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Preface

In this thesis we are mainly concerned with the study of phylogenetic tree reconstruction
algorithms and their use in protein classification. In the first part of the thesis we present
two tree reconstruction methodologies. Then, we investigate how we can utilize of tree
reconstruction methods in automatic sequence classification.

The highly accurate distance-based tree reconstruction methods are very important
in sequence analysis. For example, a multiple-sequence alignment can be aided by
an accurate phylogenetic tree. Here we introduce a distance-based method which
is based on the least-squares criteria. In many test scenarios it can prove superior
compared to the traditional ones. After we will introduce a consensus tree method,
which in biological evolutionary studies is a commonly used technique for representing
a collection of phylogenetic trees by a single tree. The algorithms used for this are
known as the consensus tree methods. In this thesis the main method we will apply is
called the Maximum Clique Consensus approach. In many tasks this approach is found
to be highly efficient in tree reconstruction compared to other widely-used consensus
tree methods.

In the second part of the thesis we will investigate the application of the phylogenetic
tree reconstruction methods in protein classification. The problem of protein sequence
classification is one of the crucial tasks in the interpretation of genomic data. Many
high-throughput systems were developed which seek to categorize the proteins based
just on their sequences. However, modelling how the proteins have evolved can also be
useful in the task of classifying sequenced data. Hence phylogenetic analysis has grown
in importance in the field of protein classification. This approach not only relies on
similarities in sequences, but it also takes into account phylogenetic information stored
in a tree (e.g. in a phylogenetic tree). Eisen first used phylogenetic trees in protein
classification, and his work has revived the discipline of phylogenomics. Here we shall
focus on the application of distance-based phylogenetic tree reconstruction methods in
automatic protein classification. We will introduce these kinds of algorithms to tackle
a wide range of biological classification problems. We then justify the practical useful-
ness of our techniques in experiments involving large, biological protein classification
benchmark datasets.

Robert Busa-Fekete, May 2008.



Acknowledgements

Acknowledgements First of all, | would like to thank my supervisors, Prof. Janos Csirik
and Dr. Adras Kocsor for supporting my work with useful comments and letting me
work at an inspiring department, the Research Group on Artificial Intelligence. | would
also thank all my colleagues/friends in alphabetical order: Andras Banhalmi, Richard
Farkas, Attila Kertész-Farkas, Rébert Ormandi and Gyérgy Szarvas.

Thank you to the collaborators for giving me new ideas and listening my talks
with great interest: Sandor Pongor, (International Centre for Genetic Engineering and
Biotechnology), Csaba Bagyinka, (Biological Research Center, Hungarian Academy of
Sciences), Tivadar M. Téth, (University of Szeged).

| would also like to thank David Curley for scrutinizing and correcting this thesis
from a linguistic point of view.

| would like also to thank my Bébe for the love and happiness she has brought to my
life. Last, but not least | wish to thank my parents, my grandparents and my brother
for giving me their unlimited love and support. | would like to dedicate this thesis to
them.



Notation used

d(z,y)

P(t)
IC(.)
s(xi,y;)

natural numbers

real numbers

positive reals

phylogenetic tree

taxon set of T’

leaf of a phylogenetic tree which represents the ith taxa
the cluster set of the phylogenetic tree T’
distance estimation error of a phylogenetic tree T’
patristic distance or leaf distance of T'
evolutionary distance of z and y

generator matrix
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Chapter 1
Introduction

For over a hundred years the theory of evolution has been the most widely-accepted
model of how species evolve and have evolved. The discipline which deals with the
modelling of evolution is called phylogenetics (the word originates from the conjunction
of the Greek words phyle meaning tribe or race and genesis meaning birth or begin-
nings). The methods which are most widespread in phylogenetics represent the process
of species evolution with a so-called phylogenetic tree, which corresponds to a weighted
tree-graph where the leaves represent the biological objects of interest. The reconstruc-
tion of these kinds of trees give rise to several problems which are interesting from both
a computer scientific and biological point of view.

Earlier phylogenetics just focused on the evolution of species based on morphologi-
cal characteristics, but nowadays the explosive advancement in molecular biology now
requires the investigation of proteins as well. The wealth of sequenced protein data
allows us to perform novel examinations on them. The possibility of comparing protein
sequences has pushed research towards the systematization of proteins isolated from
distinct species. Proteins that share a high sequence identity or similarity foster the pre-
sumption that they share a common ancestor, and therefore we call them evolutionary
related or homologous proteins. The analysis of evolutionary related proteins has also
become a key issue in phylogenetics. After our brief introduction we can state the basic
goal of phylogenetics: it is to reconstruct an appropriate tree topology based on protein
sequences that have high sequence similarity. We should mention here that the high
sequence similarity of proteins usually implies that they share a common functionality
too, but this is not always the case.

In a broader sense this thesis concentrates on two key fields, namely artificial intelli-
gence and bioinformatics. Within these fields we focus on evolutionary tree reconstruc-
tion and machine learning. As the thesis consists of two parts, the author's results will
also be divided into two parts. The first part of the dissertation includes an introduction
to evolutionary tree reconstruction methods.

Several tree building method have been worked out and some of them are now
widely used, like Neighbor Joining (NJ) [9] and the Unweighted Pair Group Method with
Arithmetic mean (UPGMA) [10]. These methods form part of the so-called distance-
based or distant matrix methods, because they reconstruct the evolutionary history
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of biological objects based only on a pre-determined value or observed distance value
among them. Methodologically speaking, our Multi-Stack (MS) [11] algorithm also
belongs to this field. Expressed in simple terms, the MS method finds a weighted tree
topology that predicts the observed set of distances as closely as possible. To be more
precise, a weighted tree defines a distance value for all pairs of leaves — i.e. the sum
of the weights of edges containing the path between them. Hence we expect from its
output tree that the distance values defined by itself differ from the observed distances
as little as possible. To find this tree is an NP-complete problem when we have an
arbitrary distance measure [12], thus it can be applied only to heuristical solutions.
The idea behind the MS method is to build an optimal tree for the subsets of the
proteins of interest, and then it will join these subtrees in an iterative manner. We can
efficiently apply this bottom-up approach in many test scenarios, and the MS method
often appears to outperform many traditional tree building methods.

Since there are many tree building methods available which produce more than one
possible evolutionary history, or the distinct tree building methods reconstruct different
trees, in many cases it is necessary to use those methodologies which are capable of
reconstructing one "representative" tree based on many different phylogenetic trees.
These kinds of methods are the consensus tree methods [13], and they are usually
applied in the last step of phylogenetic analysis.

In general, all the interior points in a rooted phylogenetic tree determine a subset
of the biological object of interest (i.e. the objects which are represented by those
leaves in the tree which can be found below the inner point). Noting this fact, we
can say that the concept of a phylogenetic tree and the concept of a hierarchical set
system are essentially equivalent. The hierarchical set systems consist of those subsets
or, in other words, clusters which are pairwise compatible. Hence each phylogenetic
tree corresponds to a pairwise compatible cluster set. Most of the consensus methods
determine a compatible subset of the cluster sets of the input trees in different ways,
based on the cardinality of cluster occurrences in the input trees. The computation
required can be done in polynomial time. Our goal here is to find the subset of the
input clusters where the total number of cluster occurrences is maximal. Moreover, we
can also define an arbitrary (not necessarily occurrence-based) weighting function on
the clusters of the input trees. We have solved this consensus tree building approach
efficiently [14], and we showed that it can perform a more precise phylogenetic analysis
than the traditional consensus methods like Majority-Rule, Strict and Greedy consensus
[15].

The topic of the second part of the thesis is the application of tree building methods
in protein classification. The automated protein classification is a crucial task in the
today's fields of biology research. The unknown genes/proteins of distinct organisms
can be retrieved and stored in the form of character sequences that are several hundred
characters in length. Nowadays, it has become routine to compare this data with
the sequences of known proteins/genes using a method based on a approximate string
matching technique. Then applying a machine learning method the unknown protein
can be placed into some known category (e.g. a structural or functional one)[1]. The
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automated data annotation system of the often mentioned genome research project is
based on this methodology.

In our studies we strive to develop novel, efficient protein classification algorithms.
Our basic assumption is that the structure of the datasets can be represented by a
phylogenetic tree, and that by using this representation protein classification can be
made significantly more efficient [16; 17]. The protein classification methods, which
also make use of phylogenetic information, belong to the domain of phylogenomics [18].
Hence our methods may be regarded as tools for this field as well.

1.1 Summary by Chapters

This thesis is comprised of two main parts. The first part (chapters 2-5) discusses
two phylogenetic reconstruction algorithms and evolutionary models, while the second
(chapters 6,7 and 8) deals with the application of the phylogenetic tree reconstruction
method and the application of ROC analysis in protein classification (Chapter 9).

There are two chapters in the first part which do not contain scientific contributions
from the author, but have the goal of introducing the basic notations and models we
used. In Chapter 2 we introduce the mathematical tools applied in current models.
Then we give a brief overview of sequence evolution models which are necessary for
understanding the notation employed for the evolutionary distances. After, in Chapter
3 we also review the tree evaluation criteria which are widely used in phylogenetic
analysis.

In Chapter 4 we introduce our Multi-Stack based phylogenetic tree reconstruction
method. We then provide a comprehensive comparative test. In the next section, we
give a short overview of the consensus tree methods which are most commonly used in
the bioinformatics community, and we also introduce a novel consensus tree technique
that is based on a combinatorial optimization problem.

The second part of this thesis focuses on an investigation of tree-based protein
classification methods. In Chapter 6 we describe the classification problem from a
machine learning point of view. We also provide a brief description of the datasets
we used in our tests and the application of model evaluation techniques which are
commonly used in protein classification such as Receiver Operator Characteristic (ROC)
analysis.

Next in Chapter 7 we present two simple algorithms where we made use of a
distance-based phylogenetic tree building method in protein classification. The analysis
of these methods leads us to suggest an alternative propagational approach. These
kinds of methods are described in Chapter 8.

1.2 Summary by Results

In the following a thesis-like listing of the most important results of the dissertation is
given. Table 1.1 shows which thesis by the author is described in which publication.



Introduction

[11] |[14] |[17]|[16] |[19]

Table 1.1: The relation between the theses and the corresponding publications

()

The author developed a Multi-Stack based phylogenetic tree building method
which makes use of least-squares criteria. In this way he produced a novel
algorithm which is competitive with the widely used distance-based tree
building methods, and it can reconstruct the evolutionary history of those
datasets in a better way where the biological objects (sequences of interest)
have lower similarity [11]. This improvement can be shown using evolution-
ary distances as well as using alignment-free sequence distances. In addi-
tion, the MS method achieve a better results in many test scenario than the
Fitch-Margoliash algorithm which is also based on the least-squares criteria.

(Chapter 4)

The author solved the Max Clique Consensus problem via a binary integer
programming task. With this approach an arbitrary weighting of subsets
one can find the compatible subsets that have maximal weights. In addi-
tion, the author introduced a novel Maximum Likelihood weighting scheme,
which leads to an efficient phylogenetic reconstruction technique. He tested
this method with different evolutionary models and found that this approach
in many case outperforms the widely used consensus tree building methods
[14]. The trees in the tests were generated by the widely-used PAUP pro-
gram package[20], and the consensus methods were compared to each other
on these trees. Moreover, the author also compared the consensus methods
on a real-life database. (Chapter 5)

The author provided a testing framework where the different phylogenetic
reconstruction techniques could be compared using different evolutionary
models over a wide range [11; 14]. In this testing methodology the biological
sequences (DNA or protein) are generated based on a predetermined model
evolutionary tree. Next, on this set of sequences the tree-building method of
interest are applied, and it produces an output tree, which will be compared
to the predetermined model tree. Based on the similarity of these trees we
can estimate the accuracy of the particular tree reconstruction method. This
testing framework provides a more comprehensive testing environment than
the bootstrap method [21] because in this framework we can investigate the
efficiency of the tree-building method using different evolutionary models.
(Chapters 4 and 5)
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(a)

The author introduced the Treelnsert and TreeNN methods, which are novel
tree-based protein classification algorithms. In contrast to the earlier meth-
ods, the algorithms he introduced here make use of just the sequence sim-
ilarities. Thus they are readily applicable in a wide range on protein clas-
sification tasks. The author compared the tree-based methods on many
protein classification tasks using ROC analysis, and they were often signifi-
cant better. The experiments showed that it is worth applying phylogenetic
information in protein classification. [17]. (Chapter 7)

The author devised two tree-based propagational methods, namely TreeProp-
N and TreeProp-E. These methods may be regarded as extensions of TreeNN,
because all of these methods update the sequence similarities using the
topology of a phylogenetic tree. In experiments these propagational algo-
rithms usually gave a better performance in protein classification comparing
to the former systems [16]. (Chapter 8)

The author created a ROC analysis-based evaluation method which is a more
reliable model evaluation technique than the original ROC analysis when the
distribution of the classes is imbalanced. Applying it, a model selection could
be carried out more reliably than with the other approaches[19]. He tested
this approach on several large-scale datasets. (Chapter 9)
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Chapter 2

Background and Notation

2.1 Graphs, Trees, Phylogenetic trees

Before we introduce the concept of a phylogenetic tree, we first need to introduce some
basic graph theoretical notations, because graphs play an important role in phylogenet-
ics. The notation we used is borrowed from [22].

An undirected graph G is an ordered pair (V, E') consisting of a non-empty set V' of
vertices and a multiset E' of edges, each of which is an element of {{z,y} : z,y € V}.
Here = and y are the endpoints of an edge. Two vertices in G are said to be adjacent if
there is an edge between them. An edge is a loop if its endpoints are the same. Edges
that join the same distinct pair of vertices are called parallel edges. A simple graph
is a graph without loops and parallel edges. Two edges are adjacent if they share a
common endpoint. We shall denote the set of vertices and edges of G by V(&) and
E(Q), respectively. A subgraph of a graph G is a graph whose vertex and edge sets are
subsets of those of GG.The degree of a v € V(G), denoted by deg(v), is the number of
edges whose endpoint is v.

A path in graph G is a sequence of distinct vertices vq, vs, ..., v; such that, for all
i€{1,2,...,k— 1}, v; and v are adjacent. In addition, if v; = v, then the path
is said to be a cycle. If a graph does not contain cycle, then we say it is acyclic. A
graph is connected if each pair of vertices in G can be joined by a path. The length of
the path is the number of edges it contains. The length of a path will be denoted by
p(v1,vg) between the vertices v and wy.

Two graphs G; = (Vi, Ey) and Gy = (Vs, E) are isomorphic if there is a bijection
between their vertex set such that it preserves their adjacency.

A graph which has an associated weight function with its edges is said to be a
weighted graph. This weight function w usually assigns real numbers to the edges.

With these definitions above we can now define the concept of a tree.

Definition 2.1 A treet is a connected acyclic simple graph.

The vertex set of a tree t of degree one is said to comprise the leaves of . The
vertex of ¢ that is not a leaf is called an interior vertex. A tree is binary if every interior

9
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vertex is of degree three (except the root, if the tree is rooted). Moreover, a connected
subgraph of a tree ¢ is called a subtree of ¢.

In this thesis we shall consider only those weighted trees where the weight function
takes only positive real values, that is, the weight function w : E (t) — R™. A weighted
tree assigns a distance for each pair of leaves (- calculated by summing the weights of
the edges on the unique path between them) that is called the /eaf distance of ¢, and
will be denoted by D?.

After the introduction of the concept of a tree, we can simply characterize the tree
by an equality based on the number of vertices and the number of edges. This theorem
and its proof can be found in [22].

Theorem 2.1 Let G = (V, E) be a graph. Then the following are equivalent:
i.) G is a tree;

ii.) for any two vertices vy and vy in V' there exists a unique path in G from v; to
V2,

ii.) G is connected and |V | = |E| + 1.

Definition 2.2 Let X be a set of n taxa. An X-tree T' is an ordered pair T' = (t, ¢),
wheret is a tree and ¢ : X — V (t) is a bijection. If we restrict ¢ to label only the leaves
of t then we obtain the definition of the phylogenetic X-tree or simply phylogenetic
tree.

A phylogenetic tree is a rooted phylogenetic tree if it has a vertex r € V' which
is of degree two. The vertex r is called as the root of the phylogenetic tree. In
addition, if every interior vertex of t is of degree three, then T is a binary phylogenetic
tree. If we regard t as a rooted tree, then there is only one internal node of degree
2; otherwise the degrees of the internal node are always 3. Here we will deal only
with rooted phylogenetic trees. The subset of the descendants of an internal node is
called as a monophyletic group or cluster, the internal nodes being the most recent
common ancestor of the monophyletic group or cluster. Thus the internal nodes of a
phylogenetic tree and the clusters are equivalent concepts. This way each phylogenetic
tree corresponds to a set of compatible subsets C (i.e. for all A, B € C either A C B,
or BC A, or AN B = (). This construction is also known as a Linnean Hierarchy. We
will denote the clusters of 7' by T, and the taxon set of a T' phylogenetic tree by 77,
which corresponds to X. The leaf which represents the X; € 71 taxon will be denoted
by L;.

As regards the cluster sets of the phylogenetic trees, it is possible to define a partial
ordering < on the phylogenetic trees of n leaves in a natural way.

If T¢ C TS holds for two cluster sets then the T} tree is a refinement of the T)
tree. This relation will be a partial ordering in the tree space and the minimal elements
of < will be exactly binary phylogenetic trees because they have no refinement.

The Robinson-Foulds (RF) distance or symmetric difference for rooted trees [23] is
based on this approach as well. Because the RF distance of two rooted phylogenetic
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trees T and T; represents the cardinality of the symmetric difference of their cluster
set, we have

RF(Ty,Ty) = |(TEATS) | = [ ((TE\TS) U (TS\TY))]| - (2.1)

If we regard T as a reference tree or origin tree and Ty as an estimated tree of T},
the first term in this equation can also be considered as the false negative cluster set
and the second term as the false positive cluster set. In accordance with this, the false
negative rate is the percentage rate of the false negative clusters in 7, and the false
positive rate is defined in an analogous way. Thus

TE\TY | | TS\TY|
FNR = ’1—2 FPR="2"11 (2.2)
7Y 75|
There is also an extension of the RF distance known as the Branch Score Distance
(BSD given in [24]). BSD not only takes into account the cardinality of different
clusters, but it also takes into account the edge lengths of the phylogenetic trees. So
this will provide more information about the differences between tree topologies.

2.2 Interpretation of a phylogenetic tree

The construction of rooted phylogenetic trees provides a convenient representation of
evolutionary relationship in biology. For example, the hierarchical classification that was
firstly mentioned by Darwin can be easily represented as a tree structure. Moreover, we
can express sequential evolutionary events as well, because we can assume that time
flows along the tree away from the root, that the root corresponds to the common
hypothetical ancestor, and that the inner points correspond to other hypothetical an-
cestors. These are called Hypothetical Taxonomic Units (HTUs). Here the leaves of the
tree represent the extant biological object of interest. They can be species, proteins,
genes or genomes. The objects which are represented by the leaves of a phylogenetic
tree are called Operational Taxonomic Units (OTUs).

In the case when the leaves represent genes, the phylogenetic tree is called a gene
tree. The interior vertices can be mapped to particular biological events such as gene
speciation and gene duplication [25]. But if the leaves represent species then the interior
vertices correspond to clusters of species.

2.3 Finding the best tree

Before we attempt to discover which tree is better than another one, it is worth counting
up the trees that have n leaves. With this calculation we can get an insight into
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C

Figure 2.1: A simple example of tree evaluation using the parsimony criterion.

the difficulties of phylogenetic tree reconstruction, and we can exclude some basic
approaches, like exhaustive search methods.

Theorem 2.2 (Felsenstein, [26]) Let us denote the set of rooted binary phylogenetic
trees having n leaves by RB (n), and the cardinality of this set by |[RB (n)|. Then
following formula holds:

IRB (n)| = (2n — 3)!! (2.3)

This tells us that the number of rooted binary phylogenetic trees grows super-exponentially
with the number of leaves, so there is no hope of enumerating all of the trees and
evaluating them. This simple fact suggests, that we should try an alternative search
technique and heuristic.

The next question which arises is how we should evaluate a tree. In this thesis we
shall just deal with those trees whose leaves represent proteins. So we can rephrase this
question and ask how a phylogenetic tree fits into the phylogeny of a set of sequences.
There are many tree criteria in use which could help us answer this question. Using
these criteria, we can evaluate different trees if we have a given set of sequences. We
should mention here the pioneering work of Edwards and Cavalli-Sforza [27] who first
formulated the notion of the parsimonious approach. This means that a tree is to be
preferred if the biological changes/events (for example, mutation) along its edges are as
few as possible. lllustrating this approach, let us consider the trees depicted in Figure
2.1. In this example the leaves of the trees represent proteins whose sequences are at
length one. Because we can assign sequences to the interior nodes of the left tree so
that there is a biological change along only on one single edge, we intuitively prefer
the left one. While on the right tree there are at least two biological changes along its
edges. In the next section we shall give an overview of the tree evaluation criteria, and
their efficient mathematical handling.



Chapter 3

Evolutionary models, evolutionary

distances and tree criteria

Modelling the evolution of sequences is a fundamental task of bioinformatics. But
instead of carrying out a comprehensive overview of this field we will just introduce
those models and approaches that we actually used in our studies.

3.1 Sequence alignment

In a biological context the changes which occur in a sequence are called mutations, and
they are usually classified in the following categories: insertion, deletion, substitution.
So when we consider two sequences which share common ancestor sequences or, in other
words, evolved from a common ancestor, then an alignment is basically the search for
the possible locations of the different mutations.

We can distinguish two different alignment types which depend on the number of
sequences in the alignment: pairwise alignment and multiple alignment.

If we want to formally describe the alignment methods, we first need to state some
standard definitions. A DN A sequence is a string over the alphabet ¥ which contains
four letters A,C, G and T representing four distinct nucleotides. Protein sequences
are over an alphabet of 20 letters, each representing a unique amino acid. A multiple
alignment of k sequences is obtained by inserting spaces in the sequences such that
the sequences have the same length [ and they can be arrayed in k rows of [ columns
each. In the case of k£ = 2 it is said to be a pairwise alignment. A space (or gap) will
be denoted by A and will be regarded as a new letter over the alphabet I' = ¥ U A.
Given two sequences s; and s, in the alignment, then each letter o of s; is in the same
column of a letter of sy; we then say that o is opposite to a unique letter of s,. A match
occurs where two identical letters are opposite each other in the two sequences s; and
S9; otherwise two non-identical opposing letters give a mismatch which is viewed as a
replacement. The insertion of a space in a sequence opposite a letter o of a second
sequence is viewed as the deletion in the first sequence of the letter o or an insertion of
o into the second one. A score d is assigned to each pair of letters and it is generally

13
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described by means of a |I'| x |I'| symmetric matrix. These scoring schemes can be
represented in a so-called scoring matrix. The most commonly used matrices are the
BLOSUM matrix family [28] for amino acids and the PAM matrix family for nucleic
acids.

