derived. The continuous domains Ft and Fo are represented as �nite sets of
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foreground pixels [20]

Ft ≈ Ft = {pi}M
i=1 and Fo ≈ Fo = {p′i}M

i=1 ,

where M and N are the number of foreground pixels of the template and observation,
respectively. Next, the integrals are approximated by a �nite sum over these foreground
pixels [20]

∫

Ft

xk dx ≈
M∑
i=1

p
(k)
i and

∫

Fo

yk dy ≈
N∑

i=1

p′i
(k)

, k = 1, 2 , (3.11)

where pi = [p
(1)
i ,p

(2)
i ] and p′i = [p′i

(1),p′i
(2)] stand for the ith foreground pixel of the

template and observation, respectively. The Jacobian in Eq. (3.2) reduces to [20]

|A| = N

M
. (3.12)

Naturally, the resolution of the images a�ects the precision of these approximations. As
the mesh size tends to zero, the �nite sums better approximate the integrals. Therefore,
our method performs better on higher resolution images. Experiments show that images
with size 500× 500 provide su�ciently accurate approximations.

Algorithm 1 summarizes the steps of our registration method [20]. It is clear that
the solution is obtained in a single pass without any loop or optimization. Even though
we have to solve a polynomial system, the complexity of this step is constant and, most
importantly, independent of the image size. Matlab is quite e�cient at solving our
system, but other packages are also available like PHCpack [106�108].

Algorithm 1: Pseudo-code of binary image registration using a polynomial sys-
tem of equations.
Input : Template (1t) and observation (1o) shapes as binary images
Output: Estimated a�ne transformation Ã

Estimate the Jacobian |A| using Eq. (3.12).1
Evaluate the integrals in equations (3.7)�(3.9) to get the coe�cients of the2
unknowns.
Solve the system of equations (3.7)�(3.9) using a standard solver (e.g. Matlab).3

Choose the correct transformation based on the Jacobian to get Ã
−1

.4

The images need to be scanned only once, and the integrals in equations (3.7)�
(3.9) as well as the Jacobian can be evaluated during this scan. This step takes
c1(M + N) time, where M + N is the size of the input images. Once the system has
been constructed, the rest of the algorithm runs in constant (c2) time, independently
of the input size. Thus the overall time complexity of the method is c1(M + N) + c2,
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i.e. O(M + N). However, our experiments tell us that c1(M + N) << c2, in practice,
hence the actual running time is dominated by the constant c2 (see Table 3.3).

3.2.1 Fuzzy Object Representation

There are many ways of discretizing a continuous-valued function. The easiest way to
make a discrete image is by sampling the continuous function at uniform grid positions.
This approach, known as Gaussian centre point digitization, could be applied in the
above problem. An alternative is to perform a fuzzy discretization of the image [93; 97].

A discrete fuzzy subset [93; 97] F of a reference set X ⊂ Z2 is a set of ordered
pairs

F = {((i, j), µF (i, j)
)|(i, j) ∈ X} ,

where µF : X → [0, 1] is the membership function of F in X. The fuzzy membership
function may be de�ned in various ways; its values re�ect the levels of membership
of the pixels to the object. One useful way to de�ne the membership function on a
reference set in the case where it is an image plane is to assign a value to each image
element (pixel) that is proportional to its coverage by the imaged object. In this way,
partial memberships (values strictly between 0 and 1) are assigned to the pixels on the
boundary of the discrete object.

In the discrete formulation the geometric moments of order i+ j of a discrete fuzzy
set F can be used, which are de�ned by [92]

mi,j(F ) =
∑
p∈X

µF (p)pi
1p

j
2 , (3.13)

where p = [p1, p2]
T . This equation can be used to estimate the geometric moments of a

continuous 2D shape. Asymptotic error bounds for moments of order 2 at most, derived
in [92], show that moment estimates calculated from a fuzzy object representation can
provide a considerable increase in precision compared to estimates computed from a
crisp representation, for the same spatial resolution.

If F is a fuzzy representation of F , it follows that mi,j(F) ≈ mi,j(F ). Thus,
similar to Eq. (3.11), by using Eq. (3.10) and Eq. (3.13) the integrals in Eq. (3.6) can
be approximated by [97]

∫

Ft

xl
k dx ≈

∑
p∈Xt

µFt(p) pl
k and

∫

Fo

yl−i
1 yi−j

2 dy ≈
∑

p′∈Xo

µFo(p
′) p′1

l−i
p′2

i−j
,

where Xt and Xo are the reference sets (discrete domains) of the (fuzzy) template
and (fuzzy) observation image, respectively. As in Eq. (3.12), the Jacobian can be
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approximated by [97]

|A| = m00(Fo)

m00(Ft)
≈ m00(Fo)

m00(Ft)
=

∑
p′∈Xo

µFo(p
′)∑

p∈Xt
µFt(p)

.

The approximating discrete system of polynomial equations can now be produced by
inserting these approximations into Eq. (3.6) [97]:

|A|
∑
p∈Xt

µFt(p)pl
k =

l∑
i=0

(
l

i

) i∑
j=0

(
i

j

)
ql−i
k1 qi−j

k2 qj
k3

∑

p′∈Xo

µFo(p
′)p′1

l−i
p′2

i−j
.

Obviously, the spatial resolution of the images a�ects the precision of this approx-
imation. However, su�cient spatial resolution may be unavailable in real applications
or, as expected in the case of 3D applications, it may lead to overly large amounts of
data that cannot be successfully processed. Nevertheless, it was shown in [92] that
increasing the number of grey levels representing pixel coverage by a factor n2 provides
asymptotically the same increase in precision as an n times increase of spatial resolu-
tion. Therefore the suggested approach, utilizing increased membership resolution, is
a very powerful way of compensating for an insu�cient spatial resolution, while still
preserving the desired precision of moment estimates.

It was observed that the experimental data also con�rm the theoretical results [97],
i.e. that the use of fuzzy shape representations enhances the registration process com-
pared to the binary case. This e�ect can be viewed as the fuzzy representation �in-
creasing� the resolution of the object around its border. It also implies that registration
based on a fuzzy border representation may work for lower image resolutions too, when
the binary approach becomes unstable.

3.3 Estimation in the Presence of Noise

There are two types of noise which can a�ect a binary image. One is �radiometric�, i.e.
pixels may randomly take a foreground or background colour. This is typically present
in the form of a salt and pepper noise, which can be e�ciently removed by appropriate
morphological �ltering. The second type manifests itself as an uncertainty in the point
coordinates, i.e. it is a type of geometric noise. More precisely, the observed point
coordinates may di�er from the true coordinates by a random distance, as shown in
Fig. 3.3. This will de�nitely undermine the identity relation in Eq. (2.1) and introduce
an error into our system. In the following section, we will analyze this case and compute
the average error caused by geometric noise on the observation.
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(a) Original (b) σ = 5 (c) σ = 10 (d) σ = 20

Figure 3.3: Observations corrupted by additive Gaussian noise on the coordinates.

3.3.1 Geometric Noise

It is reasonable to assume that the observed point coordinates are around the true
ones, hence we will consider an i.i.d. additive Gaussian noise model on the observation
coordinates. The identity relation Eq. (2.1) thus becomes [20]

y∗ = y + ε(y) = Ax + ε∗(y∗) ⇔ x = A−1 (y∗ − ε∗(y∗)) ,

where ε(y) ≡ ε∗(y∗) =
[
ε∗1(y

∗), ε∗2(y
∗), 0

]T is the noise function which gives a random
translation at each point y∗ = [y∗1, y

∗
2, 1]T . We shall assume that ε∗1 and ε∗2 are inde-

pendent and normally distributed with 0 means and variances σ1 and σ2, respectively.
Actually, ε∗(y∗) is a two dimensional sample from, 0 the mean Gaussian distribution
with a diagonal covariance matrix diag(σ1, σ2). Thus Eq. (3.3) becomes [20]

∫

Ft

ω(x) dx =
1

|A|
∫

F∗o
ω
(
A−1

(
y∗ − ε∗(y∗)

))
J(y∗) dy∗ ,

where F∗
o = {y∗ ∈ P2|1o(y

∗) = 1} and the integral transformation

x = A−1
(
y∗ − ε∗(y∗)

)
, dx = J(y∗)dy∗/|A|

has been applied. From here on we will omit the integration domains unless they are
ambiguous. In fact, the Jacobian becomes J(y∗)/|A| in the noisy case with [20]

J(y∗) =
(
1− ε∗1(y

∗)′y∗1 − ε∗2(y
∗)′y∗2 + |∇ε∗(y∗)|)

depending on the actual noise. Here ε∗1(y
∗)′y∗2 denotes the partial derivative of the

second variable (y∗2) and [20]

|∇ε∗(y∗)| =
∣∣∣∣∣

ε∗1(y
∗)′y∗1 ε∗1(y

∗)′y∗2
ε∗2(y

∗)′y∗1 ε∗2(y
∗)′y∗2

∣∣∣∣∣ .
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It is clear that the integrals of ε∗i give the expected value, which is always 0 in our
case. Furthermore, since in practice we always work with discrete pixel coordinates,
the partial derivatives of ε∗ can be approximated via �nite di�erences, e.g. by central
di�erences with h ∈ N [20]

ε∗1(y
∗)′y∗1 ≈ 1

2h

(
ε∗

(
[y∗1 + h, y∗2, 1]T

)− ε∗
(
[y∗1 − h, y∗2, 1]T

))
,

ε∗1(y
∗)′y∗2 ≈ 1

2h

(
ε∗

(
[y∗1, y

∗
2 + h, 1]T

)− ε∗
(
[y∗1, y

∗
2 − h, 1]T

))
.

Therefore the integral of these derivatives will also be approximated by the integral of
the �nite di�erences, which thus equals 0.

Computation of |A|

Since the true coordinates y are unknown on a noisy observation, we have to integrate
using y = y∗ − ε∗(y∗). Thus the numerator of Eq. (3.2) becomes [20]

∫

Fo

dy =

∫

F∗o

(
1− |∇ε∗(y∗)|) dy∗ =

∫

F∗o
dy∗ ,

because
∫
F∗o |∇ε∗(y∗)| dy∗ = 0 according to our previous deductions. Therefore

Eq. (3.2) remains valid in the noisy case.

ω(x) = x

The right hand side of Eq. (3.7) has to be evaluated on the noisy observation. Thus
denoting v := A−1

(
y∗ − ε∗(y∗)

)
, i.e.

vk = qk1 (y∗1 − ε∗1(y
∗)) + qk2 (y∗2 − ε∗2(y

∗)) + qk3;

we get for k = 1, 2 [20]
∫

Fo

A−1
k,: y dy =

∫

F∗o
vk dy∗ −

∫

F∗o
vkε

∗
1(y

∗)′y∗1 dy∗

−
∫

F∗o
vkε

∗
2(y

∗)′y∗2 dy∗ +

∫

F∗o
vk|∇ε∗(y∗)| dy∗ .

It is not hard to see that every term, except the �rst one, equals 0. For example [20]
∫

F∗o
vkε

∗
1(y

∗)′y∗1 dy∗ =

∫

F∗o

(
qk1

(
y∗1 − ε∗1(y

∗)
)

+ qk2

(
y∗2 − ε∗2(y

∗)
)

+ qk3

)
ε∗1(y

∗)′y∗1 dy∗ .
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Evaluating the coe�cient of qk1 yields [20]
∫

F∗o

(
y∗1 − ε∗1(y

∗)
)
ε∗1(y

∗)′y∗1 dy∗ =

∫

F∗o
y∗1ε

∗
1(y

∗)′y∗1 dy∗ −
∫

F∗o
ε∗1(y

∗)ε∗1(y
∗)′y∗1 dy∗ .

Using �nite di�erences for ε∗1(y
∗)′y∗1 and iterating the integrals, we get for the �rst

term [20]

1

2h

∫
y∗1

( ∫
ε∗1

(
[y∗1 + h, y∗2, 1]T

)
dy∗2

)
dy∗1 −

1

2h

∫
y∗1

( ∫
ε∗1

(
[y∗1 − h, y∗2, 1]T

)
dy∗2

)
dy∗1

=
1

2h

∫
y∗10 dy∗1 −

1

2h

∫
y∗10 dy∗1 = 0 ,

since ε1 is a 0-mean Gaussian for which
∫

ε1 = 0. The remaining terms can be evaluated
in a similar way. Next, the right hand side of Eq. (3.7) in the case of a noisy observation
is [20]: ∫

F∗o
vk dy∗ = qk1

∫

F∗o
y∗1 dy∗ + qk2

∫

F∗o
y∗2 dy∗ + qk3

∫

F∗o
dy∗ .

Hence Eq. (3.7) remains valid. This is not surprising as the equation matches the centre
of mass of the template and observation shapes. When the observation coordinates are
corrupted by a 0-mean additive noise factor, the centre of mass does not change as the
noise components integrate to 0.

ω(x) = [x2
1, x

2
2, 1]T

Using the noisy observation, Eq. (3.8) becomes [20]

|A|
∫

Ft

x2
k dx =

∫

F∗o

(
A−1

k

(
y∗ − ε∗(y∗)

))2

dy∗ .

It is apparent that both �rst and second order noise statistics will appear in the above
equation. While �rst order statistics vanish, second-order moments (

∫
ε∗k(y

∗)2 =

σ2
k, k = 1, 2) will a�ect the equation. It is straightforward to show, using similar

considerations as in Section 3.3.1, that in the noisy case Eq. (3.8) becomes [20]

|A|
∫

Ft

x2
k dx =

∫

Fo

(
A−1

k (y)
)2 dy + q2

k1σ
2
1 + q2

k2σ
2
2 .

Thus the error introduced by the noisy observation depends on the noise variances σ2
1

and σ2
2, as well as on the strength of the unknown transformation A.
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ω(x) = [x3

1, x
3
2, 1]T

In this case, the system will include third order noise statistics. Fortunately, any sym-
metric distribution will have a third central moment of zero, thus using similar consid-
erations as before, the noisy Eq. (3.9) is [20]

|A|
∫

Ft

x3
k dx =

∫

Fo

(
A−1

k (y)
)3dy + 3q2

k1qk3σ
2
1 + 3q2

k2qk3σ
2
2 .

Summary

Overall, we can say that the error caused by i.i.d. additive Gaussian noise on the point
coordinates of the observation is as follows [20]:

Equation Error term
|A|: Eq. (3.2) 0

ω(x) = x: Eq. (3.7) 0

ω(x) = [x2
1, x

2
2, 1]T : Eq. (3.8) q2

k1σ
2
1 + q2

k2σ
2
2

ω(x) = [x3
1, x

3
2, 1]T : Eq. (3.9) 3qk3(q

2
k1σ

2
1 + q2

k2σ
2
2)

An experimental analysis of the noisy case is presented in Section 3.4.2. Our �ndings
suggest that the proposed algorithm can cope with noisy observations as high as σ1 =

σ2 = 10 noise levels.

3.4 Experimental Results
The proposed algorithm was tested on a large database of binary images of size
1000 × 1000. The dataset consisted of 56 di�erent shapes and their transformed
versions, giving a total of over 50 000 images. The a�ne transformations we ap-
plied were randomly composed of 0◦, 10◦, . . . , 350◦ rotations; 0, 0.4, . . . , 1.2 shearings;
0.5, 0.7, . . . , 1.9 scalings, and −20, 0, 20 translations along both axes. Some typical
examples of these images can be seen in Fig. 3.4. The original shape of each was then
used as the template image and the transformed images were used as the observation.
The proposed algorithm was implemented in Matlab 7.2 and ran on a Pentium IV 3.2
GHz under the Linux operating system. The average runtime was around 1 second
including the computation of the integrals and the solving of the polynomial system.

In order to quantitatively evaluate the registration results, we de�ned two kinds of
error measures. The �rst one (denoted by ε) measures the distance between the true
A and the estimated Ã transformation obtained by our algorithm, based on all the
template pixels p. Intuitively, ε tells us the average transformation error per pixel. The
second measures the absolute di�erence (denoted by δ) between the observation and
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Templ. Obs. Heikkilä [46] SC [7] Kan. et al. [57] S. & F. [95] Prop. [20; 21]

Figure 3.4: Registration results for synthetic image pairs. The �rst two columns show
the template and its a�ne distorted observation to be matched, while the other columns
contain the registration result of each given method. The template and its registered
observation are overlaid in such a way that overlapping pixels are depicted in black,
while non-overlapping ones are shown in light or dark grey, respectively.

the registered image [20].

ε =
1

|Ft|
∑
p∈Ft

‖(A− Â)p‖, and δ =
|Fr 4 Fo|
|Fr|+ |Fo| · 100% , (3.14)

where 4 means the symmetric di�erence, while Fr denotes the set of pixels of the
registered shape. Note that ε can only be used when the true transformation A is
also known, while δ can always be computed. But, ε gives a better characterization of
the transformation error as it directly evaluates the mistransformation. δ only tells us
the percentage of non-overlapping area between the observation and registered shape.
Hence the value of δ also depends on the compactness and topology of the shapes. The
performance of our algorithm on the benchmark dataset was evaluated based on these
two measures. A summary of these results is given in Table 3.1 Another important
indicator is the number of test cases where the algorithm �nds no solution. Although
all the applied transformations were a�ne, it is possible that an observation is not
on the orbit of its template. The reason is mainly due to the high numerical error in
the coe�cients caused by a combination of strong deformation error and discretization
error. The compactness of the shapes also a�ects the amount of discretization error.
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Table 3.1: Registration results of the proposed method on the benchmark dataset
containing 49 282 synthetic observations of 56 shapes. There was no solution in 5.47%
of the test cases.

ε (pixel) δ (%) CPU time (sec.)
Median 0.51 0.15 0.98
Mean 36.98 3.36 0.94
Variance 154.18 12.55 0.2

Table 3.2: Registration results (medians of error measures) of the proposed method on
32 724 �lled shapes and 16 558 line drawings.

ε (pixel) δ (%) CPU time (sec.) Unsolved (%)
Filled 0.49 0.06 1 4.03
Line drawings 0.55 0.63 0.95 8.32

Obviously, such errors arise only around the boundaries so shapes with a longer contour
will have a higher discretization error. Our database contains 32 724 �lled shapes and
16 558 line drawings. Table 3.2 shows a comparison of the registration quality with
these shapes. It is clear that the registration of line drawings (i.e. shapes with longer
contours) is slightly less accurate. The resolution of the images is also important. As
already mentioned in Section 3.2, the discrete sums will better approximate the integrals
at higher resolutions. Fortunately, the time complexity of our method is linear, hence
increasing the resolution will not increase the CPU time much. Table 3.3 shows the
error and CPU time as a function of the resolution.

Table 3.3: Median of error measures versus resolution of the observation.
ε (pixel) δ (%) CPU time (sec.)

100% 0.71 0.09 1.04
50% 14.68 0.74 0.9
25% 21.54 0.81 0.85
12.5% 25.39 4.91 0.81

3.4.1 Comparison with Previous Approaches
Now we will compare the registration results obtained by the proposed method with
some of the most important binary registration approaches. Where an implementa-
tion was available, we evaluated quantitatively the performance of our algorithm with
respect to these methods. For this purpose, we used 1686 images randomly chosen
from our database. We ran the demo software [6] provided by the authors on our
dataset. Although the method uses regularized thin-plate splines as a �exible class
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of transformations, it is possible to set the regularization parameter to get a�ne be-
haviour: beta_init=500. Other parameters were also set empirically to their optimal
value (number of iterations n_iter=15; annealing rate r=5). Due to its high complex-
ity, we had to reduce the size of the images by a factor of 0.2. In spite of this, as can
be seen in Table 3.4, the CPU time was still over 20 seconds. We obtained the Matlab
implementation from the authors of [57], [95], and [46] and conducted a comparative
test. The results presented in Table 3.4 and Fig. 3.4 show that our method outperforms
these approaches in terms of both quality and CPU time. In the case of that described
in [95], the registration quality is almost the same, so it is fair to say that both methods
give accurate registrations but our algorithm runs faster. Yet, our method is clearly
better than the method described in [95] in terms of robustness, as it will transpire in
the next section.

