
University of Szeged
Institute of Informatics

Parametric Estimation of A�ne
Deformations without

Correspondences

Summary of the Ph.D. Dissertation

by

Csaba Domokos

Advisor:

Dr. Zoltán Kató

Szeged
2010



Introduction
Image registration is a crucial step in almost every image processing application where images
of di�erent views or sensors of an object need to be compared or combined. Typical application
areas include object recognition, target tracking in video sequences, monitoring land usage on
satellite images, super resolution, image mosaicking, and medical image analysis. In a general
setting, one is looking for a transformation which aligns two images such that one image
(called the observation) becomes similar to the second one (called the template). Due to
the large number of possible transformations, the problem is inherently ill-de�ned unless this
variability is taken into account.

In many situations, the variability of image features is so complex that the only feasible way
to register such images is to reduce them to a binary representation and solve the registration
problem in that context. X-ray images (Fig. 1) are good examples as they usually exhibit highly
nonlinear radiometric distortions, making registration hard to solve. If perfect greylevel images
were available, the estimation of an aligning transformation could be reduced to solving of a
linear system of equations [1; 2]. In real applications, however, such a strict requirement cannot
be satis�ed. We will show that registration can be solved without making use of any intensity
information. In real situations, the images obtained are related by a projective transformation
(also called the planar homography). Although the projective transformation is nonlinear, it
can often be successfully modelled by an a�ne transformation, which is linear. Owing to its
linear property, the a�ne transformation is of great importance in image registration.

This thesis summarizes the author's research results in binary image registration without
correspondences, where a�ne transformations are considered.

Basic Solution
We will introduce our preliminary notations and also formulate the basic solution of the prob-
lem. Let us denote the homogenous coordinates of the n dimensional template and observation
points by x = [x1, x2, . . . , xn, 1]T , y = [y1, y2, . . . , yn, 1]T ∈ Pn, respectively. The identity
relation between the shapes is then as follows [3; 4]

y = Ax ⇔ x = A−1y , (1)
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where A is the unknown a�ne transformation that we want to recover:

A =




a11 . . . a1n a1(n+1)
... . . . ... ...

an1 . . . ann an(n+1)

0 . . . 0 1




, and A−1 =




q11 . . . q1n q1(n+1)
... . . . ... ...

qn1 . . . qnn qn(n+1)

0 . . . 0 1




.

Here we are interested in a direct approach that does not involve solving the correspondence
problem.

When we observe some image features (e.g. grey-levels of the pixels [2]) that are invariant
under this transformation, we can de�ne an additional relation

f(x) = g(Ax) = g(y) , (2)

where f, g : Pn → R are covariant functions under the transformation A. The above relations
are still valid when a function acts on both sides of Eq. (1) [2; 3; 4] and Eq. (2) [5; 6; 7].
Indeed, for a properly chosen ωp : Pn → R and ωc : R→ R, we get

ωp(y) = ωp(Ax), and (3)

ωc (g(y)) = ωc (g(Ax)) = ωc (f(x)) . (4)

Hence we can generate as many linearly independent equations as needed by making use
of the nonlinear ωp and ωc functions. The nonlinear function ωp acts directly on the point
coordinates and hence on the unknown parameters of A and results in a nonlinear system of
equations [3; 4]; in contrast ωc acts on the covariant functions f and g that give rise to a linear
system of equations [2; 5; 6]. Now let concrete shapes be represented by their characteristic
function 1 : Pn → {0, 1}, where 0 and 1 correspond to the background and foreground,
respectively. If we denote the template by 1t and the observation by 1o, then Eq. (1) implies
that [3; 4]

1t(x) = 1o(Ax) = 1o(y) . (5)
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Parametric Estimation of A�ne Deformations of Binary
Images: Polynomial Solution
Here we propose a novel approach where the exact transformation (aligning a known 2D shape
and its distorted observation), is found from the solution of a polynomial system of equations.
Classical feature-based approaches would identify point pairs and solve the system of linear
equations in Eq. (1). However, we are interested in a direct solution without solving the
correspondence problem.