After, we can define the value of a multiple sequence alignment in a simple way by
summing the scores of all the columns in a multiple alignment, where the score of each
column is the sum of the scores of all distinct unordered pairs of letters in the column.
An optimal multiple alignment of a set of sequences is the one that minimizes the value
over all possible alignments. Unfortunately, it has been proved that to find the optimal
multiple alignment for k sequences is NP-hard when k& > 3 [29]. The scores of the
multiple alignment of sq, s, ..., s, shall be denoted by

l

dy (81,82, -, 8,) = Z , Z d (sz,si) , (3.1)

-1
i=1 j=1 t=j5+1

where sf is the kth letter of the ith sequence, and d is the scoring function over I' x I".

The problem of multiple sequence alignment can be aided by a phylogenetic tree
which has been reconstructed using pairwise distances of sequences of interest [30].
Having an accurate phylogenetic tree for the sequences of interest can speed up a
multiple sequence alignment and make it more accurate. This area is a hot topic
nowadays in bioinformatics because, based on an accurate sequence alignment, we can
carry out a domain search or a highly accurate protein classification.

Pairwise alignment methods can be also classified into two main groups, namely
the global alignment methods and the local alignment methods. If we attempt to align
whole sequences then we call this approach global alignment, and the value of the
pairwise alignment can be calculated in a similar way to that described for the multiple
sequence alignment. One of the most popular pairwise alignment algorithms is the
Needleman-Wunsch method [31], which is based on a dynamic programming approach.
The local alignment method has a slightly different goal, because local alignments are
suspected of containing regions of similarity or similar sequence motifs —motifs being
short parts of sequences which are the same— within their larger sequence context. The
Smith-Waterman algorithm [2] is a general local alignment method and it also based on
dynamic programming. With sufficiently similar sequences, there is no real difference
between local and global alignments.

IGRHRYHIG-G

S
—-53——-RY¥Y-IGRG

Figure 3.1: A simple example of a Needleman-Wunsch alignment. The alignment
method has identified five matches, a substitution and four deletions.

When we examine the time complexity of the above-mentioned pairwise methods
we see that they both have a time complexity of O(nm), where n and m are the lengths
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of the sequences. With the advent of large-scale biological databases it has become
necessary to speed up these methods. The Basic Local Alignment and Search Tool
(BLAST) [1] is perhaps the most remarkable algorithm in this field. This method is
based on an Approximate String Matching technique. Several extensions have been
developed from this method like Gapped-BLAST and PSI-BLAST methods [32].

3.2 Evolutionary distances for DNA

After we have determined the places of changes/mutations in the sequences using an
alignment method, we attempt to estimate the time elapsed since they diverged. There
are now several approaches that have been developed for modelling the evolution of
DNA sequences. Based on this models, we can infer the evolutionary relationship of
the sequences. But now we shall provide an overview of these special techniques.

3.2.1 The Evolutionary Markov Process

We will commence with an introduction to the general model, because the latter models
are the restricted forms of this. First we need to define the notion of a time continuous
Markov chain. In our introduction we rely on the canonic textbook of Felsenstein [21]
and the study by Miiller and Vingron[33].

Definition 3.1 A time continuous Markov chain is a sequence of random variables
X;, t € R{ taking values of a finite set of states A. X, is distributed as 7® and the
following Markov property holds:

P(Xy, = ol Xty = @1, .., Xoy = 0) = P (Xy, = 20| Xs,, = 201)  (3.2)

for any n € N, time points ty < t; < ... < t,, and any states g, x1,...,x, € A.
The Markov chain is time homogeneous if there exists a transition probability matrix
P(t) such that
P(Xs=jlXs=1)=P;(t),Vs,t >0,i,j € A (3.3)

The transition probability matrix P(t) is a stochastic matrix and has the following
properties:

e P(0) =1, |[- identity matrix
o Py(t) >0 and 3, Py(t) =1,
e P(s+1t)=P(s)P(t) for s,t>0.

The time continuous Markov chain is irreducible if, for any period t > 0, each state
can be reached from each state: P;(t) > 0, Vi,j € A. In this case there exists a
unique stationary distribution w which is the solution of mP(t) = .
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If we assume that the probability transition matrix P(t) is continuous and differen-
tiable at any ¢ > 0 then the following limit should exist:
P(t) -1
i PO (3.4)

t—0 t

Q is known as the rate matrix or the generator of the Markov chain, and it is not
hard to show that the transition can be expressed in terms of the rate matrix:

P(t) = ¥ (3.5)

Definition 3.2 We call a time continuous Markov chain X, on the set of states A an
evolutionary Markov process (EMP) with the stationary distribution m on the states if

1. X, is time homogeneous.

2. X, is stationary and the initial distribution m (0) is the stationary distribution .
Therefore X, is distributed according to for all t € R .

3. Xt is irreducible: P;; (t) > 0 for allt >0 and i,j € A.
4. X, is calibrated to 1 percent of expected mutations: ) . m;(Q); = —1.
5. X, is reversible: m;P,; (t) = m;P;; (t) for allt > 0 and i,j € A.

The states of an EMP correspond to the alphabet we are using, i.e. in this case
nucleic acids, so this EMP has four states. The fourth property of an EMP requires some
additional comments. The () generator matrix provides an infinitesimal description of
the process. The off-diagonal elements of () are positive real numbers, thus the diagonal
elements are negative ones, and they are equal to the sum of the off-diagonal elements.
Hence we can regulate the expected number of changes per time units by the calibration
of the diagonal elements. This calibration step is common to all Markov process-based
evolutionary models.

The relative number of changes that the pairwise alignment has revealed can ex-
press the evolutionary relationship of two sequences as well, but this EMP can also
accommodate the duplicated changes. For example a position is in state 'C' and then
it is substituted by 'G’, and the 'G' is substituted again by 'A’ in the course of evolution.

3.2.2 The General Time Reversible (GTR) model

In the modelling of DNA sequence evolution the EMP is known as the General Time
Reversible (GTR) model. All of the models we will introduce later are a specialized
case of this. The rate matrix of the GTR can be seen in Table 3.1. The model itself
has 10 free parameters. The (74, 7g, 7o, r) is the stationary distribution which is
also called as the equilibrium frequencies. The off-diagonal elements are calibrated in
the way described earlier. Now let us assume that we have two aligned DNA sequences
s1 and ss of length [. Using the EMP model we can infer the time ¢ that has elapsed



3.2 Evolutionary distances for DNA 17

From/To | A G C T
A - o | mef | Ty
G TAC - Tl | Tre
C mAB | magd | - | ™
T TAY | TGgE | Tem | -

Table 3.1: The parameters of the GTR model of DNA evolution.

since two sequences have evolved via an optimization task. Then we need to maximize
the following likelihood function:

I
L(t) =) miPy (1) (3.6)
i=1
The optimal value of ¢ can also be determined in a direct way. We will show how
we can do this with a simple example borrowed from Felsenstein[21]. We can count
the different types of changes between the aligned sequences. Our little example is
given in Table 3.2. In this simple example we counted 500 distinct changes. The
diagonal elements of the table contain the number of positions where the sequences
have preserved their states. This empirical matrix is regarded as an estimation of the
transversion matrix of an EMP at a particular time ¢, this time value being the focus
of interest. But before we use this empirical matrix we need to symmetrize it and to
sum up its columns to one. Then we will get an empirical matrix P. Reformulating the
Equation 3.5, we can estimate the value of At via

At = log <I5) (3.7)
Because our EMP is calibrated, we can constrain our problem. The D matrix will be
the diagonal matrix whose diagonal elements are the stationary distribution of the EMP.

In this case the following equation is valid because we have assumed that the changes
which occur per time unit are all equal to one:

trace (Af)) =—1 (3.8)
After, we can calculate directly the value of ¢:
t = trace (Atf)) (3.9)

In this way we can infer the evolutionary distance between two sequences. Doing
the calculation in our example we find that the evolutionary distance between s; and
sq is t = 0.228125.
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A G C T | Total

A 93 13 3 3 112
G 10 105 3 4 122
C 6 4 113 18 141
T 7 4 21 93 125
Total | 116 126 140 118 | 500

Table 3.2: A simple example for the distribution of changes which have occurred in our
example.

3.2.3 The Jukes-Cantor distance

The Jukes-Cantor (JC) model is the most simplest model. The JC model assumes that
each type of change in a sequence occurs with the same probability. Hence the rate
matrix is

—3a « o «
«Q —3a « a
— 3.10
@ «Q «Q —3a « ( )
«Q «Q « —3a

Moreover, the JC model assumes that the stationary distribution of the nucleic acids
obeys a uniform distribution. So each nucleic acid occurs with the same probability in
all positions. Using this model we can infer the evolutionary distance in a closed form.
For two aligned sequences of length [, the number of mismatches between them will
be denoted by u. The value of u/l is also known as the naive distance estimation.
After some calculations we find that the Jukes-Cantor distance can be expressed by the
following simple formula:

(3.11)

A very similar model was introduced in [34], but in this case the stationary frequency
is not uniform.

3.2.4 The Kimura 2-parameter distance

In this section we will focus on an important model for nucleotide substitutions. This
model makes a distinction between the two types of mutation in the sequence. To
be precise, this means that here we can assume that the number of transitions (A <
G,C < T) are more frequent than the transversion (the remaining type of changes).
The rate matrix of this model is then defined as:
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—a=-23  « B B
_ a —a=20 0 B
Q= 3 5 —a-28  a : (3.12)
p B a  —a-28

With our above assumption we expect that @ < [ for all values of a and 3. The
stationary distribution is also uniform here, and because of we assumed that the EMP
is calibrated, we have a + 23 = 1. Here we can express the evolutionary distance in
a closed form as well, just like before. First, let us assume that we have two aligned
sequences, and let us denote the transition and transversion by P and (), respectively.
The Kimura-2-parameter distance for the these two sequences is then given by:

log(1—2%xP—Q) log(1—2%Q)
- 2 - 4

d= (3.13)

3.2.5 The Hasegawa-Kishino-Yano distance

The Kimura 2-parameter model and Jukes-Cantor model make great restrictions on the
DNA sequences because they dramatically reduce the necessary computational efforts.
For example, they assume that each DNA occurs with the same probability in each
position. The Hasegawa-Kishino-Yano (HKY) model is very similar to the Kimura 2-
parameter model, but this estimates the stationary distribution as well. In accordance
with this the rate matrix of HKY is can be written as:

- 7mga wef Trf
Ta  — 7w mpf
TAB Tmef - Tmra
TafB B Tea  —

Q= (3.14)

The evolutionary distance based on this model can be expressed in closed form, as well,
but the description of this is beyond our scope. The interested reader can peruse [35]
for the detailed derivation of this distance function.

3.3 Evolutionary distances for proteins

3.3.1 Correctional approach

Now let us consider a pairwise alignment of two sequences of amino acids, s; and s,.
We will denote the length of the aligned sequences by I. The number of position where
the aligned sequences differ shall be denoted by u. Then we can readily define the
p-distance (or naive distance) of s; and s; as

d:

P

7 (3.15)

This sequence distance is used to underestimate the evolutionary distance if two
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proteins are closely related. That is why this distance needs to be corrected. The
correctional process is based on a simple assumption that the number of amino acid
substitutions at each site obeys a distribution [36]. Two widely used distributions are in
use for this purpose, namely the Poisson distribution and the Gamma distribution. In
Figure 3.3.1 the function of the correctional processes can be seen. Because we have
assumed that the number of substitutions follows a given distribution, we need to use
the inverse function of the density function.

10 T T T T T T T T
Poission correction
91| —— Gamma corection (#=2) 1
Gamma carrection (a=1)

Carrected distance
[y ]

1 1 1
01 nz 03 04 05 (3] ny 08 0%
p-distance

Figure 3.2: The density function of the distributions of the correctional distances. The
Gamma distribution has been plotted with two different parameters (a = 2,a = 1)

3.3.2 Substitution models

These models specify empirical relative rates of substitution and equilibrium amino acid
frequencies. Here we will focus the BLOSUM (BLocks SUbstitution Matrix) model[28].
In this probabilistic model the changes among amino acids are based on tabulating
changes among closely related sequences. The closely related sequences were chosen
using the FASTA program, and then it identified the highly similar region of these
sequences. The changes can then be made based on this so-called highly conserved
regions.

3.4 An information theoretical distance

The information theoretical sequence distances used are known as alignment-free dis-
tances because they do not require any preliminary alignment of the sequences [37].
The simplest information theoretical sequence is the relative entropy of the amino acid
distribution in the sequences of interest which can also be interpreted as a sequence
distance. In our experiments we applied a recently introduced distance function.
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The information theoretical distance functions are based on a comparison of how
many information sequences there are relative to each other. This approach originated
from Kolmogorov-complexity theory. The Conditional Kolmogorov complexity K (X|Y)
is defined as the length of the shortest program computing X on an input Y [38]. The
Kolmogorov complexity K (X) of a sequence X is a shorthand notation for K (X|\),
where ) is an empty sequence. The corresponding distance function uses the relative
decrease in complexity or conditional complexity as a measure of sequence similarity,
that is

max{K (X|Y),K (Y|X)}
K(YX)

d(X,Y) = (3.16)

Kolmogorov complexity is a non-computable notion, so in practical applications it
is approximated by the length of a compressed sequence calculated with a compression
algorithms like LZW [39] or Sequitur [40]. The formula for calculating compression-
based similarity measures (CBM) using the length values of compressed sequences can
be derived from Equation 3.16. It takes the form

C(XY) — min{C (X),C (Y)}
max{C (X),C(Y)}

depm (X,Y) = (3.17)

where C'(.) denotes the length of a compressed sequence, compressed by a particular
compressor C. We will focus on two well-known compressor algorithm in our experi-
ments, namely LZW [39] and Sequitur [40].

3.5 Tree criteria

3.5.1 The Least-Squares Criterion

There are many criteria in use for phylogenetic trees that can be applied to the distance
data, like Minimum Evolution Length and Least Squares Criteria. These criteria usually
assume that the only data items available are distances. The number of possible tree
topologies grows exponentially with the cardinality of the taxon's set. Hence it is a
fundamental and crucial point for the evaluation of a criterion that it should have a low
time complexity for a given phylogenetic tree.

There are many forms of Least Squares criteria available, and all of them require
the optimization of a quadratic function. Before we formally describe these criteria, let
us denote the path-edge incidence or topology matrix of a phylogenetic tree T" by Pr.
The matrix Pr is a binary matrix whose columns correspond to the edges of T',while
the rows correspond to the paths between the leaves of T". This representation of a
tree requires a space of O (n?) because it has n— 1 columns and (%) rows, even though
it has just a few non-zero elements. Hence it is worth exploiting the sparsity of the
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topology matrix for an efficient implementation. In Figure 3.5.1 a phylogenetic tree
can be seen and its encoding into a path-edge incidence matrix.
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Figure 3.3: A phylogenetic tree and its corresponding path-edge incidence matrix, where
X ={A,B,C,D,E}.

Next, we shall denote a distance matrix by D defined on the taxon set of 7. We can
rewrite D using its vector form d (i.e. turning the upper triangular of D into a vector).
The arrangement according to the topology matrix Pr determines an unambiguously
ordering among the (g
we can write, in a simple way, the Unweighted Least Square Criteria (LSC) for a given
T phylogenetic tree. The edge weighting of a tree T satisfies the LSC criteria if and

only if it minimises the following optimisation task:

)) entries of the vector d. Introducing the necessary notations,

min || (Prx —d) ||, (3.18)
x€Rn-1
where the elements of x can have any real value, including zero or negative values. The
solution of the problem defined by Eq. (3.18) results in an optimal edge weighting for
a phylogenetic tree T and a minimal Frobenius norm for ||D7 — D||r. This means that
the deviation between the calculated weighting D7 and D is minimal. The problem
can be solved in O (n?) time for a given phylogenetic tree [41].

3.5.2 The Constrained Least Squares Criterion

We also require that a weighting always be positive because a negative evolution dis-
tance has no physical sense. This is why we shall restrict ourselves here to the following
minimization problem:

min || (Prx —d) || (3.19)

xcRn—1
st. 0<x

The Constrained Least Squares Criteria (CLSC) defined above results in a non-negative
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weighting for a phylogenetic tree T'. CLSC also retains the property of the original LSC
that it can be solved in O (n?) time, because the algorithm introduced by Bryant&
Waddell [41] can handle the Levenberg-Marquardt method as well. Here | Dr — D||r
is the distance estimation error (DEE), and

|Dr — Dl|r
()
is the normalized distance estimation error (NDEE) of the phylogenetic tree and will
be denoted by er.

3.5.3 The Minimum Evolution Criterion

The Minimum-Evolution (ME) criterion for phylogenetic inference is based on the as-
sumption that the tree with the smallest sum of edge length estimates is the one most
likely to be the correct one [42]. Hence with this criterion we first infer the edge length
of a T tree, e.g. using a sort of least-squares criterion. After we have assessed how the
tree fits to the sequenced data, we will prefer those tree whose sum of edge lengths are
smaller.

3.5.4 The Maximum Parsimony Criterion

The Maximum Parsimony (MP) criterion is the most-widely used one in phylogenetic
studies. Fitch first introduced this approach in his pioneering work [43].

Before we describe this criterion in more detail, let us assume that we have a T’
phylogenetic tree whose leaves represents sequences of length I. Then the 77 taxon
set of this T is characters that are of fixed length. After this, we assign sequences of
length [ to the interior node of T'. Hence at the endpoints of each of the ¢ edges there
are two sequences, s and s2. Let us evaluate the number of positions where s! and s?
differ by c.. This is equal to the changes which occurred on the edge e. The parsimony
score of T' is then the sum of the changes:

pr= Y c (3.20)

ecE(T)

The first question which arises is how we can assign the sequences to the interior
point of T" in such a way that the parsimony score of T" will be minimal. To do this,
there is a simple algorithm which is based on dynamic programming[43]. But we should
mention here that finding the most parsimonious tree for a given set of sequence is NP-
hard [44]. The only currently available, efficient way of obtaining a solution, given an
arbitrarily large set of taxa, is by using heuristic methods but these do not guarantee
that the most parsimonious tree will be recovered.
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3.5.5 The Maximum Likelihood Criterion

The Maximum Likelihood (ML) criterion is in spirit similar to the Maximum Parsimony
Criterion, but the cost of a change in parsimony is not a function of the edge length.
In the case of MPC we simply count the changes which occurred on an edge.

The conditions are similar to those described above. First, let us assume that we
have a set of aligned sequences D = {sy,...,s,} over ¥ of length [. Moreover, we
also know their phylogeny which is represented by a rooted phylogenetic tree 1" whose
edge lengths are known. In addition, we have an evolutionary model, such as the Jukes-
Cantor model, which allows us to determine the P,,(¢) probabilities, where z,y € 3.
This means that we will then know the probability of the different types of changes on
an edge of length ¢.

Before we define the likelihood score of a phylogenetic tree, we need to make two
basic assumptions. These are that

1. the sequences evolve independently, position by position

2. the evolutionary changes on the edges are independent

In general these assumptions are not valid in real life, but they are economizing the
computation of the likelihood of a tree, as we shall shortly see.

Roughly speaking, the likelihood of a tree is P(D|T). In other words, it is the
probability that the set D has evolved when our hypothetical tree is 1. Let us now
see how we can compute this value for a given set of sequences D and for a rooted
phylogenetic tree T'. Using the first assumption we can reformulate this likelihood value
like so:

l
L=PDIT)=[]P(si.....s.IT) (3.21)
i=1
This means that we can handle the likelihood of each position independently, thus we
need just to compute the likelihood for a constrained tree, where the leaves represent
just single letters. After, we can assign a letter from X to an interior node of T'. Let
us examine the case when an interior point g has been labelled by a letter z € ¥, that
is by g,. The second assumption allows us to handle the lineages separately. Then we
can compute the conditional likelihood of an interior node g if we know the conditional
likelihood of its immediate descendants ¢! and ¢ via the following formula:

Ly(z) = (Z Pgw}, (t) Ly (y)> <Z P.g? () L2 (2)> (3.22)

yeL ZEX

As we mentioned above, the P,,(t) probabilities are known. Next, we need to calculate
the likelihoods of the leaves. This is simply defined as a Kronecker-delta function. For
a leaf [ will be defined as

1, if leaf [ represents x
L = ’ 3.23
() { 0, otherwise (3.23)
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In the end, the total likelihood of the tree T is the sum of all conditional likelihoods at
the root, weighted by the background discrete probability 7, of the letters

Ly =) mL(r), (3.24)
z€ex
where r is the root of T". This can be computed using a dynamic programming approach
[26]. But we want to calculate the maximum likelihood for a tree topology. So we need
to determine the edge lengths such that the likelihood score of the phylogenetic tree
T will be maximal. This can be done by applying the simple Newton-method, say. We
should mention here that the likelihood function is not always convex.

Of course, the likelihood criterion can be defined in a straightforward way: we
prefer those trees which have a higher likelihood value. There are many extensions
for computing the likelihood score. The most remarkable was introduced by Churchill
and Felsenstein [45]. In their article the first assumption was resolved because they
modelled the dependencies of the neighboring positions by a Hidden Markov Model.
We will also use this procedure for calculating the likelihood values in our experiments.






Chapter 4

A Tree Building Method Based
On The Least-Squares Criteria

4.1 Introduction

The reliable reconstruction of a tree topology from a set of homologous, sequenced data
is one of the most important goals in system biology. A major family of the phylogenetic
tree building methods is the distance-based or distance matrix methods. The general
idea behind them is to calculate a measure for the distance between each pair of taxons,
and then find a tree that predicts the observed set of distances as closely as possible.
There are quite a few heuristic distance-based algorithms with a fixed criterion available
for estimating phylogeny, and their strengths and weaknesses are familiar to everyone in
the field. The distance-based methods, like the Unweighted Pair-Group Method using
Arithmetic averages (UPGMA) [10] and Neighbor-Joining (NJ) [9], work similarly: they
iteratively form clusters, always choosing the best possibility based on a given criterion.
We can call these methods greedy in a certain sense, because they always work on the
current best candidate subtrees. The NJ method produces additive trees, while UPGMA
assumes that the evolutionary process can be represented by an ultrametric tree. These
restrictions may then interfere with the correct estimation of the evolutionary process.
Atteson [46] showed, however, that the NJ method is able to return the true phylogeny,
when the observed distance is sufficiently close to the true evolutionary distance.