Table 3.4: Median of error measures on 1686 randomly selected images using some
related approaches and the proposed algorithm.

ε (pixel) δ (%) CPU time (sec.)
Heikkilä [46] 86.35 39.03 1.15
Shape context [7] � 27.17 24.79
Kan. et al. [57] 8.89 9.7 32.45
S. & F. [95] 0.51 0.19 5.62
Proposed [20; 21] 0.5 0.15 0.93

3.4.2 Robustness
In Section 3.3, we calculated the errors caused by noisy observations in our polynomial
system equations (3.7)�(3.9). Now we will experimentally test the robustness of the
proposed method against i.i.d. Gaussian geometric noise. To do this, we used 1377

randomly selected images taken from our benchmark database. Here i.i.d. Gaussian
noise with σ = 1, 2, 5, 10, 15, 20 was added to the extracted pixel coordinates of each
observation and the registration algorithm was used as input for the point list of this
noisy observation and the original template. To evaluate registration quality, the re-
covered transformation was applied to the original (i.e. noiseless) observation and the
usual error measures ε and δ were computed. It is apparent from Table 3.5 that the
proposed algorithm provides good solutions for noise as high as σ = 10. We also

Table 3.5: Median of error measures versus σ of the noise on 1377 randomly selected
images.

σ 1 2 5 10 15 20
ε (pixel) 0.51 0.53 0.73 2.42 5.86 11.91
δ (%) 0.19 0.27 0.79 2.72 6.24 10.64
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(a) Original (b) δ = 2.03% (c) δ = 8.2% (d) δ = 17.12%

Figure 3.5: The robustness of the proposed polynomial approach in the case of incom-
plete objects was evaluated on images where we randomly removed 5%, 10%, and 20%
of the foreground pixels ((b)-(d)) of the original image (a). The registration results are
shown as overlaid contours of the registered shape.

examined the robustness of the proposed approach in the case of incomplete objects.
For this purpose, we used 1289 randomly selected images taken from our benchmark
database where we randomly removed 5%, 10%, 15%, and 20% of the foreground pix-
els before registration (see Fig. 3.5). Needless to say, such incomplete observations
will introduce errors in the original system of equations (3.7)�(3.9). Table 3.6 shows
that our method is quite robust, while the error rate of other state-of-the-art methods
increases considerably even for missing pixels as low as 5%.

Table 3.6: Median of error measures versus the ratio of removed foreground pixels on
1289 randomly selected images.

Heikkilä [46] Kan. et al. [57] S. & F. [95] Proposed [20; 21]
ε δ ε δ ε δ ε δ

5% 76.29 40.5 8.69 9.42 8.09 4.44 1.95 1.93
10% 75 40.64 12.07 10.82 16.12 8.78 3.56 3.78
15% 71.86 41.05 13.55 12.54 24.73 12.98 9.25 10.96
20% 70.38 39.63 14.42 14.41 33.09 17.7 8.86 10.9

However, we should add that all of these methods are less robust against the same
amount of occlusion (i.e. when missing pixels are not uniformly distributed over the
whole region). In Table 3.7, we list the results on 794 randomly selected images with
occlusions of size 2.5%, 5% and 10% of the input shape area. Of course, even relatively
small occlusions yield a rather high error rate for both the proposed method and other

Table 3.7: Median of error measures versus the size of occlusion on 794 randomly
selected images.

Heikkilä [46] Kan. et al. [57] S. & F. [95] Proposed [20; 21]
ε δ ε δ ε δ ε δ

2.5% 120.36 53.77 76.49 55.77 42.61 23.91 47.44 38.12
5% 153.38 55.65 137.34 68.68 91.88 37.16 162.34 51.1
10% 215.81 60.98 227.63 79.75 175.32 47.65 251.4 58.67



3.4 Experimental Results 37

state-of-the-art methods. This is because they rely on quantities obtained by integrating
over the whole object area. Thus large missing parts might drastically change these
quantities and result in false registrations. Nevertheless, in many application areas,
images can be taken under controlled conditions which guarantee that observations are
not occluded (e.g. medical imaging and industrial inspection).

3.4.3 Real Images

The performance of our method was also evaluated on real images. Fig. 3.6 shows some
examples of these images with overlaid contours. For segmentation, we used classical
thresholding as well as active contours [10]. The main challenges are the segmentation
errors (e.g. see the �fth image in Fig. 3.6) and a slight projective distortion between the
image pairs. Overall, when reasonably good segmentations are available and the true
transformation is su�ciently close to an a�ne one, then our method performs quite
well, as shown by the δ error values and di�erence images displayed for each image
pair.

3.4.4 Registration of Hip Prosthesis X-ray Images

Hip replacement [22; 45] is a surgical procedure in which the hip joint is replaced by a
prosthetic implant. In the short term, post-operative, infection is a major concern. An
in�ammatory process causes bone resorption and a subsequent loosening or fracture
often requires revision surgery. In current practice, clinicians assess loosening by in-
specting a number of post-operative X-ray images of the patient's hip joint, taken over
a period of time. Obviously such an analysis requires the registration of X-ray images,
as shown in Fig. 3.7. Even a visual inspection can bene�t from registration as clinically
signi�cant prosthesis movement can be very small [22; 45].

There are two main challenges in registering hip X-ray images: One is the highly
nonlinear radiometric distortion [26], which makes any greylevel-based method unstable.
Fortunately, the segmentation of the prosthetic implant is quite straightforward [79],
so binary registration is a valid alternative here. From here on we will use active con-
tours [10] to segment the implant. The second problem is that the true transformation
is a projective one, which also depends on the position of the implant in 3D space. In
fact, there is a rigid-body transformation in 3D space between the implants, which be-
comes a projective mapping between the X-ray images. Happily, the a�ne assumption
is a good approximation here as the X-ray images are taken in a well-de�ned standard
position of the patient's leg. Some registration results are shown in Fig. 3.7.
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δ = 4.15% δ = 3.00% δ = 3.14% δ = 2.19%

δ = 4.30% δ = 1.07% δ = 8.09% δ = 2.42%

Figure 3.6: Registration results on real images. For each image pair, the �rst two
rows contain the template and observation with overlaid contours of the segmented
silhouettes, the third row shows the di�erence between the registered shapes and in the
last row the evaluated error measure δ is given. Note that this value is related to the
overlapping area, hence it also depends on segmentation errors as segmented regions
will never match perfectly in practice.
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δ = 3.69% δ = 7.62% δ = 5.94% δ = 4.13% δ = 1.45%

Figure 3.7: Registration of hip prosthesis X-ray images. Each image pair of a given
patient was taken over a period of time. The overlaid contour in the second row shows
the aligned contour of the corresponding image in the �rst row. For each pair, we also
computed the δ measure.

3.5 Summary
In this chapter we presented a novel approach for planar shape alignment. The funda-
mental di�erence compared to classical image registration algorithms is that our model
works without any landmark, feature detection or optimization, adopting a novel idea
where the transformation is obtained as a solution of a set of polynomial equations.
Even though it uses all the available information in the input images, there is no need
for established correspondences. We also investigated the proposed method in the pres-
ence of additive geometric noise. Our algorithm is simple to implement and runs quite
fast, almost independently of the image size. The experimental results show that the
proposed method provides good alignment on both real and synthetic images. More-
over, it is robust in the case of noisy observations. Lastly, comparative tests showed
that both the e�ciency and accuracy of our model are competitive with those of the
state-of-the-art methods, or outperform them.





Chapter 4

A�ne Shape Alignment Using
Covariant Gaussian Densities

In this chapter, we propose a novel approach for the estimation of 2D a�ne transforma-
tions by aligning a planar shape and its distorted observation. The exact transformation
is got from a least-squares solution of a linear system of equations constructed by �tting
Gaussian densities to the shapes which preserve the e�ect of the unknown transforma-
tion. In the case of compound shapes, we also propose a robust and e�cient numerical
scheme for achieving near real-time performance. The method was tested on synthetic
as well as on real images. Its robustness in the case of missing pixels, boundary errors,
and modelling errors was also veri�ed. With our method point correspondences are
not required, nor the solution of a complex optimization problem. It has linear time
complexity and yields an exact solution regardless of the size of the deformation.

4.1 The Parameter Estimation of A�ne Transfor-
mations

In essence, we make use of the notation de�ned in Section 2.5, but here we need to
use inhomogeneous representations of the coordinates, i.e. x = [x1, x2, . . . , xn]T ∈ Rn

and y = [y1, y2, . . . , yn]T ∈ Rn. Hence the identity relation Eq. (2.1) becomes

y = Ax + t ⇔ x = A−1(y − t) = A−1y −A−1t , (4.1)

where (A, t) ∈ (Rn×n × Rn×1) is the unknown a�ne transformation that we want to
recover. Similar to Eq. (2.5), the following equality holds between the characteristic
functions (1t and 1o):

1t(x) = 1o(Ax + t) = 1o(y) . (4.2)

41
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The crucial step of the proposed approach is to construct a pair of covariant func-
tions satisfying Eq. (2.2). Once these functions have been de�ned, we can adopt a
direct method taken from [16; 17; 19; 42] to solve for the unknown transformation
(A, t). When greylevel images are considered, the image functions themselves serve as
appropriate covariant functions [42]. Unfortunately, the construction of such functions
for binary images is quite a challenging task due to the lack of radiometric information.
Hence, these functions must be based only on available geometric information. Now
we will show how these kinds of functions can be constructed.

4.1.1 Construction of Covariant Functions

We know that the template and observation are equivalent to within an a�ne transfor-
mation (this is stated in Eq. (4.1)), and we do not need to represent shapes. Therefore
we can safely consider the points of the template as a sample from a bivariate normally
distributed random variable denoted by X ∼ N(µ, Σ) with probability density function
(PDF) [16; 17; 19]

p(x) =
1

2π
√
|Σ| exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
.

We make use of the Gaussian probability density function, which is over the shape, to
construct a covariant function pair. We should add that the shape is not represented or
modelled by a Gaussian; just the mean and covariance value of the points are estimated.
It is well known that applying any linear transformation to X also results in a normal
random variable Y = AX + t with parameters

X (A,t)7→ Y ∼ N(µ′, Σ′) = N(Aµ + t,AΣAT ) . (4.3)

Obviously, Eq. (4.3) is only valid when A is positive de�nite. In our case, (A,t) is an
a�ne transformation, thus A is clearly non-singular. However, a negative determinant
would mean that the transformation is not orientation-preserving (see Fig. 3.1). In
practice, however, such transformations are usually excluded by physical constraints,
hence we shall assume that |A| is always positive de�nite. The parameters of the
probability densities N(µ, Σ) and N(µ′, Σ′) can be easily estimated as the sample mean
and covariance values (i.e. the mean and covariance of the point coordinates). From
a geometric point of view, the mean values µ and µ′ represent the centre of mass of
the template and observation, respectively, while Σ and Σ′ capture the orientation and
eccentricity of the shapes. Fig. 4.1 shows a binary shape and the associated Gaussian
density calculated for it.
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(a) (b)

(c)

Figure 4.1: The Gaussian density function �tted over the binary shape yields a consistent
colouring. (a) The original binary image. (b) A 3D plot of the Gaussian density function
over the binary shape. (c) The Gaussian density represented as a greyscale image.

Now let us examine the relationship between the Gaussian density functions p and
s computed from the template and observation, respectively. First [16; 17; 19]

s(y) =
1

2π
√
|Σ′| exp

(
− 1

2
(y − µ′)T Σ′−1(y − µ′)

)
.

and using (y − µ′) =
(
Ax + t− (Aµ + t)

)
= (Ax−Aµ) we get

1

2π
√
|AΣAT |

exp
(
− 1

2
(Ax−Aµ)TA−T Σ−1A−1(Ax−Aµ)

)

=
1

2π|A|
√
|Σ| exp

(
− 1

2
(x− µ)T ATA−T︸ ︷︷ ︸

I

Σ−1 A−1A︸ ︷︷ ︸
I

(x− µ)
)

= |A|−1 1

2π
√
|Σ| exp

(
− 1

2
(x− µ)T Σ−1(x− µ)

)
=

1

|A|p(x) , (4.4)

where |A| can easily be derived from AΣAT = Σ′ since [16; 17; 19]

|A||Σ||AT | = |Σ′|, hence |A| =
√
|Σ′|
|Σ| . (4.5)

It is clear from Eq. (4.4) that p and s are covariant. However, we can further sim-
plify Eq. (4.4) by back substituting |A| into the equations and making the necessary
equivalence conversions, yielding [16; 17; 19]

(x− µ)T Σ−1(x− µ) = (y − µ′)T Σ′−1(y − µ′) . (4.6)
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In fact, we get the Mahalanobis distance, which de�nes a metric over the template
and another transformed metric over the observation. We then de�ne our covariant
functions P, S : Rn → R by [16; 17; 19]

P (x) = (x− µ)T Σ−1(x− µ) and S(y) = (y − µ′)T Σ′−1(y − µ′) . (4.7)

With Eq. (4.6) and Eq. (4.7), we get the desired relation de�ned by Eq. (2.2) [16; 17; 19]

P (x) = S(Ax + t) ⇔ P (A−1 (y − t)) = S(y) . (4.8)

Note that both P (x) and S(y) can be computed directly from the input images.
Fig. 4.2 shows an example of these functions �tted over a binary shape and its distorted
observation.

(a) P (x)1t(x) (b) S(y)1o(y)

Figure 4.2: The Mahalanobis distance represented as a covariant function. Contours
have been placed over the original greylevel images for easier evaluation. (a) The
Mahalanobis distance over the original image in Fig. 4.1 and (b) over the transformed
image. The transformation was a 1.5× shearing along the x-axis.

It is well known that the normalizing constant 1/(2π
√
|Σ|) in the density functions

ensures that the integral of the PDF evaluates to 1. It is also the maximum value
of the density function, which is inversely proportional to the area of the shape. This
dependence on the shape size may cause numerical instabilities in certain circumstances,
hence we could de�ne our covariant functions P ,S : Rn → R as the unnormalized
densities [17; 19]

P(x) = 2π
√
|Σ|p(x) = exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
, and

S(y) = 2π
√
|Σ′|s(y) = exp

(
−1

2
(y − µ′)T Σ′−1(y − µ′)

)
. (4.9)

Since the covariance matrices and mean vectors can be computed from the images,
both P and S are also obtained directly from the input shapes. Easy to see that they
are covariant, and satisfy Eq. (2.2) [16; 17; 19]:

P(x) = S(Ax + t) ⇔ P (
A−1(y − t)

)
= S(y) . (4.10)
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4.1.2 Linear Estimation of A�ne Parameters

Since point correspondences are not available, we cannot construct a system directly
from Eq. (4.1) or Eq. (4.8). We know, however, that the �nite domains of the tem-
plate and observation, Ft = {x ∈ Rn|1t(x) = 1} and Fo = {y ∈ Rn|1o(y) = 1},
respectively, are related by (A, t): AFt + t = Fo [16]. Therefore multiplying Eq. (4.1)
by Eq. (4.8) we can integrate out the individual point correspondences [16; 17; 19]

∫

Ft

xP (x) dx = |A|−1

∫

Fo

A−1(y − t)S(y) dy ,

where we have used the integral transformation

x = A−1(y − t) , dx = |A|−1dy .

Note that the Jacobian |A| can be readily computed from the input images using
Eq. (4.5). In order to generate more linearly independent equations, we will adopt
suitable nonlinear functions ω : R → R and generate new equations according to
Eq. (2.4) [16; 17; 19]:

∫

Ft

xω
(
P (x)

)
dx = |A|−1

∫

Fo

A−1(y − t)ω
(
S(y)

)
dy . (4.11)

Letting qki denote the elements of A−1 and −A−1t, [16; 17; 19]

A−1 =




q11 . . . q1n

... . . . ...
qn1 . . . qnn


 and −A−1t =




q1(n+1)

...
qn(n+1)


 ,

we can expand the above integrals and get the following linear system for k = 1, . . . , n [16;
17; 19]

|A|
∫

Ft

xkω
(
P (x)

)
dx =

n∑
i=1

qki

∫

Fo

yiω
(
S(y)

)
dy + qk(n+1)

∫

Fo

ω
(
S(y)

)
dy .

Adopting a set of linearly independent functions {ωi}m
i=1, we can rewrite the system in

matrix form [16; 17; 19]



∫
Fo

y1ω1

(
S(y)

)
dy . . .

∫
Fo

ynω1

(
S(y)

)
dy

∫
Fo

ω1

(
S(y)

)
dy

... . . . ... ...∫
Fo

y1ωm

(
S(y)

)
dy . . .

∫
Fo

ynωm

(
S(y)

)
dy

∫
Fo

ωm

(
S(y)

)
dy


×




qk1

...
qk(n+1)



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= |A|




∫
Ft

xkω1

(
P (x)

)
dx

...∫
Ft

xkωm

(
P (x)

)
dx


 , k = 1, . . . , n . (4.12)

The solution of this linear system provides the parameters of the transformation. If
m > 3 then the system is overdetermined and the result is obtained from a least-squares
solution. Note that, independently of the number of systems, the matrix coe�cients
need to be computed only once. Hence the complexity of the algorithm depends linearly
on the size of the shapes.

4.1.3 Compound Objects
Image analysis often deals with the matching of objects composed of several parts,
yielding a group of disjoint shapes when segmented. Thus, assuming that the template
object consists of ` ≥ 2 disjoint shapes, each component has exactly one corresponding
shape on the observation, i.e. there exists a bijective mapping between the template and
observation components under the transformation (A,t). As a consequence, we can
construct covariant functions Pi(x), Si(y) for each pair of shapes similar to Eq. (4.9)
that satisfy Eq. (4.10) [17; 19]:

Pi(x) = exp

(
−1

2
(x− µi)

T Σ−1
i (x− µi)

)
and

Si(y) = exp

(
−1

2
(y − µ′i)

T Σ′−1
i (y − µ′i)

)
,

where Σi, Σ
′
i and µi, µ

′
i are the covariance matrices and mean vectors of the ith shape

on the template and observation, respectively. Furthermore, the overall shape (i.e. the
whole foreground region) also gives rise to a pair of covariant functions P0(x), S0(y).
Thus we have ` + 1 relations. If the correspondence between the components were
known, then we could simply construct a system of ` + 1 equations and solve for the
unknowns. As such a matching is usually not known, we will sum these relations,
yielding [17; 19]

P (x) ≡
∑̀
i=0

Pi(x) =
∑̀
i=0

Si(y) ≡ S(y) , (4.13)

which can be readily used in Eq. (4.11).
Note that these sums are mixtures of unnormalized Gaussian densities, which can

also be interpreted as a consistent colouring of the template and observation, respec-
tively (see Fig. 4.3). By consistent colouring, we mean that these functions preserve the
e�ect of the unknown transformation. Moreover, these functions can be constructed
exactly and uniquely from the object points alone without knowing the aligning trans-
formation. As a result, we can transform the original binary images into greylevel ones,
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(a) (b) (c)

Figure 4.3: Gaussian PDFs �tted over a compound shape yield a consistent colouring.
(a) Original shape. (b) A 3D plot of the Gaussian PDFs over the elliptic domain with
r = 2. (c) Gaussian densities represented as a greyscale image. The white contour
de�nes component boundaries.

where the corresponding pixels have exactly the same grey value.
Another way to generate new equations is to make use of Pi(x) and Si(y) as

covariant function instead of Eq. (4.13) in Eq. (4.11). Since the matching between
the shapes is not known, we should sum the relations, de�ned in Eq. (4.11), for all
i = 0, . . . , ` yielding [17; 19]

∑̀
i=0

∫

Ft

xω
(Pi(x)

)
dx =

∫

Ft

x
∑̀
i=0

ω
(Pi(x)

)
dx

= |A|−1

∫

Fo

A−1(y − t)
m∑

i=1

ω
(Si(y)

)
dy . (4.14)

Although our approach also constructs a mixture of Gaussians, it is important to note
that we do not represent shapes while the method outlined in [53] basically recovers
the underlying continuous shape from the discrete point set using a method similar to
Kernel Density Estimation.

