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1 Introduction

Population dynamics, which models the time variations of the size and composition of

biological populations, has a history of several centuries and its development has extremely

accelerated with the appearance of the possibility of computer simulations.

In the thesis we study the stability and bifurcation properties of two population dy-

namical models, and we delineate an algorithm for calculating attractors of dynamical

systems which we created for the study of the two models as well as the computer pro-

gram realizing the algorithm.

The thesis is based on the following publications of the author:

• Dénes, A., Neimark�Sacker bifurcation in a discrete dynamical model of population

genetics, Electronic Journal of Qualitative Theory of Di�erential Equations, Proc.

8th Coll. Qualitative Theory of Di�. Equ., No. 6. (2008), 1�10.

• Dénes, A., Hatvani, L., Stachó, L. L., Eventual stability properties in a non-

autonomous model of population dynamics, Nonlinear Analysis 73 (2010) 650�659.

• Dénes, A., Makay, G., Attractors and basins of dynamical systems, Electronic Jour-

nal of Qualitative Theory of Di�erential Equations, No. 20. (2011), 1�11.

In this outline we use the same numbering and labeling as in the thesis.

2 The Tusnády model

Biological background

The genetic information of living beings is stored in the chromosomes. The segments of

the chromosomes that determine the di�erent properties are called genes, their di�erent

variants are called alleles, and their places in the chromosomes are called loci. The genotype

is determined by the two alleles which are really present in the cell. The distribution of

genotypes is mainly a�ected by selection, mutation and recombination. Selection means

that di�erent genotypes have di�erent chances to create o�spring. When a cell divides,

the copying of the chromosomes is not always perfect: certain segments can change. This

phenomenon is called mutation. During recombination the genes of the chromosome pairs

change.
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The model

Gábor Tusnády created a discrete population dynamical model which describes the change

of the distribution of gametes from generation to generation taking into account selection,

mutation and recombination. Let xk(r) denote the density of the kth gamete in a given

generation. The system of di�erence equations which describes the model is:

xk(r + 1) =

∑n
i,j=1 a(i, j, k)xi(r)xj(r)∑n
i,j,k=1 a(i, j, k)xi(r)xj(r)

,

where parameters a(i, j, k) include selection, mutation and recombination.

In Chapter 2 of the dissertetion we investigate this model in the case of one locus and

four alleles. Gábor Tusnády studied the accumulation points of the sequences obtained by

iterating the mapping, and by computer experiments he found some cases in which the

attractor of the system was not one point (i.e. no dynamical equilibrium arises amongst

the distributions), but a periodic orbit or even a chaotic set. Gábor Tusnády asked whether

this phenomenon could be established mathematically or was just caused by the errors of

numerical approximation. In the continuous case the explanation of a similar phenomenon

is the presence of a Hopf-bifurcation as it was shown in [6] by László Hatvani, Ferenc

Toókos and Gábor Tusnády .

Neimark�Sacker bifurcation

Gábor Tusnády observed the above phenomenon during computer experiments in the

following system:

x(r + 1) =


2084x2x4

38x1x2+414x2
2+2156x1x3+18x2x3+2100x2x4+226x3x4

16x2x4+226x3x4

38x1x2+414x2
2+2156x1x3+18x2x3+2100x2x4+226x3x4

38x1x2+18x2x3

38x1x2+414x2
2+2156x1x3+18x2x3+2100x2x4+226x3x4

414x2
2+2156x1x3

38x1x2+414x2
2+2156x1x3+18x2x3+2100x2x4+226x3x4

 (3.1)

In the thesis we show that the appearance of periodic solutions observed by Gábor

Tusnády can be established mathematically: it is caused by a Neimark�Sacker bifurcation.

First we investigated the system using the program for calculating attractors delineated in

Chapter 4. The �gures obtained changing parameter p = a(2, 4, 2) = a(4, 2, 2) suggest the

presence of Neimark�Sacker-bifurcation: a closed curve arises from the stable �xed point

of the system, while the �xed point gets unstable. The phenomenom when the dynamics
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of a system changes substantially at a small change of a parameter is called bifurcation.