The chief aim of this chapter is to develop a good distance-based method that
approximates closely to the true tree for any available evolutionary (not just for ul-
trametric or additive) distance. To achieve this we apply a special form of the Least
Square Criteria (LSC) to phylogenetic trees [43]. The LSC will guarantee a minimal
deviation between the evolutionary distances and the leaf distances in the phylogenetic
tree. It is fortunate that the LSC weighting for a phylogenetic tree can be computed in
O (n?) time. The original LSC was introduced by Fitch and Margoliash, and nowadays
several forms of it are in use in the literature, like the Weighted LSC [47], Unweighted
and Generalized LSC [48]. We applied the constrained version of LSC (CLSC) here to
evaluate phylogenetic trees because the weights of the edges have to be non-negative.

27
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The solution of the problem retains its simplicity because the Constrained LSC can
easily be handled by the Levenberg-Marquardt method [49].

Since finding the least squares tree (whether it is constrained or not) is an NP-
complete problem [50], a polynomial-time algorithm to solve it is unlikely to exist. Many
meta-heuristics have been applied in phylogenetic tree-building such as the Genetic
Algorithm [51], the Tree Fusing approach [52], the Branch and Bound approach [53],
the Maximum Likelihood approach [26] and the Fitch&Margoliash approach, the latter
being an extension of UPGMA.

We now propose a novel heuristic, based on the so-called Multi-Stack (MS) con-
struction [54]. The MS heuristic organizes the candidate subtrees having the same
number of leaves into a priority queue according to their distance estimation error, and
generates newer candidate trees by joining the existing trees via a novel tree joining
strategy. It may happen however that there are many trees within a priority queue that
have a non-disjunct set of leaves, and it is not possible to join them. The Closest-
Neighborhood Tree Joining (CNTJ) strategy introduced here always provides a tree
topology based on all of the subtrees, swapping their common taxa with their closest
neighbor.

Our method was tested on artificial as well as on real-life datasets like Primates,
Myoglobins and Hydrogenases.

4.2 Materials and Methods

4.2.1 Multi-Stack Approach

To solve problems which have enormous solution spaces we need to apply an efficient
search technique. That is why we decided to adopt a heuristic approach for phylogenetic
tree-building which is also used in speech recognition [55]. To describe the method we
first have to give a definition. A stack is a structure for keeping candidate solutions in.
In addition, we use limited-sized stacks: if there are too many candidates in a stack,
we prune the ones with the highest fitness value.

In the MS algorithm we assign a separate stack to the trees having the same number
of leaves and store the K-best candidate subtrees in the stack according to their DEEs.
In the initial step the algorithm generates the lower level subtrees only, and then it pops
each pairs of candidate subtree from the stacks, joins them in every possible way, and
afterwards puts the new candidate subtrees into the stack according their leaf numbers
associated with their new DEE. Applying this heuristic to phylogenetic tree building,
we obtain an iterative tree-building procedure.

The pseudocode of the MS algorithm is presented in Table 4.2.1, where the @,
elements denote the limited priority queue which contains at most K trees, and each
tree has exactly n leaves in it. The initial step of the method includes the exploration
of all tree topologies with at most three leaves. This step makes sense because there
are only n + (;‘) + (’;) phylogenetic trees when |7| = n, so during this initial step
we can explore the whole space of trees. In the next steps MS generates the possible
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subtrees, and it always keeps the best K subtrees based on their distance estimation

error.
Input: | D distance matrix, K size of priority queues

1 Initial step: fill up @1, Q2 and Q3

2 fori=3:n

3 for j =1:min(n —1,1)

5 Generate all of the trees joining the
elements of @; and Q;

6 Add them to the
priority queue ();1; according their DEE

7 endfor

8 endfor

9 return to first element of QX

Output: | T rooted phylogenetic tree with n leaves

Table 4.1: The Multi-Stack algorithm.

The complexity of the MS method naturally depends on the variable K because we
are exploring an nK tree topology. Since CLSC requires a quadratic time complexity
(O (n?)), it becomes the most time-consuming step of the MS. Due to this features
the MS tree building method has a time complexity of O (Kn?) overall.

4.2.2 Closest Neighborhood Tree Joining operator

With the Multi-Stack tree building approach it may happen that we want to join two
candidate trees that have some common taxa (i.e. the set of taxa whose elements
occur in the taxon set of both trees). The simplest idea is the naive approach: let us
replace the common taxon set of the candidate trees that interferes the tree joining
in every possible way with those taxa that do not occur in the taxon set of candidate
trees. After we have carried out and evaluated all possible replacements, let us choose
the best replacement. But it can be easily seen that this will lead to a very high
computational burden, because the number of possible replacement grows exponentially
with the cardinality of the common taxon set. Instead here we suggest a tree joining
strategy as a way of avoiding this problem.

The situation is the following: we need to join two candidate subtrees T, T, having
n, and ny leaves respectively, and we need to determine a strategy for the elimination
of the duplicated taxa of the candidate trees: |77, N7r,| = n. From the solution of this
problem we also require that the distance estimation errors er; and er, with respect to
the applied distance matrix D remain or grow as little as possible. Thus the goal here
is to determine a strategy for the replacement of common taxa that produces the least
variation in the tree estimation errors of the candidate trees in question.

For the formal description let us denote the cost of the replacement for a taxon by
t € Ir by c(t,t'), where t € T — T;. This leads to a change in the ey value after the
replacement, which can be a negative real number as well. We can readily determine



30 A Tree Building Method Based On The Least-Squares Criteria

an upper bound for this cost, because using the weights of T" before the replacement,
the following proposition always holds.

Lemma 4.2.1 Let T be a phylogenetic tree with a taxon set 7y C T, and let er
be its distance estimation error. A distance on T will be denoted by D, and the leaf
distance will be denoted by D”. Now let t € Ty andt' € T — Ty be two taxa. Then
the following inequality will hold for the c (t,t") cost of the replacement:

c(@t’) < D by () = b (t ) (4.1)

" elr

where bl (t1,t2) = |D (t1,t") — DT (t5,t")

Proof

If we use the CLSC for T', then we get an optimal edge weighting w using the taxon
set 77 and distance matrix D. Equation 4.1 corresponds to the rows in Equation 3.19,
that it is represents the path between ¢ and 7 — ¢. Thus if we replace this taxon, the
change of the optima will vary according to the magnitude when we use the weighting
w. So Equation 4.1 will hold apart from the choice of t' € 7. O

Summarizing the above points, Proposition 4.2.1 allows us to determine an upper
bound for a replacement of a taxon. That is why we suggest here that the common
taxon set |77, N 7r,| should be replaced iteratively, taxon by taxon, always choosing
the pair of taxa that have the lowest bound, in accordance with Proposition 4.2.1.

4.2.3 Distances and similarities

In bioinformatics there are two classes of distances that are widely used, namely evo-
lutionary distances and information distances [56], as we outlined previously. In this
section we will describe the tools and their parameters as we used in our experiments.

Evolutionary distances.

The global alignment of protein sequences can be performed using the well-known
Needlemann-Wunsch [31] algorithm with the BLOSUM70 [28] matrix. The simplest
evolutionary distance between a pair of aligned sequences is usually measured by the
number of sites where a substitution occurs. This measure is usually called a Hamming-
distance, after assuming that the evolutionary rate is roughly constant, and that the
evolutionary process is linear.

Many models have been proposed to describe the true evolutionary process. There
are many corrections of this measure which try to fine tune the evolutionary rate. Some
of them were used here when we performed our tests on different real-life datasets.
These include the Gamma, Poisson and Jukes-Cantor corrections [57].
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Table 4.2: The performance of the test on randomly generated model trees. The values

in bold show the minimal value in each row.

No Length of ancestor = 300
leaves | UPGMA NJ FM MS
Poisson- 10 61.49 25.35 2491 7.62 (K = 20)
Poisson 20 39.38 15.32 15.56 9.32 (K = 20)
DEE(*10-9) 30 30.43 11.97 13.21 6.37 (K = 40)
40 24.48 9.29 9.33 5.48 (K = 40)
Poisson. 10 60.83 24.69 25.13 7.39 (K = 20)
Sequitar 20 41.10 16.62 16.58 10.33 (K = 20)
DEE(*10-) 30 30.45 11.85 11.97 6.85 (K = 40)
40 24.86 9.37 9.35 5.12 (K = 40)
Poisson- 10 0.32 0.21 0.22 0.20 (K = 20)
Poisson 20 0.50 0.33 0.34 0.28 (K = 20)
5D distance 30 0.63 0.41 0.41 0.32 (K = 40)
40 0.73 0.48 0.48 0.38 (K = 40)
Poisson. 10 0.53 0.30 0.31 0.26 (K = 20)
Sequitar 20 0.72 0.42 0.42 0.29 (K = 20)
BSD distance 30 0.99 0.56 0.56 0.38 (K = 40)
40 1.09 0.61 0.61 0.40 (K = 40)
No Length of ancestor = 600
leaves | UPGMA NJ FM MS
Poisson- 10 60.83 24.69 25.13 7.39 (K = 20)
B 20 41.10 16.62 16.58 10.33 (K = 20)
DEE(*10-%) 30 30.45 11.85 11.97 6.85 (K = 40)
40 24.86 9.37 9.35 5.12 (K = 40)
Poisson- 10 122.55 34.79 35.90 17.49 (K = 20)
Sequitar 20 70.58 16.58 16.32 11.05 (K = 20)
DEE(*10-) 30 48.45 10.31 10.39 6.61 (K = 40)
40 37.32 6.16 6.06 5.50 (K = 40)
Poisson- 10 0.32 0.21 0.22 0.20 (K = 20)
o 20 0.50 0.33 0.34 0.28 (K = 20)
BSD distance 30 0.63 0.41 0.41 0.32 (K = 40)
40 0.73 0.48 0.48 0.38 (K = 40)
Poisson- 10 0.49 0.27 0.29 0.29 (K = 20)
Sequitar 20 0.79 0.44 0.44 0.32 (K = 20)
BSD distance 30 0.95 0.54 0.54 0.35 (K = 40)
40 1.15 0.63 0.62 0.39 (K = 40)
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4.2.4 Generation of model populations

Since the correct phylogeny for a set of taxa is usually unknown, we first carried out our
tests on randomly generated model populations having 10 — 20 — 30 — 40 members. For
each population 100 independent and identically-distributed model trees were generated
from the tree-space.

In order to calculate the leaves of these trees, pseudo random sequences of 300 and
600 amino acids were used as ancestor sequences. The sequence was then assumed
to evolve according to the predetermined branching pattern of the randomly generated
model tree. The edge lengths of the generated tree correspond to the expected number
of amino acid substitutions per site. We varied this value between 0—0.1, and the num-
ber of amino acid substitutions at each site was assumed to have a Poisson distribution.
Two well-known substitution models, the Jukes-Cantor [57] and the Poisson [36; 58],
were also used to mimic the mutations. In this way 100 different set of sequences
(model populations) were generated for each (10-20-30-40) member number.

4.2.5 Description of real-life datasets

We utilized three different datasets of various size to compare and test the methods.
Primates consist of mitochondrial DNA, while hydrogenases and myoglobins are distinct
protein families, hence they are very suitable objects for statistically testing different
tree building and distance (similarity) calculating procedures.

The set of primates is quite small (12 sequences), and it was borrowed from Ovchin-
nikov et al. [59]. This dataset contains the mitochondrial DNA of two Neanderthals,
the modern human species and other vertebrates.

The second set we used for testing is an arbitrary set of sequences of myoglobins.
It contains 27 proteins from different organisms.

The third set is the group of 75 [NiFe] hydrogenases. Hydrogenases are metalloen-
zymes that catalyze the reaction Hy = 2H™ + 2e~. They can be found in bacteria,
archae and cyanobacteria. The [Ni-Fe] hydrogenases are usually placed into 4 different
taxonomic groups [60].

In the rest of the chapter these datasets will be called primates, myoglobins and
hydrogenases respectively.

4.3 Experiments

The efficiency of our methodology was tested on model populations as well as on
real-life datasets.

4.3.1 Evaluation of the model populations

The evolutionary distances (Poisson distance and CBM similarity measure with the
Sequitur compressor method [40]) were calculated for the model populations, and
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Figure 4.1: The normalized DEE of the MS trees in the last priority queue (K = 30).
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Figure 4.2: The dependence of the normalized DEE of the best tree in the priority
queue on the parameter K.

phylogenetic trees were built over these model populations using four different tree-
building methods: Unweighted Pair Group Method with Arithmetic Mean (UPGMA)
[10], Neighbour-Joining (NJ) [9] and the Fitch-Margoliash (FM) [43] method, all of
which were implemented in the Phylip package [61], and our newly developed Multi-
Stack method (MS). The parameter K for the MS method was set to 20 for the
populations having 10 and 20 members (leaves) and to 40 for the populations with 30
and 40 members (leaves).

The BSD distance between the randomly-generated model tree and the built phy-
logenetic tree along with the distance estimation error (DEE) were calculated after
building the phylogenetic tree. The test was repeated 100 times on 100 similar model
populations and the average of BSD distance and DEE was calculated. The results of
this are summarized in Table 4.2. It is striking that the MS method is superior over all
other methods tested. Moreover, both the BSD and the DEE values are smaller in every
case when the MS method was applied. The UPGMA approach in contrast proved to
be the least efficient method in reconstructing phylogenetic trees. The performances of
the NJ and the FM methods are quite similar, and the means of the BSD distance are
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equal to each other in many test cases. The mean of the Normalized DEE and BSD
distances for NJ and FM only lags behind the results of the MS method by a small
amount when the leaf number is set to 40.

4.3.2 Real-life Datasets

The newly developed MS method was tested on real-life datasets as well. To evaluate
the trees we used the distance estimation error values (DEE). The properties of the MS
method were investigated and the results were again compared with other tree building
algorithms (The Unweighted Pair Group Method with Arithmetic Mean (UPGMA),
Neighbour-Joining (NJ) and the Fitch-Margoliash methods implemented in the Phylip
package). In this case we applied them on six evolutionary distances (similarities)
(Jukes-Cantor, Gamma, Poisson, LZW, Sequitur and alignment score).

The only tunable parameter for the MS method is K (the size of the limited priority
queue). It is a crucial question of how big or small this value should be in order to
get reliable trees. When evaluating our MS trees we always chose the best tree in the
last stack, i.e. the one which had the lowest DEE value. It is interesting to see the
"goodness" of different trees in the last stack i.e. how much the "best tree" was better
than the others. We set the value of parameter K to 30 and plotted the DEE value of
the trees in the last stack (Figure 4.1) for primates, myoglobins and hydrogenases. The
DEE for the trees grew slightly at the beginning of the stack, but the first few trees were
almost just as good. There was a pronounced jump after this nearly constant level.
The position of the jump depends on the evolutionary distance used, but correlates
with the number of leaves on the tree when the number of leaves is small (< 30). For
hydrogenases the jump was set at around K = 30.

In order to investigate the effect of the K parameter on the "goodness" of trees
we also built trees for each dataset using different K values. The DEE value of the
best tree (which has the smallest DEE) in the last queue was plotted against the K in
Figure 4.2 for different phylogenetic distances and datasets. As can be seen, the DEE
decreased while the limits of the priority queues rose to 60. Moreover there is threshold
(about 30 — 40 ), after which the DEE of the best trees remains practically constant.

As a rule of thumb these points give us a good estimation of what the parameter
setting for K should be. According to this rule, K should be around the number of
leaves if it is smaller than 30. For bigger trees K = 40 seems to be a good estimate.

Applying this rule we built trees with different tree building methods using various
distances on the three real-life datasets. The results are summarized in Table 4.3. It
is evident that DEE in most cases is the smallest for our new MS based tree building
method. The performance of the UPGMA was not as good as the others when compared
with the model populations, but the Normalized DEE for the FM and NJ methods are
very similar here. Interestingly these two methods (NJ, FM) outperform the MS method
in terms of a Normalized DEE when we used alignment-based evolutionary distances.
Otherwise the MS method achieved better results. We also compared the methods in
terms of their BSD values. In Figure 4.3 the labels along the axis represent the tree
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Table 4.3: The normalized distance estimation error of different tree building methods
using distinct similarity measures on the datasets. The values in bold show the minimal
value in each row.

Primates (V = 12)
UPGMA  NJ FM MS

JC 96.22 60.42 4903 45.17
Gamma 112.87 76.36 63.08 17.62
Poisson 03.85 53.99 4797 37.06
LZW 68.95 12.31 1231 1.68
Sequitur 30.49 30.49 30.49 11.89

Alignment-Score 88.25 78.32 6559 13.71
Myoglobins (N = 27)
UPGMA  NJ FM MS

JC 88.35 62.77 62.12 19.70
Gamma 17456 90.69 81.43 30.80
Poisson 115.63 57.34 59.53 32.58
LZW 1.68 33.10 8.63  62.97
Sequitur 69.20 23.10 48.76 10.99

Alignment-Score 65.66 18.21  48.05 7.03
Hydrogenases (N = 75)
UPGMA  NJ FM MS

JC 40.80 11.69 10.58 15.17
Gamma 56.44 18.29 16.97 37.48
Poisson 37.86 10.33 8.76 12.36
LZW 1533 2091 1.85 0.50
Sequitur 2286 2.13 2.14 0.52

Alignment-Score 26.71  4.07 532 1.27

Normalized distance estimation errors were multiplied by 1000. The value K for MS
was set to 30 for primates and Myoglobins and 40 for hydrogenases.
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Figure 4.3: The BSD distance of the trees with the myoglobin dataset.

building methods and the evolutionary distance/similarity measure we applied, and are
separated by a hyphen. Comparing the tree topologies of different trees that employ
the BSD, we see that the performance of the MS method is very similar for all datasets
(note the plateau in Figure 4.3). It is also apparent from the evaluations that distance-
based methods (UPGMA, NJ and FM ) produce trees with very similar topologies (note
the wide valley in the middle of the diagrams). The topology of the trees built by the
MS method are different for these trees (notice the higher regions of the diagram in
Figure 4.3). The MS method, however, produced similar topologies regardless of the
evolution distance used for tree building, but we can still say that the MS trees brought
an improvement in the Normalized DEE for the trees as Table 4.3 quite clearly indicates.

4.4 Conclusions

In this chapter we have presented a novel distance-based and iterative tree building
algorithm for analysing the lineage of taxa in structural biology and then compared
it with other tree building methods using a new phylogenetic benchmark. Next, we
showed for simulated model datasets and for three distinct real-life datasets, that it is
an efficient tool for building phylogenetic trees. The new method is superior on distance
estimation and produces robust trees as the tests on model trees show. The "goodness"
of the resultant trees, however, strongly depends on the parameter K. As it follows
from the nature of the method, if K is big enough the MS method approximates
the exhaustive search. On choosing a proper K value, MS successfully and quickly
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searches in a previously unexplored region of the possible tree topologies, hence it
produces slightly different topologies than those with the algorithms used previously.
This allows us to gain a deeper insight into protein and DNA evolution, relationships
and lineage, and we hope that the MS method and the phylogenetic benchmarking we
introduced here will become widely used tools for tackling phylogenetic problems.
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Chapter 5

Consensus methods

5.1 Introduction

In biological evolutionary studies it is a commonly used technique to represent a col-
lection of phylogenetic trees by a single tree. The algorithms used for this are the
consensus tree methods. The first consensus tree method was proposed by Adams
[13], and since then many methodologies have been introduced which seek to provide
a 'representative’ tree for a given set of phylogenetic trees. Currently the most pop-
ular methods are the strict consensus and the majority consensus methods, which are
included in the Phylip [61] and the Paup [20] program packages.

Each edge of a rooted phylogenetic tree over a set of object X corresponds to
a cluster of X. Hence the consensus methods work on a set of clusters C' which
are obtained from the rooted phylogenetic input trees, or in other words from the
input profile. If set of subsets of X are compatible then we can represent by using a
single (not necessarily binary) tree. Hence one should try to find the largest number
of compatible clusters. The problem of finding the maximum compatible subset is
NP-complete [62; 63].

In this study we will focus on a special case of this problem, where a non-negative
real-valued weight function is defined on the input cluster set. We will look for a
compatible subset C’ of C' for which the sum of the cluster weights is maximal. This
particular problem is known as the Max Clique Consensus (MCC) problem, and it is
also NP-complete when the number of input trees are more than two.

There are many ways one can to define a weighting function in the case of the
MCC. In the simplest case, the number of trees they contain the cluster from the input
tree set is assigned to this cluster as its weight. It is also possible to use the likelihood
score of the input trees as a weighting, as well.

Here we present a binary integer programming formulation and solve it using the
well-known Branch and Bound algorithm [64], which is a general method for finding
the optimal solution of a combinatorial optimization problem. Our new approach was
tested using the input trees obtained by a parsimony method of the PAUP Program
Package [20] (this widely-used phylogenetic analysis method produces more than one
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output trees for the input dataset).

We have compared the consensus trees calculated with our new method to those
calculated by reference methods using various dataset sizes and various evolutionary
models [26; 35].

The experiments clearly show that the consensus tree building algorithm presented
here enhances the performance of the tree-building methods, and it has a moderate
time consumption (proportional to the phylogenetic tree construction itself), so it could
be employed efficiently in a post-processing phase of a phylogenetic analysis tool.

5.2 Methods

5.2.1 Consensus Tree Methods

We applied three well-known consensus methods for comparison, namely: majority
rule, strict consensus and greedy consensus. All of these methods determine, though
somehow differently, a subset of the cluster sets of the input phylogenetic trees 7 =
{T1,T5,...Tk}. The set of trees is also called as a profile. For a comprehensive
description of different consensus tree methods, see the review of Bryant [15].

The strict consensus procedure simply collects those clusters (Cs) which are com-
mon to all input phylogenetic trees. That is,

Cs={C:CecTf forall ic{l,... K}} (5.1)

It is obvious that if the input trees are very diverse, the strict consensus tree will be
very sparse, consequently the consensus tree will not provide a good representation of
the input.

The majority consensus method is based-on a majority voting rule. Let N (C,7)
denote the number of input trees where C' can be found. Next, let us consider the
following cluster set:

MET) s ) (52)

ch, ={C:
This rule means that we only choose those clusters which can be found in the majority
of the input trees. Two interesting remarks should be mentioned. First, if p = 1 then
this approach is equivalent to the strict consensus algorithm, the majority rule tree
always being a refinement of the strict consensus tree. Second, it is a simple corollary
of the Splits-Equivalence Theorem, when p > 0.5, that the majority consensus tree is
always a phylogenetic X-tree [22]. In our tests we always used p = 0.5, because this
value is the most commonly used one in the literature.
The third algorithm we used is the greedy approach. The greedy consensus algo-
rithm consists of the following two steps: first, we sort the clusters in descending order
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according to their frequencies (i.e. the number of trees they appeared in). Second, we
iteratively add the cluster with the highest frequency to our consensus cluster set if it
obeys the restriction of being compatible with all previously added clusters. Theoreti-
cally, the greedy consensus tree is a refinement of the majority rule tree, since we can
stop adding clusters when they occur in less than the half of the input trees.