4.1.4 Choosing the Integration Domain
A trivial choice for the domains in our integral equation Eq. (4.11) is the foreground
regions Ft and Fo [16]. Since the parameters of the transformation are estimated by
integrating over the segmented domains, this approach works well as long as we have
a near-perfect segmentation. As it happens, this rarely occurs in practice [17; 19].
Therefore a clear disadvantage of this approach is that any segmentation error will
inherently result in erroneous integrals and cause a misalignment. Furthermore, even if
the segmentation is perfect, the precision of these domains is always compromised by
the discretization error. However, image analysis is often concerned with the matching
of objects composed of several parts, yielding a group of disjoint shapes. The topology
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of such compound shapes will not change upon applying the a�ne group. From here
on, we will develop a robust method for de�ning the corresponding integration domains
by making use of the statistics of compound shapes.

We need to eliminate the segmentation domains Ft and Fo. Our goal is to to select
appropriate domains Dt and Do that have the following properties [19]

1. They are related by the unknown transformation ADt + t = Do.

2. The integrands are rich enough (i.e. have characteristic patterns) within the se-
lected domains.

The key idea is to make use of the statistics of the whole template and observation
objects. Actually, the overall shape (i.e. the whole foreground region) of the template
and observation also gives rise to a pair of covariant Gaussian densities p(x) and s(y).
Since the equidensity contours of these PDFs are ellipsoids centered at the mean, it
is natural to choose a corresponding pair of such ellipses as the integration domain.
Simplifying Eq. (4.4), we get the well-known Mahalanobis distance, which de�nes a
metric invariant under the unknown transformation (A, t). Corresponding domains
can then be found by selecting points whose Mahalanobis distance is less than r2 from
the mean [19]:

Dt = {x ∈ Rn|(x− µ)T Σ−1(x− µ) ≤ r2} ,

Do = {y ∈ Rn|(y − µ′)T Σ′−1(y − µ′) ≤ r2} .

To satisfy property 2, we may choose an ellipse according to the two sigma rule (i.e.
r = 2), which guarantees that about 95% of the values lie within the enclosed ellipsoid
(see Fig. 4.3). Our experiments showed that good alignments can be achieved with
settings that range from r = 1 to r = 3. Another advantage is that these domains
are analytical, which permits a quite e�cient numerical implementation scheme, as
outlined in Section 4.3.

In summary, all we need to construct a system of linear equations are the means
and covariance values of the input shapes. Based on these statistics, we can choose
the integration domains and construct appropriate covariant functions to get a system
similar to Eq. (4.12) [17; 19]:



∫
Fo

y1

∑̀
i=1

ω1

(Si(y)
)
dy . . .

∫
Fo

yn

∑̀
i=1

ω1

(Si(y)
)
dy

∫
Fo

∑̀
i=1

ω1

(Si(y)
)
dy

... . . . ... ...
∫
Fo

y1

∑̀
i=1

ωm

(Si(y)
)
dy . . .

∫
Fo

yn

∑̀
i=1

ωm

(Si(y)
)
dy

∫
Fo

∑̀
i=1

ωm

(Si(y)
)
dy



×
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


qk1

...
qk(n+1)


 = |A|




∫
Ft

xk

∑̀
i=1

ω1

(Pi(x)
)
dx

...
∫
Ft

xk

∑̀
i=1

ωm

(Pi(x)
)
dx




, k = 1, . . . , n . (4.15)

We note that
∫
Dt
P0(x) dx = 0 and

∫
Do
S0(y) dy = 0 since P0(x) and S0(y) are

symmetric over Dt and Do, respectively. Thus i = 0 is ignored from the sums in
Eq. (4.15).

4.2 Discussion
Here, we analyze the relation between the proposed approach and related techniques.
We give two alternative interpretations of the proposed framework, thereby relating our
approach to other state-of-the-art approaches of shape alignment. First, we analyze the
method and show its relation to the metric based framework proposed by Bronstein et
al. [12]. Applying this framework we are able to recover the non-rigid deformation of
shapes. In the given framework, the problem is examined from a metric geometry point
of view. Then its connection with classical moment-based approaches is discussed.

4.2.1 Relation to Metric-Based Approaches
Bronstein et al. proposed a generic framework for non-rigid shape matching in [12; 85],
where the problem is studied from the perspective of metric geometry. The basic idea
is to construct a so-called canonical representation of the original shape. Making use of
this representation, they are able to either detect the symmetry of non-rigid shapes [85]
or solve a non-rigid object recognition problem [12]. The mathematical background
of this approach is based on measure theory. In the following we will investigate the
similarities between our approach and the framework presented by Bronstein et al. .

Following [12], let the template and observation be modelled as metric spaces
(Ft, dt) and (Fo, do), where dt, do : Rn × Rn → R+

0 [19]

dt(u,v) = (u− v)T Σ−1(u− v) and do(u,v) = (u− v)T Σ
′−1(u− v)

are the Mahalanobis distances constructed on the template and observation, respec-
tively. A metric like these is often called an extrinsic metric [85]. Note that our
Gaussians P and S are uniquely determined by the respective Mahalanobis distances in
their exponents, hence the above metrics are equivalent to our covariant functions in
Eq. (4.9). Now we will show that (Ft, dt) and (Fo, do) are isometric, i.e. there exists
a bijective homomorphism ψ : (Ft, dt) → (Fo, do). Indeed, the map ψ : Rn → Rn is
given by the unknown a�ne transformation (A, t): ψ(u) = Au + t. Here ψ is clearly
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bijective since A is nonsingular, and it is also easily seen that ψ is a homomorphism [19]:

dt(u,v) = (u− v)T Σ−1(u− v)

= (A−1ψ(u)−A−1t−A−1ψ(v) + A−1t)T

A−T Σ
′−1A−1

(A−1ψ(u)−A−1t−A−1ψ(v) + A−1t)

=
(
ψ(u)− ψ(v)

)T
Σ
′−1

(
ψ(v)− ψ(v)

)

= do

(
ψ(u), ψ(v)

)
.

We should remark that the only possible isometries are a�ne transformations, denoted
by Iso(Ft, dt). This is obvious, due to the properties of the Mahalanobis distance
(equidistant points lie on an ellipse, which can be obtained from an arbitrary ellipse
by applying an a�ne transformation). Thus Ft and any F ⊂ R2 are extrinsically
isometric [85], if there exists a ψ ∈ Iso(Ft, dt), such that ψ(Ft) = F . This means that
F can be obtained from Ft by applying an a�ne transformation. In this case Ft and
F are called congruent [85].

(A,t)

ϕoϕ
t

Figure 4.4: Canonical representation of a template and its observation.

For shape recognition [12; 46; 95], the canonical form of the shapes is used, because
this representation is uniquely determined up to a rigid motion by the shape regardless
of its deformation (see Fig. 4.4). Therefore, if two shapes are identical but deformed,
then their canonical forms are related by a simple rigid body transformation, which is
easy to verify [4; 103] once the canonical representations of the shapes are available.
In the framework of Bronstein et al. [12], the canonical form is obtained by embedding
the shapes into the Euclidean space (E, dE), where the only possible isometries are
rigid motions and the ordinary Euclidean metric dE(u,v) = (u − v)T (u − v) is used.
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In the a�ne case, the embedding of the template ϕ : (Ft, dt) → (E, dE) is given by
ϕ(u) = RTu, where R is obtained by factorizing the inverse covariance matrix Σ−1 of
Ft [19]:

Σ−1 = UVUT = U
√

V
√

VUT = (U
√

V)(U
√

V)T = RRT , (4.16)

where V is diagonal and U could be either orthogonal or upper triangular, depending
on whether we use an SVD or LR decomposition [94]. Note that the factorization of
Σ−1 is not unique, but this ambiguity only introduces di�erent rigid transformations
within the Euclidean space. Making use of u = R−T ϕ(u), it can readily be seen that
ϕ is a homomorphism, i.e. dt = dE(ϕ× ϕ) [19]:

dt(u,v) = (u− v)T Σ−1(u− v)

=
(
R−T ϕ(u)−R−T ϕ(v)

)T
RRT

(
R−T ϕ(u)−R−T ϕ(v)

)

=
(
ϕ(u)− ϕ(v)

)T
R−1RRTR−T

(
ϕ(u)− ϕ(v)

)

=
(
ϕ(u)− ϕ(v)

)T (
ϕ(u)− ϕ(v)

)

= dE
(
ϕ(u), ϕ(v)

)
.

Since Σ−1 is positive de�nite, RT is nonsingular, hence ϕ is injective because ϕ(u) has
a unique solution for all u. Furthermore ϕ|Ft = ϕt ∈ Iso(Ft, dt), i.e. ϕt is bijective
over Ft and Fc = ϕt(Ft) is called the canonical form of the shape Ft (see Fig. 4.4).

While recognition deals with the question of whether two shapes are identical under
a certain class of deformations, registration seeks to recover an aligning transformation
between two shapes that is known to be identical but deformed. Obviously these are
closely related problems, thus solving one will implicitly solve the other (see Section 2.6).
In particular, recognition via canonical representation will implicitly solve the alignment
problem of the shapes because (A, t) is got via ϕ−1

o ◦ ρ ◦ ϕt, where ρ is the rigid body
transformation between the canonical forms. This is exploited in [46; 95].

4.2.2 Relation to Canonical Representation-based Methods

The canonical representation is often used in registration, since the aligning transfor-
mation can be estimated from the normalization. Suk and Flusser [95] proposed an
image moments-based approach to compute the normalized shape. Then making use
of the normalization, the transformation between the input shapes can be estimated.
Originally, this kind of normalization was used for object matching, since the objects,
being from the same class, should produce the same or equivalent normalized image
(e.g. two images in the Euclidean space are equivalent when there is a rigid motion
between them).
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The embedding of an image into Euclidean space is not unique, as we noted in
Section 4.2.1. There exists a rigid-body transformation between the canonical forms
of the same object, hence we cannot use ϕt, ϕo directly to estimate the transformation
between the shapes, where ϕt and ϕo denote the embedding of the template and obser-
vation into Euclidean space, respectively. The a�ne transformation between the shapes
can be expressed as ψ = ϕ−1

o ◦ρ◦ϕt, where ρ is a rigid motion. The method, presented
in [46], aligns a�ne distorted images by tracing back the problem to estimating the
angle of rotation. In fact, this method [46] computes the canonical representation of
the shapes, i.e. it eliminates the other parts of the transformation except the rota-
tion. Nevertheless, this is numerically less feasible, since a small error in the estimated
rotation could result in a large error after denormalization.

Our method di�ers from the canonical representation-based methods, where the
fundamental di�erence is that our approach does not recover canonical shapes. Instead
of embedding the shapes into an Euclidean space, we apply nonlinear ω functions to
the metrics (dt, do) to get any number of isometric spaces. This is easily achieved since
ω ◦ dt = ω ◦ do(ψ × ψ), thus ψ : (Ft, ω(dt)) → (Fo, ω(do)) will also be an isometry.
Then our proposed method estimates the transformation parameters by using these
relations of generated metric spaces.

4.2.3 Moment-based Interpretation

Image moments and invariants were discussed in Section 3.1.2. In this sense, we can
identity �rst order function moments of the form

m10(Ft) =

∫

Ft

x1%(x) dx

in Eq. (4.15). A fundamental question is what kind of % function could be used in-
stead of the characteristic function in order to solve the registration problem. As we
pointed out, we need covariant functions. While invariants are invariant actions of the
a�ne group, covariant functions vary with the actual transformation, hence provide
constraints on the unknown parameters. Indeed, from Eq. (2.4) we get % = ω ◦ f ,
where ω can be any function that satis�es Eq. (2.4). It is clear that higher order
moments should be avoided in order to keep our equations linear. Instead, a set of lin-
early independent functions {ωi}m

i=1 will be adopted to generate appropriate moments.
Theoretically any ω could be used, but we will show below that power functions are
computationally favourable.



4.3 Numerical implementation 53

4.3 Numerical implementation
We proposed two di�erent approaches to construct our linear system of equations. First,
when the object has only one part, the foreground regions of the objects could only be
used in Eq. (4.12) for the integration domain. In this case, the covariant functions are
constructed by making use of Mahalanobis distance, de�ned over the objects, and we
have to integrate over the shape domains (see Section 4.3.1). In the second case, when
we have compound objects we were able to choose an elliptic domain for integration.
Furthermore the covariant functions are de�ned by a mixture of Gaussians. Here,
we have two possible ways to compute the integrals (see Section 4.3.2). We can
approximate them by �nite sums over a grid with su�cient resolution. However, we
will also provide an e�cient numerical scheme in order to evaluate the integrals by
closed forms.

4.3.1 Single Density
As we said earlier, our equations were constructed in the continuum, but in practice
we only have a limited precision digital image. Hence the integrals over the domains
Ft and Fo can only be approximated by a discrete sum over the foreground pixels.
Evidently, the resolution of the images a�ects the precision of this approximation. As
the mesh size tends to zero, the �nite sums better approximate the integral. Therefore
our method should perform better on higher resolution images.

Theoretically any function could be applied to construct the system de�ned in
Eq. (4.12). In practice, however the registration result depends on the set of ω because
of the inherent errors due to discretization. In our experiments, we found that the
following set of functions provides good results (see Fig. 4.5): x, cos(x), cos(2x),
sin(x) and sin(2x).

The steps of the proposed method are shown in Algorithm 2. Note that there is no

Algorithm 2: Pseudo-code of binary image registration using a single density.
Input : Template (1t) and observation (1o) shapes as binary images
Output: Estimated a�ne transformation (Ã, t̃)
Compute the sample means µ, µ′ and covariances Σ, Σ′ from the points of the1
foreground objects
Construct the covariant functions using Eq. (4.7):2
P, S : Rn → R, x 7→ (x− µ)T Σ−1(x− µ)
Choose a set of {ωi}m

i=1 functions, m ≥ 33
Estimate the Jacobian |A| using Eq. (4.5)4
Construct the system of linear equations in Eq. (4.12)5

Solve the system (with least-squares when m > 3) to get (Ã−1, −Ã
−1

t̃ )6
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(a) ω(x) = x

(b) ω(x) = cos(x) (c) ω(x) = cos(2x)

(d) ω(x) = sin(x) (e) ω(x) = sin(2x)

Figure 4.5: The e�ect of the applied ωs on the image in Fig. 4.1. Contour lines have
been placed over the original greylevel images for easier evaluation.

iterative step. The proposed algorithm is very simple and the solution is provided in a
single pass. It is evident from the formulation of Algorithm 2 that its time complexity
is O(M + N), where M + N is the number of foreground pixels. Due to its linear
time complexity, the proposed algorithm runs quite fast on large images, so we need
not compromise quality when the CPU time is a critical issue.

4.3.2 Compound Objects
If we have a compound object, we could make use of a mixture of Gaussians over
an elliptic domain (see Section 4.1.4) to construct our linear system of equations in
Eq. (4.15). An important numerical issue is the large numeric errors caused by greatly
varying pixel coordinates. A standard technique to minimize this error is to normalize
the template and observation to [−1, 1] × [−1, 1]. The normalization consists of a
translation of the origin to the centre of the shape followed by an appropriate scaling.
If sk = max

∀x∈Ft

(||xk − µ(k)||), then

Nt =

[
1/s1 0

0 1/s2

]
, and tt =

[
−µ(1)/s1

−µ(2)/s2

]
, (4.17)
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where the coordinates of the mean vector are µ = [µ(1), µ(2)]T . Then the normal-
ization of the observation No is computed similarly. Note that the normalized mean
and covariance of the �tted Gaussians µ̂ and Σ̂ can also be computed from the un-
normalized parameter. Here µ̂ = 0 because of the normalization and Σ̂ = NtΣNT

t ;
furthermore [19]

µ̂i = Ntµi −Ntµ , and Σ̂i = NtΣiN
T
t .

Applying the normalizing transformation (Nt, tt) to the template and (No, to) to the
observation, the algorithm will recover the transformation (Â, t̂) which aligns the nor-
malized shapes. Then the original transformation (A, t) is recovered by unnormalizing
(Â, t̂) [19]:

A = N−1
o ÂNt, and t = N−1

o Âtt + N−1
o t̂− to . (4.18)

Furthermore, the normalization has to be taken into account in our equations as it
a�ects the integral measure. Therefore, when normalizing the images, the left and
right hand sides of the equations in Eq. (4.15) have to be multiplied by |Nt| and |No|,
respectively, and the Jacobian of the transformation is [19]

|Â| = |No|
|Nt| |A| .

Computing the Integrals

One way to compute the coe�cients (i.e. the integrals) in our system of equations
(Eq. (4.15)) is to approximate them by �nite sums over a grid with su�cient reso-
lution. Nevertheless, in contrast to Section 4.3.1, here the integration domains are
ellipses chosen synthetically, hence the resolution of the image does not in�uence the
precision. We can choose the precise resolution that we need, independently of the
image resolution. In our experiments a 1500× 1500 grid gave satisfactory results [17].

From here on we will develop an e�cient numerical scheme to compute the integrals,
which is another way of computing over the elliptic domains Ft and Fo de�ned in
Section 4.1.4 in the two-dimensional case (i.e. n = 2). To do this, let us choose power
functions xl (l ∈ Q) as the applied ωs (see Fig. 4.7). One term of the integral from
Eq. (4.14) over the normalized template domain Dt = {x ∈ R2|xT Σ−1x ≤ r2} is
computed as follows [19]

∫

Dt

xω
(Pi(x)

)
dx =

∫

Dt

x exp
(
− 1

2
(x− µi)

T Σ−1
i (x− µi)

)l

dx . (4.19)

The computation for Fo is the same as this with obvious substitutions. We can further
simplify the integrand in Eq. (4.19) by translating the origin of the coordinate system
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to µi and diagonalizing [19]

Σ−1
i =

[
σ11 σ12

σ12 σ22

]
.

The usual way to diagonalize a covariance matrix is by spectral decomposition. Unfor-
tunately, it is inherently ambiguous as the applied rotation can be either α or α + π,
resulting in two di�erent orientations of the coordinate system. In order to have a unique
decomposition, we will diagonalize Σ−1

i by a shear transformation Gi: Σ−1
i = GT

i DiGi,
where [19]

Gi =

[
1 σ12

σ11

0 1

]
, and Di =

[
σ11 0

0
|Σ−1

i |
σ11

]
=

[
d11 0

0 d22

]
. (4.20)

Actually, the diagonalization of Σ−1
i results in a coordinate transformation (see Fig. 4.6),

which in turn gives the following integral transformation in Eq. (4.19) [19]:

z = Gi(x− µi) ⇒ x = G−1
i z + µi, and dx = |Gi|−1 dz . (4.21)
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Figure 4.6: The integrals were computed over an elliptic domain. (a) An example
of the domain (bold lines) and the integrated function (dashed lines), which is the
ith covariant function. (b) In order to simplify the integral, the coordinate system
should be translated to the mean of the ith object and its covariance matrix should be
diagonalized.