We will start with the identity relation de�ned by Eq. (1) and we will take the Lebesgue
integral of both sides of the identity relation [3; 4]

∫

Pn

x dx =
1

|A|
∫

Pn

A−1y dy , (6)

where the integral transformation x = A−1y, dx = |A−1|dy has been applied. The determi-
nant |A| is the Jacobian and we can assume that |A| is always positive. Furthermore, it can
be evaluated by integrating [3; 4]

∫

Pn

1t(x) dx =
1

|A|
∫

Pn

1o(y) dy ⇔ |A| =
∫
Pn 1o(y) dy∫
Pn 1t(x) dx ,

which can be directly computed from the input images. Since the characteristic functions only
take values from {0, 1}, we can further simplify the above integrals [3; 4]:

∫

Pn

1t(x) dx ≡
∫

Ft

dx ,

where the �nite domain Ft consists of the template foreground regions: Ft = {x ∈ Pn|1t(x) =

1}. Similarly, we can restrict the integral of 1o(y) to the observation foreground regions Fo.
Now multiplying Eq. (6) by Eq. (5), we get a �nite integral equation [3; 4]:

∫

Ft

x dx =
1

|A|
∫

Fo

A−1y dy . (7)

This equation implies that the �nite domains Ft and Fo are also related via Fo = AFt; i.e. we
match the shapes as a whole instead of point to point correspondences. We will use Eq. (3)
and get the following integral equation from Eq. (7) [3; 4]

∫

Ft

ω(x) dx =
1

|A|
∫

Fo

ω(A−1y) dy . (8)

The basic idea behind this approach is to generate enough linearly independent equations by
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making use of ω functions. Note, however, that the generated equations contain no new
information; they simply impose new linearly independent constraints.

Proposition 1.1 Let ω : Pn → Pn and x ∈ Pn (n ∈ N). If the kth coordinate of ω(x),
denoted by ω(k)(x) = pk is a real n-variate polynome, 1 ≤ k ≤ n, then applying ω in Eq. (8)
results in a polynomial system of equations of degree deg(pk) at most.

From now on we will just consider the 2-dimensional case. The class of xl(l ∈ N0) functions
is an ideal choice for ω. We have the following polynomial equations for k = 1, 2 [3; 4]:

|A|
∫

Ft

xl
k dx =

l∑

i=1

(
l

i

) i∑

j=0

(
i

j

)
ql−i
k1 qi−j

k2 qj
k3

∫

Fo

yl−i
1 yi−j

2 dy l = 1, 2, 3 . (9)

Although we have constructed our equations in the continuum, in practice the integrals
can only be approximated by a discrete sum. The images need to be scanned only once, and
the integrals as well as the Jacobian can be evaluated during this scan. It is clear that the
solution is obtained in a single pass without any loop or optimization.

Now we assume that the observed point coordinates are around the true ones, hence we
will consider i.i.d. additive Gaussian noise model on the observation coordinates. The identity
relation Eq. (1) thus becomes [4]

y∗ = y + ε(y) = Ax + ε∗(y∗) ⇔ x = A−1 (y∗ − ε∗(y∗)) ,

where ε(y) ≡ ε∗(y∗) =
[
ε∗1(y

∗), ε∗2(y
∗), 0

]T is the noise function which gives a random
translation at each point y∗ = [y∗1, y

∗
2, 1]T . Overall, we can say that the error caused by

i.i.d. additive Gaussian noise with standard deviance σ1, σ2 on the point coordinates of the
observation is as follows [4]:

Equation Error term
|A|: 0

ω(x) = x: 0

ω(x) = [x2
1, x

2
2, 1]T : q2

k1σ
2
1 + q2

k2σ
2
2

ω(x) = [x3
1, x

3
2, 1]T : 3qk3(q

2
k1σ

2
1 + q2

k2σ
2
2)

The proposed algorithm was tested on a large database of binary images of size 1000×1000.
The dataset consisted of 56 di�erent shapes and their transformed versions, giving a total of
over 50 000 images. In order to quantitatively evaluate the registration results, we de�ned
two kinds of error measures:

ε =
1

|Ft|
∑

p∈Ft

‖(A− Â)p‖, and δ =
|Fr 4 Fo|
|Fr|+ |Fo| · 100% , (10)
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where 4 means the symmetric di�erence, while Ft, Fo and Fr denote the set of pixels of the
template, observation and registered shape, respectively. We also examined the robustness of
the proposed approach in the case of incomplete objects. The results show that our method
is quite robust, while the error rate of other state-of-the-art methods increases considerably.

δ = 3.69% δ = 7.62% δ = 5.94% δ = 4.13% δ = 1.45%

Figure 1: Registration of hip prosthesis X-ray images. The overlaid contour in the second row
shows the aligned contour of the corresponding image in the �rst row.