5.2.2 A Binary Integer Programming Formulation of the Max

Clique Consensus

Clusters are common starting points in phylogenetics, because a rooted phylogenetic
tree can be determined uniquely by its cluster set. Thus one way of reconstructing a
tree is to retrieve compatible clusters based on the input data. The input data can also
be sequenced data, but here we will focus on consensus trees only, so the source of
clustered data will be a set of rooted binary phylogenetic trees. Proceeding now with
this approach, let us denote the set of input trees or profile by 7 = {71, T5,..., Tk}
and their cluster set by C = |, 7. Furthermore, let us assume that there exists
an associated non-negative real valued weighting function w : C — R™. Our goal is to
find the rooted phylogenetic tree T);¢ for which the following two properties hold:

i) TSoCC

ii.) ZceTﬁC w (¢) — max

This problem is the so-called Max Clique Consensus problem and it is NP-complete if
the number of input trees (K) is three or more [62]. In the case of K = 2, David Bryant
showed that it can be solved in polynomial time, because the problem is equivalent to
the searching for the maximum weight independent set in a bipartite graph, which can
be solved in polynomial time using the "Hungarian" method [63; 65].

After this formal definition of the MCC, let us consider its formulation. Let x’j €
{0, 1} denote binary variables, where 1 < i < m(=|C|), and 2° = (28,... 2°). The
value of an 2% tells us whether the ith cluster has been chosen or not, when building
the consensus tree. The objective function to be maximized can be written in a simple
way, namely > .. xbw(c;). The compatibility of the clusters can be forced via
constraints. Now let L denote the index pairs of incompatible clusters. That is,

L= {(2,]) e N Cj 7é @ and Ci\Cj 7é @ and Cj\Ci 7£ @} (53)

None of these cluster pairs can occur together in the Max Clique Consensus tree. For a
given (1, ) index pair let us consider a binary vector a; j) having all zero elements but
the ith and jth components are equal to one. Then it is straightforward to formulate
an incompatibility condition for these clusters via the a; jyvector:
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ag e’ <1 (5.4)

Doing this, we will get a binary integer linear programming problem that may have
an enormous number of constraints. It is still possible to handle this problem without
much difficulty if we exploit the sparsity property of the constraints (there are only two
non-zero elements in each constraint). There are a number of optimization toolboxes
i.e. in MATLAB [66] which can handle this kind of problem. In our implementation we
used the MOSEK toolbox [67], which turned out to be quite efficient at solving this sort
of integer programming task. All of these packages are based on a Branch-and-Bound
(BB) procedure. This approach will fairly intelligently enumerate all the possible integer
solutions.

As regards the optimization problem, each constraint corresponds to an incompat-
ible cluster pair from two distinct phylogenetic trees. We can represent these relations
among the clusters using a so-called incompatibility graph T = (C, E), whose nodes
correspond to the clusters of the input trees and their edges represent the incompat-
ibilities of the clusters (i.e. there is an edge between two nodes which represent two
incompatible clusters). This construction can be determined in o(/K?n?) time, where
K is the size of the input profile and n is the size of the common taxon set [62]. This
remark helps us to lead to an efficient implementation of the optimization problem.

If we restrict the Max Clique Consensus problem for d-trees (i.e. in the input and
output trees every internal vertex has a degree at most d), then there is an algorithm
which has an O(n2dK9!) time complexity where K is the number of the clusters
obtained from the input trees. This special case of MCC is called as Maximum Weighted
Consensus d-tree and the detailed description of the algorithm can be found in [63].

5.2.3 Weighting Schemes

The associated weighting function w can be defined in many ways. We can, for in-
stance, simply assign the frequencies (N (C, 7)) of the clusters as weights. We suggest,
however, a more sophisticated, likelihood-based weighting function which fits to this
problem better. In order to generate trees for testing we have to use a high throughput
generation of trees. The maximum parsimony-based tree building method was chosen,
where each tree represents an equally possible estimate of the real tree. It is straight-
forward to apply the Max Clique Consensus with the likelihood-based weighting to get
a refinement of the output of the tree building method.

In [68] a maximum likelihood-based weighting was applied using majority consensus,
but their approach was focused on the regulation of the multiplication of input trees.
Briefly, a tree was cloned in the input set when it had a higher likelihood score than
the others.

Here we suggest a similar weighting scheme for the clusters of the trees, based also
on the likelihood scores of the input trees. Let us assume that we have the sq,..., sy
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likelihood values of the input trees. Then the weight of a cluster is simply given by:

UJ(C) o ZcETi Si

= ) (5.5)
ZlgjgN Sj

Hence the weight of a cluster is proportional to the sum of the likelihood values of the
trees containing that particular cluster.

5.3 Experiments

5.3.1 Model datasets

Since the correct phylogeny for a set of taxa is usually unknown, we first carried out
tests on randomly generated model populations that have a variety of members. For
each population 100 independent, identically-distributed and non-ultrametric model
trees were generated from the tree-space. In order to calculate the leaves of these
trees, pseudo random sequences of 900 nucleic acids were used as ancestor sequences.
The sequences were then assumed to evolve according to the predetermined branching
pattern of a particular randomly generated model tree which assumes the Yule-Harding
speciation process [69; 70]. (This process has many attractive features. For example,
it is more likely to produce balanced trees, so generating a caterpillar tree has a higher
probability than using a uniform distribution in the tree space. The edge lengths of a
generated tree were calculated according to a standard exponential distribution with
various A parameter values. \ was varied between 0.1 — 1.0, so the molecular clock
assumption [58] was hardly deviated in our experiments, as it is found in most the
biological datasets.

For the generation of the sequenced data we used the Seq-Gen program [71], which
can simulate wide range of evolutionary processes. We used the Kimura 2-parameter
model (K2P) [72] which assumes that the transversion and transition ratio is equal to
0.5. Furthermore, we also tested our consensus method under the evolutionary process
introduced by Felsenstein (F84) [26], which is similar to the Jukes-Cantor model [57]
in the sense that the transversion and transition ratio is equal, but the base frequencies
are different.

5.3.2 Tree reconstruction methods and their settings

The input trees for the consensus methods were generated using the PAUP (version
4.0b10) program. The PAUP package was used with the following settings, appended
to the end of the NEXUS sequence file:

set crit=pars; hsearch start=stepwise addseq=simple swap=tbr
retain=yes nbest=x;

where the nbest parameter determines how many output trees will be generated by the
PAUP program. The default values were used for the other parameters. We also tried
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to evaluate the PAUP tree building method using maximum likelihood criteria, but a
single tree-building time was over 30 minutes for a dataset that contains 50 sequences,
so we could not finish our calculations.

The log likelihood values of the trees were estimated using Felsenstein-Churchill
model [45], applying the DNAML program from the PHYLIP program package. This
model assumes that the transition and transversion ratios vary from site to site corresponding
to a Hidden Markov Model [73].

Table 5.1: The average of the RF differences for the model trees. The number of leaves
was chosen to be n = 50. The \ parameter of the standard exponential distribution for
which the lengths of the edges obeys, was set to 0.1 — 0.5 — 1.0. In these experiments
we used the PAUP package as we described in Section 5.3.2.

Number of Length of ancestor = 900
input trees | ORIG MCC GREEDY  STRICT MAJ.
Kop 10 7.33 8.57 12.14 8.57
=01 25 8.63 7.50 8.57 18.71 9.70
50 8.46 8.48 28.62 8.47
Fa4 10 7.73 8.69 12.15 8.67
N 01 25 8.75 8.29 8.57 18.96 8.59
50 8.53 8.50 28.52 8.50
Kop 10 9.75 13.54 19.63 13.46
\— 05 25 15.61 9.78 13.30 25.07 13.32
50 10.92 13.23 29.95 13.20
Fga 10 8.87 13.43 19.57 13.41
N =05 25 15.86 11.00 13.14 24.82 13.15
50 11.11 12.86 29.69 12.83
KOP 10 37.59 38.06 32.71 37.92
N 25 39.23 36.09 38.04 33.39 38.08
50 37.33 37.89 34.70 37.91
Fga 10 38.26 38.94 32.62 39.00
N 1.0 25 40.47 38.63 38.85 33.58 38.91
50 39.70 39.29 34.85 39.29

5.3.3 Evaluation of performance

We evaluated the consensus tree building methods in terms of RF differences described
in Section 2.1. We tried to cover all types of datasets which may occur in real life. The
size of the databases was limited by the computational burden of the tree reconstruction
methods. Therefore, the sizes of the model datasets were set to 50 — 100 — 200.
The branch length of the trees was generated according to an standard exponential
distribution. The A parameter was set to one of three different values: 0.1 — 0.5 — 1.0.
With a 1.0 settings the model dataset had a rather high divergence. In addition, we
tested the methods using two different evolutionary models: the Kimura-2-parameter
(K2P) and Felsenstein84 (F84) models.
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Figure 5.1: The MCC consensus tree of the hydrogenase group. The taxonomic groups
themselves can be seen separately on the right side of the picture.

Table 5.1 lists the results for n = 50 leaves. The results reveal a few general
trends. First, in each case it is worth applying a consensus method; on the other hand
among the consensus methods the MCC approach using the maximum likelihood based
weighting (described in Section 5.2.3) outperforms all the other algorithms in terms of
symmetric difference, except when the dataset displays a high divergence (i.e. A = 1.0).
The differences between the performances are only marginally influenced by the choice
of the number of input trees. The choice of the A parameter, however, hardly influences
the performance. We should mention here that if the task is very complicated (e.g.
with K2P and F84 when A = 0.1), i.e. the tree reconstruction is not so accurate, the
consensus tree methods will not achieve any significant improvement on the results. In
this case only the strict consensus method produces a noticeable improvement, because
it generates trees which are not so resolved (i.e. their cluster set contain only a few
clusters). It indicates that the information content of the strict consensus trees are very
low (i.e. highly unresolved), this means that the input profile contains very different
trees.

The strict consensus method achieves a higher symmetric difference, however, when
the task is not so complicated. Table 5.2 shows the results for datasets of 100 sequences
(the results for the dataset of 200 sequences are not shown). The general trends are
quite similar to those mentioned above.

In Table 5.3 the results on amino acid sequences are presented. The general trend
is very similar to the results of previous two experiments, but in this case the MCC
outperforms the other consensus tree methods even in the case of A = 1.
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Figure 5.2: The Majority consensus tree of the hydrogenase group.

Table 5.2: The average of the RF differences for the model trees. Here the number of
leaves is n = 100. The X\ parameter of the standard exponential distribution for which
the lengths of the edges obey, is set to 0.1 — 0.5 — 1.0. In this experiment we used the
PAUP package described in Section 5.3.2.

Number of Length of ancestor = 900

input trees | ORIG MCC GREEDY  STRICT MAJ.

10 9.51 11.94 17.47 11.95
25 12.55 11.39 11.97 24.56 12.00
50 11.77 11.85 32.62 11.84

K2P
A=0.1

10 9.78 11.38 16.84 11.44
25 12.16 11.14 11.50 24.13 11.52
50 11.17 11.26 32.32 11.28

F84

10 15.16 21.57 28.30 21.51
25 24.05 17.02 21.48 33.96 21.43
50 18.88 21.48 39.35 21.49

K2P
A=0.5

10 14.33 21.33 27.96 21.27
25 23.65 14.32 21.29 34.40 21.31
50 17.94 21.21 39.86 21.19

F84

10 86.24 87.12 72.01 87.14
25 87.80 89.98 87.23 69.49 87.19
50 87.87 87.21 68.37 87.24

K2P
A=1.0

10 82.75 86.57 71.41 86.45
25 87.05 86.60 86.43 68.65 86.36
50 74.77 86.41 68.02 86.39

F84
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Table 5.3: The average of the RF differences for the model trees. The ancestral
sequence was an amino acid sequence with length of 500 in this test. The number of
leaves was chosen n = 100. The \ parameter of the standard exponential distribution
for which the lengths of the edges obey, was set to 0.1 — 0.5 — 1.0. In this experiment
we used the PAUP package described in Section 5.3.2.

Number of Length of ancestor = 500
input trees | ORIG MCC GREEDY STRICT MAJ.
10 8.56 9.78 12.74 9.82
BL)\OE%I\Q 25 9.74 8.88 9.70 18.84 9.68
e 50 9.40 9.70 26.74 9.68
10 10.08 11.86 15.75 11.71
BL)\OEL(J)I\Q 25 12.27 10.72 11.69 21.88 11.69
- 50 10.84 11.42 29.55 11.36
10 10.95 16.36 21.64 16.34
BL)\OEUll\g 25 18.87 13.60 16.11 26.15 16.13
- 50 15.01 16.04 29.94 16.09

In our experiments the computational time requirements for all four evaluated
consensus methods were no more than few seconds in each test case, which is negligible
when we consider the time requirements for the tree building phase.

5.3.4 A real-life dataset

The real-life dataset we used is the group of 71 [NiFe] hydrogenases. Hydrogenases are
metallo-enzymes that catalyze the reaction Hy = 2H™ + 2¢~. They can be found in
bacteria, archae and cyanobacteria. The [Ni-Fe] hydrogenases are usually placed into
4 different taxonomic groups [60].

The multiple alignment of the sequences was performed by the Clustal W program
[30] using the Neighbor-Joining tree as the guide tree and the BLOSUMS80 matrix [28]
as the scoring matrix. The aligned sequences are available at the supplementary web
site. In our experiments we employed the following tree building methods:

1. Single Linkage

2. Neighbor-Joining [9]

3. PAUP using Maximum Likelihood criteria [20]
4. PAUP using Maximum Parsimony criteria [20]
5. Multi-Stack [11]

6. Tree Puzzle [74]

7. MrBayes [75]
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Here trees for both small and large subunits of hydrogenase were used for consensus
determination. Altogether the profile contained 14 trees. The strict consensus algorithm
resulted in a fully unresolved tree. The majority consensus and the greedy consensus
tree were the same in this experiment and it is presented in Figure 9.3. The taxonomic
group ID is shown after the GROUP keyword in the name of the proteins. The grouping
of hydrogenases resulted from these consensus methods is confused. The previously
determined taxonomic groups were badly done. In contrast the MCC approach resulted
in a tree which classifies the taxonomic groups perfectly. Every single enzyme is
correctly placed within its correct taxonomic group justifying the classification of the
hydrogenases which was based not just on phylogenetic but also on structural and
functional similarities of different enzymes [60].

5.4 Conclusions

Here we developed a binary integer programming formulation for the Max Clique
Consensus problem, which is known to be an NP-complete problem. Due to this
formulation the Max Clique Problem has become applicable for consensus tree building,
and it outperforms the other, widely used and cited consensus tree building methods,
when we use a suitable maximum-likelihood based weighting scheme. We compared
the various consensus methods in the case of two evolutionary models (K2P,F84) using
a well-known tree-building program package (PAUP). The MCC tree in most of the
test cases is the most accurate one in terms of symmetric difference (better even than
the best tree based on the parsimony score).

When the dataset shows an extremely high divergence, however, the strict consensus
achieves the best performance. This superiority of the strict consensus is, however,
virtual and we should rather consider it as an indication of the inaccuracy of the tree
reconstruction than a real result.

We have also evaluated our method using a real-life dataset. It contained 71
[NiFe]hydrogenases. We have built phylogenetic trees using various tree reconstruction
methods for both the small and the large subunits of the [NiFe] hydrogenases. The
investigated consensus tree methods do not show the four taxonomic group in this
protein family, while our MCC consensus method achieved the right taxonomic classification,
in agreement with the generally accepted phylogeny.

It is obvious from the data that the MCC consensus outperforms many widely-used
procedures, and it is easy to implement. The time requirement of this method is
reasonable (proportional to the tree building method itself), and the MATLAB implementation
of this is accessible freely from the supplementary web page. That is why we hope that
it will be a widely used tool in the area of phylogenetic tree reconstruction.
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Chapter 6

Introduction

6.1 Motivation

The categorization of biological objects is one of the fundamental and traditional tasks
of the life sciences. For instance, the categorization of organisms into a hierarchical
"Tree of life" leads to a complex model that summarizes not just the taxonomic
relationships between the species, but also the putative time-course of evolution as
we understand it today. With the advent of molecular biology in the 1970's, the
categorization of genes and proteins itself became an important subject of research.
Sequences of individual proteins can, for instance, be compared using string distance
measures, and one can build trees that closely resemble the hypothetical "Tree of life".
The categorization of protein structures, on the other hand, began from a different
perspective: protein structures reveal a few fundamental molecular arrangements (like
alpha-helices and beta-sheets) that can combine in a variety of ways and give rise to
characteristic molecular shapes. Finally, the recent advent of genomics research - the
wholesale analysis of the gene and protein repertoire of a species - led to yet another
perspective with an emphasis on biological function. According to this approach, the
known genes/proteins are categorized into a priori determined, empirical categories that
reflect our current knowledge on the cellular and biochemical functions. As proteins
carry many, perhaps most of the known biological functions, they play a prominent role
in the functional analysis of genomes.

The methods of protein classification fall into three broad categories: i) Methods
based on pairwise comparison, i.e. ones that work by comparing an unknown object
(protein sequence or structure) with members of an a priori classified database of protein
objects. The results are ranked according to the similarities and the strongest similarities
are evaluated in terms of biological or statistical significance, after which a query is
assigned to the class of the most similar object. ii) Methods based on consensus (or
aggregate) descriptions, i.e. ones that are used to analyze distant sequence similarities
that cannot readily be determined based on a simple similarity analysis. Here we first
prepare a consensus description for all the classes of a protein sequence database, then
we compare the unknown query with each of the consensus descriptions. As with
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the previous methods, the strongest similarities are evaluated and used to assign the
protein to a given class. There are various methods for preparing consensus descriptions,
including regular expressions, frequency matrices and Hidden Markov Models. The
above methods are described in textbooks and are periodically reviewed. iii) A more
recent type of protein classification methods attempts to use an external source of
knowledge in order to increase the classification sensitivity. The external source of
knowledge is the phylogenetic classification of an organism, i.e. the knowledge that
is accumulated in the fields of taxonomy and molecular phylogeny. This approach
is called phylogenomics (for a recent review, see [76]) and is closely linked to the
notions of orthologous (proteins that share both ancestry and function) and paralogues
(proteins that share a common ancestry but carry different functions). The practical
goal of phylogenomics is to reveal the true orthologous relationships and use them
in the process of classification. Like ii), phylogenomic methods are used for distant
similarities that cannot be decided by simple comparisons like those mentioned in i).

The aim of the present part of this thesis is to describe some protein classification
algorithms that make use of tree structures. The chief difficulties of protein classification
arise from the fact that the databases are large, noisy, heterogeneous and redundant;
and that the classes themselves are very different in terms of most of their characteristics;
that the assignments are often uncertain. For these reasons there is a constant need for
better and faster algorithms that can cope with the growing datasets, and tree-based
approaches are promising in this respect [77]. Even though trees are often used in
molecular phylogenies and phylogenomics, the motivation of our work is quite different
since we are not trying to reveal or to use the taxonomic relationships between species
or proteins. We employ trees - especially weighted binary trees - as a simple and
computationally inexpensive formalism to capture the hidden structure of the data and
to use it for protein classification .

The rest of this chapter is concerned with describing of the tools we will use in
our experiments. First, we will describe the sequence comparison methods and their
parameter settings. Afterwards we will overview the protein classification task. Lastly,
we will introduce the way we applied ROC analysis in model evaluation.

6.2 Description of classification task (Binary vs

multi-class classification)

The protein classification tasks are mainly multi-class problems. This means that we
have to categorize the objects or sequences into more than two classes. But we are
mainly interested in the identification of one particular class, because it is convenient
way of comparing the performance of models we investigate here. That is why we
derive the multi-class approach to several different binary classification tasks. In a
one-versus-all classification approach one particular class is treated as the positive class
while the rest of the samples are treated as negatives (the binary classification task).
We should mention here that this derivation causes some problems with the model
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evaluation process. Because in this one-versus-all classification the classes can be
very imbalanced — i.e. we have only a few positive samples, while we have enormous
number of negative samples. The traditional model evaluation metric like accuracy
cannot measure the performance of models in an objective way, because if the model
classified all elements as negative, then we would attain an acceptable accuracy. This
problem typically comes up in text-mining [78]. In this field this problem is treated by
applying an F-measure, which is the weighted harmonic mean of precision and recall.
The traditional F-measure or balanced F-score is:

o 2(precision * recall)

6.1
precision + recall (6.1)

In addition, the error rate is also a wide-spread model evaluation metric in many
fields where machine learning has been applied. For example, the error rate - which
is the fraction of errors (false positives and false negatives) within all the predictions.
Thus ER = I1-accuracy
But in protein classification we consider the ranking performance of the different models,
as well. Thus we will use ROC analysis like that describes in a later section in this
chapter.

6.3 Sequence comparison algorithms

Version 2.2.4 of the BLAST program [1] had a cutoff score of 25. The Smith-Waterman
algorithm [2] we used was implemented in MATLAB [66], while the program implementing
the local alignment kernel algorithm [79] was obtained from the authors of the method.
Moreover, the BLOSUM 62 matrix [28] was used in each case.

Compression based distance measures (CBMs) were used in the way defined in
Section 3.4. We used in our experiments the LZW algorithm and the PPMZ algorithm.
The LZW algorithm was implemented in MATLAB while the PPMZ2 algorithm was
downloaded from Charles Bloom's homepage (http://www.cbloom.com/src/ppmz.html).

6.4 A brief applicability survey on tree building
methods

Distance-based or the distance matrix methods of tree-building are fast and quite
suitable for protein function prediction. The general idea behind each is to calculate
a measure of the similarity between each pair of taxons, and then to find a tree that
predicts the observed set of similarities as closely as possible. In our study we used
two popular algorithms, the Unweighted Pair-Group Method using Arithmetic Averages
(UPGMA) [10], and the Neighbour-Joining (NJ) algorithm [9]. Both algorithms here are
based on hierarchical clustering. UPGMA employs an agglomerative algorithm which
assumes that the evolutionary process can be represented by an ultrametric tree: or,
in other words, that it satisfies the "molecular clock" assumption. On the other hand,
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NJ is based on divisive clustering and produces additive trees. The time complexity of
both methods is O (n?).