Furthermore, let [19]

µ̂ = Giµi , and Σ̂−1 = G−T
i Σ−1G−1

i =

[
σ̂11 σ̂12

σ̂12 σ̂22

]
,
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where µ̂ = [µ̂(1), µ̂(2)]T , yielding [19]

x = G−1
i z + G−1

i Giµi = G−1
i (z− µ̂) .

The integration domain Dt in the new coordinate system becomes

D̂t = {z|(z− µ̂)T Σ̂−1(z− µ̂) ≤ r2} ,

because using Σ−1 = GT
i Σ̂−1Gi we get [19]

xT Σ−1x = (z− µ̂)T G−T
i GT

i︸ ︷︷ ︸
I

Σ̂−1 GiG
−1
i︸ ︷︷ ︸

I

(z− µ̂) = (z− µ̂)T Σ̂−1(z− µ̂) . (4.22)

Similarly, for (x− µi) we get [19]

(x− µi)
T Σ−1

i (x− µi) = zTG−T
i GT

i DiGiG
−1
i z = zTDiz .

Upon combining the above results, Eq. (4.19) takes the following form in the new
coordinate system [19]:

∫

Dt

xω (Pi(x)) dx =

∫

D̂t

G−1
i (z− µ̂) exp

(
− l

2
zTDiz

)
dz . (4.23)

G−1
i (z− µ̂) =

[
1 −σ12

σ11

0 1

][
z1 − µ̂(1)

z2 − µ̂(2)

]
=

[
z1 − σ12

σ11
z2 + σ12

σ11
µ̂(2) − µ̂(1)

z2 − µ̂(2)

]

and making use of the basic properties of integrals, it is quite apparent that we only
need to compute the following types of integrals [19]:

ck

∫

D̂t

zk exp
(
− l

2
zTDiz

)
dz , k = 1, 2 , and c3

∫

D̂t

exp
(
− l

2
zTDiz

)
dz ,

(4.25)
where

c1 ∈ {1, 0} , c2 ∈
{
−σ12

σ11

, 1

}
, and c3 ∈

{
σ12

σ11

µ̂(2) − µ̂(1),−µ̂(2)

}

are the coe�cients of z1, z2, and the constants from Eq. (4.24). Now we will derive a
closed-form formula for computing the above integrals with k = 1. First, let us write
explicitly the double integrals in Eq. (4.25). The bounds for the �rst variable z1 are
z1min

and z1max (see Fig. 4.6 as well) [19]

z1min,max
=
|Σ̂−1|µ̂(1) ∓

√
|Σ̂−1|σ̂22r2

|Σ̂−1|
= µ̂(1) ∓

√
σ̂22r2

|Σ̂−1|
.
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The bounds for the second variable z2 are functions of z1 and correspond to a vertical
slice of the ellipse D̂t at z1:

umin,max(z1) = µ̂(2) −
σ̂12(z1 − µ̂(1))±

√
σ̂22r2 − |Σ̂−1|(z1 − µ̂(1))2

σ̂22

.

Now the �rst integral from Eq. (4.25) can be rewritten as

c1

z1max∫

z1min

z1

umax(z1)∫

umin(z1)

exp

(
− l

2
zTDiz

)
dz2 dz1

=
c1

√
π

2C1

z1max∫

z1min

z1 exp

(
− ld11z

2
1

2

) (
erf

(
C1umax(z1)

)− erf
(
C1umin(z1)

))
dz1 , (4.26)

where C1 =
√

nd22/2 and

erf(x) =
2√
π

∫ x

0

e−t2 dt .

The erf function can be e�ciently approximated by its Taylor sum. We have thus
reduced the original double integral to a single integral, which is simple and fast to
compute by a standard quadrature formula.

We can derive similar formulas for the other two integrals in Eq. (4.25) with C2 =√
nd11/2. The only di�erence is that we change the order of integration variables and

the associated bounds are now [19]

z2min,max
= µ̂2 ∓

√
σ̂11r2

|Σ̂−1|
, and

vmin,max(z2) = µ̂(1) −
σ̂12(z2 − µ̂(2))±

√
σ̂11r2 − |Σ̂−1|(z2 − µ̂(2))2

σ̂11

.

Then we get the following equtions:

c2

z2max∫

z2min

z2

vmax(z2)∫

vmin(z2)

exp

(
− l

2
zTDiz

)
dz1 dz2

=
c2

√
π

2C2

z1max∫

z1min

z2 exp

(
− ld22z

2
2

2

) (
erf

(
C2vmax(z2)

)− erf
(
C2vmin(z2)

))
dz2 , (4.27)
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c3

z2max∫

z2min

vmax(z2)∫

vmin(z2)

exp

(
− l

2
zTDiz

)
dz1 dz2

=
c3

√
π

2C2

z1max∫

z1min

exp

(
− ld22z

2
2

2

) (
erf

(
C2vmax(z2)

)− erf
(
C2vmin(z2)

))
dz2 . (4.28)

Choice of ω Functions

The closed-form formulas in equations (4.26)�(4.28) require that the applied set of
{ωi}m

i=1 functions be of the form

ωi : R→ R : ωi(x) = xli with li ∈ R

While other choices of ωi are also possible (e.g. a trigonometric family was successfully
applied in a previous study [16; 17]), only the above power functions allow a closed
form computation of the integrals. A clear bene�t of this numerical scheme is near-real
time performance. We found empirically that the lth power and lth root functions with
odd l, i.e. the set {x, x3, x5, 3

√
x, 5
√

x} (see Fig. 4.7), produced satisfactory alignments
in all of our test cases.

(a) ω(x) = 5
√

x (b) ω(x) = 3
√

x (c) ω(x) = x3

Figure 4.7: The e�ect of the applied ωs on the compound shape shown in Fig. 4.3.

The steps of the proposed algorithm are summarized in Algorithm 3. Note that the
solution is obtained in a single pass without any loop or optimization. Although we
have to compute the integrals and solve a linear system, the complexity of these steps is
constant and, more importantly, it is independent of the image size. The images need
to be scanned only once when computing the mean values and covariance matrices of
the Gaussian densities. Once these parameters have been computed, the rest of the
algorithm runs in constant time, i.e. it runs independently of the input size.
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Algorithm 3: Pseudo-code of binary image registration using MPDF with an e�ective
numerical scheme.
Input : Template and observation are labelled images (Lt, Lo); ` = number of

components
Output: Estimated transformation (Ã, t̃)

Choose a set of exponents {li ∈ Q|i = 1 . . . , `}1
Initialize r ∈ [1, 3].2
Normalize the input images by (Nt, tt) and (No, to)3
/*Construct the system of Eq. (4.15): Co (respectively Ct)
denotes the coefficient matrix (respectively constants) on the
left and right hand sides of the system. */

{Ct, |Σ|} ←Coeffs(Lt, `, r, {li}m
i=1, 2)4

{Co, |Σ′|} ←Coeffs(Lo, `, r, {li}m
i=1, 3)5

Ct ← Ct

√
|Σ′|/|Σ|6

return
[

Ã t̃
0 1

]
=




[
Nt tt

0 1

]−1




[
C+

o ·Ct1..3,1

]T

[
C+

o ·Ct1..3,2

]T

[0 0 1]




[
No to

0 1

]



−1

.
7

Function Coeffs computes Ct and Co for Algorithm 3.
Input : Labelled image; ` = number of components; r; {li}m

i=1; c = number of
columns of the matrix C

Output: C, |Σ|
Set all element of C ∈ Rm×c to 01
Compute µ, and Σ over the whole foreground region2
for i ← 1 to ` do3

Compute µi and Σi of the ith component4
/*Diagonalize Σ−1

i */
Compute Gi, Di based on Eq. (4.20)5

Σ̃−1 ← G−T
i Σ−1G−1

i , µ̃ ← Giµi6
/*Computing the coefficients */
for j ← 1 to m do7

l ← lj8
w ← [Eq. (4.26), Eq. (4.27), Eq. (4.28)]9
Cj,1..c ← Cj,1..c + w1..c10

end11
end12
return {C,|Σ|}13
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4.4 Experimental Results
Now we will analyze the performance of our proposed algorithms. We will also compare
them with the related previous approaches. In order to compare registration results, we
evaluated two kinds of error measures for each estimated transformation (Ã, t̃) similar
to those in Eq. (3.14) (see Chapter 3). Since we know the applied transformation for
each synthetic example, we can evaluate the distance (denoted by ε) between the trans-
formed version of the template by (A, t) (observation) and that by (Ã, t̃) (registered)
based on all the template points x [17; 19]:

ε =
1

|Ft|
∑
x∈Ft

‖(A− Ã)x + t− t̃‖ .

Another useful measure is the absolute di�erence (denoted by δ and de�ned in Eq. (3.14))
between the observation and the registered image. The smaller these numbers are, the
better the matching is. Thus, these measures give a quantitative characterization of
the di�erence between the true transformation (A, t) and the estimated (Ã, t̃).

4.4.1 Single Density

In order to evaluate the performance of this algorithm, we created an image dataset
containing 1000 synthetically generated observations for 37 di�erent binary shapes.
The applied transformations were randomly composed of 0◦, 60◦, . . . , 240◦ rotations;
0, 0.5, 1 shearings; 0, 0.5, . . . , 2 scalings, and 0, 20 translations along both axes. The
algorithm was implemented in Matlab 7.2 and run on a SunFire V490 with 8192MB
memory under Solaris 10. The average runtime was around 1.5 seconds per image of
size 1000×1000. Fig. 4.8 shows a registration result, where the true (A) and estimated
(Ã) transformations were [16]

A =

[
cos(π

9
) sin(π

9
)

− sin(π
9
) cos(π

9
)

][
1.2 0.3

1.2 0.8

]
=

[
1.538 0.5555

0.7172 0.6491

]
,

Ã =

[
1.5266 0.5374

0.7116 0.6389

]
.

The registration error was δ = 0.95% and ε = 1.59 pixels.
One of the most closely related approaches is the binary registration algorithm

proposed by Kannala et al. [57]. We obtained the Matlab implementation from the
authors and conducted a comparative test on our dataset. The results presented in
Table 4.1 show that our method outperforms theirs in both quality and computing
time. The proposed algorithm was implemented in Matlab 7.2 and all the tests were
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(a) (b)

Figure 4.8: Registration result. (a) Distorted observation of the sample image in
Fig. 4.1 (rotated, scaled and sheared). (b) Registration result achieved by our Single
density [16] method [16]. The image is obtained by applying the recovered inverse
transformation to the observation.

ε (pixel) δ (%) CPU time (sec.)
Kan. et al. [57] 16.61 13.41 100.87
Single density [16] 5.42 2.6 1.5

Table 4.1: Registration results (medians of error measures) on 1000 images and the
runtimes of the method proposed by Kannala et al. [57] and of our Single density
method.

run on a Pentium IV 3.2 GHz under the Linux operating system.

4.4.2 Compound Objects
First, we present the results provided by our method, where the integrals are approx-
imated by �nite sums (MPDF with �nite sums over a grid [17]). In this case, we use
Eq. (4.13) as covariant functions to construct our system of equations Eq. (4.11). Now,
the applied transformations were randomly composed of 0◦, 10◦, . . . , 350◦ rotations;
0, 0.4, . . . , 1.2 shearings; 0.5, 0.7, . . . , 1.9 scalings, and −20, 0, 20 translations along
both axes. In order to quantitatively evaluate and compare our methods we generated
a dataset containing ≈ binary images of size ≈ 1400 × 1400. In practice, segmenta-
tion never produces perfect shapes. Therefore we also evaluated the robustness of the
proposed approach (MPDF with �nite sums over a grid [17]) when 10%, 20%, . . . , 90%

of the foreground pixels are missing from the observation. The Evaluation results are
summarized in Table 4.2 and some registration results are shown in Fig. 4.9. It is clear
that our method provides good results up to as high as 50% removed pixels, and results
for 90% are also acceptable. In general, our method will perform well as long as the
�rst and second order statistics of shapes do not change dramatically. The proposed
approach was also compared with some recent binary registration approaches [57; 95],
including our previous method using a single density [16]. The method of Kannala
et al. [57] is clearly outperformed in both quality, robustness and computing time.
In addition the method of Suk and Flusser [95] achieves slightly better results at the
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Figure 4.9: Some registration results provided by our method (MPDF with �nite sums
over a grid [17]), where 10%, 50% and 90% of the foreground pixels of the observation
are missing. The images in the last row are overlaid in such a way that overlapping
pixels are depicted in grey, while non-overlapping ones are shown black, respectively.

price of an increased complexity and computing time. In terms of robustness, however,
our method is clearly superior to that in [95], which already performs poorly for 10%

removed pixels and fails completely for 50%. Our previous method [16] performs quite
well when there are no segmentation errors, but it also fails for 50% missing pixels.

Kan. et al. [57] S. & F. [95] Single density [16] MPDF with �nite
sums over a grid [17]

29.79 sec. 3.91 sec. 0.48 sec. 4.65 sec.
ε δ ε δ ε δ δ ε

0% 2.7 1.65 0.43 0.06 0.64 0.31 0.58 0.25
10% 3.65 2.35 19.25 9.91 82.65 35.11 2.64 1.55
50% 7.37 4.77 109.85 51.16 407.31 84.01 7.7 4.59
90% 26.44 14.39 258.34 92.11 748.95 100 23.66 13.23

Table 4.2: Median of error measures and runtimes provided by the method of Kannala
et al. [57], Suk and Flusser [95], and our Single density [16] and MPDF with �nite
sums over a grid method [17] in the case when 0%, . . . , 90% of the foreground pixels
of the observation are missing.

Now we will analyze the performance of the proposed method (see Algorithm 3),
where the integrals are computed in the closed form introduced in Section 4.3.2 (MPDF
with an e�ective numerical scheme [19]). For a quantitative evaluation, we created
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several benchmark databases of ≈ 1500 synthetically generated observations of 60

di�erent compound shapes. Similar to the previous case, the transformations we applied
were randomly composed of similar transformations as above. The resulting images are
of size ≈ 1500 × 1500, and some typical examples can be seen in Fig. 4.10. The
performance of our algorithm on the benchmark dataset was evaluated based on these
measures. A summary of these results is given in Table 4.3.

Runtime (sec.) ε (pixel) δ (%)
Kan. et al. [57] 28.64 2.68 1.64
S. & F. [95] 4.03 0.43 0.06
MPDF with an e�ective
numerical scheme [19] 0.33 0.54 0.19

Table 4.3: The median of error measures and runtimes on 1435 images provided by the
method of Kannala et al. [57], Suk and Flusser [95], and our method (MPDF with an
e�ective numerical scheme [19]).

Our approach was also compared with some recent binary registration approaches [57;
95]. One approach that is closely related to ours is that proposed by Kannala et al.
[57], which was analyzed in Section 3.4.1. This method constructs a linear system of
equations by basically looking at the images at 3 di�erent scales, hence the solution
is inherently less precise as they can only use part of the available information in each
equation. In contrast to [57], our approach always uses all the information available
in the images. The method proposed by Suk and Flusser [95] computes normalization
parameters based on image moments. The aligning transformation can then be directly
computed from these parameters. We got the Matlab implementation from the authors
of both methods and conducted a comparative test on our benchmark datasets. The
results presented in Table 4.3 and Fig. 4.10 show that our method outperforms both
approaches in terms of computing time. Furthermore, in contrast to [57], it provides
almost perfect alignments, while the registration quality of [95] is slightly better but
the price is a CPU time that is 10 times bigger. However, our method is clearly superior
to that described in [95] in terms of robustness, as demonstrated in the next section.

4.4.3 Robustness
The robustness of the proposed algorithm was analyzed against missing pixels, boundary
and modelling errors. Besides using real images inherently subject to such errors, we also
conducted a systematic test on simulated data. In the �rst test case, 10%, . . . , 90% of
the foreground pixels were removed from the observation before registration to simulate
missing pixels. In the second case, square-shaped regions of a total size 1%, . . . , 5%

of the shape were randomly added to or removed from the boundary of foreground
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Figure 4.10: Some typical registration results on the synthetic data set. The template
and corresponding observation are shown in the �rst row and second row, respectively.
The other rows contain the registration results provided by the method of Kannala et
al. [57], Suk and Flusser [95], and our method (MPDF with an e�ective numerical
scheme [19]). The resulting images in the last row are overlaid in such a way that
overlapping pixels are depicted in grey, while non-overlapping ones are shown black,
respectively.

regions to simulate boundary error. Note that we do not include cases where erroneous
foreground regions appear as disconnected regions, because such false regions can be
e�ciently removed by appropriate morphological �ltering. We will therefore concentrate
on cases where segmentation errors cannot be �ltered out. Another issue is modelling
error. Obviously, the method should fail for anything which is far from the a�ne case.
It is, however, expected to be robust when an a�ne deformation model is a good
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approximation of the true transformation. This will de�nitely undermine the identity
relation in Eq. (4.1) and introduce an error into our system. Therefore our third test case
consists in adding zero-mean Gaussian noise with deviation σ to each pixel coordinate
(basically it is a random displacement), resulting in a nonlinear deformation. See the
examples of such errors in Fig. 4.11.

(a) Missing pixels (b) Boundary error (c) Modelling error

Figure 4.11: Sample observations for testing robustness. In (c) the true a�ne contours
are highlighted in red.

Table 4.4 summarizes the achieved performance for the above three cases. Con-
sidering the fact that a δ < 6% corresponds to a visually acceptable alignment, our
method proved to be robust in all three cases, although at di�erent levels. It can tol-
erate missing pixels up to as high as 50%, a 2.5% segmentation error, and a σ = 2.5

Kan. et al. [57] S. & F. [95] Proposed [19]
Missing pixels (% of removed pixels)

% ε δ ε δ ε δ
10 3.66 2.38 19.28 9.86 2.16 1.26
50 7.65 4.71 110.23 50.54 6.06 3.67
90 26.22 14.75 258.12 92.2 18.33 10.04
Boundary errors (size of randomly added/removed squares in %)
% ε δ ε δ ε δ
1 5.84 3.85 1.65 0.88 4.97 2.96
2.5 10.77 6.67 3.21 1.74 9.27 5.27
5 18.37 11.06 5.68 3.08 17.96 9.86

Modelling errors (σ of random displacements)
σ ε δ ε δ ε δ
1 6.19 3.96 73.11 34.86 5.19 3.08
2.5 12.74 7.82 75.09 35.67 10 5.7
5 27.33 16.73 73.63 35.02 18.44 10.48

Table 4.4: Median of error measures vs. various types of errors provided by by the
method of Kannala et al. [57], Suk and Flusser [95], and our method (MPDF with an
e�ective numerical scheme [19]).
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δ = 2.64% δ = 5.55% δ = 9.42%

Figure 4.12: Registration results on real images. Top: the images used as templates.
Bottom: the corresponding observations with the overlaid contour of the registration
results.

modelling error. Note also that the results presented in [57] are consistently beaten by
our approach in each test case, whereas the approach in [95] is quite sensitive to miss-
ing data and fails completely for modelling errors; but it is robust against segmentation
errors. Now we should remark that occlusion yields a rather high error rate for both our
method and the other state-of-the-art methods. This is because they rely on quantities
obtained by integrating over the whole object area. Thus large missing parts will dras-
tically change these quantities and result in false registrations. Nevertheless, in many
application areas one can take images under controlled conditions which guarantee that
observations are not occluded (e.g. in medical imaging and industrial inspection).

4.4.4 Real Images
The performance of our method was also evaluated on real images. Fig. 4.12 shows
some examples of these images. The segmentation was performed via thresholding.
The main challenges are segmentation errors and a slight projective distortion between
the image pairs. In general, when reasonably good segmentations are available and the
true transformation is close enough to an a�ne one then our method performs quite
well, as is shown by the δ error values displayed below each image pair.