The fundamental di�erence between classical image registration algorithms and ours is that
our model works without any landmark, feature detection or optimization, incorporating a novel
idea where the transformation is obtained as a solution of a set of polynomial equations. It
uses all the available information in the input images and provides an exact solution regardless
of the magnitude of the transformations. The experimental results show that the proposed
method provides good alignment on both real and synthetic images (see Table 1). Moreover,
it is robust in the case of noisy observations. The method was successfully applied in the
registration of hip prosthesis X-ray images (Fig. 1).

Table 1: Registration results of the proposed method on 49 282 synthetic observations of 56
shapes. There was no solution in 5.47% of the test cases.

ε (pixel) δ (%) CPU time (sec.)
Median 0.51 0.15 0.98
Mean 36.98 3.36 0.94
Variance 154.18 12.55 0.2
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A�ne Shape Alignment Using Covariant Gaussian Den-
sities
Here, we propose a novel approach for the estimation of 2D a�ne transformations, where
the exact transformation is got from a least-squares solution of a linear system of equations.
It is constructed by �tting Gaussian densities to the shapes which preserve the e�ect of the
unknown transformation. The crucial step of the proposed approach is to construct a pair of
covariant functions satisfying Eq. (2). Unfortunately, the construction of such functions for
binary images is quite a challenging task due to the lack of radiometric information.

Here we need to use inhomogeneous representations of the coordinates, i.e. x = [x1, x2, . . . , xn]T ∈
Rn and y = [y1, y2, . . . , yn]T ∈ Rn. Hence the identity relation Eq. (1) becomes [5; 6; 7]

y = Ax + t ⇔ x = A−1(y − t) = A−1y −A−1t , (11)

where (A, t) ∈ (Rn×n × Rn×1) is the unknown a�ne transformation that we want to re-
cover. We can safely consider the points of the template as a sample from a bivariate nor-
mally distributed random variable denoted by X ∼ N(µ, Σ) with probability density function
(PDF) [5; 6; 7]:

p(x) =
1

2π
√
|Σ| exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
.

We make use of the Gaussian PDF, which is over the shape, to construct a covariant function
pair. We should add that the shape is not represented or modelled by a Gaussian; just the
mean and covariance value of the points are estimated. Applying any linear transformation
to X also results in a normal random variable Y = AX + t with parameters X (A,t)7→ Y ∼
N(µ′, Σ′) = N(Aµ + t,AΣAT ). The parameters of the PDFs N(µ, Σ) and N(µ′, Σ′) can
be easily estimated from the input images. The relationship between p and s is [5; 6; 7]

s(y) =
1

2π
√
|Σ′| exp

(
−1

2
(y − µ′)T Σ′−1(y − µ′)

)
=

1

|A|p(x) ,

where |A| can be readily derived from |A| =
√
|Σ′|/|Σ|, since AΣAT = Σ′. By making the

necessary equivalence conversions, we get the Mahalanobis distance [5; 6; 7]. We then de�ne
our covariant functions P, S : Rn → R by [5; 6; 7]

P (x) = (x− µ)T Σ−1(x− µ) and S(y) = (y − µ′)T Σ′−1(y − µ′) .

Hence
P (x) = S(Ax + t) = S(y) . (12)
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Multiplying Eq. (11) by Eq. (12), we can integrate out the individual point correspondences [5;
6; 7] ∫

Ft

xP (x) dx = |A|−1

∫

Fo

A−1(y − t)S(y) dy ,

where we have used the integral transformation x = A−1(y − t), dx = |A|−1dy. In order
to generate more linearly independent equations, we will adopt suitable nonlinear functions
ω : R→ R and generate new equations according to Eq. (4) [5; 6; 7]:

∫

Ft

xω
(
P (x)

)
dx = |A|−1

∫

Fo

A−1(y − t)ω
(
S(y)

)
dy. (13)

Adopting a set of linearly independent functions {ωi}m
i=1, we can expand the above integrals

and get the following linear systems for all k = 1, . . . , n [5; 6; 7]

|A|
∫

Ft

xkωj

(
P (x)

)
dx =

n∑

i=1

qki

∫

Fo

yiωj

(
S(y)

)
dy + qk(n+1)

∫

Fo

ωj

(
S(y)

)
dy ,

where j = 1, . . . , m. The solution of this linear system provides the parameters of the trans-
formation. If m > 3 then the system is overdetermined and the result is obtained from a
least-squares solution.