Biologists use a whole arsenal of sophisticated methods for building binary phylogenetic
trees. One of the most popular ones is the Neighbor-Joining [9] and its more recent
variants BioNJ [80] and Weighbor [81], which are known to produce consistent trees
in O(N?3) time provided we have additive distance. Since we needed to construct a
tree for each query protein, we looked for fast and sensitive equivalents and chose the
FastME algorithm that uses the Greedy Minimum Evolution tree construction method
with Nearest Neighbor Interchange operator, and requires only O(N?) time [82]. The
performance of FastME compares favorably with that of other, state-of-the-art algorithms
[82]. We used the C implementation of FastME downloaded from http://www.ncbi.
nlm.nih.gov/CBBresearch /Desper/FastME.html.

6.5 Performance evaluation methods

The fundamental use of ROC analysis is its application in binary (or two-class) classification
problems. A binary classifier algorithm maps an object (for example an un-annotated
object, in this sequence of 3D structure) into one of two classes, that we usually denote
by + and —, respectively. Generally, the parameters of such a classifier algorithm are
derived from training on known + and - examples, then the classifier is tested on +
and - examples that were not part of our training sets (Figure 9.2.1)

Training Testing

()~ test
® (#) e OU group

- -

®@® model ~

A) Discrete classifiers:
+ or -

B) Probabilistic classifiers:

train group score
!
1. 2. 3. s .
OIOIOIGICIOISIG)

Ranked objects (test)

Figure 6.1: Binary classification. Binary classifiers algorithms (models, classifiers) that
are capable of distinguishing two classes are denoted by + and -. The parameters of
the model are determined from known + and - examples, this is the training phase.
In the testing phase, test examples are given to the predictor. Discrete classifiers can
assign only labels (4 or ) to the test examples. And probabilistic classifiers assign a
continuous score to the text examples which can be used for ranking.

A discrete classifier predicts only the class to which a test object belongs. There
are four possible outcomes, that is true positive if the instance is + and it is correctly
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classified as +, false negative if it is predicted as -, true negative if the instance is
- and it is counted as -, and false positive if it is incorrectly predicted as -. If we
evaluate a set of objects, we can count the outcomes and prepare a confusion matrix
(also known as a contingency table), a two-by-two table that shows the classifier’s
correct decisions on the major diagonal and the errors off this diagonal (see Figure
9.3, left). Alternatively, we can construct various numeric measures that characterize
the accuracy, the sensitivity and the specificity of the test (Fig. 9.3, right). These
quantities lie between 0 and 1, and can be interpreted as probabilities. For instance,
the false positive rate is the probability that a negative instance is incorrectly classified
as being positive. Many similar indices have been reviewed in [83] and [84].
Probabilistic classifiers, on the other hand, return a score which is not necessarily a
sensu stricto probability, but represents the degree to which an object is a member of a
class rather than of the other one [85]. We can use this score for ranking a test set of
objects, and a classifier works correctly if the positive examples are on top of the list.
In addition, one can apply a decision threshold value to the score, say above which the
prediction is considered positive. In such a way we changed the probabilistic classifier
into a discrete classifier. Naturally, we can select different threshold values, and in this
way for one probabilistic classifier we can generate an (infinitely long) series of discrete

classifiers.
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Figure 6.2: The confusion matrix and a few performance measures TP, TN, FP, FN
are the number of true positives, true negatives, false positives and false negatives in
a test set, respectively. TPR is the true positive rate or sensitivity, FPR is the false
positive rate. A ROC curve is a TPR vs. FPR plot.

An ROC curve (Figure 9.3) is obtained by selecting a series of thresholds, and
plotting sensitivity on the y axis versus 1-specificity on the x-axis (using the terms of
Figure 2, it is a TPR vs. FPR plot). The output of our imaginary classifier is the ranked
list shown on the left hand side of the figure. We can produce the ROC curve shown
in bottom left of the figure by varying a decision threshold between the minimum and
maximum of the output values, and plotting the FPR (1 - specificity) on the x-axis and
the TPR (sensitivity) on the y-axis. (In practice, we can change the threshold so as to
step on the next output value, in such a way we will create one point for each output
value). The empirical ROC curve generated for this small test set is a step function,
which will approach a continuous curve for large test sets.
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Each point in this curve corresponds to a discrete classifier that can be obtained
by using a given decision threshold. For example, when the threshold is set to 0.6, the
True Positive Rate is 0.7 and the False Positive Rate is 0.1. An ROC curve is thus a
two-dimensional graph that visually depicts the relative trade-offs between the errors
(false positives) and benefits (true positives) [85]. We can also say that an ROC curve
characterizes a probabilistic classifier, and each point of this curve corresponds to a
discrete classifier. Interpretation of ROC curves A ROC curve can be interpreted either
graphically or numerically, as schematically shown in Figure 9.3. A perfect probabilistic
classifier corresponds to the top ROC curve indicated in a dashed line. Such a classifier
assigns higher scores to the positives than to the negatives, so the positives will be on
top of the ranked list (Table 9.3, b). This curve is rectangular and its integral, the
"area under the ROC curve (AUC or AUROC) equals to 1. The dotted diagonal line
corresponds to a "random classifier" that would give out random answers, irrespective
of the input. The integral (AUC value) of this curve is 0.5 (Table 9.3, f). A correct
classifier has a ROC curve above the diagonal and an AUC > 0.5. On the other hand,
classifiers that consistently give the opposite predictions, ("anticorrelated" classifiers)
give ROC curves below the diagonal, and AUC values between zero and 0.5 (Table 9.3,
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Figure 6.3: Constructing a ROC curve from ranked data. The TP, TN, FP, FN values
are determined by comparing values to a moving threshold, an example of which is
shown by an arrow in the ranked list (left). Above the threshold + data items are
TP, - data items are FP. Therefore a threshold of 0.6 produces the point FPR = 0.1,
TPR = 0.7 as shown in inset B. The plot is produced by moving the threshold through
the entire range. The data were randomly generated based on the distributions shown
in inset A.

From a mathematical point of view, the AUC can be viewed as the probability that
a randomly chosen positive instance would be ranked higher than a randomly chosen
negative instance that is equivalent to the two sample the Wilcoxon rank-sum statistic
[2]. Alternatively, the AUC can be be interpreted either as the average sensitivity over
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Table 6.1: Benchmark results of the cascade oscillators model

all false positive rates or as the average specificity over all sensitivities [3]. Note that
AUC,, values (described below under pairwise comparison), cannot be interpreted in
this fashion.
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In practice, the AUC is often used as a single numerical measure of ranking performance.
We should mention that ranking is dependent on the call distribution of the ranked set,
so one cannot set an absolute threshold above which the ranking is good. In general,
a high AUC value does not guarantee that the top ranking items will be true positive,
as shown on synthetic data in Table I.
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Figure 6.4: Examples of ROC curves calculated by pairwise sequence comparison using
BLAST [1], Smith-Waterman [2] and a structural comparison using DALI [3]. The
query was Cytochrome C6 from B. pasteurii, the + group were the other members
of the Cytochrome C superfamily, the - set was the rest of the SCOP40mini dataset,
taken from record PCB00019 of the Protein Classification Benchmark collection [4].
The diagonal corresponds to the random classifier. Curves running higher indicate a
better classifier performance.



Chapter 7

Basic Tree-Based Models

7.1 Introduction

The algorithms described in this chapter belong to the broad area of protein classification,
which have been summarized in several recent reviews and monographs [86]. In
particular, we will employ the tools developed for protein sequence comparison that
are now routinely used by researchers in various biological fields. The Smith-Waterman
[2] and the Needleman-Wunsch algorithms [31] are exhaustive sequence comparison
algorithms, while BLAST [1] is a fast heuristic algorithm. All of these programs calculate
a similarity score that is high for similar or identical sequences and zero or below some
threshold for very different sequences. Methods of molecular phylogeny build trees from
the similarity scores obtained from the pairwise comparison of a set of protein sequences.
The current methods of tree building are summarized in the splendid textbook by J.
Felsenstein[21]. One class of tree-building methods, the class of so-called distance
based methods, is particularly relevant to our work since we use one of the simplest
method, namely Neighbour-Joining (NJ) [9], to generate trees from the data.

Protein classification supported by phylogenetic information is sometimes termed
phylogenomics [18; 76]. The term covers an eclectic set of tools that combine phylogenetic
trees and external data-sources in order to increase the sensitivity of protein classification
[76]. Jonathan Eisen's review provides a conceptual framework for combining functional
and phylogenetic information and describes a number of cases where functions cannot
be predicted using sequence similarity alone. Most of the work summarized by Eisen
is devoted to the human evaluation of small datasets by hand. The first automated
annotation algorithm was introduced by Zmasek and Eddy [25], who used explicit
phylogenetic inference in conjunction with real-life databases. Their method applies
the gene tree and the species tree in a parallel fashion, and it can infer speciation and
duplication events by comparing the two distinct trees. The worst case running time of
this methods is O (n?), and the authors used the COG dataset [87] to show that their
method is applicable for automated gene annotation.

Not long ago Lazareva-Ulitsky et. al. employed an explicit measure to describe
the compatibility of a phylogenetic tree and a functional classification [88]. Given a

59
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phylogenetic tree overlaid with labels of functional classes, the authors analyzed the
subtrees that contain all members of a given class. A subtree is called perfect if its
leaves all belong to the one functional class and an ideal phylogenetic tree is made
up of just perfect subtrees. In the absence of such a perfect subdivision, one can
establish an optimal division i.e. one can find subtrees that contain the least "false"
labels. The authors defined a so-called tree measure that characterizes the fit between
the phylogenetic tree and the functional classification, and then used it to develop a
tree-building algorithm based on agglomerative clustering. For a comprehensive review
on protein classification, see [76].

The rest of this chapter is structured as follows. Section 7.2 provides a brief overview
of the datasets we used. Afterwards sections 7.3 and 7.4 respectively describe the two
algorithms called TreeNN and Treelnsert. TreeNN is based on the concept of a distance
that can be defined between leaves of a weighted binary tree. It is a pairwise comparison
type algorithm (see i) above), where the distance function incorporates information
encoded in a tree structure. Given a query protein and an a priori classified database, the
algorithm first constructs a common tree that includes the members of the database and
the query protein. In the subsequent step the algorithm attempts to assign labels to an
unknown protein using the known class labels found in its neighborhood within the tree.
A weighting scheme is applied, and the class label with the highest weight is assigned
to the query. Treelnsert on the other hand is based on the concept of tree insertion
cost, this being a numerical value characterizing the insertion of a new leaf at a given
point of a weighted binary tree. The algorithm finds the point with minimum insertion
cost in a tree. Treelnsert uses the tree as a consensus representation so it is related
to the algorithms described above in ii). Given an unknown protein and protein classes
represented by precalculated weighted binary trees, the query is assigned to the tree
into which it can be inserted at the smallest cost. In the description of both algorithms
we first give a conceptual outline that summarizes the theory as well as its relation to
the existing approaches i-iii. This is followed by the formal description of the algorithm,
the principle of the implementation, and some possible heuristic improvements. Then
we round off this chapter with a brief discussion and some conclusions in Section 7.5.

7.2 Datasets

In order to characterize of the tree-based classifier algorithms described in this section
we designed classification tasks. A classification task is a subdivision of a dataset into
+train, +test, -train and -test groups. Here we used two datasets.

Dataset A was constructed from evolutionarily related sequences of an ubiquitous
glycolytic enzyme, 3-phosphoglycerate kinase (3PGK, 358 to 505 residues in length).
131 3PGK sequences were selected which represent various species of the Archaean,
Bacterial and Eukaryotic superkingdoms [89]. Ten classification tasks were then defined
on this dataset in the following way. The positive examples were taken from a given
superkingdom. One of the phyla (with at least five sequences) was the test set while
the remaining phyla of the kingdom were used as the training set. The negative set
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Figure 7.1: A weighted tree of proteins overlayed with class labels.

contained members of the other two superkingdoms and were subdivided in such a way
that members of one phylum could be either test or train.

Dataset B is a subset of the COG database of functionally annotated orthologous
sequence clusters [87]. In the COG database, each COG cluster contains functionally
related orthologous sequences belonging to unicellular organisms, including Archaea,
Bacteria and unicellular Eukaryota. Of the over 5665 COGs we selected 117 that
contained at least 8 eukaryotic sequences and 16 additional prokaryotic sequences (a
total of 17973 sequences). A separate classification task was defined for each of the 117
selected COG groups. The positive group contained the Archaean proteins randomly
subdivided into +train and +test groups, while the rest of the COG was randomly
subdivided into -train and -test groups. In a typical classification task the positive
group consisted of 17 to 41 Archaean sequences while the negative group contained 12
to 247 members, both groups being subdivided into equal test and train groups.

7.3  TreeNN: Protein classification via neighbor-

hood evaluation within weighted binary trees

7.3.1 Conceptual outline

Given a database of a priori classified proteins that are compared to each other in
terms of a similarity/dissimilarity measure!, and a query protein that is compared to
the same database in terms of the same similarity/dissimilarity measure, one can build
a phylogenetic tree that will contain proteins in each leaf. If we now assign the known
class labels to the proteins, all leaves except the unknown query will be labelled, as
schematically shown in Figure 7.1.

First let us denote the length of the unique path between two leaves L; and L, of a
phylogenetic tree T' by p (L;, L;). Here p (L;, L;) is an integer representing the number
of edges along the path between L; and L;. We can define the closest neighbourhood
K (L) of a leaf L as the set of leaves for which there is no L; leaf such that p (L, L) <
p (L, L;). For instance the closest neighbours of ¢ in Figure 7.1 are both members of

11Similarity measures" and "dissimilarity measures" are inversely related: a monotone decreasing
transformation of a similarity measure leads to a dissimilarity measure.
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class 2 and are three steps apart from ¢. These leaves are parts of the 3-neighbourhood
of ¢ (i.e. the set of leaves for which the path between ¢ and them at the most 3). If
the tree is a weighted binary tree we can define the leaf distance DT (L;, L;) between
two leaves L; and L; as the sum of the branch-weights along the unique path between
L; and L;. For instance the leaf distance of g from one of its closest neighbors ¢ in
the tree is by + by + b3. Finally let us suppose that we know the value of a pairwise
similarity measure (such as a BLAST score) between any pair of leaves L; and Lj,
whose value will be denoted by s(L;, L;), and that we build a weighted binary tree
using the s (L;, L;) values. Within this tree we can also calculate the value of the leaf
distance DT (L;, L;).

The TreeNN algorithm is a weighted nearest neighbour method that applies as
weights a similarity/dissimilarity measure between the proteins constituting the tree
and is calculated within the closest neighbourhood of the query within the tree. More
precisely, let us assume that we have leaves from m different classes and an indicator
function I : {L,...,L,} — {1,...,m} that assigns the class labels to the proteins
represented by the leaves of the tree. The aggregate similarity measure R (j, L,) of
each of the m classes (j € {1,...,m}) will be an aggregate of the similarity measures
or leaf distances obtained between the query on one hand and the members of the class
within the closest neighbourhood on the other, calculated via an aggregation operator
© (such as the sum, product or maximum):

R(j,L,) = ) s(Li, Ly) (7.1)

R(ijq)_ o _ ADT (Lian) (7-2)

The first aggregated value (Eq. (7.1) ) for classes is calculated using the original
similarity values. This implementation just utilized the topology of the phylogenetic
tree, while the second implementation (Eq. (7.2) ) also takes into account the edge
lengths.

We calculate aggregate measures for each of the classes and the class with the
highest weight will be assigned to the query L,. This analysis is similar to that for the
widely used kNN principle, the difference being that we restrict the analysis to the tree
neighbourhood of the query (and not simply to the k£ most similar proteins) and we
can use a leaf distance, as shown in Eq. (7.1). As for as the aggregation operator,
we could for instance use summation, but we can also use the average operator or the
maximum value operator.

In order to increase the influence of the tree structure on the ranking, we introduce
a further variant of TreeNN, in which the similarity measures s (L;, L;) are divided by
the path lengths between L, and L;. In this manner the weighted aggregate similarity
measure becomes
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This formula ensures that the leaves further away from L, within the tree will have a
smaller influence on the classification than the nearer neighbours.

7.3.2 Description of the algorithm

Input:

- A distance matrix containing the all-vs.-all comparison of a dataset, consisting of
a query protein and an a priori classified set of data.

Output:
- A class label assigned to the query protein

First, a weighted binary tree is built from the data. The leaves of this tree are
proteins and we select the set of closest tree-neighbours (minimum number of edges
from the query). Then we apply a classification rule that might be one of the following:

TreeNN: Assigns to the query the class label with the highest
aggregate similarity calculated according to Eq. (7.1) or (7.2).

Weighted Assigns to the query the class label with the highest
TreeNN:  aggregate similarity calculated according to Eq. (7.3) or (7.4).

The time complexity of the algorithm mainly depends on the tree-building part. For
example, the Neighbour-Joining method has an O (n?®) time complexity. We have to
construct a tree with n+1 leaves as each protein will be classified, hence this algorithm
has an O (tn?®) time complexity overall where ¢ denotes the cardinality of the test set.
Finding the closest tree-neighbours for a leaf can be carried out in linear time, hence it
does not cause any extra computational burden.

Its use in classification. The algorithm can be directly used both in two-class and
multi-class classification. The size of the database influences both the time requirement
of the similarity search and that of the tree-building process. The latter is especially
important since the time-complexity of tree building is O (n®). We can substantially
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speed up the computation if we include into the tree just the first r similarity /dissimilarity
neighbours of the query (e.g. the first 50 BLAST neighbours). On the other hand class
imbalance can cause an additional problem, since an irrelevant class that has many
members can easily outweigh smaller classes. An apparently efficient balance heuristic
is to build the tree from the members of the first ¢ (¢ < 10) classes nearest to the query,
where each class is represented by a maximum of r (r < 4) members.

7.3.3 Implementation

A computer program was implemented in MATLAB that uses the NJ algorithm as
encoded in the Bioinformatics Toolbox package [66]. The detailed calculation has four
distinct steps:

1. An-all-vs. all distance matrix is calculated from the members of an a priori
classified database using a given similarity/dissimilarity score (like BLAST or
Smith-Waterman) and the results are stored in CVS (Comma Separated Values).

2. The query protein is compared with the same database and the same similarity /dissimilarity
score, and the first r sequences are selected for tree-building, choosing one of the
heuristics mentioned above.

3. Asmall ([r+1]x[r+1]) distance matrix is built using the precomputed data of
the database on the one hand and the query vs. database comparison on the
other, and a NJ tree is built.

4. The query's label is assigned using the TreeNN algorithm in the way described
in Section 7.3.2.

This implementation guarantees that the all-vs.-all comparison of the database is
carried out just once.

7.3.4 Performance evaluation

The performance of TreeNN was evaluated by ROC analysis and error rate calculations
in the way described in the previous chapter (Section 6.5). For comparison we also
include the results obtained by simple nearest neighbour analysis (INN). In each table
below the best scores of each set are given in bold, and the columns with the heading
Full concern the performances of TreeNN without a heuristic (i.e. we considered all
the elements of the training set). Here we apply the TreeNN methods for a two class
problem, thus the parameter t is always equal to 2. For aggregation operators we tried
out the sum, the average and the maximum operators (but the results are not shown
here), and the latter (more precisely, maximum for similarity measures and minimum
for distance measures) had a slightly but consistently superior performance, so we used
this operator to generate the data shown below. For the calculation of the class weights
we applied the scoring scheme that is based on the similarity measures given in Eq.
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Table 7.1: ROC values of TreeNN with and without a heuristic on the COG and 3PGK
datasets.

INN TreeNN

Full r=3 r=10
COG
BLAST 0.8251 0.8381 0.8200 0.7226
Smith-Waterman 0.8285 0.8369 0.8438 0.7820
LAK 0.8249 0.8316 0.8498 0.7813
LZW 0.8155 0.7807 0.7750 0.7498
PPMZ 0.7757 0.8162 0.8162 0.7709
3PGK
BLAST 0.8978 0.9580 0.9699 0.9574
Smith-Waterman 0.8974 0.9582 0.9716 0.9587
LAK 0.8951 0.9418 0.9688 0.9641
LZW 0.8195 0.8186 0.9040 0.8875
PPMZ 0.8551 0.9481 0.9556 0.7244

(7.1) for TreeNN and Eq. (7.3) for Weighted TreeNN. Tables 7.1 and Table 7.2 show
the TreeNN results for ROC analysis and error rate calculations, respectively. In the
next two tables (Table 7.3 and 7.4) we show the performance of the Weighted TreeNN
using the same settings as that used for TreeNN in Tables 7.1 and 7.2. The results,
along with the time requirements (wall clock times) are summarized in Tables 7.5. The
time requirements of Weighted TreeNN is quite similar to that of TreeNN because the
two differ only in the calculation of class aggregate values (cf. Egs. (7.3) and (7.4)).

Table 7.2: ROC values of Weighted TreeNN with and without a heuristic on the COG
and 3PGK datasets.

INN TreeNN

Full r=3 r =10
COG
BLAST 0.8251 0.8454 0.8206 0.8016
Smith-Waterman 0.8285 0.8474 0.8492 0.8098
LAK 0.8249 0.8417 0.8540 0.8133
LZW 0.8195 0.9356 0.9040 0.9228
PPMZ 0.8551 0.9797 0.9673 0.8367
3PGK
BLAST 0.8978 0.9760 0.9589 0.9579
Smith-Waterman 0.8974 0.9761 0.9547 0.9510
LAK 0.8951 0.9612 0.9719 0.9354
LZW 0.8195 0.7365 0.7412 0.8183
PPMZ 0.8551 0.8140 0.8018 0.7767

The above results reveal a few general trends. First, TreeNN and its weighted
version outperforms the 1NN classification in terms of the error rate. We should mention
here that this improvement in error rate is apparent even when we use a heuristic. As
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Table 7.3: Error rates of TreeNN with and without a heuristic on the COG and 3PGK
datasets.

1NN TreeNN

Full r=23 r=10
COG
BLAST 14.7516 | 10.3746 11.6270 15.1469
Smith-Waterman 13.4940 10.5381 9.9996 13.0470
LAK 13.3817 10.8644 9.7976 12.3784
LZW 16.7301 13.2106 13.9285 14.4467
PPMZ 15.0174 | 11.6331 11.9598 13.2246
3PGK
BLAST 42.1046 35.4026 32.2360 35.8201
Smith-Waterman 42.1046 35.6582 32.2360 35.5694
LAK 42.0856 33.4081 32.1928 34.0542
LZW 36.5293 35.1731 33.8335 | 30.4403
PPMZ 34.6671 37.2146 32.1706 37.4445

for AUC, the results on the COG database are comparable with those of 1NN, both
with and without a heuristic. Moreover they are noticeably better than INN on the
3PGK dataset. The fact that the precision improves while the time requirements are
comparable with that of the very fast INN algorithm is a good sign and confirmation
that our approach is a promising one (Table 7.5).