The meaning of Neimark�Sacker bifurcation is the following:

De�nition 3.4. Let us consider the paramater-depending discrete dynamical system

xr+1 = F (xr, α), F : Rn × R → Rn

where F is smooth in x and α. Let x = x0 be the non-hyperbolic �xed point of the system

at α = α0. The phenomenon when the eigenvalues of the Jacobian ∂F/∂x(x0, α) pass

through the unit circle by changing parameter α is called Neimark�Sacker bifurcation.

The main result of Chapter 1 is the following theorem:

Theorem 3.5. Tusnády's system (3.1) undergoes a supercritical Neimark�Sacker bifurca-

tion at parameter value p = 139.455, i.e. a stable invariant curve bifurcates from a stable

�xed point, while the �xed point becomes unstable.

When we change the value of parameter p, a complex pair of eigenvalues of the Jacobian

passes through the unit circle. To this complex pair of eigenvalues corresponds a two-

dimensional unstable manifold of the �xed point. The invariant closed curve appears on

this manifold. To prove that a bifurcation occurs at this parameter value we have to verify

that the system satis�es some genericity conditions. Using monograph [9] we delineate the

procedure that we can use to prove the nondegenericity of the system. First we formulate

the general Neimark-Sacker bifurcation theorem for two-dimensional systems. In the case

of systems with dimension higher than 2 essentially the same takes place: there exists a

two-dimensional invariant manifold on which the system exhibits the bifurcation, while

the behaviour o� the manifold is �trivial�, as no bifurcation occurs there. In the thesis we

delineate a method with the help of which � using the eigenvalues of the Jacobian and

its transpose � we can �project� the system into the critical eigenspace. Finally, following

the steps of the procedure we prove Theorem (3.5).

3 Computer-aided examination of attractors of dynam-

ical systems

For the investigation of the model described in Chapter 3 we needed a program that

is able to calculate and represent attractors and basins of dynamical systems. However,

earlier program packages for the investigation of dynamical systems (e. g. [8], [13]) do not

have such an algorithm, or their algorithms can lead to inaccuracies, and the programs
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were created a long time ago and they are di�cult to use on today's computers. That is

why we needed a new, more precise algorithm and a program based on the algorithm that

is able to represent attractors of dynamical systems of arbitrary dimensions.

Our new algorithm is a substantial improvement of the procedure Basins and Attrac-

tors of Dynamics.

The algorithm

The principle of the algorithm is the following: we divide the n-dimensional domain under

examination into equal n-dimensional boxes and from the center of each box we start a

trajectory. In each step we examine the points near to our actual point (i.e. the points

that fall into the same grid box or neighbouring grid boxes), and if we �nd a trajectory

such that its iterates remain near to the iterates of our actual point for a given number

of steps (i.e. the corresponding points fall into the same grid box or neighbouring grid

boxes), we give a colour to the trajectory:

1. If the found point is a point of the actual trajectory, we give the trajectory the small-

est odd colour not yet used and we also store the point which we �rst reencountered:

from this point on we colour the trajectory with the colour of the attractor. Then

we continue iterating long enough in order to �nd the complete attractor. To avoid

identifying di�erent parts of an attractor (lying far from each other) as di�erent

attractors, we make a test on this �new� attractor found. We compare the new at-

tractor with all the previously found attractors: if they have enough common points,

we verify whether these points remain near to each other after several iterations.

If we discover a previously found attractor with this property, we give our actual

trajectory the colours of this previously found attractor and basin.

2. If the found point is not a point of the actual trajectory, we give the colour of the

found point to our actual trajectory.

At the end of the chapter we demonstrate the use of the program with �gures rep-

resenting the attractors of some well-known discrete dynamical systems and we give an

example to show that our algorithm is able to draw precise attractors and basins even in

cases where previous algorithms provide an imprecise picture.
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1.a. The Bogdanov map (Dynamics) 1.b. The Bogdanov map

Djellit and Boukemara [2] have given imprecisely the attractors and basins of the

Bogdanov map

x′
1 = x1 + 1.0025x2 + 1.44x1(x1 − 1)− 0.1x1x2

x′
2 = 1.0025x2 + 1.44x1(x1 − 1)− 0.1x1x2,

and also Dynamics gives an imprecise picture for this system (Figure 1.a.). The �gure

made by or program (Figure 1.b.) shows the attractors and their basins precisely: accord-

ing to the �gure made by Dynamics the basin of the attractor formed by �ve light green

points around the origin consists of �ve islands around the �ve points, however � as it is

shown on the �gure made by our program � this basin is also dense in the area inside the

�ve islands. In the �gure of Dynamics this area belongs to the basin of the green closed

curve around the �ve points.