4.4.5 Registration of Tra�c Signs
Nowadays, modern cars include many safety systems. Automatic tra�c sign recognition
is a major challenge of such intelligent systems, where one of the key tasks is the
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real-time matching of an observed sign with its template. Fig. 4.13 shows typical
registration results on such images. Here, we used classical thresholding and some
morphological operations for segmentation, but automatic detection/segmentation is
also possible [83]. Note that these images are inherently corrupted by several types of
error. First, the true transformation is projective, but since signs have to be detected
and recognized from a larger distance the a�ne model is a valid assumption here.
Second, thresholding produces imperfect segmentations in the presence of specular
re�ections. Then, various surface errors result in missing data inside foreground regions
(see the images in last column in Fig. 4.13). In spite of these problems, our method
performs quite well when reasonably good segmentations are available and the true
transformation is su�ciently close to an a�ne one.

δ = 25.88% δ = 35.22% δ = 0.81% δ = 5.35%

δ = 5.27% δ = 1.47% δ = 11.76% δ = 10.23%

Figure 4.13: Registration results on tra�c signs. Top: the images used as templates.
Bottom: the corresponding observations with the overlaid contour of the registration
results
.
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4.5 Summary
In this chapter, we presented a novel approach for planar shape alignment. The fun-
damental di�erence between classical image registration algorithms and ours is that
our model works without any landmark, feature detection or optimization, incorporat-
ing a novel idea where the transformation is obtained as a solution of a set of linear
equations. The complexity of the algorithm is linear and, by introducing an e�cient
numerical scheme, it is capable of registering images at near real-time speed. The
experimental results demonstrate that our method provides good alignments on both
real and synthetic images. Moreover, its robustness was demonstrated with missing
pixels, boundary and modelling errors. In general, our method will perform well as long
as the �rst and second order statistics of shapes do not change dramatically, hence
its superiority can be fully exploited in applications where occlusion can be kept to a
minimum. Comparative tests showed that our model is generally more e�cient and
accurate than the other state-of-the-art methods.





Chapter 5

Realignment of Deformed Object
Fragments

This chapter addresses the problem of simultaneously estimating di�erent linear de-
formations, resulting in a global nonlinear transformation between an original object
and its broken fragments without correspondences. A general framework is proposed,
where the solution of a polynomial system of equations directly provides the parame-
ters of the alignment. We quantitatively evaluate the proposed algorithm on a large
synthetic dataset containing 2D and 3D images, where linear (a�ne and rigid-body)
transformations are considered. We then conduct an extended analysis of the numerical
stability of the proposed algorithm. The results show that the method is robust against
segmentation errors. After, we present experimental results on 2D real images as well
as on volumetric medical images applied to surgical planning.

The problem itself was introduced in Section 2.3. Here, we make use of the math-
ematical results obtained in Chapter 3, where the registration method for one pair of
shapes was proposed, and extend them to the case of several object fragments and
transformations, which need to be solved simultaneously. First we need to introduce
some notations and de�nitions, then we generalize our theory (introduced in Chapter 3)
to that for several object fragments.

5.1 Realignment of Deformed Shape Fragments

We will use the notations de�ned in Section 2.5, i.e. we make use of homogeneous
coordinates, and we will also introduce some new notations. Our purpose is to realign
2 ≤ ` ∈ N shapes of the observation to their original position on the template. The
transformation is nonlinear and is composed of ` linear transformations, where the ith

71
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transformation is denoted by

Ai =




ai11 ai12 . . . ai1(n+1)

... . . . ...
ain1 ain2 . . . ain(n+1)

0 0 . . . 1




.

The labelling of shapes on the input images is given by the functions Lt,Lo : Pn →
{0, 1, . . . , `}, which assign a value 0 to the background. Furthermore Di = {x ∈
Pn|Lt(x) = i} and D′

i = {y ∈ Pn|Lo(y) = i} denote the points of the ith template
shape and its distorted observation, respectively.

If shape correspondences were known, a pairwise alignment could be recovered by
any standard binary registration method like that described in [20] and Chapter 3.
Unfortunately, to �nd these correspondences would require solving a partial matching
problem [11] between each observation shapes and the template, which is far from
trivial. Therefore we are interested in a direct solution without identifying corresponding
object-pairs.

We will assume that the input images contains ` shapes and that, furthermore,
there exists a correspondence between them, i.e. there is a bijective map between these
shapes. However, the correspondence is unknown, so it cannot be used directly. More
precisely, Lt is hidden, since the partitioning of the template is unknown, hence the
characteristic function of the template object could only be used in that case.

5.1.1 Relation between One Pair of Shapes
Let us now consider the ith fragment. The points of the ith template shape and its
distorted observation are related by the identity relation Eq. (2.1) [20]:

x = Aiy . (5.1)

Here Ai denotes the transformation, realigning the ith observation shape to its original
position, but in the previous chapters it was the transformation which aligns the tem-
plate to the observation. One way to recover Ai is to establish point correspondences
and then set up a system of equations using Eq. (5.1), whose solution provides the
parameters of the unknown distortion. Since Di is unknown, �nding correspondences
is practically impossible.

Notice that the identity relation Eq. (5.1) remains valid when an arbitrary ω : Pn →
R function acts on both sides of Eq. (2.3) [18; 20]:

ω(x) = ω(Aiy) . (5.2)
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Integrating over the domain Di, we get [18; 20]
∫

Di

ω(x) dx = |Ai|
∫

D′i
ω(Aiy) dy , (5.3)

where the integral transformation

x = Aiy , dx = |Ai|dy

has been applied and |Ai| is the Jacobian determinant.
Based on Eq. (5.3), we can construct as many equations as needed by making use

of a set of linearly independent functions. Note that these equations do not contain
any new information; they simply impose new, linearly independent constraints. The
nonlinear function ω acts directly on the point coordinates and hence on the unknown
parameters of Ai resulting in a nonlinear system of equations [18; 20].

5.1.2 Solving for all Shapes Simultaneously
We know relations Eq. (5.3) between the ith shape-pair, but neither the partitioning
(i.e. the hidden labelling Lt) of the template nor correspondences between the shapes
is known. As the standard technique is to sum all the equations for all shape domains
Di and solve the problem simultaneously, we estimate all the parameters in one system
of equations. By making use of a set of {ωj}m

j=1 functions in Eq. (5.3), we get [18]:

∑̀
i=1

∫

Di

ωj(x) dx =
∑̀
i=1

|Ai|
∫

D′i
ωj(Aiy)dy .

Let Ft := ∪`
i=1Di is the shape domain corresponding to the whole template. Therefore

the left hand side of the above equation can be written as [18]

∑̀
i=1

∫

Di

ωj(x) dx =

∫
⋃`

i=1Di

ωj(x) dx =

∫

Ft

ωj(x)dx ,

which can be computed directly from the input image without knowing the partitioning
Di. The resulting system of equations has `n(n + 1) unknowns [18]:

∫

Ft

ωj(x) dx =
∑̀
i=1

|Ai|
∫

D′i
ωj(Aiy) dy j = 1, . . . , m . (5.4)

The solution of this system of equations provides all the unknown parameters of the
overall deformation. Since each ωj provides one equation, we need m ≥ `n(n + 1)

linearly independent functions to solve for ` linear transformations. In practice, m >
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`n(n + 1), yielding an overdetermined system for which a least-squares solution is
obtained.

5.1.3 Choice of ω Functions
Theoretically, any nonlinear function satisfying Eq. (5.2) could be used to construct
the system of equations de�ned in Eq. (5.4). In practice, however, the solution is ob-
tained via iterative least-squares minimization algorithms like the Levenberg-Marquardt
algorithm [69], and requires a carefully chosen numerical scheme. Since the solver it-
eratively estimates the solution of the system of equations, it requires evaluating the
integral terms in Eq. (5.4) at each iteration step, which is very time-consuming. Hence
our aim is to choose an ω such that the integral terms can be computed easily. It is
not hard to see that if ω is a polynome then these integrals will become precomputed
constants. It was shown in Section 3.1.1 and in [20] that choosing a set of polynomial
functions for ω will result in a polynomial system of equations, where these integrals
become precomputed constants [20]

ω(Aiy) =
t∑

k=1

pk(Ai)rk(y) ,

where t ∈ N is the �nite number of terms, pk : Pn×n → R and rk : Pn → R are
polynomial too. In this case, the right hand side of Eq. (5.4) becomes a nonlinear system
of equations instead of a system of integral equations (i.e. unknowns are emphasized
in the integrals):

∫

D′i
ω(Aiy) dy =

t∑

k=1

pk(Ai)

∫

D′i
rk(y) dy ,

where the terms
∫
D′i

rk(y) dy can be readily precomputed from the images.
Furthermore, the simplest nonlinear system is a low order polynomial system. The

time complexity of the algorithm is considerably decreased by applying a polynomial set
for ω, avoiding scanning the image pixels for each iteration. Based on these �ndings,
the following set of polynoms will be adopted [18]

{ωj}m
j=1 = {x 7→ xu1

1 . . . xun
n |u1, . . . , un ∈ N0,

n∑
i=1

ui ≤ d} , (5.5)

where ωj : Pn → R, d is the maximum degree, and the number of polynoms is given
by [18]

m =
1

n!

n∏
i=1

(d + i) .
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5.1.4 A�ne Transformations
We will apply the proposed framework to well-known classes of linear deformations:
2D and 3D a�ne and rigid-body transformations. 2D a�ne transformations are often
used as a linear approximation of projective distortions. In general, it is important
to choose the correct transformation model. When an object is broken into several
parts, the fragments are generally distorted by di�erent rigid-body transformations. A
3D rigid body transformation is important in many medical applications. In particular,
when bony structures need to be aligned in CT volumes, this transformation should be
performed because of the bio-mechanical properties of bones.

2D A�ne Transformations

A 2D a�ne transformation has 6 parameters, hence we have n(n+1)` = 6` unknowns.
Based on Eq. (5.5), a set {ω}m

j=1 of polynoms is used to construct the system of
equations. In order to obtain a su�cient number of equations, the maximum degree d

has to be chosen such that [18]

m =
(d + 1)(d + 2)

2
≥ 6` ⇒ d ≥

⌈√
1 + 48`− 3

2

⌉
,

where d·e denotes the upper integer values. Eq. (5.4) becomes [18]

∫

Ft

xu1
1 xu2

2 dx =
∑̀
i=1

|Ai|
∫

D′i
(ai11y1 + ai12y2 + ai13)

u1(ai21y1 + ai22y2 + ai23)
u2 dy ,

where the Jacobian can be expressed as |Ai| = ai11ai22 − ai12ai21.

2D Rigid-body Transformations

This kind of transformation has only three parameters: a rotation α and translations
t1, t2 along the two axes. Now a similar set of {ω}m

j=1 can be used as in the a�ne case,
but we need fewer polynoms:

m =
(d + 1)(d + 2)

2
− 1 ≥ 3` ⇒ d ≥

⌈√
9 + 24`− 3

2

⌉
.

Since a rigid-body transformation does not change the size of the objects, the Jacobian
determinant equals 1, hence it is not included in the equations. This explains why m

is 1 fewer than the a�ne case. Now, Eq. (5.4) becomes

∫

D
xu1

1 xu2
2 dx =

∑̀
i=1

∫

D′i

{
(y1 cos αi−y2 sin αi +ti1)

u1(y1 sin αi +y2 cos αi +ti2)
u2

}
dy ,
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3D A�ne Transformations

We shall also present our proposed method in the case of 3D a�ne transformations.
The extension of the 2D case to 3D is rather straightforward. Here, the template parts
undergo di�erent 3D a�ne transformations and have a total of 12` unknowns. Similar
to the 2D case, we make use of Eq. (5.5) and we need to choose d such that [18]

m =
(d + 1)(d + 2)(d + 3)

6
≥ 12` ⇒ d ≥

⌈
c

3
+

1

c
− 2

⌉
, (5.6)

where c = 3

√
3
(
324` +

√
(324`)2 − 3

)
. The Jacobian can be expressed in a similar

way as in the 2D case.

3D Rigid-body Transformations

It has six degrees of freedom: α1, α2, α3 are the rotation angles and t1, t2, t3 are the
translations along the three coordinate axes. Again a similar set of {ω}m

j=1 can be used
as in Eq. (5.6), but we need fewer polynoms [18]:

m =
(d + 1)(d + 2)(d + 3)

6
− 1 ≥ 6` ⇒ d ≥

⌈
c

3
+

1

c
− 2

⌉
,

where c = 3

√
3
(
27 + 162` +

√
(27 + 162`)2 − 3

)
. The Jacobian determinant is 1,

hence it is not included in the equations.

5.2 Numerical implementation
First of all, the coordinates of both images are normalized to the unit hyper-cube
[−0.5, 0.5]n, i.e. ∪`

i=1D′
i 7→ [−0.5, 0.5]n and Ft 7→ [−0.5, 0.5]n in order to avoid nu-

merical instability due to the high powers. This is achieved by translating the origin
to the centre of the mass of the template and observation followed by an appropri-
ate isotropic scaling with a common factor corresponding to the maximum size of the
template and observation. Of course, the solution of the nonlinear system has to be un-
normalized to get the right transformations between the original shapes. Denoting the
normalizing transformations of the template and observation by Nt, No, respectively
and the solutions by Âi, the true transformation is thus obtained via Ãi = N−1

t ÂiNo

for all i = 1, . . . , `.
Since a least-squares solution involves minimizing the algebraic error of Eq. (5.4),

we expect an equal contribution from each equation in order to guarantee an unbiased
error measure. This is achieved by normalizing the range of each ωj to [−1, 1]. We
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found experimentally that the transformations occurring during the least-squares mini-
mization process do not transform the shapes out of a hyper-sphere with centre at the
origin and a radius √n/2 (i.e. the circumscribed hyper-sphere of the unit hyper-cube).
Thus normalization can be achieved by dividing the integrals in Eq. (5.4) by an appro-
priate constant cj, corresponding to the maximal magnitude of the integral over this
domain [18]:

cj =

∫

‖x‖≤
√

n
2

|ωj(x)| dx , j = 1, . . . , m .

After summing up all the equations in Eq. (5.4), a given fragment in�uences the
algebraic error of the system of equations with its size as weight. Obviously, the larger
parts in�uence the algebraic error much more than the smaller one. Due to this, the
bigger fragments will be much more accurately aligned. If we could normalize the terms
of Eq. (5.7) corresponding to each fragment (e.g. its measures could be used), then
the algebraic error would be better balanced and a precise alignment could be found,
hence this drawback of the method could be eliminated. This is why, we should take
into account the size of the fragments when constructing the system of equations.
Unfortunately, this is not possible, since the partitioning of the template is unknown.

5.2.1 Algorithmic Solution and Complexity
In practice, only a limited precision digital image is available, thus the integrals can only
be approximated by a discrete sum over the foreground pixels. The continuous domains
Ft and D′

i are represented as �nite sets of foreground pixels denoted by Ft and D′
i.

Thus the discrete form of the normalized Eq. (5.4) becomes for all j = 1, . . . , m [18]

1

cj

∑
x∈Ft

ωj(Ntx) =
1

cj

∑̀
i=1

|Ai|
∑

y∈D′i

ωj(NoAiy) . (5.7)

The above system of equations is solved by iterative least-squares minimization using
the Levenberg-Marquardt algorithm [69], which requires an evaluation of the equations
for each iteration step. As we noted in Section 5.1.3, the time complexity of the
algorithm will be considerably decreased if the sums can be precomputed, then the
need to scan the image pixels for each iteration is avoided.

Since the Levenberg-Marquardt algorithm �nds a local minimum, the solution de-
pends on the choice of initialization. A better initialization may be available in a
particular application, but �nding it is application-dependent. We found experimentally
that the following procedure provides a better initialization than the identity transfor-
mation. First, we �nd a solution of a larger system of equations, then we reduce the
number of equations and continue the optimization process with the actual solution
and the smaller system to obtain a better initialization than the identity transformation.



78 Realignment of Deformed Object Fragments

Hence, we look for a solution of the overdetermined system of equations, where the
number of equations is at least twice as the number of unknowns. In our case, this can
be achieved by increasing the maximum degree d by 2. With the new optimal solution
we restart the solver, where the maximum degree d is increased by one and this results
in a 1.5× over-determined system of equations. Then this solution provides a good ini-
tialization for our system of equations, where the minimal d is used. For each step, the
maximum number of iterations is 5000. This process also improves the quality of the
alignment. The purpose of the experiments was to demonstrate the performance of our
method when no better initialization is available. Note that for a medical application,
the identity is a reasonable initialization choice due to physical constraints.

The simple pseudo-code of the algorithm is shown in Algorithm 5. Since a set
of polynomial functions was applied to generate Eq. (5.7), the unknowns have been
eliminated from the sums, as we noted in Section 5.1.3 [18; 20]. Hence the algorithm
has a linear time complexity: the complexity of constructing the system Eq. (5.7) is
O

((
|Ft|+

∑`
i=1 |D′

i|
)

n2`
)
; and the complexity of the solver itself is thus independent

of the size of the input images.

Algorithm 5: Pseudo-code of realignment of deformed fragments.
Input : The binary template (Ft) and ` observation shapes (D′

i, i = 1, . . . , `)
Output: ` estimated linear transformations Ãi

Normalize the input coordinates by applying an appropriate similarity transformation1
Nt and No to [−0.5, 0.5]n so that the centre of mass becomes the origin.
Initialize Ãi with the identical transformation.2
d0 ← minimal number, which provides enough equations in Eq. (5.7) for all3
`n(n + 1)) unknowns
for d ← 2 to 0 do4

Choose the set of ωj : Pn → R polynomial functions based on Eq. (5.5) with the5
actual value of d0 + d.
Construct the (overdetermined) system of equations Eq. (5.7).6
Find a least-squares solution of the system using a Levenberg-Marquardt7

algorithm. The solver is initialized with the actual values of Âi.
end8

Unnormalize the solutions Âi to get the parameters of the aligning transformation9

via Ãi = N−1
t ÂiNo.

5.3 Experimental results
The proposed method was evaluated on 2D and 3D synthetic datasets. In the case of 2D
transformations, the dataset consisted of 10 template objects. Synthetic observations
were generated by �rst cutting each object into 2 parts in 4 di�erent ways, resulting in
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4 images for each template. Then 600 observations of size 700 × 700 were generated
by applying randomly composed a�ne transformations to each of these images with
the following parameter ranges: rotation angles of [−π/4; π/4] and scaling factors from
[0.75; 1.25], skewing from [−0.1; 0.1], and translations of [−25; 25] along both axes. In
the 3D case, 10 template volumes were randomly cut into 2 parts by a plane, such that
the smaller part was at least 20% of the original volume. By cutting each volume in �ve
di�erent ways, 50 volume images are obtained. Then random 3D a�ne transformations
with similar parameters as in the 2D case (the only di�erence being that translations
were in the interval [-10;10]) were used to generate a total of 200 3D observations of
size 250× 250× 250.
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Figure 5.1: Sample results on 2D synthetic images.

For the evaluation of alignment results, we de�ned two kind of error measures. The
�rst (denoted by ε) measures the average misalignment per pixels and the second is
the estimated Ãi transformation for each object. The second is the absolute di�erence
(denoted by δ) between the template and the realigned image [18]:

ε =
1

|Fo|
∑
p∈D′

i
1≤i≤`

‖(Ai − Âi)p‖, and δ =
|Fr 4 Ft|
|Fr|+ |Ft| · 100% ,

where Fo = ∪`
i=1D

′
i and Fr denote the set of pixels of the observation and realigned

shape respectively. As a subjective evaluation measure, we found experimentally that
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Figure 5.2: Sample results on 3D synthetic images.