We calculated the time requirements for the methods we employed in a real life
scenario. We first assumed that we had an a prior classified dataset containing 10000
elements. Applying the INN we simply needed to find the most similar protein in
this dataset to the query protein, and the class label of this was assigned to the query
protein. This approach did not need additional preprocessing step, so these process time
requirements were just equal to the calculation of the similarity measure between the
query and the a prior classified dataset. The TreeNN method however required some
additional running time. This was because after the TreeNN had chosen the r most
similar element from the known dataset (according to the heuristic in Section 7.3.2) it
built up a phylogenetic tree for these elements. This step suggested some additional
preprocessing time requirements. In our experiments the parameter was set to 100. As
the experiments showed, applying TreeNN did not bring about any significant growth
in time requirements.

Table 7.6 lists a comparison of the performance of the TreeNN algorithm when we
used the original similarities/distances of proteins and when we used the leaf distances
just according to Eqn. (7.2). The results of these tests clearly show that the performance
of the classifiers was only marginally influenced by the measure (sequence similarity
measure vs. leaf distances) we chose in the implementation of the algorithm.
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Table 7.4: Error rates of the Weighted TreeNN with and without a heuristic on the

COG and 3PGK datasets.

1NN TreeNN

Full r=23 r =10
COG
BLAST 14.7516 | 10.3746 11.6270 15.1469
Smith-Waterman 13.4940 10.5381 9.9996 13.0470
LAK 13.3817 10.8644 9.7976 12.3784
LZW 16.7301 13.2106 13.9285 14.4467
PPMZ 15.0174 | 11.6331 11.9598 13.2246
3PGK
BLAST 42.1046 35.4026 32.2360 35.8201
Smith-Waterman 42.1046 35.6582 32.2360 35.5694
LAK 42.0856 33.4081 32.1928 34.0542
LZW 36.5293 35.1731 33.8335 30.4403
PPMZ 34.6671 37.2146 32.1706 37.4445

Table 7.5: Time requirements for the TreeNN method on the COG dataset in seconds.

Elapsed time(in second)/Method INN | TreeNN(r=100)
Preprocessing BLAST - -

Other - 15.531
Evaluation BLAST | 0.223 0.223
Evaluation Other - 0.109

7.4 Treelnsert: Protein classification via insertion

into weighted binary trees

7.4.1 Conceptual outline

Given a database of a priori classified proteins, we can build separate phylogenetic trees

from the members of each of the classes. A new query protein is then assigned to the

class to which it is nearest in terms of insertion cost (IC). A query protein will then be

assigned to the class whose /C is the smallest. First we note that insertion of a new

Table 7.6: The performance of the TreeNN using leaf distances and the original

similarity measures.

Comparison of the TreeNN TreeNN
Using similarities Using leaf distances
ROC | Error Rate ROC Error Rate
BLAST 0.9699 35.4026 0,9509 36,978
Smith-Waterman 0.9582 35.6582 0,9529 36,979
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Figure 7.2: The insertion of the new leaf next to L;.

leaf into a weighted binary tree is the "amount of fitting" into the original tree. In
this algorithm we consider an insertion optimal if the query protein is the best suited
compared to every other possible insertion. Second, note that /C can be defined in
various ways using the terminology introduced in Section 7.3. The insertion of a new
leaf L, next to leaf L; is depicted in Figure 7.2.

In this example we insert the new element L, next to the i-th leaf of the phylogenetic
tree T so we need to divide the edge between L; and its parent into two parts with
a novel inner point p.. According to Figure 7.2, we can express the relationship of
the new leaf L, to the other leaves of the tree in the following way: DT (L;, L,) =
DT (pi, Lj) +y + z if i # j. The DT (L;, L,) leaf distance between the ith leaf and
L, is just equal to  + z. This extension step of the leaf distances means that all
relations in the tree remain the same, and we have only to determine the new edge
lengths x,y and z. The place of p; on the divided edge and the weights of the edge
that are between L, and its parent (denoted by z in Figure 7.2) have to be determined
so that the similarities and the tree-based distances will be as close as possible. With
this line of thinking we can formulate the insertion task as the solution of the following
system of equations:

52% (Z (5 (Lj, Lg) = D" (L, Lq))) (7.5)

st. x+y=D"(p;, L)

This optimization task determines the value of the three unknown edge lengths
x,y and z, and the constraints ensure that the leaf-distance between L; and its parent
remains unchanged. With this in mind, we can define the insertion cost for a fixed leaf.

Definition 7.1 Let T' be a phylogenetic tree and let its leaves be L1, Lo, ..., L,,. The
leaf insertion cost IC (L,, L;) of a new leaf L, next to L, is defined as the branch
length of x found by solving the optimisation task in Eq. (7.5).
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Our goal here is to find the position of the new leaf in 7" with the lowest leaf insertion
cost. This is why we define the insertion cost of a new leaf for the whole tree using
the Definition 7.1 in the following way:

Definition 7.2 Let T be a phylogenetic tree and let its leaves be Ly, Lo, ..., L,,. The
insertion cost IC (L,) of a new leaf L, into T is the minimal leaf insertion cost for T':

10 (L) = min{IC (Ly, L1) , ., IC (Ly, L)} (7.6)

In preliminary experiments we tried several possible alternative definitions for the insertion
cost /C (data not shown), then finally we chose the branch length = (Figure 7.2) as the

definition. This value provides a measure of dissimilarity: it is zero when the insertion

point is vicinal to a leaf that is identical with the query. The /C for a given tree is the

smallest value of = found within the tree.

7.4.2 Description of the algorithm

Input:

- A weighted binary tree built using the similarity/dissimilarity values (such as a
set of BLAST scores) taken between the elements of a protein class.

- A set of comparison values taken between a query protein on the one hand and the
members of the protein class on the other, using the same similarity/dissimilarity
values as we used to construct the tree. So for instance, when the tree was
built using BLAST scores, the set of comparison values were a set of BLAST
comparison values.

Output:

- The value of the insertion cost calculated according to Definition 7.2.

The algorithm will evaluate all insertions that are possible in the tree. An insertion
of a new leaf next to an old one requires that the solution of an equation system
that consists of n equations, where n is the number of leaves. This will have a time
complexity of O (n). The number of possible insertions for a tree having n leaves
(i.e. we insert them next to each leaf) is n. Thus calculating the insertion for a
new element has a time complexity of O (n?). One can reduce the time complexity
using a simple empirical consideration: we just assume that the optimum insertion will
occur in the vicinity of the r leaves that are most similar to the query in terms of the
similarity/dissimilarity measure used for the evaluation. If we use BLAST, we can limit
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the insertions to the r nearest BLAST neighbours of the query. This will reduce the
time complexity of the search to O (rn).

Its use in classification. If we have a two-class classification problem, we will have
to build a tree both for the positive class and the negative class, and we can classify
the query to the class whose /C is smaller. In practical applications we often have
to classify a query into one of several thousand protein classes, such as the classes
of protein domains or functions. In this case the class with the smallest /C can be
chosen. This is a simple nearest neighbour classification which can be further refined
by adding an /C threshold above which the similarities shall not be considered. In order
to decrease the time complexity, we can also exclude from the evaluation those classes
whose members did not occur among the r proteins most similar to the query. Protein
databases are known to consist of classes very different in size. As the tree size does not
influence the insertion cost, class imbalance will not represent a problem to Treelnsert
when calculations are performed.

7.4.3 Implementation

We used the Neighbor-Joining algorithm for tree-building as given in the MATLAB
Bioinformatics Toolbox [66]. In conjunction with the sequence comparison methods
listed in Section 6.3, the programs were implemented in MATLAB. The execution of
the method consists of two distinct steps, namely:

1. The preprocessing of the database into weighted binary trees and storage of the
data in Newick file format [61]. For this step, the members of each class were
compared with each other in an all-vs.-all fashion, and the trees were built using
the NJ algorithm. For a large database like COG (51 groups 5332 sequences)
the entire procedure takes 5.95 Seconds on a Pentium IV Computer (3.0 GHz
processor).

2. First, the query is compared with the database using a selected similarity /dissimilarity
measure and the data are stored in CSV file format. Next, the query is inserted
into a set of class-representation trees, and the class with the optimal (smallest)
IC value is chosen.

7.4.4 Performance evaluation

The performance of Treelnsert was evaluated via ROC analysis and via the error rate,
as described in Section 6.5. For comparison we also include here the results obtained by
simple nearest neighbour analysis (INN). The results, along with the time requirements
(wall clock times) are summarized in Table 7.9. Our classification tasks were the same
as those in Section 7.3.4, thus the parameter ¢ (number of given class) was always
equal to 2. The dependence of the performance on the other tuneable parameter r
(the number of elements per class) is shown in Tables 7.7 and 7.8.



7.5 Discussion and conclusions 71

Table 7.7: ROC analysis results (AUC values) for the Treelnsert algorithm on the COG
and 3PGK datasets. Here several different implementations were used.

INN TreeNN

Full r=3 r=10
COG
BLAST 0.8251 0.8741 0.8441 0.8708
Smith-Waterman 0.8285 0.8732 0.8474 0.8640
LAK 0.8249 0.8154 0.8276 | 0.8734
LZW 0.8155 0.7639 0.8243 | 0.8316
PPMZ 0.7757 0.8171 0.8535 | 0.8682
3PGK
BLAST 0.8978 0.9473 0.8984 0.9090
Smith-Waterman 0.8974 0.9472 0.8977 0.9046
LAK 0.8951 0.9414 0.8851 0.9068
LZW 0.8195 0.8801 0.8009 0.8421
PPMZ 0.8551 0.8948 0.8646 | 0.9123

In most of the test cases Treelnsert visibly outperforms INN in terms of ROC AUC
and error rate. What is more, the Treelnsert method achieves the best results when we
consider all the possible insertions, not just those of the adjacent leaves. This probably
means that the insertion cost is not necessarily correlated with the similarity measure
between the proteins.

When we examined the classification process using Treelnsert we found that we
needed to carry out a preprocessing step before we evaluated the method. This
preprocessing step consisted of the building of the phylogenetic trees for each class
in the training dataset. Following the testing scheme we applied in Section 7.3.4, we
assumed that the training dataset contained 1000 classes, and the classes contained
100 elements on average. Thus this step caused a significant growth in the running
time. But when we investigated this method from a time perspective we found that
this extra computation cost belonged to the offline time requirements. The evaluation
of this method hardly depended on the number of classes in question because we had
to insert an unknown protein into the phylogenetic trees of the known protein family.
Table 7.9 describes this dependency, where n here denotes the number of classes.

7.5 Discussion and conclusions

The problem of protein sequence classification is one of the crucial tasks in the interpretation
of genomic data. Simple nearest neighbour (kNN) classification based on fast sequence
comparison algorithms such as BLAST is efficient in the majority of the cases, i.e.
up to 70 — 80% of the sequences in a newly sequenced genome can be classified
in a reassuring way, based on their high sequence similarity. A whole arsenal of
sophisticated methods has been developed in order to evaluate the remaining 20 — 30%
of sequences that are often known as "distant similarities". The most popular current
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Table 7.8: Error rate values for the Treelnsert algorithm on the COG and 3PGK
datasets. As before, several different implementations were used.

INN TreeNN

Full r=23 r =10
COG
BLAST 14.7516 10.6127 17.3419 17.3419
Smith-Waterman 13.4940 13.8218 17.9189 17.9189
LAK 13.3817 11.3340 15.9436 15.9436
LZW 16.7301 13.8962 20.0073 20.0073
PPMZ 15.0174 11.3386 8.3167 8.3167
3PGK
BLAST 42.1046 20.2009 25.4544 | 35.7754
Smith-Waterman 42.1046 20.3730 24.7976 36.0115
LAK 42.0856 20.2009 25.8242 39.5036
LZW 36.5293 15.7901 37.0648 26.4240
PPMZ 34.6671 14.4753 32.3829 28.9935

Table 7.9: Time requirements of the Treelnsert methods on the COG dataset. Here n
means the number of classes in question.

Elapsed time(in second)/Method INN | Treelnsert(r=100)
Preprocessing BLAST - 2232.54
Other - 1100
Evaluation BLAST | 0.223 0.223
Evaluation Other - 0.029 x n

methods are "consensus" descriptions (see ii) in the Introduction) that are based about
the multiple alignment of the known sequence classes. A multiple alignment can
be transformed either into a Hidden Markov model or a sequence profile; both are
detailed, structured descriptions that contain sequence position-specific information on
the multiple alignments. A new sequence is then compared with a library of such
descriptions. These methods use some preprocessing that requires some CPU time as
well as human intervention. Also the time of the analysis (evaluation of queries) can
be quite substantial, especially when these are compared to BLAST runs. The golden
mean of sequence comparison is to develop classification methods that are as fast as
BLAST, but are able to handle the distant similarities as well.

The rationale behind applying tree-based algorithms is to provide a structured
description that is simple and computationally inexpensive, but still may allow one
to exceed the performance of simple kNN searches. TreeNN is a kNN type method
that first builds a (small) tree from the results of the similarity search and then performs
the classification in the context of this tree. Treelnsert is a consensus type method that
requires a preprocessing time as well as an evaluation time. Both TreeNN and Treelnsert
exceed the performance of simple similarity searches and this is quite promising for future
practical applications. We should remark here however that the above comparisons were
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made on very difficult datasets. On the other hand we used two-class scenarios, whereas
the tasks in genome annotation are multiclass problems. Nevertheless, both TreeNN
and Treelnsert can be applied in multiclass scenarios without extensive modifications
so we are confident that they will be useful in these contexts. According to preliminary
results obtained on the Protein Classification Benchmark collection [4] it also appears
that, in addition to sequence comparison data, both algorithms can be efficiently used
to analyse protein structure classification problems, which suggests that they might be
useful in other fields as well, where items need to be classified.






Chapter 8

Propagational methods

8.1 Introduction

Propagation algorithms have gained importance in several areas of pattern recognition
and information retrieval. Belief propagation or message passing [90; 91|, the PageRank
algorithm [92] and the power method [93] are all based on propagating information
through a network that consists of nodes and edges. Several propagation algorithms
were successfully used in practice, the PageRank algorithm used by the Google WEB
surfer perhaps being the best known example.

Protein classification is a crucial task in genome annotation, and propagation algorithms
were also successfully employed in this field [94-96]. The apparent advantage of this
approach originates from the fact that classification does not just rely on a simple
similarity measure but also on the entire network protein similarities. In fact, the first
application of a PageRank style algorithm to protein classification [94] demonstrated
that propagation yield a definite increase in classification efficiency. On the other
hand, protein similarity networks are large, and they typically contain several hundred
thousand proteins as nodes and several million pairwise similarity values as links, which
makes propagation rather time-consuming. To overcome this, one possibility is to use
smaller networks for the propagation, like bipartite graphs [95] or threshold graphs
[97]. In this chapter we explore another avenue that instead of propagating on the
entire network focuses on replacing a relevant part of the protein similarity network
by a structured description. This approach is based on the well known observation
that protein similarity networks are modular, i.e. they contain densely connected
subgraphs around each protein class, wherein the biologically important similarities
between members of the same class can be easily distinguished from the accidental
similarities that exist between members of different classes [98; 99]. In addition,
structured descriptions such as phylogenetic trees are known to capture the important
features of a classification scheme, so they may serve as a natural noise reduction filter
for propagation algorithms. Here we propose to replace (a selected part of) the protein
similarity network with a binary tree on which the propagation will be carried out.
Binary trees are sparse structures as compared to a full network of similarities, so there
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is potential gain in speed. On the other hand, one has to build a binary tree, which
is an extra burden, but as we will see, there is a substantial overall gain in computing
time.

We will now describe two heuristic protein classification algorithms that use propagation
on binary trees. TreeProp-N is modelled on the PageRank/RankProp philosophy. It
uses an initial ranking vector based on the distance of the database entries from the
query measured along the edges of the tree. This ranking is then updated by propagating
information along the edges of the tree. TreeProp-E uses a different propagation
principle: the initial data is stored in the weighted edges of the binary tree, and the
weights afterwards are propagated to the neighboring edges by a simple update rule.
We will use the fast tree-building algorithm FastME [82] to construct the initial tree
for both algorithms.

The rest of this chapter is organized as follows. In the next section we will introduce
the PageRank method and its applications to protein classification tasks (Section 8.2).
Then we will introduce two new algorithms called TreeProp-N and TreeProp-E that use
phylogenetic trees for the propagation (Section 8.3 and Section 8.4). The efficiency of
our methods will then be compared on various real-life benchmark datasets, including
protein sequences as well as protein 3D structures. Section 8.6 contains the a summary
of the results and a discussion. All the other algorithms and datasets used here are
described in the Chapter 6.

8.2 PageRank and its application to protein clas-
sification

Originally, the PageRank algorithm [92] was developed for information retrieval purposes.
There are many other areas where this simple idea was adopted with success, including
Natural Language Processing [100], Word Sense Disambiguation [101] and Protein
Classification [94]. The common representation underlying these diverse fields is an
a priori known similarity network of objects (i.e. a weighted graph where the points
correspond to the objects, and the edges represent the similarities among them). Each
similarity network can be represented as a stochastic matrix .S in which each row sums
up to one and which has no negative entry. An entry of the matrix S represents
the similarities between two objects. PageRank converges to the stationary point of
transformation S (i.e., the stationary distribution of those Markov chains where the
transition matrix is ). We can express this ranking in an iterative fashion using the
following update rule:

y(t+1) = Sy(t), (8.1)

where y(t+ 1) denotes the similarity score after ¢ iterations. Since this rule corresponds
to the ordinary power method [102], the convergence is fulfilled [93]. Moreover the
Y = {y(0),y(1),...,y(T),...} sequence will converge to the biggest eigenvector of
the stochastic matrix S, which is - due to the Perron-Frobenius theorem - equal to 1.
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We should note here that this method computes a single rank value for each object
of the given network, i.e. this is not yet a query-based algorithm. Besides this the
convergence of this process is known to depend on the gap between the first and second
eigenvalues [102]. It may thus be worthwhile to explore the eigenvalue difference in
order to estimate the necessary number of iterations before we use this approach on
a similarity network. With biologists it is normal practice to have an unknown protein
sequence which is compared to a database using a sequence comparison tool, like the
Smith-Waterman (SW) algorithm [2] or BLAST algorithm [1]. The result is a ranking
of the database entries according to a similarity score with respect to the query, and the
top hits are evaluated either by an expert or by automated procedures. The query-based
or personalized version of PageRank is more applicable for this type of a problem. Let
us denote the protein entries of the database by pi,po,...,pny and the query protein
by q. Now let's define a pairwise similarity measure between the ith and jth protein as
s(psi, p;) (typically this will be a BLAST or Smith Waterman similarity score). We can
then arrange the s(p;, p;) similarities into a matrix S, where the rows will be normalized
so that their sum equals 1. After, with the help of matrix S, we can formulate the
update rule of the so-called personalized PageRank method like so:

y(t+1) =y(0) + aSy(t), (8.2)

Here y(0) is the initial vector of similarity scores and the « parameter is a constant
in the range [0,1]. This process converges to the y* fix-point of Eq. 8.2, and it can
also be calculated analytically by solving the (I — a.S)~'y(0) = y* system of linear
equations. But the size of matrix S is N x N, so the analytical solution requires
O(N?3) time. On the other hand, we can adequately approximate y* by y(T') (i.e. the
Tth element of the iteration sequence). The personalized PageRank algorithm was
introduced for protein classification as the RankProp algorithm in the seminal paper of
Weston et al [94].

A slightly different update rule was also introduced by Zhou et al in [97]:

y(t+1)=(1—a)y(0) + aSy(t), (8.3)

It is easy to show that the y* limit point of Eq. 8.3 is equal to (1 —a)(I — aS)1y(0).
This form of PageRank leads to the same ranking as Eq. 8.2.

As restricting the size of the similarity network is a plausible way of speeding up the
calculation, bipartite graphs [95] or threshold graphs [97] were both used for this. In the
following sections we will present two novel algorithms that approach the problem of
size restriction via the use of binary (phylogenetic) trees instead of a similarity network.
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8.3 TreeProp-N: Propagation on the nodes of a

binary tree

The main idea behind the personalized PageRank method is the application of a
diffusion operation on a network of pairwise protein similarity, according to Egs. 8.2-8.3.
In this section we will introduce an alternative algorithm, namely TreeProp-N, where
a similar diffusion operation is applied on an unrooted weighted phylogenetic tree that
was built up from a database and the query protein q. We should mention here that
the phylogenetic tree is a binary tree graph wherein the leaves of the tree correspond
to the biological objects. In our work, we used the FastME algorithm [82] to construct
the tree from the pairwise similarity scores computed between the elements. If we use
similarity scores s;; € [0, 1], then the tree will be built from a distance score expressed
as 1 — s;;.

The propagation on the resulting tree in accordance with the update rule of the
PageRank. The initial scores for each node (leaves and inner nodes) in the tree will be
the shortest path between a given node and query element ¢. Since for the propagation
we need similarity scores, rather than distance values we transform the shortest path
values to similarity score [0, 1] by dividing them with the maximal shortest path and
subtracting the result from 1.

The propagation is carried out on the nodes of 7' = (V. E), where |V| = N+1. An
unrooted binary tree 7" with N + 1 leaves has 2N nodes, so we can collect the shortest
path from the ¢ query point to the points of the 7" tree into a y vector of length N + 1.
According to the binary branching pattern of the phylogenetic tree, a leaf will only have
one neighbor while an inner node will have three neighbors. Next we will denote the
neighbors of a point p by N(p). The update rule can be written as:

yi(t+1) = (1 — @)yi(0) + Z w(p, pi)yp(t), (8.4)

PEN(p;)

where w(p, p;) stands for the weight of the edge between p and p; within the tree, and
y;(t) means the propagated value of the point p; after the t iterations. The o parameter
lies between [0, 1], just like in Eq. 8.3. This parameter sets the balance between the
effect of tree-structure on the one hand, and the effect ranking on the other: higher
values will emphasize the former over the latter.

The convergence of the propagation is ensured if the outgoing edge weights from
a point sum up to one, which is provided by a normalization step. We should add that
the resulting matrix has at most three elements in each of its rows, so the calculation
can be carried out in O(tn) time, where ¢ is the number of iterations.
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Figure 8.1: The process of the local operations on the edges. Each neighboring edges
of an internal edge sends "messages" to its neighbor, and the magnitude of the message
is proportional to the propagated edge weight.