4 Eventual stability properties in a non-autonomous

model of population dynamics

Description of the model

In Chapter 5 of the thesis we investigate a population dynamical model. The model

describes the change of the amount of two �sh species (a carnivore and a herbivore)

living in Lake Tanganyika and the amount of the plants eaten by the herbivores. In Lake

Tanganyika � extraordinarily in the world � carnivore �sh have asymmetric faces: some of
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them have their mouths turned to the left, others to the right [12]. Fish with the mouth

turned to the left attack their preys mainly from the left while the other group prefers to

attack from the right. It was observed that the prey �sh try to adapt to the distribution

of left and right attacks against them. Their strategy is rather rigid: a given individual

herbivore does not change his preference of paying more attention to attacks from the left

or from the right during his life.

Let I and K denote two (�nite) index sets representing the groups of herbivores and

carnivores. Let ni = ni(t) denote the number of herbivore �sh of type i ∈ I at time t.

Similarly, mk = mk(t) denotes the number of carnivores belonging to group k ∈ K at

time t.

The whole system of the nutrition chain consisting of plants, herbivores and carnivores

is supported by the energy �ow provided by the Sun. We assume that the intensity of

this �ow is constant, and furthermore we assume that the growth of the total mass of the

plants due to the constant solar energy �ow is C per time unit. Plants will be eaten by

herbivores: we assume that an individual with weight w consumes the percentage α(w)

from the total mass of plants during a time unit. We assume that each group i ∈ I
consists of individuals with the same weight wi(t) at the time t and that each carnivore

group k ∈ K consists of individuals with weight uk = uk(t). By writing K = K(t) for the

total mass of plants at time t, our hypothesis concerning plants and herbivores can be

formulated as follows:

K̇ = C −
∑
i

niα(wi)K.

We assume that carnivores do not die during this time, thus their numbers mk(t) are

constant in time, while the number of herbivores will be decreased by the carnivores. We

assume that the various groups are homogeneously located in the lake and the number of

attacks is proportional to their density. That is, with some constant ρ, in a time unit we

have ρnimk attacks by carnivores of type k against herbivores of type i. Concerning the

outcome of such an attack, we assume that a herbivore from the group i with weight w

will be eaten by a carnivore from the group k of weight u with a probability β(i,k)(w, u).

Thus

ṅi = −
∑
k

ρβ(i,k)(wi, uk)nimk.

Let γ(e, w) denote the weight that a herbivore of weight w gains by eating e amount of

plants. The weight that a carnivore loses without eating during a time unit is denoted by

γ̃(w). Thus

ẇi = γ(α(wi)K,wi)− γ̃(wi).
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As we have assumed that during the period of development the carnivores do not die

(they just lose weight), we have:

ṁk = 0.

Let δ(e, u) denote the weight that a carnivore of weight u gains by eating e amount of

herbivores. The weight that a carnivore loses without eating during a time unit is denoted

by δ̃(u). Thus

u̇k = δ

(∑
i

ρβ(i,k)(wi, uk)winimk, uk

)
− δ̃(uk).

After a series of simpli�cations and transformations the system gets the form:

L̇ = C − LG, (5.4)

Ġ = (L− λ(t))G.

Here L corresponds to the amount of plants, while G corresponds to the total amount of

the herbivores.

This equation does not have an equilbrium, but it has a limit equation:

L̇ = C − LG,

Ġ = (L− λ∗)G,

and the limit equation has the equilibrium (λ∗, C/λ∗) where λ∗ = limt→∞ λ(t). In such

cases usually the so-called eventual stability properties (Yoshizawa, [17]) are studied.

Consider a system of di�erential equations

ẋ = f(t, x), (5.5)

with f : R+×Ω → Rn, where R+ = [0,∞) and Ω is an open subset of Rn; 0 ∈ Ω. Let ∥ · ∥
denote any norm in Rn. Suppose that for every t0 ≥ 0 and x0 ∈ Ω there exists a unique

solution x(t) = x(t; t0, x0) of equation (5.5) for t ≥ t0 satisfying the initial condition

x(t0; t0, x0) = x0.