We could de�ne our covariant functions P ,S : Rn → R as in [6; 7]

P(x) = 2π
√
|Σ|p(x) and S(y) = 2π

√
|Σ′|s(y) . (14)

Assuming that the template object consists of ` ≥ 2 disjoint shapes, each component has
exactly one corresponding shape on the observation. As a consequence, we can construct
covariant functions Pi(x), Si(y) for each pair of shapes satisfying Eq. (12). Furthermore, the
overall shape gives rise to a pair of covariant functions P0(x) and S0(y). As such a matching
is usually not known, we will sum these relations, yielding covariant function [6; 7]

P (x) ≡
m∑

i=0

Pi(x) =
m∑

i=0

Si(y) ≡ S(y). (15)

Note that these sums are mixtures of unnormalized Gaussian PDFs, which can also be in-
terpreted as a consistent colouring of the template and observation, respectively (see Fig. 2),
which preserves the e�ect of the transformation. Similar to Eq. (13), we may use the following
relation [6; 7]:

∑̀

i=1

∫

Ft

xω
(Pi(x)

)
dx = |A|−1

∫

Fo

A−1(y − t)
∑̀

i=1

ω
(Si(y)

)
dy .
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(a) (b) (c)

Figure 2: Gaussian PDFs �tted over a compound shape yield a consistent colouring. (a)
Original shape. (b) A 3D plot of the Gaussian PDFs over the elliptic domain with r = 2. (c)
Gaussian densities represented as a greyscale image. The white contour de�nes component
boundaries.

A trivial choice for the domains in our integral equation Eq. (13) is the foreground regions
Ft and Fo [5]. A clear disadvantage of this approach is that any segmentation error will
inherently result in erroneous integrals and cause a misalignment. The key idea is to make use
of the statistics of the whole template and observation objects. Since the equidensity contours
of these PDFs are ellipsoids, it is natural to choose a corresponding pair of such ellipses as the
integration domain.

We proposed two di�erent approaches to construct our linear system of equations. First,
when the object has only one part, the foreground regions of the objects could only be used
for the integration domain. In this case, the covariant functions are constructed by making use
of Mahalanobis distance, de�ned over the objects, and we have to integrate over the shape
domains (Single density). In the second case, when we have compound objects we choose
an elliptic domain for integration, and the covariant functions are de�ned by a mixture of
Gaussians. Our equations were constructed in the continuum, but in practice we only have a
limited precision digital image. Hence, the integrals will be approximated by �nite sums over
a grid with su�cient resolution (MPDF with �nite sums over a grid). However, in the case
of compound objects, we also provide an e�cient numerical scheme in order to evaluate the
integrals in closed forms (MPDF with an e�cient numerical scheme).

While other choices of ωi are also possible, the power functions allow a closed form com-
putation of the integrals over the elliptic domains Ft and Fo. A clear bene�t of this numerical
scheme is near-real time performance. We found empirically that the lth power and lth root
functions with odd l, i.e. the set {x, x3, x5, 3

√
x, 5
√

x}, produced satisfactory alignments in all
of our test cases.

In order to analyze the performance of our algorithm, we created an image dataset con-
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(a) Missing pixels (b) Boundary error (c) Modelling error

Figure 3: Sample observations for testing robustness. In c) the true a�ne contours are
highlighted in red.

taining synthetically generated observations, where the applied transformations were randomly
composed. The method was tested on synthetic as well as on real images. Then we eval-
uated the same kinds of error measure as those de�ned in Eq. (10). The robustness of the
proposed algorithm was analyzed against missing pixels, boundary and modelling errors (see
Fig. 3). Besides using real images with these kinds of errors, we also conducted a systematic
test on simulated data. Table 2 shows the median of error measures obtained by our proposed
algorithms.

Method ε (pixel) δ % CPU time (sec.)
Single density [5] 0.64 0.31 0.48
MPDF with �nite sums over a grid [6] 0.58 0.25 4.65
MPDF with an e�cient numerical scheme [7] 0.54 0.19 0.33

Table 2: Median of error measures and runtimes obtained by the proposed methods on 1500
randomly generated observations.

With our method point correspondences are not required, nor the solution of a complex
optimization problem. It has linear time complexity and yields an exact solution regardless
of the size of the deformation. In the case of compound shapes, we also propose a robust
and e�cient numerical scheme for achieving near real-time performance. However, due to
its linear time complexity, the proposed algorithm runs quite fast on large images, so we
need not compromise quality when the CPU time is a critical issue. The experimental results
demonstrate that our method provides good alignments on both real and synthetic images.
Moreover, its robustness was demonstrated. In general, our method will perform well as long as
the �rst and second order statistics of shapes do not change dramatically, hence its superiority
can be fully exploited in applications where occlusion can be kept to a minimum.
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Realignment of Deformed Object Fragments
Now we address the problem of simultaneously estimating di�erent linear deformations, result-
ing in a global nonlinear transformation between an original object and its broken fragments
without correspondences. Our purpose is to realign 2 ≤ ` ∈ N shapes of the observation to
their original position on the template. The transformation is nonlinear and is made from `

linear transformations, where the ith transformation is denoted by Ai. This is also known as
the puzzle problem, which is not only interesting from a theoretical point of view, but also
arises in many application domains like archaeology and medical imaging (e.g. bone fracture
reduction).