8.4 TreeProp-E: Propagation on the edges of a

binary tree

In a conventional propagation algorithm, the nodes of a similarity networks send messages
to each other, and the magnitude of the messages is then proportional to the similarity
between the sender and receiver. Here we introduce a novel approach where the edge
weights of a binary tree will be propagated. The idea behind this approach is similar to
the original PageRank concept, because the weight of an edge will be determined by
the weight of its neighbors.

In the first step we build up an T unrooted weighted phylogenetic tree using query
protein ¢ and the known entries of a database. This tree has N + 1 leaves and 2N — 1
edges. Since we propagate on the edges the y(i) vectors have a length of 2N — 1. In
a tree we will call two edges adjacent if they have a common endpoint. In an unrooted
binary tree an edge pointing to a leaf has two adjacent edges, while an interior edge
has four adjacent edges. Let us denote the set of adjacent edges with edge e by N(e).

Now let y(0) be the initial value of the edge lengths of the tree. Then we can apply

the following simple propagation rule:

bt +1) = (L= pi(0) + e ejgv%%)yei(t), (8.5)

which means that the score of an edge in step (¢ + 1) will depend on the mean value
of the adjacent edge weights at step ¢ as well as on its original weight at ¢ = 0. This
update will be repeated a predetermined number of times, after which the ranking with
respect to the query ¢ can be calculated using the weighted path lengths between the
query and the other proteins in the tree, calculated from the updated weights.

The convergence proof of PageRank can be directly applied to TreeProp-E. If we
rewrite the propagation rule in Eq. 8.5 into the matrix form, as in the case of PageRank
(Eq. 8.3), we get a non-negative real matrix and the Frobenius-theorem can be applied
to it. And since its row sum is less than one, its spectral radius is also less than one so
the convergence is again ensured.



80 Propagational methods

8.5 Experiments

8.5.1 Time complexity and practical implementation

The personalized PageRank/RankProp method applies the propagation to an entire
similarity network. For a network of N nodes this means a time-estimate of O(iN?)
steps where i is the number of iterations. This can be time-consuming for large protein
similarity networks that typically have several thousand to several hundred thousand
nodes. The situation can be alleviated by considering just the first n objects nearest
to the query along with all of their similarities, which leads to a time-estimate of only
O(inN), i being the number of iterations [94].

TreeProp-N and TreeProp-E apply the propagation to a binary tree. Since constructing
the tree with the FastME algorithm requires O(N?) time in addition to propagation, it
is necessary to reduce the size N of the input network. We propose a reduction where
we consider just the m nearest neighbors for each of the n top-ranking objects, which
will lead to a maximal time estimate of O(inm). A phylogenetic tree is built from nm
objects and it will have nm +1 leaves and nm — 1 internal nodes. The time-complexity
of propagation by TreeProp-N can be estimated as i(nm +1+3(nm —1)) = O(inm),
because each internal node of a binary tree has three neighbors. In the case of TreeProp-
E the computation is similar, except that the internal edges have four neighbours, but
the overall time complexity remains O(inm). We point out that /) the size of the tree is
much fewer than nm since - owing to the clustered nature of the protein similarity space
- the lists of the nearest neighbors are largely overlapping; ii) the number of iterations is
typically less than 20, and iii) applied in this way, the algorithms will reorder just the top
ranking elements of the original list of similarities. Here, TreeProp-N and TreeProp-E
were written in MatLab using the Bioinformatics Toolbox. For the timing of RankProp
we ported the original C source code of J. Weston into MatLab. Table 8.1 gives a
summary of the approximate time requirements for each algorithm.

Table 8.1: Wall clock time requirements for the RankProp, TreeProp-N and TreeProp-E
algorithms*

RankProp® | TreeProp-N? | TreeProp-E?
BLAST search* || 1721.39 1721.39 1721.39
Tree-building - 1180.13 1180.13
Propagation 15528.2 204.14 205.46
Total: 17249.59 3105.66 3106.98

YWall clock times were determined on the SCOP40mini database. The preprocessing time necessary to build the
network in an all-vs.-all fashion is the same for each algorithm and is not listed here. For each protein, m = 40 nearest
neighbors were included in the propagation. 3n = 40 top hits and their m = 40 nearest neighbors were included in the
propagation. *Searching the dataset with one query (this is the same for each algorithm).

Table 8.1 shows that both tree-based algorithms are faster than the network-based
propagation algorithm, and that the gain in time compensates for the extra time-requirement
of tree-building. Naturally, network-based propagation (RankProp) runs faster if applied
to a smaller sized network, but this results in a decrease in performance as mentioned
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Figure 8.2: Ranking performance of TreeProp-N as a function of the alpha parameter in
Eq. 8.4 and the number of iteration steps. The ranking performance is the cumulative
ROC AUC value calculated on the 3PGK dataset.

in Section 8.6.

In practical tests, the parameters of RankProp were the same as those recommended
by Weston et al in [94], i.e. the o parameter was 0.95 and the number of iteration
was set to 20. In the case of tree-based methods we used o = 0.3 and i = 20. These
values were chosen because i) changing « parameter between 0 — 0.5 resulted in little
variation in performance, and ii) TreeProp-N an TreeProp-E were typically found to
converge in 10 steps or fewer.

The dependence of the performance on « and the number of iterations is shown in
Figure 8.2 for TreeProp-N. This dependence is quite similar to that found for TreeProp-E
(not shown).

8.5.2 Performance evaluation on various databases

The protein datasets were taken from the Protein Classification Benchmark Collection
(PCBC, [4]). The 3PGK dataset contains 131 proteins of identical function (id:
PCB00016), divided into 10 classification tasks. The SOP40mini dataset contained
1357 proteins grouped by 3D structure (id: PCB00019), divided into 55 classification
tasks. The COG dataset contained 17, 973 proteins grouped by function (id: PCB00017)
and was divided into 117 classification tasks. From this dataset we evaluated only a
few "difficult" tasks in order to test our algorithm.

The algorithms were evaluated in terms of ROC analysis in the way described in
Section 3.1. We also calculated the AUC5, (ROC5) value for each case [5], because
these values are not so sensitive for the class imbalance caused by a large excess of
negatives compared to positives, which is a typical situation with all protein datasets
analyzed below. In addition to the propagation algorithms (RankProp, TreeProp-N,
TreeProp-E) we used the simple nearest neighbor evaluation (INN) as a basis of
comparison.

We tested the methods on three protein datasets (3PGK, SCOP40mini, COG) using
sequence similarity (BLAST, Smith-Waterman) and/or structural similarity (DALI) [3].
The datasets were selected so as to represent various degrees of difficulty. In the 3PGK
dataset, the similarity between group members is high, and between various groups
it is also quite high. In SCOP40mini, both the within-group and the between-group
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sequence similarities are relatively low. For the COG, the within-group similarities are
high and the between-group similarities are low. Since there are several ten to several
hundred classification tasks defined on each datasets, we used the cumulative AUC
value as a performance indicator. In a few cases (Tables 8.4-8.5) the cumulative AUC
was close to 1.00. In these cases we selected a few problematic tasks for comparison.

Tables 8.2-8.3 show the results obtained for sequence comparison methods BLAST
and Smith-Waterman. In general, the performance of TreeProp-N and TreeProp-E are
similar to each other and slightly surpass that of RankProp followed by 1INN. Out of
the 136 cases (for both similarity measure, SW, BLAST ), RankProp and 1NN were
the 'winners' in 28 and 34 cases, respectively.

Table 8.2: Comparison of the performance of algorithms on the 3pgk dataset using the
Smith-Waterman scores and BLAST scores!

Smith-Waterman BLAST
INN 0.892 0.892 0.899 0.899

RankProp? 0.961 0.961 0.963 0.963
TreeProp-N? 0.954 0.954 0.951 0.951
TreeProp-E* || 0.967 | 0.967 | 0.964 | 0.964

LThe raw scores were used for the comparison. 2The propagation was carried out on the entire dataset, with
1 = 20, a = 0.95 jterations for RankProp, and i = 10 and a = 0.3 for TreeProp-N and TreeProp-E. The whole protein
similarity network was used for propagation.

Table 8.3: The AUC values on the SCOP40mini dataset using the Smith-Waterman
scores and BLAST scores'

Smith-Waterman BLAST
1NN 0.815 0.781 0.763 0.774

RankProp? 0.88 0.76 0.725 0.655
TreeProp-N3 0.86 0.797 0.792 0.808
TreeProp-E3 0.859 0.678 0.799 0.754

L The raw scores were used for comparison. 2 The n = 40 highest similarities were considered for all entries in the
database. 3 The propagation was carried out for the n = 40 top-ranking entries and their m = 40 neighbors, in i = 10
steps.

Table 8.5 lists data on a structural comparison for the SCOP40mini dataset. This
dataset is difficult to handle complex if we use a sequence comparison (Table 8.3), but
it is relatively straightforward if we use an efficient 3D comparison such as DALL. In
this case the cumulative AUC was so high that there was hardly any difference between
the algorithms, so we chose a few of the most problematic cases for comparison. Even
though the AUC values are high, we see the same pattern as we do with sequence
comparisons, i.e. in general there is an improvement caused by propagation, and
TreeProp-N and TreeProp-E both perform well compared to RankProp.
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Table 8.4: Comparison of the performance of algorithms on selected classification tasks
defined on the COG dataset, using BLAST scores !

Classification tasks
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@] @] @] @] @] @) @) @) @] @] S
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1NN ACU 0.899 | 0953 0985 0905 0923 | 0952 | 083 | 0.698 | 0.948 | 0.999 | 0.924
i AUCso 0977 1 0.864 1 0.885 | 0927 | 098 1 0.991 | 0.996 | 0.969
ACU 0.862  0.978 097 0818 | 0912 | 0908 | 0.797 | 047 | 0.967 1 0.877
RankProp?
AUCs50 | 0975 0978  0.662 | 0.922 | 0.947 | 0.693  0.933 1 0.898 1 0.829
ACU 0974 | 095 0998 0.96 091 094 | 0949 | 0.978 | 0.933 1 0.966
TreeProp?
AUCso 096 098 0947 0996 | 0945 | 0.977 | 0.997 0.889 | 0.98 1 0.969
ACU 0.976 0949 0.998 0.886 | 0.913 H 0.945 | 0.954 | 0.689 | 0.938 1 0.941
EdgeProp?

AUCs 1 0.944 0929 0996 | 0.945 | 0.977 | 0.997 | 0.889 | 0.98 1 0.969

L The raw scores were used for the comparison.? The propagation was carried out in the same way as before. 3 The
propagation was carried out for the n = 40 top-ranking entries and there m = 40 neighbors, in i = 20 steps.

8.6 Discussion and Conclusions

Phylogenetic trees are used by biologists to highlight the salient internal structure of the
protein universe in the form of a "Tree of life". The rationale behind using phylogenetic
trees for propagation is based on two assumptions; /) Propagation on the salient edges
of network may increase the efficiency of the process due to noise reduction; ii) tree
structures are sparse compared to a full network, so the process will be faster. Here
we employed two strategies. TreeProp-N follows the strategy of PageRank, the only
difference being that the propagation is applied to a tree, rather than to an entire
network. TreeProp-E on the other hand propagates the edge-weights to neighboring
edges. A further difference with respect to PageRank is the fact that the ranking is
carried out according to the distance within a binary tree rather than by using a simple
similarity/distance measure.

Performing a ROC analysis on protein datasets (a total of 84 sequence and structure
classification tasks) of varying difficulty, we found that TreeProp-N and TreeProp-E
perform somewhat better and are faster than the personalized PageRank/RankProp
algorithm.

Table 8.5: Comparison of the performance of algorithms on selected classification tasks
defined on SCOP40mini dataset, using the DALI 3D-comparison scores.!
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Classification tasks
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LN AUC 0.949  0.967 | 0.988  0.96 | 0.961 | 0.903 | 0.99 | 0.948| 0.958
AUCs 0.985 | 0.567 | 0.857 | 0.706 | 0.966 | 0.735 | 0.936 | 0.989 | 0.843
AUC 0.905 | 0.976 1 0.978 | 0.969 | 0.824 | 0.961 | 0.999 | 0.971 | 0.948
RankProp?
AUC5g 1 | 0.685/0.723 0.735| 0.98 | 0.542|0.991 1 0832
AUC 0946 1 0.996|0.968 0997 1 1 0993 0.987
TreeProp?
AUC5g 1 1 0.96 | 0.883 0964 | 1 1 1 |0.976
AUC 0949 1 099809870993 1 1 099 0.99
EdgeProp?
AUCs 1 1 10917/0851/0976 1 1

1 0.968

L The raw scores were used for for the comparison. 2 The propagation was carried out in the same way as before.
3 The propagation was carried out for the n = 20 top-ranking entries and there m = 20 neighbors, in i = 20 steps.

In the practical implementation of TreeProp-N and TreeProp-E, we used the FastME
algorithm [82] for tree construction. We also tested BioNJ [80] and Weighbor [81],
which yielded identical results on our datasets, but required more cpu time (data not
shown).

For both tree-based algorithms we used a reduced network, namely we selected the
n top-ranking objects (n = 40) and their m = 40 nearest neighbors. Increasing n and
m beyond this value did not affect the performance, and values of n = 20 and m = 20
were found to be generally satisfactory. In principle, this size reduction will make the
computation faster, but it can also act as a noise reduction filter, since we select only
the "important neighbors" of the query. A question arises of whether the same toplist
restriction strategy would improve the performance of PageRank/RankProp. However
when we used a reduced network (n=m=40) in conjunction with RankProp on the
SCOP40 mini dataset (1337 proteins, 55 classification tasks), the AUC value dropped
from 0.880 to 0.756. We obtained similar results on the other datasets as well (data
not shown) so we believe that the improvements in performance were not induced by
the toplist restriction being applied.

Summarizing, we can conclude that tree-structures can be efficiently used to increase
the performance of protein classification algorithms. Even though we tested our algorithms
on a large variety of classification tests, we think that improvements may critically
depend on the type of applications, hence the parameters may need to be adjusted to
the datasets being studied.



Chapter 9

The application of ROC analysis
for evaluating similarity measures
on large-scale class-imbalanced

protein datasets

9.1 Introduction

The classification of protein sequences is of fundamental importance in genome annotation
so assessing and comparing the efficiency of sequence or structure similarity measures is
a crucial task. The method of current choice is ROC' (Receiver Operating Characteristic)
analysis that evaluates the ranking ability of a similarity measure [103; 104]. Briefly,
the members of a database are ranked according to their similarity to a query using a
similarity score (such as calculated by BLAST [1], Smith Waterman [2], etc.), and a
similarity score is considered efficient, if the proteins belonging to the query's known
class (true positives) are on the top of the list. The analysis is carried out by preparing
a sensitivity vs. specificity plot, whose integral value, AUC' (area under curve) is 1.00
if the true positives are all on the top of the list, and will tend to 0.5 if the ranking
is random [103]. In the practice of bioinformatics there are two main variants of this
method (Figure 9.2.1). In the element-wise scenario, originally suggested by Gribskov
and Robinson [5], one prepares a separate ranked list for all the queries, which will
yield one AUC' value for each query. The group-wise scenario can be applied if the
database is a priori divided into distinct classes, such as domain-types [6; 7]. Here
we prepare one single ranking for a protein group, in which we rank the members of
the test set with respect to their maximal similarity to the positive train group. Then
we calculate a single AUC' for the given group. If we wish to calculate a cumulative
value for an entire database using either scenario, the usual method is to calculate the
arithmetic average of the individual AUC values, what is equivalent to constructing a
cumulative AUC plot (such as shown in Figure 9.3 below) and calculating its integral
value [6; 7]. In this representation higher curves indicate a better performance. ROC
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analysis presupposes the existence of two classes, of which the query’s known class is the
positive while the rest of the database is the often much larger negative group, in other
terms the positive/negative ratio (p/n) is often negligibly small. In order to handle this
class imbalance problem and to get a dataset of manageable sizes it is customary to
cut the top list at some point, and according to Gribskov and Robinson [5] this can be
done by limiting the top list so as to include n negatives (where n is usually taken as
some plausible number like 10, 50 etc.). These are the so-called ROC,, (e.g. ROCYy,
ROC}) values that were originally proposed for the element-wise scenarios but they are
also frequently used in the group-wise scenarios. ROC' analysis is considered reliable
because it includes both specificity and sensitivity, so a method with a high AUC' value
can be expected to be a robust in a variety of conditions. While we generally agree
with this view, we noticed that the ROC,, values can be differentially biased in various
classes within a database. The result of this differential bias is that one can not directly
compare AUC values between different classes, although AUC' values obtained on the
same class with different methods are comparable. This is a major problem, since
discovery of new protein or gene groups is perhaps the most important tasks in genome
research, so there is a need to assess and compare, without class-imbalance artifacts,
the predictable aspects of protein groups. No doubt, this assessment could be done by
developing and fine-tuning classifier algorithms for each of the new candidate groups,
which is, on the other hand too time consuming in view of the amounts of data to
be analyzed. Our motivation was to use ROC analysis directly for the purpose. As
the positive/negative ratio within a top-list is known to influence the AUC' values,
we looked for methods where this ratio could be controlled and monitored. Here we
propose a simple method where the number of the selected negatives included in the
analysis is equal to (or proportional to) the number of positive sample. This balanced
ROC analysis provides less biased AUC' values, which can be then used to identify
difficult groups within a database.

9.2 Materials and Methods

9.2.1 Datasets and algorithm

The SCOP95 dataset used for modelling consisted of protein domain sequences taken
from the SCOP database v.1.69, filtered for 95% identity [105]. For comparison we used
the Smith-Waterman algorithm [2] as coded in the EMBOSS program package [106]
and applied predefined classification tasks for superfamily prediction. The classification
tasks and the Smith-Waterman data were taken from record PBS0001 of the Protein
Classification Benchmark collection [4], so the positive set contained members of
superfamily, one family being the +test set and the rest of the families were incorporated
into the +training set. After we performed the evaluation using the element-wise or
the group-wise scenario. In each case we used supervised subdivision [8].
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Figure 9.1: In the element-wise scenario (A), each query is compared to a dataset of
+ and - train examples. A ROC curve is prepared for each query and the integrals
(AUC-values) are combined to give the final result for a group of queries. In the
group-wise scenario (B) the queries of the test set are ranked according to their similarity
to the -train group, and a ROCAUC value calculated from this ranking is used to
characterize the group.

9.2.2 ROC calculation

The calculation of AUC was carried out as described [4; 6-8], using top lists including
a given number of negative samples. The number of negatives (n) was expressed
in multiples of the positive samples (p) participating in the restricted ranking. This
normalized number N, is thus related to the positive/negative ratio, so at N, = 1.0,
p/n < 1.0,p/n be lower than 1.0 for difficult classes, since in these cases there are
positive samples that do not show up in the top lists, especially when less sensitive
methods comparison methods are used. For the balanced ROC(BaROC') protocol we
selected the top list in such a way that it contained as many negative samples as the
number of samples in the entire positive set. This corresponds to N, = 1.0, so the
p/n values lie between zero and 1.0. It is equally possible to use a value of N, = 2.0
is to use twice as many negatives as there are positives, in that case the p/n values
will be between zero and 0.5. One can easily show that for any N,, p/n < 1/Nr. We
should add that the BaROC protocol — the same as the ROC,, principle suggested by
Gribskov and Robinson [5] — is based on toplist truncation, so the AUC' value expected
for random ranking is smaller than 0.5.

9.2.3 Likelihood ratio scoring

In the practice of protein sequence classification the input variable of ROC analysis is
a sequence similarity score, such as a BLAST or Smith-Waterman score. Recently it
has been proposed that a simple likelihood ratio approximant, LR, is a more efficient
ranking indicator [107]. The LR score of a query is calculated using the formula
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No of negatives in the top list | AUC p/n
10 0.900 | 0.10000
50 0.500 | 0.04000
full negative (5990) 0.833 | 0.000835

Table 9.1: Dependence of the AUC value on the size of the negative set. Globin-like
proteins, a.1.1. in SCOP95.

J’_
LR = —gﬂj (9.1)
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where the top similarities are obtained between the query and members of the
positive and negative groups, respectively. In contrast to a simple similarity score,
LR also contains information on the negative class. A similar scoring measure, an
approximant of the posterior probability p is used by the I Bk program of the WEKA
package [108].
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Since the likelihood ratio is defined by p/(1 — p), it is easy to show that these
two indices have in fact the same meaning and thus lead to identical ranking. In our
comparisons we used the LR score, along with to simple scoring that uses just. We
should point out that LR scoring is meaningful only in the groupwise-scenario, the
ranking of the element-wise scenario does not change upon the transformation to LR,
so the ranking remains the same as that with simple scoring.

9.3 Results

The heterogeneity of protein groups is a fundamental problem in protein classification.
Protein groups vary in terms of the number of group-members, the length and variability
of the sequences, the separation from the nearest non-member sequences etc. So we
can expect that using a top list of a given length may influence the ROC,, value.