De�nition 5.1. x = 0 is an eventually stable point of (5.5) if for every ε > 0 and for

every t0 ≥ 0 there exist S(ε) ≥ 0 and δ(ε, t0) > 0 such that t0 ≥ S(ε) and ∥x0∥ < δ(ε, t0)

imply ∥x(t; t0, x0)∥ < ε for all t ≥ t0. If δ = δ(ε) > 0 can be independent of t0, then the

eventual stability is uniform.
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De�nition 5.2. x = 0 is an eventually asymptotically stable point of (5.5) in the large

if it is eventually stable point and every solution tends to zero, as t → ∞.

De�nition 5.3. x = 0 is an eventually quasi-uniform-asymptotically stable point of (5.5)

in the large if for every compact set Γ ⊂ Ω and for every γ > 0 there are S(Γ, γ) and

T (Γ, γ) > 0 such that x0 ∈ Γ, t0 ≥ S(Γ, γ) and t ≥ t0 + T (Γ, γ) imply ∥x(t; t0, x0)∥ < γ.

De�nition 5.4. x = 0 is an eventually uniform-asymptotically stable point of (5.5) in

the large if it is eventually uniform-stable and quasi-uniform-asymptotically stable in the

large.

Main result

Theorem 5.5. (λ∗, C/λ∗) is an eventually uniform-asymptotically stable point in the large

of (5.4).

The proof of this theorem uses the theory of limiting equations.

A point x∗ ∈ Ω is said to be a positive limit point of a solution x of (5.5) if there exists

a sequence {tj} such that tj → ∞ and x(tj) → x∗ as j → ∞. The set of all positive limit

points of x is called the positive limit set of x and is denoted by Λ+(x).

The translate of a function f : R+×Ω → Rn by a > 0 is de�ned as fa(t, x) := f(t+a, x).

The function f is called asymptotically autonomous if there exists a function f ∗ : Ω → Rn

such that fa(t, x) → f ∗(x) as a → ∞ uniformly on every compact subset of R+ × Ω. f ∗

and ẋ = f ∗(x) will be called the limit function and the limit equation, respectively.

Let f(t, x) be asymptotically autonomous. A set F ⊂ Ω is said to be semi-invariant

with respect to equation (5.5) if for every (t0, x0) ∈ R+ × F there is at least one non-

continuable solution x∗ : (α, ω) → Rn of the limit equation ẋ = f ∗(x) with x∗(t0) = x0

such that x∗(t) ∈ F for every t ∈ (α, ω). Suppose that f is asymptotically autonomous.

It is known [14] that for every solution x of equation (5.5) the limit set Λ+(x) ∩ Ω is

semi-invariant.

The proof of Theorem 5.5 is obtained through the following lemmas:

Lemma 5.7. The equilibrium point (λ∗, C/λ∗) of the limit equation (5.6) is asymptotically

stable.

First we linearize the system to prove (local) asymptotic stability, then we construct

the Lyapunov function
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V (L,G) =
1

2
(L− λ∗)2 − C lnG+ λ∗G− C + C ln

C

λ∗

and using LaSalle's invariance principle we prove that the equilibrium is globally asymp-

totically stable.

Lemma 5.8. The equilibrium point (λ∗, C/λ∗) of the limit equation (5.6) is asymptotically

stable in the large on quadrant Q := {(L,G) : L ≥ 0, G > 0}.

Lemma 5.10. There is a constant M such that

V (L(t), G(t)) ≤ V (L(0), G(0)) +M (t ≥ 0)

holds for all solutions of (5.4). Moreover, for every ε > 0 there exists a τ(ε) ≥ 0 such that

if t0 ≥ τ(ε) then every solution of (5.4) satis�es the inequality

V (L(t), G(t)) ≤ V (L(t0), G(t0)) + ε (t ≥ t0).

Lemma 5.11. (λ∗, C/λ∗) is an eventually uniformly stable point of the non-autonomous

system (5.4).

Lemma 5.12. (λ∗, C/λ∗) is an eventually asymptotically stable point of the original non-

autonomous system (5.4) in the large.

Uniform stability phenomena are the stability properties which can be observed in

applications most frequently. E.g. in the case of linear systems uniform asymptotic stabil-

ity is equivalent to exponential asymptotic stability, which plays a central role in control

theory.
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