ε (pixel) δ (%)
µ σ m µ σ m

2D 15.62 46.33 0.11 0.36 1.65 0.13
3D 7.56 15.79 0.68 9.44 14.62 2.78

Table 5.1: Mean, standard deviation and median of error measures achieved by the
proposed method on the 2D and 3D synthetic datasets.

a δ ≤ 5% in 2D and a δ ≤ 10% in 3D corresponds to a visually good alignment.
The proposed method was implemented in Matlab and ran under Linux with 3GHz

CPU and 3GB RAM. A typical runtime was under 2.5 seconds for 2D and 40 seconds
for 3D shapes. Some results are shown in Fig. 5.1 and Fig. 5.2. The quantitative results
in Table 5.1 clearly show that the proposed method provides almost perfect alignments
in both 2D and 3D. Fig. 5.3 shows the evaluated error measures (ε, δ) in the synthetic
case in ascending order. It can be seen that there is no systematic error, but only a
few test cases provide unacceptable results.

5.3.1 Robustness
In practice, segmentation never produces perfect shapes. Therefore, besides using
various kinds of real images inherently subject to such errors, we also evaluated the
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Figure 5.3: The evaluated error measures in ascending order on the synthetic dataset,
where the y-axes have a logarithmic scale. The median of error measures are also shown
by a horizontal grid.

robustness of the proposed approach against di�erent types of synthetically generated
segmentation errors. In our test cases 1%, . . . , 10% of the foreground pixels were al-
tered. In the �rst test case the missing pixels are considered, where some foreground
pixels were removed from the observation before registration. In the second case, we
occluded continuous square-shaped regions of size amounting to 1%, . . . , 10% of the
shape. Next, we randomly added or removed squares uniformly around the boundary.
Note that we do not include cases where erroneous foreground regions appear as dis-
connected regions, because such false regions can be e�ciently removed by appropriate
morphological �ltering. We therefore concentrate on cases where segmentation errors
cannot be �ltered out. See samples of such errors in Fig. 5.4.

Fig. 5.5 shows that our method is quite robust whenever errors are uniformly dis-
tributed over the whole shape (in the case of �rst and third type noise). However,
it becomes less stable in the case of larger localized errors like occlusion. This is the
usual behaviour of area-based methods because they rely on quantities obtained by in-
tegrating over the object area. Thus large missing parts could drastically change these
quantities and result in false alignments. Nevertheless, in many application areas one
can take images under controlled conditions which guarantee that observations are not
occluded (e.g. medical imaging and industrial inspection).

(a) missing pixels (b) occlusion (c) boundary error

Figure 5.4: Sample observations with various degradations.
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Figure 5.5: Median of error measures achieved by the proposed method on the 2D and
3D synthetic datasets in the case of various types of error.

5.3.2 Numerical Stability

The above experiments demonstrate the performance of the proposed method in the
case of two fragments. Obviously, the more parts we have, the more equations are
required, which a�ects numerical stability. In addition, more parts allow more a�ne
transformations that may produce a stronger deformation. Now we will analyze the
alignment quality in the case of more fragments and various strengths of deformations.
To do this we will de�ne the average distortion of a pixel as (i.e. as an ε measure):

κ =
1

|Ft|
∑
p∈Di
1≤i≤`

‖(Ai − I)p‖ ,

where I ∈ Pn×n is the identity matrix. κ is de�ned such that it clearly shows the
strength of the overall deformation. Making use of this measure, we can easily classify
the generated observations based on their strength of deformation. In order to analyze
the numerical stability of our method, we will consider some observations that are
generated with similar values of κ, then we will examine the results. Fig. 5.6 provides
examples of average distorted objects.

In order to analyze the results obtained by the proposed algorithm in the case of
various κ values, we generated three di�erent 2D datasets with 2, 3, 4 and 5 object
fragments, where the value of κ was constrained. The observations were generated
by applying randomly composed a�ne transformations with the following parameter
ranges: rotation angles of [−π/8; π/8] and scaling factors from [0.75; 1.25], skewing
from [−0.1; 0.1], and translations of [−10; 10] along both axes. The generated transfor-
mations chosen were |κ− k| ≤ 5, where k ∈ {60, 70, 80}. After applying the selected
transformation, the fragments were translated until the image had no overlaid frag-
ments. Due to this translation the average κ was 100, 110 and 120 in our three cases.
Fig. 5.6 shows an example where the object has more fragments and the strength of
deformation is close to the average value of κ.
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Figure 5.6: Examples of observations for various strengths of deformations (in the rows,
with an average κ value of 100, 110 and 120, respectively) and di�erent numbers of
fragments (in the columns).

The graphs in Fig. 5.7 show that the fragment number a�ects numerical stabil-
ity. A bigger number of fragments results in a more complex deformation, hence it
makes the puzzle problem more di�cult. We note that a completely random fragment-
con�guration corresponds to a complex deformation, for which a stable solution is
di�cult to obtain. And when pieces are in a relative order then a rather accurate so-
lution can be obtained. Nevertheless, the quality of results obtained by the proposed
method is less in�uenced by increasing the strength of the deformation. In the last row
(on Fig. 5.7) there are histograms of κ values of the observations for our three di�erent
datasets.

Symmetry is an issue which can in�uence numerical stability. We note that both
the shape and the adopted omega function are simultaneously symmetric, causing the
corresponding equation to vanish. This is unlikely in practice but even if it occurs, our
system is overdetermined so doing without a few equations is acceptable.

5.3.3 Real Images
We will now demonstrate our method for two possible real applications, where 2D and
3D rigid-body transformations are considered. First an interesting problem, solving the
2D Tangram problem is considered. We assume that planar tiles are approximately
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Figure 5.7: The evaluated error measures in ascending order for 1000 randomly gen-
erated test cases with di�erent numbers of fragments and measures of distortion. In
the last row, there are the histograms of average distortion (κ) for various strengths of
deformations.

deformed by 2D rigid-body transformations. Then a medical application is presented,
where we address the problem of realigning bone fractures. Because of the biomechan-
ical properties of the bones, here we need to consider a 3D rigid-body deformation.

Solving the Tangram Puzzle

A Tangram is a dissection puzzle consisting of seven �at tiles (called tans), which are
put together to form various shapes. The goal is to form a speci�c shape given only by
its silhouette. Fig. 5.8 shows some examples of these shapes and the solutions found
by our method. The images were taken with a digital camera, then thresholded. The
resulting 2D shapes were realigned according to the template. Here the templates are
scanned versions of the printed shapes found in the Tangram manual, which are only
approximate silhouettes of the �nal tile con�gurations. The 2D rigid-body model is a
good approximation of the actual transformation acting between the shapes. However,
there is a similarity transform between the shapes. After applying a global scaling
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Figure 5.8: Solutions of the Tangram puzzle (the average alignment runtime of an
image was about 50 sec.) with a rigid-body transformation. Top: observations were
taken by a digital camera. Middle: solutions found in the Tangram manual. Bottom:
the scanned template silhouettes with overlaid contours of aligned fragments.

factor to the input images, which is estimated based on the ratio of the foreground
areas (i.e. the measure of the similarity transformation), we simply solve the problem
by considering 2D rigid-body transformations between the shapes.

It is well known that the Levenberg-Marquardt algorithm �nds a local minimum close
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to the initialization settings. Finding a good initial con�guration is largely application-
dependent. For example, on these images a global optimization procedure like the
Spectral Gradient Method (SPG) [9] provided a good initialization, while Levenberg-
Marquardt gives a better solution than starting from the identity transform. SPG looks
for the solution in a given interval. In our case, the constraints were −π/2 ≤ α ≤ π/2

and −0.5 ≤ t1, t2 ≤ 0.5 for all fragments, after coordinate normalization.
Real images always have a segmentation error, but the proposed method still pro-

vides good results. When the distortion is more complex (e.g. the objects are rotated
more than π/2), then our algorithm may provide geometrically incorrect results, since
the system of equations is solved by a nonlinear optimization procedure. Next, we note
that some tiles are slightly overlapping in Fig. 5.8. This is because overlaps are invisible
to the system of equations. Nevertheless, overlaps could be prevented by checking the
transformed fragments for each iteration, but this is a rather time-consuming procedure.

Needless to say, we could always apply an a�ne model as an approximation of the
actual plane projective transformation acting between the shapes (see Fig. 5.9). But in
general, the special transformation class has to be applied because in some cases, where
the more general transformation class is considered, the method provides results that
are algebraically correct, but in the geometrical sense they are completely wrong. For

Figure 5.9: Solutions of the Tangram puzzle, where an a�ne model is used. Top:
observations were taken by a digital camera. Middle: solutions found in the Tangram
manual. Bottom: the scanned template silhouettes with overlaid contours of aligned
fragments.
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example the solver could provide some nearly singular transformations, which results in
vanishing tiles, and obviously this cannot be a geometrically correct result. The δ error
(i.e. overlap between the template and realigned image) is small, but in a geometrical
sense this cannot occur.

Realigning Bone Fractures

Complex bone fracture reduction frequently requires surgical care, especially when the
angulation or displacement of bone fragments are large. In such situations, computer-
aided surgical planning [23] is done before the actual surgery takes place, which allows
the doctor to gather more information about the dislocation of the fragments and to
arrange and analyze the surgical implants to be inserted. A crucial part of such a
system is the relocation of bone fragments to their original anatomic position. Since
the input data is typically a volume CT image, this repositioning has to be performed
in 3D space, which requires an expensive special 3D haptic device and quite a lot of
manual work. Therefore automatic bone fracture reduction can save considerable time
and provide experts with a rough alignment that can be manually �ne-tuned according

template obtained by mirroring in-
tact bones observation

realigned bone fragments
Figure 5.10: Bone fracture reduction. The CPU time was 15 sec. for these 1 megavoxel
CT volumes.
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to anatomic requirements.
Since surgical planning involves the bio-mechanical analysis of the bone with im-

plants, only rigid-body transformations are allowed. In [23], a classical ICP algorithm
is used to realign fractures. Winkelbach et al. [111] proposed an approach for estimat-
ing the relative transformations between fragments of a broken cylindrical structure by
using well-known surface registration techniques like 2D depth correlation and the ICP
algorithm. In [82], registration is solved by using a quadrature �lter phase di�erence to
estimate local displacements.

Now we shall apply our puzzle framework to reduce images of pelvic fractures using
3D rigid-body transformations. In the case of single side fractures, the template is
simply obtained by mirroring intact bones of the patient. Fig. 5.10 shows a typical
result for a pelvic fracture with three fragments. The main challenges are segmentation
errors and, due to the variability of the human body, a slightly di�erent template. In
spite of these di�culties, the alignment of larger parts is quite accurate and only the
small fragment has a noticeable alignment error. Since the error caused by a misplaced
small piece is relatively low, the solver may not �nd the best transformation. However,
as human veri�cation and correction of the result is needed anyway in a real surgical
planning system, these small errors are not critical and can be easily corrected manually.

5.4 Summary
A novel framework to solve shape realignment problem was proposed and applied in
this chapter to 2D and 3D a�ne and rigid-body transformations. In contrast to classi-
cal solutions based on landmark extraction and correspondences, the proposed solution
�nds the aligning transformations without any additional information. Essentially, the
method consists of constructing a polynomial system of equations whose solution di-
rectly provides the unknown parameters. The quantitative evaluations on both 2D and
3D synthetic datasets demonstrate the performance and robustness of the method and
the results obtained on real images suggest that it can be applied in various application
domains. Fig. 5.8 and Fig. 5.10 show that the results obtained by the proposed method
are much more in�uenced by the number of fragments than the size of the input im-
ages. The 3D images have larger sizes than the 2D case, but the CPU time is almost
the same in both cases. The main advantages are that the proposed method does not
require correspondences, it is quite fast and easy to implement.



Chapter 6

Conclusions

Binary registration is an important problem in itself for many complex image analysis
tasks. In many applications, when images have highly nonlinear radiometric distortion or
the radiometric information is limited, but the segmentation of the objects are available,
binary image registration could be a valid alternative. The classical way to solve the
registration problem is to �nd point correspondences between the images, then the
solution of a system of equations constructed from these point correspondences provides
the unknown parameters of the aligning transformation. Nevertheless, �nding reliable
point correspondences on binary images is quite a challenge, hence we interested in a
direct solution without solving the correspondence problem.

In this chapter we draw some conclusions about the methods proposed in the pre-
vious chapters and mention some possible directions of future research. We proposed
several approaches for solving the problem of the parametric estimation of a�ne defor-
mations of binary images. The fundamental di�erence between classical image regis-
tration algorithms and ours is that our approach works without any landmark, feature
detection or optimization, adopting a novel idea where the transformation is obtained
as a solution of a set of equations. First, we proposed a novel approach where the
exact transformation is obtained as the solution of a polynomial system of equations.
Next, we introduced a method where the exact transformation was obtained from a
least-squares solution of a linear system of equations constructed by �tting Gaussian
densities to the shapes which preserve the e�ect of the unknown transformation. In the
case of compound shapes, we also proposed a robust and e�cient numerical scheme for
achieving near real-time performance. Even though these methods use all the available
information in the input images, there is no need for established correspondences. Our
algorithms have a linear time complexity; are simple to implement, and run quite fast;
furthermore, they yield an exact solution regardless of the size of the deformation. The
experimental results showed that the proposed methods provide good alignments on
both real and synthetic images; moreover, they are robust in the case of noisy obser-
vations. We also addressed the problem of simultaneously estimating di�erent linear
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(a�ne and rigid-body) deformations, resulting in a global nonlinear transformation be-
tween the original object and its broken fragments without correspondences. In this
thesis a general framework was presented, where the solution of a polynomial system
of equations directly provides the parameters of the alignment. The main drawback of
the methods outlined in chapter 3 to 5 is that the occlusion is not very well tolerated,
but this is a true of all area-based methods.

Most likely, the methods introduced by Hagege and Francos [40�42] are the closest
to the methods proposed in this dissertation, since they have a similar basic idea be-
hind them. Hagege and Francos addressed the parametric estimation of two-dimensional
a�ne transformations between two grey-level images in [40�42], which provides an accu-
rate and computationally simple solution that avoids both the correspondence problem
and the need for optimization. The original problem was reformulated as an equivalent
linear parameter estimation one having a unique and exact solution. However, these
methods rely on the availability of rich radiometric information, which is clearly not
available in the binary case.

As we described in Section 3.2.1, by making use of a fuzzy representation of a
digital image we were able to improve the performance of the proposed method. This is
important, as we estimated the integrals by a �nite sum, and this approximation clearly
in�uences the accuracy. In [97], the e�ciency of the fuzzy representation was analyzed.
The proposed framework, presented in Chapter 3 and Chapter 5, could be extended to
include di�eomorphic deformations. However, in the case of di�eomorphic deformations
the unknown parameters of the deformation can be obtained via a least-squares solution,
which makes the problem more di�cult, since the Jacobian is not a simple constant in
the nonlinear case. In [76] a novel approach is proposed to estimate the parameters
of a di�eomorphism that aligns two binary images. The problem is traced back to the
solution of a system of nonlinear equations which directly provides the parameters of
the aligning transformation. The basic idea is similar to that described in Section 3.
Naturally, recovering the parameters of planar homgraphies is a fundamental problem
in computer vision with various applications. The method considered in [77] assumes a
planar homography that aligns two binary images. Here the solution is also obtained by
solving a system of nonlinear equations generated by integrating linearly independent
functions over the domains determined by the shapes. These methods [76; 77] have
the similar advantages to the method proposed here.
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Summary in English

Image registration is a crucial step in almost every image processing application where
images of di�erent views or sensors of an object need to be compared or combined.
Typical application areas include object recognition, target tracking in video sequences,
monitoring land usage on satellite images, super resolution, image mosaicking, and
medical image analysis. In a general setting, one is looking for a transformation which
aligns two images such that one image (called the observation) becomes similar to the
second one (called the template). Due to the large number of possible transformations,
the problem is inherently ill-de�ned unless this variability is taken into account.

In many situations, the variability of image features is so complex that the only fea-
sible way to register such images is to reduce them to a binary representation and solve
the registration problem in that context. X-ray images are good examples as they usu-
ally exhibit highly nonlinear radiometric distortions, making registration hard to solve.
If perfect greylevel images were available, the estimation of an aligning transformation
could be reduced to solving a linear system of equations. In real applications, how-
ever, such a strict requirement cannot be satis�ed. Nevertheless, registration can be
solved without making use of any intensity information. In real situations, the images
obtained are related by a projective transformation (also called planar homography).
Although projective transformations are nonlinear, they can often be successfully mod-
elled by an a�ne transformation, which is linear. Owing to its linear property, the a�ne
transformation is of great importance in image registration.

The chief aim of this dissertation was to present several techniques developed by the
author which can be used to estimate the parameters of the a�ne deformations of binary
images. The realignment problem of deformed shape fragments is also considered,
where the basic ideas of the registration methods is used. In contrast to the classical
approaches, the methods presented here work without any landmark, feature detection
or optimization and use all the available information in the input images. They adopt
a novel idea where the aligning transformation is directly obtained from a solution of
a polynomial or a linear system of equations. The main advantages of the proposed
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algorithms are that they have a linear time complexity; are simple to implement, and
run quite fast; furthermore, in the case of registration they yield an exact solution
irrespective of the size of the deformation.

A.1 Summary by Chapters
In Chapter 2 we give a brief overview of the area of binary image registration. This
review includes the state-of-the-art image registration methods and the best, relevant
binary image registration techniques. This chapter also presents the preliminary nota-
tions used in the image processing �eld and the key ideas behind the proposed methods
that are used in the subsequent chapters.

The next two chapters address the problem of the parameter estimation of a global
a�ne transformation of binary shapes. These chapters present novel methods which
provide accurate and computationally simple solutions to the a�ne registration of
shapes. Chapter 3 shows how the binary registration problem can be formulated as
the solution of a system of polynomial equations obtained by integrating a set of poly-
nomial functions over the shape domains. This novel method provides a direct solution
without established correspondences or optimization. Moreover, the robustness of the
resulting algorithm in the presence of i.i.d. Gaussian noise on the point coordinates
and also segmentation errors is demonstrated. Comparative tests on partially occluded
shapes reveal, however, that other area-based state-of-the-art methods cannot cope
with occlusion either. Its performance on real images is demonstrated and the method
is applied to align pairs of hip prosthesis X-ray images. The advantage of the pro-
posed solution is that it has a linear time complexity, is fast, easy to implement, works
without established correspondences and it provides an exact solution regardless of the
magnitude of the transformation.

The main di�culty with binary images is that they do not contain radiometric infor-
mation; just the foreground pixel coordinates are available for the registration algorithm.
Chapter 4 shows that in spite of the absent radiometric information, the registration
problem can still be formulated as the solution of a linear system of equations, where
all the available geometric information is used. The basic idea is to generate a pair of
covariant functions that are related by the unknown transformation. The main con-
tribution is the construction of these relations between shapes without establishing
correspondences of any kind. The unknown transformation parameters are then found
from the least-squares solution of an overdetermined linear system of equations. When
the images contain compound shapes, an elegant and robust solution is proposed, where
linear equations are constructed by integrating nonlinear functions over corresponding
domains derived from compound shapes. This method is more robust and numerically
more e�cient than the previous approach, when images contain just a single object.
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The performance of the proposed method was tested on a large synthetic dataset as
well as on real images. The resulting algorithm is fast and provides a direct solution
without establishing correspondences.