We will assume that the overall segmentation of the template is unknown, i.e. its partition-
ing is hidden. The labelling of shapes on the input images is given by the functions Lt,Lo :

Pn → {0, 1, . . . , `}, which assign a value 0 to the background. More precisely, Lt is hidden,
since the partitioning of the template is unknown. Furthermore Di = {x ∈ Pn|Lt(x) = i}
and D′i = {y ∈ Pn|Lo(y) = i} denote the points of the ith template shape and its distorted
observation, respectively. If the shape correspondence were known, a pairwise alignment could
be recovered by any standard binary registration method like that described in [4]. Unfor-
tunately, to �nd this correspondence is far from trivial, hence we are interested in a direct
solution without identifying corresponding object-pairs.

Let us now consider the ith fragment, where the identity relation Eq. (1) [4; 8]:

x = Aiy .

Notice that the identity relation remains valid when an arbitrary nonlinear ω : Pn → R function
acts on the both sides of (Eq. (3)) [4; 8]:

ω(x) = ω(Aiy) . (16)

Integrating over the domain Di, we get [4; 8]
∫

Di

ω(x) dx = |Ai|
∫

D′i
ω(Aiy) dy , (17)

where the integral transformation x = Aiy, dx = |Ai|dy has been applied and |Ai| is the
Jacobian determinant of the ith transformation. The nonlinear function ω acts directly on the
point coordinates and hence on the unknown parameters of Ai resulting in a nonlinear system
of equations [4; 8]. Based on Eq. (17), we can construct as many equations as needed by
making use of a set of nonlinear functions.
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Hence we know relations for Eq. (17) between the ith shape-pair, but neither the parti-
tioning (i.e. the hidden labeling Lt) of the template nor correspondences between the shapes
is known. A standard technique is to sum all the equations for all shape domains Di and
solve the problem simultaneously, estimating all the parameters in one system of equations.
By making use of a set of {ωj}m

j=1 functions in Eq. (17), we get [8]:

∑̀

i=1

∫

Di

ωj(x) dx =
∑̀

i=1

|Ai|
∫

D′i
ωj(Aiy)dy .

Let Ft := ∪`
i=1Di, where Ft = {x ∈ Pn|Lt(x) 6= 0} is the shape domain corresponding to

the whole template. Therefore the left hand side of the above equation can be written as [8]

∑̀

i=1

∫

Di

ωj(x) dx =

∫
⋃`

i=1Di

ωj(x) dx =

∫

Ft

ωj(x)dx ,

which can be computed directly from the input image without knowing the partitioning Di.
The resulting system of equations has `n(n + 1) unknowns [8]:

∫

Ft

ωj(x) dx =
∑̀

i=1

|Ai|
∫

D′i
ωj(Aiy) dy j = 1, . . . , m . (18)

The solution of this system of equations provides all the unknown parameters of the overall
deformation. Since each ωj provides one equation, we need m ≥ `n(n + 1) linearly inde-
pendent functions to solve ` linear transformations. In practice, m > `n(n + 1), yielding an
overdetermined system where a least-squares solution is obtained.

Theoretically, any function satisfying Eq. (16) could be used to construct the system of
equations de�ned in Eq. (18). The solution is obtained via iterative least-squares minimization
algorithms like the Levenberg-Marquardt algorithm and requires a carefully chosen numerical
scheme. The solver needs to evaluate the equations for each iteration step, hence our aim is
to apply the kind of ωs that produce a nonlinear system of equations instead of a system of
integral equations (i.e. unknowns are emphasized in the integrals). It was shown in [4] that
choosing a set of polynomial functions will result in a polynomial system of equations, where
these integrals become precomputed constants. Based on these �ndings, the following set of
polynoms will be adopted [8]

{ωj}m
j=1 = {x 7→ xu1

1 . . . xun
n |u1, . . . , un ∈ N0,

n∑

i=1

ui ≤ d} , (19)

where ωj : Pn → R, d is the maximum degree, and the number of polynoms is given by
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m = 1
n!