In Chapter 5 we propose a general framework to solve the realignment problem of
deformed shape fragments without �xing the dimension of the input images (generally
n = 2, 3). Given a template image with a set of shapes, and their a�ne distorted
versions on the observation image, we would like establish a geometric correspondence
between these images. This chapter introduces our registration problem followed by the
basic ideas of the general solution with the assumption that only the overall segmen-
tation of the template is known, i.e. its partitioning is hidden. The proposed method
directly provides the parameters of the alignment by solving a polynomial system of
equations. We also conduct an extended analysis of the numerical stability of the pro-
posed algorithm. The performance and robustness of our method are investigated using
large 2D and 3D synthetic benchmark datasets and also in di�erent real applications
contexts (e.g. 2D Tangram, bone fracture alignment). In contrast to classical solutions
based on landmark extraction and correspondences, the proposed solution �nds the
aligning transformations without any additional information. The main advantages are
that the proposed method does not require correspondence, it is quite fast and easy to
implement.

In Chapter 6 we draw some pertinent conclusions and discuss some interesting
directions for future research.

A.2 Key Points of the Thesis
In the following a listing of the most important results of the dissertation is given.
Table A.1 shows which thesis point is described in which publication by the author.

I. ) The author addresses the problem of the estimation of a�ne transformations
for aligning a known 2D shape and its distorted observation. He proposes a
novel approach where the exact transformation is obtained as the solution of a
polynomial system of equations. He tested the proposed method on synthetic as
well as on real images. The author demonstrated the robustness of the algorithm
in the presence of segmentation errors and additive geometric noise too, then he
successfully applied the method to the registration of hip prosthesis X-ray images.

II.) The author proposes a novel approach for the estimation of 2D a�ne transforma-
tions for aligning a planar shape and its distorted observation. He shows how the
exact transformation is obtained as a least-squares solution of a linear system of
equations constructed by �tting Gaussian densities to the shapes which preserve
the e�ect of the unknown transformation. In the case of compound shapes, the
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author also presents a robust and e�cient numerical scheme and achieves a near
real-time performance. He tested the method on synthetic as well as on real
images and demonstrated its robustness in the case of missing pixels, boundary
errors, and modelling errors.

III. ) The author considers the problem of realigning broken objects without corre-
spondences, where the segmentation of the overall template is known, but the
segmentation of the object parts is unknown. The author applies linear transfor-
mations between the object fragments and presents the method by using 2D and
3D a�ne transformations. He shows that constructing and solving a polynomial
system of equations provides the unknown parameters of the alignment. Here
he quantitatively evaluated the proposed algorithm on a large synthetic dataset
containing 2D and 3D images. He analyzes the numerical stability of the method
as well as its robustness against segmentation errors. He also presents the results
of experiments on 2D real images as well as on volumetric medical images applied
to surgical planning.

[21] [20] [16] [17] [19] [18]
I. • •
II. • • •
III. •

Table A.1: The connection between the thesis points and the corresponding publica-
tions.
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Summary in Hungarian

A képregisztráció majdnem minden képfeldolgozási alkalmazás fontos lépése, ahol az
objektumok eltér® néz®pontból vagy különböz® szenzorral készített képeit kell összeha-
sonlítani esetleg kombinálni. Tipikus felhasználási területei közé tartozik az alakfelisme-
rés, objektumok követése videószekvenciákon, m¶holdképek változásaink detektálása,
szuperfelbontású képek, képmozaikozás, illetve az orvosi képfeldolgozás. Általánosan
a feladat egy olyan transzformáció megkeresése, mely az egyik képet (meg�gyelés) a
második képhez illeszti (sablon). A lehetséges transzformációk nagy száma miatt a
probléma rosszul de�niált, hacsak nem vesszük �gyelembe ezt a nagy változatosságot.

Sok esetben a képjellemz®k változása annyira összetett, hogy az egyetlen járható
út a képek regisztrálására, hogy a bináris reprezentációjuk alapján oldjuk meg a prob-
lémát. A röntgen képek esete jó példa arra, hogy egy er®sen nemlineáris színtorzulás
megnehezíti a regisztrációt. Ha a képek tökéletes szürkeárnyalatos változata adott len-
ne, akkor az illeszt® transzformáció paramétereinek becslése visszavezethet® lenne egy
lineáris egyenletrendszer megoldására [40; 42]. Mindazonáltal valós alkalmazások során
ilyen er®s feltétel ritkán teljesül. Itt egy olyan regisztrációs eljárást mutatunk be, amely
a kép intenzitásértékeinek felhasználása nélkül oldja meg a feladatot. A képek között
valós esetben projektív transzformáció van (melyet síkhomográ�ának is hívnak). Bár a
projektív transzformációk nemlineárisak, gyakran a�n transzformációkkal jól modellez-
het®k, melyek viszont már lineárisak. Emiatt az a�n transzformációk fontos szerepet
játszanak a képregisztrációban.

A disszertáció legfontosabb célja, hogy bemutassa a Szerz® bináris képek a�n
transzformációinak paraméterbecslésére vonatkozó kutatási eredméyeit. Széttört alak-
zatok helyreállításának problémájával is foglalkozunk, mely során a regisztrációnál meg-
adott alapötleteket használjuk fel. Alapvet® különbség a klasszikus módszerekhez ké-
pest, hogy az itt bemutatott módszerek jellemz® pontok és képjellemz®k detektálása,
illetve optimalizálás nélkül m¶ködnek úgy, hogy az input képeken elérhet® összes infor-
mációt felhasználják. Egy olyan újfajta megközelítést használnak, ahol a transzformáció
közvetlenül adódik egy polinom vagy egy lineáris egyenletrendszer megoldásaként. A
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javasolt módszerek legnagyobb el®nye, hogy lineáris id®bonyolultságúak, könnyen imp-
lementálhatók, gyorsak, továbbá a deformáció er®sségét®l függetlenül megkapjuk a
regisztráció pontos megoldását.

B.1. A fejezetek áttekintése
A 2. fejezetben egy rövid áttekintést adunk a bináris képregisztrációról. Ez az áttekin-
tés a jelenlegi regisztrációs módszereket és a legfontosabb, releváns bináris regisztrációs
technikákat tartalmazza. A fejezet bemutatja a regisztráció megoldása során alkalma-
zott jelöléseket, illetve a javasolt módszerek alapötletét, melyet a további fejezetekben
használni fogunk.

A következ® két fejezet bináris alakzatok globális a�n transzformációinak paramé-
terbecslésével foglalkozik. Ezen fejezetek újfajta módszereket mutatnak be alakzatok
a�n regisztrációjára, melyek pontos és egyszer¶en számítható megoldást adnak. A 3.
fejezet bemutatja, hogyan fogalmazható át a bináris regisztráció problémája egy olyan
polinom egyenletrendszer megoldására, melyet az alakzatok felett hatványfüggvények
integrálása alapján írunk fel. Ez a módszer pontmegfeleltetés és optimalizálás nélkül,
direkt megoldást ad. Továbbá szemléltetjük az algoritmus robusztusságát szegmen-
tálási hiba, illetve a koordinátákon értelmezett additív geometriai zaj esetén is. Az
összehasonlító tesztek mutatják, hogy a takarást a többi terület alapú módszer sem ké-
pes jól kezelni. Az algoritmus hatékonyságát valós képeken és csíp®protézisr®l készült
röntgen képek regisztrációja során is szemléltetjük. A javasolt módszer el®nye, hogy
lineáris id®bonyolultságú, gyors, könnyen implementálható, nem igényel megfeleltetése-
ket, továbbá a deformáció er®sségét®l függetlenül megkapjuk a pontos megoldást.

Bináris képek esetén a legnagyobb nehézséget az okozza, hogy nem tartalmaznak
színinformációt, így a regisztrációs algoritmus csupán az el®térpixelek koordinátáját
tudja felhasználni. A 4. fejezet bemutatja, hogy a színinformáció hiányának ellené-
re, a regisztrációs probléma átfogalmazható egy lineáris egyenletrendszer megoldására,
ahol a képen elérhet® összes információt felhasználjuk. Az alapötlet olyan kovariáns
függvények generálása, melyek az ismeretlen transzformáció alapján kapcsolódnak egy-
máshoz. Egyik legfontosabb eredményünk, hogy képesek vagyunk megkonstruálni ilyen
összefüggéseket az alakzatok közötti bármiféle megfeleltetés felhasználása nélkül. Az is-
meretlen transzformáció paraméterei ezután egy túlhatározott lineáris egyenletrendszer
legkisebb négyzetes értelemben vett megoldásaként adódnak. Ha a képek több rész-
b®l álló alakzatokat tartalmaznak, akkor elegáns és robusztus megoldás adható, ahol a
lineáris egyenletrendszert az összetett alakzat részei felett kiintegrált nemlineáris függ-
vények alapján kapjuk meg. Ez a módszer robusztus és numerikusan is hatékonyabb,
mint az el®z® megközelítés, ahol a képek csupán egyetlen részb®l álló objektumot tar-
talmaznak. A módszer hatékonyságát nagyméret¶ szintetikusan generált adatbázison
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és valós képeken is teszteltük. A megadott algoritmus gyors, továbbá direkt megoldást
ad megfeleltetések felhasználása nélkül.

Az 5. fejezetben egy olyan általános keretrendszert mutatunk be, mely törött alak-
zatok visszaállításának problémáját oldja meg anékül, hogy az input képek dimenzióját
rögzíteni kellene (mely általában n = 2, 3). Legyen adott egy sablon kép alakzatok egy
halmazával, illetve ezek a�n transzformált változatai ameg�gyelés képen, ekkor a képek
közötti geometriai kapcsolatot szeretnénk meghatározni. A fejezet el®ször bemutatja
a regisztrációs problémát, majd pedig az általános megoldás alapötletét, mely során
feltételezzük, hogy a sablon kép teljes szegmentálása nem ismert, azaz partícionálása
rejtett. A javasolt módszer direkt módon, egy polinom egyenletrendszer megoldásá-
val adja meg az illesztési transzformáció paramétereit. A javasolt algoritmus numerikus
stabilitását b®vebben elemezzük. A módszerünk hatékonyságát és robusztusságát nagy-
méret¶ 2D és 3D szintetikus képeket tartalmazó adatbázison, illetve különböz® valós
alkalmazások esetén is teszteltük (pl. 2D Tangram, törött csontok visszaállítása). A
klasszikus megoldásokkal szemben, melyek jellemz® pontok kinyerésén vagy megfelel-
tetéseken alapulnak a javasolt módszer minden további információ felhasználása nélkül
adja meg az illeszt® transzformáció paramétereit. Legfontosabb el®nyei közé tartozik,
hogy nem igényel megfeleltetéseket, gyors és könnyen implementálható.

A 6. fejezetben a legfontosabb megállapításokat emeljük ki, illetve az érdekesebb
jöv®beli kutatási irányokat elemezzük.

B.2. Az eredmények tézisszer¶ összefoglalása
Az alábbiakban három tézispontba rendezve foglaljuk össze a Szerz® legfontosabb ered-
ményeit. A B.1. táblázat mutatja, az egyes tézispontokhoz, mely publikációk kapcso-
lódnak.

I. ) A Szerz® egy olyan módszert mutat be, mely egy ismert alakzat és annak de-
formált változatai között lév® a�n transzformációk paramétereinek becslésére
alkalmas. Egy olyan újfajta megközelítést javasol, ahol a pontos transzformáció
egy polinom egyenletrendszer megoldásával megkapható. A módszert szintetikus
és valós képeken is tesztelte. A Szerz® bemutatta a módszer robusztusságát szeg-
mentálási hiba és additív geometriai zaj esetén, majd pedig azt, hogy a módszer
sikeresen alkalmazható csíp®protézisr®l készült röntgen képek regisztrációjára.

II.) A Szerz® egy olyan újfajta megközelítést mutat be, mely egy ismert alakzat és
annak deformált változatai között lév® a�n transzformációk paramétereinek becs-
lésére alkalmas. A Szerz® megmutatja, hogyan kapható meg a pontos transzfor-
máció az alakzatok felett megkonstruált Gauss s¶r¶ségfüggvények (melyek meg-
®rzik az ismeretlen transzformáció hatását) alapján felírt lineáris egyenletrendszer
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legkisebb négyzetes értelemben vett megoldásával. Több részb®l álló alakzatok
esetén a Szerz® egy robusztus és numerikusan hatékony megoldást mutat be,
mellyel közel valós idej¶ hatékonyság érhet® el. A módszert mind szintetikus,
mind valós képeken tesztelte. A robusztusság mellett hiányzó pixelek, kontúr
menti hiba és modellezési hiba esetén is szemléltette a módszer m¶ködését.

III. ) A Szerz® széttört objektumok összeillesztésének problémáját vizsgálja pontmeg-
feleltetések felhasználása nélkül, ahol csak a teljes sablon kép szegmentálása is-
mert, az egyes alakzatoké nem. A Szerz® a széttört objektumok között lineáris
transzformációkat feltételez, és a módszert 2D és 3D a�n transzformációk ese-
tén mutatja be. Megmutatja, hogyan lehet megkonstruálni egy olyan polinom
egyenletrendszert, melynek megoldása megadja az ismeretlen illesztési transzfor-
máció paramétereit. A javasolt algoritmust nagyméret¶ szintetikus adatbázison
tesztelte, mely 2D és 3D képeket is tartalmaz. A robusztusság és a módszer szeg-
mentálási hibákra való érzékenysége mellett a módszer numerikus stabilitását is
elemzi. Az eredményeket 2D valós képeken és egy 3D orvosi alkalmazás esetében
(m¶téti tervezés) is bemutatta.

[21] [20] [16] [17] [19] [18]
I. • •
II. • • •
III. •

B.1. táblázat. A tézispontokhoz kapcsolódó publikációk.



Bibliography

[1] Pedro M. Q. Aguiar. Unsupervised simultaneous registration and exposure cor-
rection. In Proceedings of International Conference on Image Processing, pages
361�364, Atlanta, GA, USA, October 2006. IEEE.

[2] Francesco Amigoni, Stefano Gazzani, and Simone Podico. A method for re-
assembling fragments in image reconstruction. In Proceedings of International
Conference on Image Processing, volume 2, pages 581�584, Barcelona, Spain,
September 2003. IEEE.

[3] Vincent Arsigny, Olivier Commowick, Nicholas Ayache, and Xavier Pennec. A
fast and log-euclidean polya�ne framework for locally linear registration. Journal
of Mathematical Imaging and Vision, 33(2):222�238, February 2009.

[4] K. Somani Arun, Thomas S. Huang, and Steven D. Blostein. Least-squares
�tting of two 3-D point sets. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 9(5):698�700, September 1987.

[5] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up
robust features (SURF). Computer Vision and Image Understanding, 110(3):346�
359, August 2008.

[6] Serge Belongie, Jitendra Malik, and Jan Puzicha. Matching with shape con-
texts. software, April 2002. http://www.eecs.berkeley.edu/Research/
Projects/CS/vision/shape/sc_digits.html.

[7] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and object
recognition using shape context. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(4):509�522, April 2002.

[8] Paul J. Besl and Neil D. McKay. A method for registration of 3-D shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2):239�256,
February 1992.

99



100 Bibliography

[9] Ernesto G. Birgin, José Mario Martínes, and Marcos Raydan. SPG: Software for
convex-constrained optimization. ACM Transactions on Mathematical Software,
27(3):340�349, September 2001.

[10] Thomas Boudier. The snake plugin for imageJ. Software. http://www.snv.
jussieu.fr/~wboudier/softs/snake.html.

[11] Alex M. Bronstein and Michael M. Bronstein. Regularized partial matching of
rigid shapes. In David Forsyth, Philip Torr, and Andrew Zisserman, editors,
Proceedings of the European Conference on Computer Vision, volume 5303 of
Lecture Notes in Computer Science, pages 143�154, Marseille, France, October
2008. Springer.

[12] Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel, Mona Mahmoudi,
and Guillermo Sapiro. A Gromov-Hausdor� framework with di�usion geometry for
topologically-robust non-rigid shape matching. International Journal of Computer
Vision, 89(2-3):266�286, September 2010.

[13] Lisa Gottesfeld Brown. A survey of image registration techniques. ACM Com-
puting Surveys, 24(4):325�376, December 1992.

[14] Ananda S. Chowdhurya, Suchendra M. Bhandarkar, Robert W. Robinson, and
Jack C. Yu. Virtual multi-fracture craniofacial reconstruction using computer
vision and graph matching. Computerized Medical Imaging and Graphics,
33(5):333�342, July 2009.

[15] Helena Cristina da Gama Leitão and Jorge Stol�. A multiscale method for the
reassembly of two-dimensional fragmented objects. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(9):1239�1251, September 2002.

[16] Csaba Domokos and Zoltan Kato. Binary image registration using covariant Gaus-
sian densities. In Aurélio Campilho and Mohamed Kamel, editors, Proceedings
of International Conference on Image Analysis and Recognition, volume 5112 of
Lecture Notes in Computer Science, pages 455�464, Póvoa de Varzim, Portugal,
June 2008. Springer.

[17] Csaba Domokos and Zoltan Kato. A�ne alignment of compound objects: A
direct approach. In Proceedings of International Conference on Image Processing,
pages 169�172, Cairo, Egypt, November 2009. IEEE.

[18] Csaba Domokos and Zoltan Kato. A�ne puzzle: Realigning deformed object frag-
ments without correspondences. In Kostas Daniilidis, Petros Maragos, and Nikos



Bibliography 101

Paragios, editors, Proceedings of European Conference on Computer Vision, vol-
ume 6312 of Lecture Notes in Computer Science, pages 777�790, Heraklion,
Crete, Greece, September 2010. Springer.

[19] Csaba Domokos and Zoltan Kato. A�ne shape alignment using covariant Gaus-
sian densities: A direct solution. IEEE Transactions on Image Processing, 2010.
Submitted.

[20] Csaba Domokos and Zoltan Kato. Parametric estimation of a�ne deformations
of planar shapes. Pattern Recognition, 43(3):569�578, March 2010.

[21] Csaba Domokos, Zoltan Kato, and Joseph M. Francos. Parametric estimation of
a�ne deformations of binary images. In Proceedings of International Conference
on Acoustics, Speech, and Signal Processing, pages 889�892, Las Vegas, NV,
USA, April 2008. IEEE.

[22] M.R. Downing, P.E. Undrill, P. Ashcroft, D.W.L. Hukins, and J.D. Hutchison.
Automated femoral measurement in total hip replacement radiographs. In Pro-
ceedings of International Conference on Image Processing and Its Applications,
volume 2, pages 843�847, Dublin, Ireland, July 1997. IEEE.

[23] Balázs Erd®helyi and Endre Varga. Semi-automatic bone fracture reduction in
surgical planning. In Proceedings of the International Conference on Computer
Assisted Radiology and Surgery, volume 4 of International Journal of Computer
Assisted Radiology and Surgery, pages S98�S99, Berlin, Germany, June 2009.
Springer.

[24] Jacques Feldmar and Nicholas Ayache. Rigid, a�ne and locally a�ne registration
of free-form surfaces. International Journal of Computer Vision, 18(2):99�119,
May 1996.

[25] Andrew W. Fitzgibbon. Robust registration of 2D and 3D point sets. Image and
Vision Computing, 21(13):1145�1153, December 2003.

[26] Corneliu Florea, Constantin Vertan, and Laura Florea. Logarithmic model-based
dynamic range enhancement of hip X-ray images. In Jacques Blanc-Talon, Wil-
fried Philips, Dan Popescu, and Paul Scheunders, editors, Proceedings of Interna-
tional Conference on Advanced Concepts for Intelligent Vision Systems, volume
4678 of Lecture Notes in Computer Science, pages 587�596, Delft, Netherlands,
August 2007. Springer.

[27] Jan Flusser, Jaroslav Kautsky, and Filip �roubek. Implicit moment invariants.
International Journal of Computer Vision, 86(1):72�86, January 2010.



102 Bibliography

[28] Jan Flusser and Tomà² Suk. Pattern recognition by a�ne moment invariants.
Pattern Recognition, 1(1):167�174, January 1993.

[29] Jan Flusser and Tomà² Suk. A moment-based approach to registration of images
with a�ne geometric distortion. IEEE Transactions on Geoscience and Remote
Sensing, 32(2):382�387, March 1994.

[30] Jan Flusser and Tomà² Suk. Projective moment invariants. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26(10):1364�1367, October 2004.

[31] Jan Flusser, Tomà² Suk, and Barbara Zitová. Moments and Moment Invariants
in Pattern Recognition. A John Wiley & Sons, October 2009.

[32] Massimo Fornasier and Domenico Toniolo. Fast, robust and e�cient 2D pat-
tern recognition for re-assembling fragmented images. Pattern Recognition,
38(11):2074�2087, November 2005.

[33] Hassan Foroosh, Josiane B. Zerubia, and Marc Berthod. Extension of phase
correlation to subpixel registration. IEEE Transactions on Image Processing,
11(3):188�200, March 2002.

[34] Alban Foulonneau, Pierre Charbonnier, and Fabrice Heitz. Multi-reference shape
priors for active contours. International Journal of Computer Vision, 81(1):68�81,
January 2009.

[35] Rui Gan and Albert C. S. Chung. Distance-intensity for image registration. In
Proceedings of Computer Vision for Biomedical Image Applications, volume 3765
of Lecture Notes in Computer Science, pages 281�290, Beijing, China, October
2005. Springer.

[36] David Goldberg, Christopher Malon, and Marshall Bern. A global approach to
automatic solution of Jigsaw puzzles. Computational Geometry, 28(2�3):165�
174, June 2004.

[37] Arthur Ardeshir Goshtasby, George C. Stockman, and Carl V. Page. A region-
based approach to digital image registration with subpixel accuracy. IEEE Trans-
actions on Geoscience and Remote Sensing, GE-24(3):390�399, May 1986.

[38] Venu Govindu and Chandra Shekhar. Alignment using distributions of local ge-
ometric properties. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 21(10):1031�1043, October 1999.

[39] Hongyu Guo, Anand Rangarajan, Sarang C. Joshi, and Laurent Younes. Non-
rigid registration of shapes via di�eomorphic point matching. In Proceedings of



Bibliography 103

IEEE International Symposium on Biomedical Imaging: From Nano to Macro,
volume 1, pages 924�927, Arlington, VA, USA, April 2004. IEEE.

[40] Rami Hagege and Joseph M. Francos. Parametric estimation of two dimensional
a�ne transformations. In Proceedings of International Conference on Acoustics,
Speech, and Signal Processing, volume 3, pages 305�308, Montreal, May 2004.
IEEE.

[41] Rami Hagege and Joseph M. Francos. Parametric estimation of multi-dimensional
a�ne transformations: An exact linear solution. In Proceedings of International
Conference on Acoustics, Speech, and Signal Processing, volume 2, pages 861�
864, Philadelphia, USA, March 2005. IEEE.

[42] Rami Hagege and Joseph M. Francos. Linear estimation of sequences of multi-
dimensional a�ne transformations. In Proceedings of International Conference on
Acoustics, Speech, and Signal Processing, volume 2, pages 785�788, Toulouse,
France, May 2006. IEEE.

[43] Rami R. Hagege and Joseph M. Francos. Estimation of a�ne geometric trans-
formations of several objects from global measurements. In Proceedings of IEEE
International Workshop on Multimedia Signal Processing, pages 1�5, Rio de
Janeiro, Brazil, October 2009.

[44] Michael Sass Hansen, Mads Fogtmann Hansen, and Rasmus Larsen. Di�eo-
morphic statistical deformation models. In Proceedings of IEEE International
Conference on Computer Vision, pages 1�8, Rio de Janeiro, Brazil, October
2007.

[45] Kevin Hardinge, Martyn L. Porter, Peter R. Jones, David W. L. Hukins, and
Christopher J. Taylor. Measurement of hip prostheses using image analysis. The
maxima hip technique. Journal of Bone and Joint Surgery, 73-B(5):724�728,
September 1991.

[46] Janne Heikkilä. Pattern matching with a�ne moment descriptors. Pattern Recog-
nition, 37(9):1825�1834, September 2004.

[47] Derek L. G. Hill, Philipp G. Batchelor, Mark Holden, and David J. Hawkes.
Medical image registration. Physics in Medicine and Biology, 46(3):R1�R45,
March 2001.

[48] Fawaz Hjouj and David W. Kammler. Identi�cation of re�ected, scaled, trans-
lated, and rotated objects from their radon projections. IEEE Transactions on
Image Processing, 17(3):301�310, March 2008.



104 Bibliography

[49] Je�rey Ho, Ming-Hsuan Yang, Anand Rangarajan, and Baba Vemuri. A new
a�ne registration algorithm for matching 2D point sets. In Proceedings of IEEE
Workshop on Applications of Computer Vision, pages 25�31, Austin, TX, USA,
February 2007. IEEE.

[50] Ming-Kuei Hu. Visual pattern recognition by moment invariants. IRE Transac-
tions on Information Theory, 8(2):179�187, February 1962.

[51] Qi-Xing Huang, Simon Flöry, Natasha Gelfand, Michael Hofer, and Helmut
Pottmann. Reassembling fractured objects by geometric matching. ACM Trans-
actions on Graphics, 25(3):569�578, July 2006.

[52] Paresh Jain and C. V. Jawahar. Homography estimation from planar contours.
In Proceedings of International Symposium on 3D Data Processing, Visualizatio-
nand Transmission, pages 877�884, Chapel Hill, NC, USA, June 2006.

[53] Bing Jian and Baba C. Vemuri. A robust algorithm for point set registration
using mixture of gaussians. In Proceedings of IEEE International Conference on
Computer Vision, volume 2, pages 1246�1251, Beijing, China, October 2005.
IEEE.

[54] Alexander Kadyrov and Maria Petrou. A�ne parameter estimation from the Trace
transform. IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(10):1631�1645, October 2006.

[55] Martin Kampel and Robert Sablatnig. 3D puzzling of archaeological fragments. In
Proceedings of Computer Vision Winter Workshop, pages 31�40, Piran, Slovenia,
February 2004.

[56] Shunichi Kaneko, Yutaka Satohb, and Satoru Igarashi. Using selective correlation
coe�cient for robust image registration. Pattern Recognition, 36(5):1165�1173,
May 2003.

[57] Juho Kannala, Esa Rahtu, Janne Heikkilä, and Mikko Salo. A new method for
a�ne registration of images and point sets. In Proceedings of Scandinavian Con-
ference on Image Analysis, volume 3540 of Lecture Notes in Computer Science,
pages 224�234, Joensuu, Finland, June 2005. Pattern Recognition Society of
Finland, Springer.

[58] Jeongtae Kim and Je�rey A. Fessler. Intensity-based image registration us-
ing robust correlation coe�cients. IEEE Transactions on Medical Imaging,
23(11):1430�1444, November 2004.



Bibliography 105

[59] Stefan Klein, Josien P. Pluim, Marius Staring, and Max A. Viergever. Adaptive
stochastic gradient descent optimisation for image registration. International
Journal of Computer Vision, 81(3):227�239, March 2009.

[60] Reinhard Klette and Jovi²a �uni¢. Towards experimental studies of digital mo-
ment convergence. Technical Report CITR-TR-61, Computer Science Depart-
ment of The University of Auckland CITR at Tamaki Campus, Auckland, New
Zealand, June 2000.

[61] Reinhard Klette and Jovi²a �uni¢. Multigrid convergence of calculated features
in image analysis. Journal of Mathematical Imaging and Vision, 13(3):173�191,
December 2004.

[62] Weixin Kong and Benjamin. B. Kimia. On solving 2D and 3D puzzles using
curve matching. In Proceedings of Computer Vision and Pattern Recognition,
volume 2, pages 583�590, Kauai, HI, USA, December 2001. IEEE.

[63] M. Pawan Kumar, Sujit Kuthirummal, C. V. Jawahar, and P. J. Narayanan.
Planar homography from Fourier domain representation. In Proceedings of Inter-
national Conference on Signal Processing and Communications, pages 560�564,
Bangalore, India, December 2004. IEEE.

[64] Vincent Lepetit and Pascal Fua. Keypoint recognition using randomized trees.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(9):1465�
1479, September 2006.

[65] David G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, 60(2):1573�1405, November 2004.

[66] J. B. Antoine Maintz and Max A. Viergever. A survey of medical image registra-
tion. Medical Image Analysis, 2(1):1�36, March 1998.

[67] Siddharth Manay, Daniel Cremers, Byung-Woo Hong, Anthony J. Yezzi Jr., and
Stefano Soatto. Integral invariants for shape matching. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 28(10):1602�1618, October 2006.

[68] Steve Mann and Rosalind W. Picard. Video orbits of the projective group a simple
approach to featureless estimation of parameters. IEEE Transactions on Image
Processing, 6(9):1281�1295, September 1997.

[69] Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear
parameters. SIAM Journal on Applied Mathematics, 11(2):431�441, June 1963.



106 Bibliography

[70] Jonah C. McBride and Benjamin B. Kimia. Archaeological fragment reconstruc-
tion using curve-matching. In Proceedings of International Conference on Com-
puter Vision and Pattern Recognition Workshop, volume 1, page 3, Madison, WI,
USA, June 2003.

[71] Robert A. McLaughlin, John Hipwell, David J. Hawkes, J. Alison Noble, James V.
Byrne, and Tim Cox. A comparison of 2D-3D intensity-based registration and
feature-based registration for neurointerventions. In Proceedings of International
Conference on Medical Image Computing and Computer-Assisted Intervention,
volume 2489 of Lecture Notes in Computer Science, pages 517�524, Tokyo,
Japan, September 2002. Springer.

[72] Graham McNeill and Sethu Vijayakumar. Hierarchical procrustes matching for
shape retrieval. In Bob Werner, editor, Proceedings of Computer Vision and
Pattern Recognition, volume 1, pages 885�894, New York, NY, USA, June 2006.
IEEE.

[73] Russell Merris. Combinatorics. Wiley-Interscience Series in Discrete Mathemat-
ics and Optimization. John Wiley & Sons, 2nd edition, August 2003. ISBN:
047126296X.

[74] Oliver Musse, Fabrice Heitz, and Jean-Paul Armspach. Topology preserving de-
formable image matching using constrained hierarchical parametric models. IEEE
Transactions on Image Processing, 10(7):1081�1093, July 2001.

[75] Andriy Myronenko, Xubo Song, and Miguel Á. Carreira-Perpi nán. Non-rigid point
set registration: Coherent point drift. In B. Schölkopf, J. Platt, and T. Ho�man,
editors, Proceedings of Conference on Neural Information Processing Systems,
pages 1009�1016, Vancouver, Canada, December 2006. MIT Press.

[76] Jozsef Nemeth, Csaba Domokos, and Zoltan Kato. Nonlinear registration of
binary shapes. In Proceedings of International Conference on Image Processing,
pages 1101�1104, Cairo, Egypt, November 2009. IEEE.

[77] Jozsef Nemeth, Csaba Domokos, and Zoltan Kato. Recovering planar homo-
graphies between 2D shapes. In Proceedings of International Conference on
Computer Vision, pages 2170�2176, Kyoto, Japan, September 2009. IEEE.

[78] Mads Nielsen, Peter Johansen, Andrew D. Jackson, Benny Lautrup, and Søren
Hauberg. Brownian warps for non-rigid registration. Journal of Mathematical
Imaging and Vision, 31(2�3):221�231, July 2008.



Bibliography 107

[79] Alina Oprea and Constantin Vertan. A quantitative evaluation of the hip prosthe-
sis segmentation quality in X-ray images. In Proceedings of International Sym-
posium on Signals, Circuits and Systems, volume 1, pages 1�4, Iasi, Romania,
July 2007. IEEE.

[80] Georgios Papaioannou and Evaggelia-Aggeliki Karabassi. On the automatic as-
semblage of arbitrary broken solid artefacts. Image and Vision Computing,
21(5):401�412, May 2003.

[81] Senthil Periaswamy and Hany Farid. Medical image registration with partial data.
Medical Image Analysis, 10(3):452�464, June 2006.

[82] Johanna Pettersson, Hans Knutsson, and Magnus Borga. Non-rigid registration
for automatic fracture segmentation. In Proceedings of International Conference
on Image Processing, pages 1185�1188, Atlanta, GA, USA, October 2006. IEEE.

[83] Miguel S. Prieto and Alastair R. Allen. Using self-organising maps in the detection
and recognition of road signs. Image and Vision Computing, 27(6):673�683, May
2009.

[84] Esa Rahtu, Mikko Salo, Janne Heikkilä, and Jan Flusser. Generalized a�ne mo-
ment invariants for object recognition. In Proceedings of International Conference
on Pattern Recognition, volume 2, pages 634�637, Hong Kong, China, August
2006. IEEE.

[85] Dan Raviv, Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. Full
and partial symmetries of non-rigid shapes. International Journal of Computer
Vision, 89(1):19�39, August 2010.

[86] Martin Reuter. Hierarchical shape segmentation and registration via topological
features of Laplace-Beltrami eigenfunctions. International Journal of Computer
Vision, 89(2):287�308, 2010. To appear.

[87] Raif M. Rustamov. Laplace-Beltrami eigenfunctions for deformation invariant
shape representation. In Proceedings of Eurographics Symposium on Geometry
Processing, pages 225�233, Barcelona, Spain, July 2007. Eurographics, ACM
SIGGRAPH.

[88] Joaquim Salvi, Carles Matabosch, David Fo�, and Josep Forest. A review of
recent range image registration methods with accuracy evaluation. Image and
Vision Computing, 25(5):578�596, May 2007.



108 Bibliography

[89] Alexander Shekhovtsov, Ivan Kovtun, and Václav Hlavá£. E�cient MRF de-
formation model for non-rigid image matching. Computer Vision and image
Understanding, 112(1):91�99, October 2008.

[90] Katherine M. Simonson, Steven M. Drescher, and Franklin R. Tanner. A
statistics-based approach to binary image registration with uncertainty analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(1):112�125,
January 2007.

[91] Maneesh Singh, Himanshu Arora, and Narendra Ahuja. Robust registration and
tracking using kernel density correlation. In Proceedings of IEEE Workshop on
Image and Video Registration, pages 174�182, Washington DC, USA, July 2004.
IEEE.

[92] Nata²a Sladoje and Joakim Lindblad. Estimation of moments of digitized objects
with fuzzy borders. In Fabio Roli and Sergio Vitulano, editors, Proceedings
of International Conference on Image Analysis and Processing, volume 3617 of
Lecture Notes in Computer Science, pages 188�195, Cagliari, Italy, September
2005. Springer.

[93] Nata²a Sladoje and Joakim Lindblad. High precision boundary length estimation
by utilizing gray-level information. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31(2):357�363, February 2009.

[94] J. Stoer and R. Bulrisch. introduction to Numerical Analysis, volume 12 of Test
in Applied mathematics. Springer, third edition, 2002.

[95] Tomà² Suk and Jan Flusser. A�ne normalization of symmetric objects. In Jacques
Blanc-Talon, Wilfried Philips, Dan Popescu, and Paul Scheunders, editors, Pro-
ceedings of International Conference on Advanced Concepts for Intelligent Vision
Systems, volume 3708 of Lecture Notes in Computer Science, pages 100�107,
Antwerp, Belgium, September 2005. Springer.

[96] Hemant D. Tagare, David Groisser, and Oskar Skrinjar. Symmetric non-rigid
registration: A geometric theory and some numerical techniques. Journal of
Mathematical Imaging and Vision, 34(1):61�88, May 2009.

[97] Attila Tanács, Csaba Domokos, Nata²a Sladoje, Joakim Lindblad, and Zoltan
Kato. Recovering a�ne deformations of fuzzy shapes. In Arnt-Børre Salberg,
Jon Yngve Hardeberg, and Robert Jenssen, editors, Proceedings of Scandina-
vian Conference on Image Analysis, volume 5575 of Lecture Notes in Computer
Science, pages 735�744, Oslo, Norway, June 2009. Springer.



Bibliography 109

[98] Attila Tanács, Nata²a Sladoje, Joakim Lindblad, and Zoltan Kato. Estimation of
linear deformations of 3D objects. In Proceedings of International Conference on
Image Processing, Hong Kong, China, September 2010. IEEE. Accepted.

[99] Michael Reed Teague. Image analysis via the general theory of moments. Journal
of the Optical Society of America, 70:920�930, August 1980.

[100] Corey Toler-Franklin, Benedict Brown, Tim Weyrich, Thomas Funkhouser, and
Szymon Rusinkiewicz. Multi-feature matching of fresco fragments. Technical Re-
port TR-874-10, Department of Computer Science, Princenton University, Prince-
ton, NJ, USA, May 2010.

[101] Zhuowen Tu, Songfeng Zheng, and Alan Yuille. Shape matching and registration
by data-driven EM. Computer Vision and image Understanding, 109(3):290�304,
March 2008.

[102] Göktürk Üçoluk and I. Hakki Toroslu. Automatic reconstruction of broken 3-D
surface objects. Computers & Graphics, 23(4):573�582, August 1999.

[103] Shinji Umeyama. Least-squares estimation of transformation parameters between
two point patterns. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 13(4):376�380, April 1991.

[104] L. van Gool, T. Moons, E. Pauwels, and A. Oosterlinck. Vision and Lie's approach
to invariance. Image and Vision Computing, 13:259�277, 1995.

[105] Jose A. Ventura and Wenhua Wan. Accurate matching of two-dimensional
shapes using the minimal tolerance zone error. Image and Vision Computing,
15(12):889�899, December 1997.

[106] Jan Verschelde. Algorithm 795: PHCpack: a general-purpose solver for poly-
nomial systems by homotopy continuation. ACM Transactions on Mathematical
Software, 25(2):251�276, June 1999.

[107] Jan Verschelde. PHCpack: a general-purpose solver for polynomial systems by
homotopy continuation. software, July 1999.

[108] Jan Verschelde, Pierre Verlinden, and Ronald Cools. Homotopies exploiting new-
ton polytopes for solving sparse polynomial systems. SIAM Journal on Numerical
Analysis, 31(3):915�930, June 1994.

[109] Jianhua Wang and Yuncai Liu. Characteristic line of planar homography matrix
and its applications in camera calibration. In Proceedings of International Con-
ference on Pattern Recognition, volume 1, pages 147�150, Hong-kong, China,
August 2006. IEEE.



110 Bibliography

[110] Simon Winkelbach and Friedrich M. Wahl. Pairwise matching of 3D fragments
using cluster trees. International Journal of Computer Vision, 78(1):1�13, June
2008.

[111] Simon Winkelbach, Ralf Westphal, and Thomas Goesling. Pose estimation of
cylindrical fragments for semi-automatic bone fracture reduction. In Bernd
Michaelis and Gerald Krell, editors, Proceedings of Annual Symposium of the
German Association for Pattern Recognition, volume 2781 of Lecture Notes
in Computer Science, pages 556�573, Magdeburg, Germany, September 2003.
Springer.

[112] Stefan Wörz and Karl Rohr. Physics-based elastic registration using non-radial
basis functions and including landmark localization uncertainties. Computer Vi-
sion and image Understanding, 111(3):263�274, September 2008.

[113] Lyubomir Zagorchev and Ardeshir Goshtasby. A comparative study of transfor-
mation functions for nonrigid image registration. IEEE Transactions on Image
Processing, 15(3):529�538, March 2006.

[114] Yani Zhang, Changyun Wen, and Ying Zhang. Recognition of symmetrical images
using a�ne moment invariants in both frequency and spatial domains. Pattern
Analysis & Applications, 5(3):316�325, August 2002.

[115] Barbara Zitová and Jan Flusser. Image registration methods: A survey. Image
and Vision Computing, 21(11):977�1000, October 2003.