∏n
i=1(d + i).

The coordinates of both images are normalized to the unit hyper-cube [−0.5, 0.5]n, in order
to avoid numerical stability due to the high powers. Let Nt and No denote the normalizing
transformations of the template and observation, respectively. Since a least-squares solution
involves minimizing the algebraic error of Eq. (18), we expect an equal contribution from
each equation in order to guarantee an unbiased error measure. In practice, only a limited
precision digital image is available, thus the integrals can only be approximated by a discrete
sum over the foreground pixels that introduce an inherent, although negligible error into our
computations [8]

1

cj

∑

x∈Ft

ωj(Ntx) =
1

cj

∑̀

i=1

|Ai|
∑

y∈D′
i

ωj(NoAiy) , (20)

where cj is an appropriate constant, corresponding to the integral
∫ |ωj(x)| dx over a hyper-

sphere with centre at the origin and a radius √n/2.
We apply the proposed framework to well-known classes of linear deformations: 2D and

3D a�ne and rigid-body transformations. 2D a�ne transformations are often used as a
linear approximation of projective distortions. When an object is broken into several parts,
the fragments are generally distorted by di�erent rigid-body transformations. 3D rigid-body
transformations are important in many medical applications.

We quantitatively evaluated the proposed algorithm on a large synthetic dataset containing
2D, 3D images, where linear (a�ne and rigid-body) transformations are considered. We then
conducted an extended analysis of numerical stability of the proposed algorithm. The results
show that the method is robust against segmentation errors. We present experimental results
on 2D real images as well as on volumetric medical images applied to surgical planning. In
practice, segmentation never produces perfect shapes. Therefore, besides using various kinds of
real images inherently subject to such errors, we also evaluated the robustness of the proposed
approach against di�erent types of segmentation errors.

A novel framework to solve shape realignment problem was proposed and applied to 2D
and 3D a�ne and rigid-body transformations (Fig. 4). In contrast to classical solutions based
on landmark extraction and correspondences, the proposed solution �nds the aligning transfor-
mations without any additional information. Essentially, the method consists of constructing a
polynomial system of equations whose solution directly provides the unknown parameters. The
quantitative evaluations on both 2D and 3D synthetic datasets demonstrate the performance
and robustness of the method and the results obtained on real images suggest that it can be
applied to various application domains. The main advantages are that the proposed method
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template obtained
by mirroring intact
bone

observation realigned bone fragments

Figure 4: Bone fracture reduction.

does not require point correspondences, it is quite fast, and it is easy to implement.

Summary of the Author's Contributions
In the following a listing of the most important results of the dissertation is given. The
work presented in this dissertation resulted in several publications. Table 3 summarizes which
publication covers which item of the thesis points.

I. ) The author addresses the problem of the estimation of a�ne transformations for aligning
a known 2D shape and its distorted observation. He proposes a novel approach where the
exact transformation is obtained as the solution of a polynomial system of equations.
He tested the proposed method on synthetic as well as on real images. The author
demonstrated the robustness of the algorithm in the presence of segmentation errors and
additive geometric noise too, then he successfully applied the method to the registration
of hip prosthesis X-ray images.

II.) The author proposes a novel approach for the estimation of 2D a�ne transformations
for aligning a planar shape and its distorted observation. He shows how the exact
transformation is obtained as a least-squares solution of a linear system of equations
constructed by �tting Gaussian densities to the shapes which preserve the e�ect of the
unknown transformation. In the case of compound shapes, the author also presents a
robust and e�cient numerical scheme that achieves a near real-time performance. He
tested the method on synthetic as well as on real images and demonstrated its robustness
in the case of missing pixels, boundary errors, and modelling errors.

III. ) The author considers the problem of realigning broken objects without correspondences,
where the segmentation of the overall template is known, but the segmentation of the
object parts is unknown. The author applies linear transformations between the object
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fragments and presents the method by using 2D and 3D a�ne transformations. He shows
that constructing and solving a polynomial system of equations provides the unknown
parameters of the alignment. Here he quantitatively evaluated the proposed algorithm
on a large synthetic dataset containing 2D and 3D images. He analyzes the numerical
stability of the method as well as its robustness against segmentation errors. He also
presents the results of experiments on 2D real images as well as on volumetric medical
images applied to surgical planning.

[3] [4] [5] [6] [7] [8]
I. • •
II. • • •
III. •

Table 3: The connection between the thesis points and the corresponding publications
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