Let us take the globin superfamily a.1.1 of the SCO P95 data set as an example, and
use the Smith-Waterman algorithm to compare sequence similarities. This superfamily
has 103 members, and we will define a classification task where family a.1.1.1 (Globine-like,
5 members) will be the test group. We will calculate the AUC values in a group-wise
scenario, using 10, 50 negatives (which corresponds to the generally used ROC} and
ROC} scenarios), or the full dataset applied in the analysis. The results in Table 9.3
indeed show that the values are strongly dependent on the number of negatives taken
into the consideration. The phenomenon is shown graphically for the entire SCOP95
dataset in which the values represent the average of 246 classification tasks (Figure 9.3).
In this case we calculated ROC AUC' in three different ways, i.e. using the element-wise
scenario, the group-wise scenario with and without likelihood-ratio scoring. The values
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Figure 9.2: Dependence of the ROCAUC values on the size of the negative set.
Average AUCs were calculated for all the 246 classifications tasks within the SCO P95
dataset. The error bars indicate the average standard deviations. The curves represent
different methods of calculation as indicated in the inset and described in Methods.
Note that the group-wise scenario with likelihood ratio scoring gives values that are
independent of the size of the negative set while the results of the others show an
increasing tendency and have higher standard deviation values (indicated by the error

bars).

were plotted against the size of the negative set expressed in multiples of the positive
set. This was carried out by preparing the ranked list in the usual way and truncating
it from the top when the necessary number of negatives was reached. It is conspicuous
that the AUC values calculated by any of the three methods show a steeply increasing
tendency if the number of negatives is below the size of the positive group. The
methods using simple scoring (i.e. when the Smith-Waterman score was used for ROC
analysis in the group-wise or in the element-wise scenario) display a increasing tendency
above this threshold, but apparent that the curve of likelihood-scoring (in a group-wise
scenario) does not, its value being seemingly independent of the number of negative
samples in the top list. In addition, the latter method has substantially lower standard
deviation values than the other two methods. In principle, a comparison of the scoring
methods should not depend on the dataset, and in fact we see that the ranking order
of the methods is consistently the same as we reach values of Nr>1. On the other
hand, the curves cross each other below Nr=1.00, which shows that the comparison of
the methods is not consistent if shorter top lists are used. Taken together, the results
confirm the dependence of the values on the number of the negative samples. And
since fixing the same size of the negative set for all of the classes will place the different
classes at different points within this curve, we can see that there will be a differential
bias within the various groups. One of the underlying reasons is that the top lists of a
given length may contain a strongly varying number of positives and negatives, so the
positive/negative ratio changes as we consider longer and longer top lists. On the other
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hand, selecting a number of negatives that is proportional to the size of the positive
group will adjust the positive/negative ratio to a level roughly balanced with respect to
the group size. With this strategy, the experimenter can be more certain that the AUC
differences observed between classes are not class-imbalance artifacts but indicators of
quality differences between classes. We propose to use a number of negatives that is
equal to or double of the number of the positives participating in the ranking. Figure
9.3 shows that the balanced ROC analysis calculated in this manner is a more stringent
test than AUC5q or AUCYy, at least for the SCO P95 dataset in which there are many
relatively small groups. The balancing effect is clearly shown in Figure 9.3, where we
plotted the AUC value for 246 groups against the p/n ratio. In the case of ROCs5y,
the p/n ratio is way below one (A, left). In the case of the balanced ROC (B, right),
p/n gets near one for a number of the groups, but it can be lower in the case of distant
similarities since in those cases not all the positives will show up in the top list. In
the present dataset we see many such cases since the SCOP dataset is difficult for a
sequence comparison method such as Smith Waterman. Simply put, regions in the
BAROC scatter diagram allows one to distinguish various classes within a database.
A high AUC, high p/n ratio indicates tight groups, with high similarities between the
members and well separated from the rest. A high AUC low p/n is characteristic
of less well-separated or less tight groups in which the within-group similarity is not
sufficiently strong. Finally, low AUC, low p/n ratio is indicative of problem groups
that are difficult to predict.

9.4 Discussion

Generally speaking, for a statistical evaluation such as a ROCAUC calculation, it
is recommended to have the same number of positive and negative samples be used
[103; 104]. This condition is never met in bioinformatics databases, where we have
far fewer positives than negatives. A correct solution would be to randomly select
equal numbers from the two classes and to construct many classifiers for each case,
which is clearly too time consuming given the number of classes and data. Instead,
bioinformaticians resort to the truncation of the top lists, which — as we saw in Table
9.3— does not necessarily helps one to decide whether or not a low AUC' value is
indicative of a problematic object class or it is a class-imbalance artifact. As a way out
of this difficulty, we proposed the balanced ROC' scenario which adjusts the number of
negatives to the level of the size of the positive set. In this manner, classes, where the
positives are within the 'balanced’ top list, will have a high p/n value as well as a high
AUC. These classes are the easy cases for which the comparison measure (in our case
the Smith-Waterman similarity score) works efficiently. In the case of difficult classes,
we will have fewer positives in the top list. Therefore we can detect problem classes
using a scatter plot like the one shown in Figure 9.3, where they will lie in the region of
low AUC' and low p/n values. In this manner we can make use of the reliability of AUC'
calculation without having to construct a classifier for all the groups. Likelihood-ratio
scoring (Eq. 9.1) provides a further tool for getting rid of the class-imbalance bias, and
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Figure 9.3: Cumulative AUC curves for various calculation/scenarios. The calculations
were done on the super families of the SCOP95 database (PCB0001, see Section 9.2.1),
using various strategies for top list-restriction. The cumulative AUC' curves plot the
number of queries or groups (Y-axis) that exceed the AUC value indicated on the X
axis. For uniformity, we normalized the Y values to 1.00 by dividing them by the total
number of queries or groups, respectively. The AUC value indicates the calculation
done on the entire dataset, AUC5q and AU, values indicate calculations based on
truncated toplists as suggested by Gribskov and Robinson [5], while the B—AUC value
indicates a calculation according to the present BAROC protocol.In this representation
the curves with higher values mean a better performance, which in turn means that
the AUC on the full dataset gives higher scores than all the other methods, and the
balanced ROC gives the lowest scores.
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Figure 9.4: The AUC values were calculated for the 246 groups of the SCOP95
database using a group-wise scenario with supervised cross validation, as described
[4;, 6-8]. The top panel shows the calculation for AUCY5g, in which the top list of
each group contains exactly 50 negative samples. The lower panel shows the balanced
ROC, in which the top list contains as many negatives as there are positives in the
calculation. (N, = 1.00). The data points are more spread out.

it can be efficiently used in the BAROC scenario.
Finally, we should mention that the use of the method was illustrated here on 246
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sequence classification tasks taken from the SCOP database. We tested this method
on the other sequence and 3D classification tasks included in the Protein Classification
Benchmark Collection [4], and got identical results (data not shown) which gives us
hope that our protocol will be applicable to other classification methods that rank the
objects according to a variable which characterizes class-membership.

9.5 Simplified description of the method

We presented a ROC' analysis protocol that makes it possible to single out classes in
a database that are likely to be difficult to predict. The method, termed Balanced
ROC(BAROC), consists in calculating an AUC' value for a ranked top list which is
truncated so as to contain as many (or twice as many) negative objects as there are
positive objects in the entire analysis. In this manner each class will be analyzed with
a top list whose length depends on the size of the class. The difficult groups can then
be identified by their low AUC values and/or their low positive/negative ratio within
the top list. The identification is aided by a scatter plot of AUC' vs. positive/negative
ratio, as well as by the use of a likelihood ratio-scoring scheme (Eqn. 9.1), that can be
efficiently used in the BAROC' protocol instead of simple similarity scores.



Chapter 10
Conclusions

For understanding the language of genes and proteins we have to find a suitable model
of how they have evolved in the course of evolution. Because of this we need to develop
tree building methods which discover the process of evolution. These kinds of methods
have gained importance with the advent of molecular biology in the 1970's. Thereafter
the implosive advancement in biology allows us to investigate the sequences of the
proteins, genes, as well as species/genomes. This is why the microbiological research
requires novel and novel phylogenetic analysis tools.

In the first part of this thesis we provided two phylogenetic tree reconstruction
methodologies. In the second part, to demonstrate the application of phylogenetic tree
reconstruction methods in automatic protein classification, then we introduced protein
classification algorithms which make use of phylogenetic tree building methods as well.

The main goal of the first part was to introduce methodologies which can perform
a highly accurate phylogenetic analysis. The Multi-Stack algorithm categorically is
a distance-based method. Thus it uses only the distance values of the sequences
of interest to build a phylogenetic tree. This method is suitable, for example, in
constructing a guide tree before multiple alignment.

The second phylogenetic analysis tool was a consensus tree building method, namely
the Max Clique Consensus method. It is obvious from the results that the MCC
consensus outperforms many widely-used procedures, and it was easy to implement.
The time requirement of this method is reasonable (proportional to the tree building
method itself), so it can be employed efficiently in a post-processing phase of a
phylogenetic analysis tool.

In the second part of this thesis we sought to develop novel and efficient protein
classification algorithms. Our basic assumption was that the structure of the biological
datasets could be represented by a phylogenetic tree, and using this representation
protein classification could be carried out significantly more efficient. This new field of
bioinformatics is a very promising area of research.
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Summary in English

In this thesis we concentrate on two key topics, namely artificial intelligence and
bioinformatics. Within these fields we focus on evolutionary tree reconstruction and
machine learning.

Over a hundred years the theory of evolution has became the most acknowledged
model of how animal and plant species have developed over time. The discipline which
deals with the modelling of evolution is called phylogenetics (the word is originated by
the conjunction of the Greek words: phyle = tribe, race and genesis = birth). The
methods which are in widespread use in phylogenetics represent the process of species
evolution by a so-called phylogenetic tree, which corresponds to a weighted tree-graph
where the leaves represent the biological objects of interest. In connection with the
reconstruction of these kinds of trees, several problems arise which are interesting from
both a computer scientific and a biological point of view.

Earlier phylogenetics focused just on the evolution of species based on morphological
characters, but nowadays the explosive advancement in molecular biology also requires
the study of proteins. The wealth of sequenced protein data allows us to perform novel
investigations. The possibility of comparing protein sequences has moved research work
towards the systematization of the proteins isolated from distinct species. Proteins
that share a high sequence identity or similarity support the hypothesis that they share
a common ancestor, and therefore we call them evolutionary related or homologous
proteins. The analysis of evolutionary-related proteins has become a key question
in phylogenetics. After our brief introduction we can state the basic goal of the
phylogenetics: to reconstruct an appropriate tree topology based on protein sequences
which have a high sequence similarity. We should mention here that the high sequence
similarity of proteins usually implies that they share common functionality as well, but
it does not logically follow.

As the dissertation consists of two parts, the author's results will also be split
into two parts. In the first part, we introduce then evolutionary tree reconstruction
methodologies.

Several tree building method have been worked out and some of them have become
widely used, for example the Neighbor Joining (NJ) [9] and the Unweighted Pair Group
Method with Arithmetic mean (UPGMA) [10]. These methods belong to the so-called
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distance-based or distant matrix methods because they reconstruct the evolutionary
history of biological objects based only on pre-determined or observed distance values
among them. Our Multi-Stack (MS) [11] algorithm methodologically falls also into
this category. Broadly speaking, the MS method finds a weighted tree topology that
predicts the observed set of distances as closely as possible. More precisely, a weighted
tree defines a distance value for all pair of leaves —i.e. the sum of the weights of
edges containing the path between them. Thus the output tree of the MS approach we
expect from that the distances defined by itself will differ from the observed distances
as small as possible. To find this tree is an NP-complete problem when we have an
arbitrary distance measure [12], hence it can only be applied to heuristical solutions.
The idea behind the MS method is that it builds the optimal tree for the subsets of
the proteins of interest, and then joins these subtrees in an iterative manner. We can
apply this bottom-up approach efficiently in many test scenarios, and the MS approach
often outperforms many traditional tree building methods.

Since there are many tree building methods which produce more than one possible
evolutionary history, or the different tree building methods reconstruct different trees,
in many cases it is necessary to use those methodologies which are able to reconstruct
one "representative" tree based on several different phylogenetic trees. These kinds of
methods are called the consensus tree methods [13], and they are usually applied as
the last step of the phylogenetic analysis process.

In general, each inner point in a rooted phylogenetic tree determines a subset of
the biological object of interest ( i.e. the objects which are represented by those leaves
in the tree which lie below the inner point). Exploiting this observation we can see
that the concept of a phylogenetic tree and the concept of a hierarchical set system
are equivalent. The hierarchical set systems consist of those subsets or, in other words,
clusters which are pairwise compatible. Thus each phylogenetic tree corresponds to a
pairwise compatible cluster set. Most of the consensus methods determine a compatible
subset of the cluster sets of the input trees in different ways, based on the cardinality of
clusters’ occurrences in the input trees. Their calculations can be done in polynomial
time. Our goal is to find the subset of the input clusters for which the total number of
the cluster occurrences is maximal. Furthermore, we can also define an arbitrary (not
necessarily occurrence-based) weighting function on the clusters of the input trees. We
solved this consensus tree building approach efficiently [14], and we showed that it can
perform a more precise phylogenetic analysis than the traditional consensus methods
(such as the Majority-Rule, the Strict and Greedy consensus methods[15]).

In the second part of this thesis we apply the tree building methods in protein
classification problems. Automated protein classification is a crucial task in today's
biology. The unknown genes/proteins of the distinct organisms can be retrieved and
stored in the form of character sequences that are several hundred in length. Nowadays,
it has become routine to compare this data to the sequences of known proteins/genes
using a method of approximate string matching. Then, applying a machine learning
method, the unknown protein can be classified into a known category (e.g. structural
or functional category) [1]. The automated data annotation system of the frequently
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mentioned genome research is based on this methodology.

In this thesis we seek to develop novel and efficient protein classification algorithms.
Our basic assumption is that the structure of the biological datasets can be represented
by a phylogenetic tree, and using this representation the protein classification can be
carried out significantly efficiently [16; 17]. The protein classification methods, which
also use phylogenetic information, belong to the field of phylogenomics [18], hence our
methods can be viewed as phylogenetic algorithms as well.

A.1 Key Points of the Thesis

In the following a listing of the most important results of the dissertation is given. Table
A.1 summarizes which thesis is described in which publication by the author.

|. (a) The author developed a Multi-Stack based phylogenetic tree building method
which makes use of least-squares criteria. In this way he produced a novel
algorithm which is competitive with the widely used distance-based tree
building methods, and it can reconstruct the evolutionary history of those
datasets in a better way where the biological objects (sequences of interest)
have lower similarity [11]. This improvement can be shown using evolution-
ary distances as well as using alignment-free sequence distances. In addi-
tion, the MS method achieve a better results in many test scenario than the
Fitch-Margoliash algorithm which is also based on the least-squares criteria.

(b) The author solved the Max Clique Consensus problem via a binary integer
programming task. With this approach an arbitrary weighting of subsets
one can find the compatible subsets that have maximal weights. In addi-
tion, the author introduced a novel Maximum Likelihood weighting scheme,
which leads to an efficient phylogenetic reconstruction technique. He tested
this method with different evolutionary models and found that this approach
in many case outperforms the widely used consensus tree building methods
[14]. The trees in the tests were generated by the widely-used PAUP pro-
gram package[20], and the consensus methods were compared to each other
on these trees. Moreover, the author also compared the consensus methods
on a real-life database.

(c) The author provided a testing framework where the different phylogenetic
reconstruction techniques could be compared using different evolutionary
models in a wide range [11; 14]. In this testing methodology the biological
sequences (DNA or protein) have been generated based on a predetermined
model evolutionary tree. Next, on this set of sequences the tree-building
method of interest has been applied, and it produces an output tree, which
will be compared to the predetermined model tree. Based on the similarity of
these trees we can estimate the accuracy of the examined tree reconstruction
method. This testing framework provides a more comprehensive testing
environment than the bootstrap method [21], because in this framework
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Table A.1: The relation between the theses and the corresponding publications

we can investigate the efficiency of the tree-building method using different
evolutionary models.

The author introduced the Treelnsert and TreeNN methods, which are novel
tree-based protein classification algorithms. In contrast to the earlier meth-
ods, the algorithms he introduced here make use of just the sequence sim-
ilarities. Thus they are readily applicable in a wide range on protein clas-
sification tasks. The author compared the tree-based methods on many
protein classification tasks using ROC analysis, and they were often signifi-
cant better. The experiments showed that it is worth applying phylogenetic
information in protein classification. [17].

The author devised two tree-based propagational methods, namely TreeProp-
N and TreeProp-E. These methods may be regarded as extensions of TreeNN,
because all of these methods update the sequence similarities using the
topology of a phylogenetic tree. In experiments these propagational algo-
rithms usually gave a better performance in protein classification comparing
to the former systems [16].

The author created a ROC analysis-based evaluation method which is a more
reliable model evaluation technique than the original ROC analysis when the
distribution of the classes is imbalanced. Applying it, a model selection could
be carried out more reliably than with the other approaches[19]. He tested
this approach on several large-scale datasets.
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Summary in Hungarian

A disszertacié témajat tagabb értelemben a mesterséges intelligencia és a bioinformatika,
szorosabb értelemben pedig a gépi tanulas és az evoliciés fak rekonstrukciéja képezi.

Az evolicié mar tobb mint egy évszazada a fajok kialakulasanak a legelfogadottabb
modellje. A torzsfejl6dés ezen modellje elsésorban a fajok rokonsagi fokat probalja
meghatarozni. A filogenetika (a sz6 a gorég phiilon = térzs és geneszisz = sziiletés
szavakbél ered) a fajokat, él6lényeket rendszerezi evoliciés rokonsagi fokuk alapjan.
A filogenetikaban a legelterjedtebb mddszerek a fajok fejlédésének a folyamatat egy
agynevezett filogenetikus faval reprezentaljak, amely egy stlyozott fa-grafnak felel meg,
ahol a levelek reprezentaljak a vizsgalt biolégiai objektumokat. Az ilyen tipusa fak
rekonstrukciéja mind biolégiai, mind szamitastudomanyi szempontbdl szamos érdekes
problémat vet fel.

A kiilonboz6 fajokbdl izolalt fehérjék szekvencidinak dsszehasonlitasi lehet8sége aj
tipust vizsgalatok elvégzésére adott alapot a filogenetikaban. Ez merében atformalta
a biolégia ezen agat. Mig korabban a filogenetika egyet jelentett a fajok evoliciés
fejlédéstanaval, addig az 0j eredmények hatasara a kutatasok kiterjedtek a fehérjék
oroklédésének vizsgalatara. Fehérjék azon csoportjat, melyek szekvenciai nagyon hason-
|6ak egymassal, rokon fehérjéknek tekintik, vagy mas széval homolég csoportnak hivjuk.
A homolég csoportok altalaban hasonlé funkcidkkalrendelkeznek az él8 szervezetben.
A filogenetika egyik fontos alapfeladatanak tekintjik a kiilonb6z6 fajokbdl izolalt,
hasonlé6 funkciéja és hasonl6 szekvenciaju fehérjék vizsgalatat, és ezen fehérjecsoportok
evolacids torténetének a meghatarozasat.

Mivel a disszertacio két f6 részre tagolédik, az eredményeket is ennek megfelelen
két csoportra fogjuk felosztani.

Az eredmények elsé csoportjat filogenetikusfa-épité6 médszerek bemutatasa képezi.
A faépitd algoritmusok bemenete sokféle biol6giai objektum lehet, Ggy mint gén szek-
venciak, fehérje szekvencidk vagy mitokondrialis DNS szekvencidk egy halmaza. Kime-
netiik egy fa struktira, melyben a levelek reprezentaljak a vizsgalt bioldgiai objektumokat.
Szamos faépitd algoritmust dolgoztak ki, amely kdziil néhany széles korben elterjedt,
mint példaul a Neighbor-Joining [9] és az UPGMA [10]. Ezek a médszerek az Ggynevezett
tavolsag-alapi modszerek kozé tartoznak, mert a vizsgalt szekvenciak elére adott tavol-
sagai alapjan rekonstrualjak az evolicios torténetiiket. Ezek a modszerek az evolicios
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torténetet altalaban egy Ggynevezett stlyozott filogenetikus fa formajaban reprezentaljak.
Az altalunk kidolgozott tavolsagalapt Multi-Stack (MS) algoritmus [11] azt a stlyozott
fatopologiat keresi, amely a legjobban képes visszaadni az el6re definialt tavolsagot:
azaz a keresett silyozott faban a fehérjék tavolsagai —a kozottiik [évé at élsalyainak
az Osszege— a legkevésbé térnek el az elére definialt tavolsagoktdl. Mivel nem minden
esetben létezik olyan silyozott filogenetikus fa, amely altal meghatarozott tavolsagok
az el6re adott tavolsagokat teljes mértékben visszaadjak, ezért arra toreksziink, hogy a
kapott fa topologiaja a legjobban igazodjon a "tavolsagviszonyokhoz". Ennek a fanak a
megtalalasa egy NP-teljes problémara vezet [12], ezért csak heurisztikus megoldast lehet
ra adni. Az MS mdédszer el8szor a vizsgalt fehérjék egy-egy részhalmazara épit optimalis
fat, majd ezeket a részfakat iterativan sszekapcsolja. Ezt a bottom-up megkdzelitést
hatékonyan tudtuk alkalmazni tobb tesztkdrnyezetben, és szamos tradicionalis faépiténél
jobbnak bizonyult.

Mivel a filogenetikusfa-épits algoritmusok sokszor tobb lehetséges evolicids torténetet
is képesek meghatarozni vagy a kiilénb6zs algoritmusok kiilonbozs fat rekonstrualnak,
ezért sokszor olyan médszerre van sziikségiink a filogenetikus analizis utolsé fazisaként,
amely tobb filogenetikus fa altal hordozott informaciét képes egyetlen reprezentativ
faba Gsszegydijteni [13]. Az ilyen céla algoritmusokat konszenzusfa-épitéknek nevezziik.
Altalaban minden gydkeres filogenetikus fa egy belsé pontja egyértelmiien meghatarozza
a vizsgalt bioldgiai objektumoknak egy részhalmazat (a belsé pont alatt talalhaté
levelek altal reprezentalt objektumok halmaza). Tehat a filogenetikus fa ekvivalens a
hierarchikus halmazrendszerek vagy mas széval a kompatibilis halmazok konstrukciéjaval.
Ezt a megkdzelitést alkalmazva, kézenfekvs, hogy azokat a kompatibilis részhalmazokat
szeretnénk a konszenzusfa belsé pontjaiként kivalasztani, amelyek a vizsgalt fakban a
legtobbszor fordulnak el6. Természetesen az input fakban eléfordulé részhalmazokon
értelmezhetiink tetszdleges valés értéki sulyfliggvényt, amely nem csupan eléfordulason
alapszik, hanem az input fak mas tulajdonsagait is figyelembe veszi. Ezt a kon-
szenzusfa-épitési problémat oldottuk meg hatékonyan [14], és megmutattuk, hogy
egy alkalmas részhalmaz sulyozassal a legelterjedtebb konszenzus médszereknél (mint
példaul Majority-Rule, Strict vagy Greedy konszenzus [15]) pontosabb filogenetikus
analizist lehet végrehajtani.

A tézisek masodik csoportjat a faépité modszerek egy alkalmazasa képezi. A
fehérje-osztalyozas az egyik legfontosabb feladat a mai biol6gidban. Egy-egy szervezet
génjeinek adatait szekvencidk —gének altal kodolt fehérjéket jelképezé néhany szaz
karakter hossz( sorozatok— forméajaban taroljak. Mara mindennapi rutinna valt, hogy
ezeket az adatokat a kozelité mintaillesztés médszerével Gsszehasonlitjak a mar ismert
fehérjék hasonlé adataival, majd valamely osztalyozasi eljarassal megkisérlik besorolni
Gket a mar ismert (szerkezeti, funkciés stb.) kategériak valamelyikébe [1]. A gyakran
emlegetett genom-kutatasok automatikus adat-annotacios rendszerei lényegében erre a
modszerre épiilnek.

Munkainkban a fehérje-osztalyozas Gjszeri médszereit fejlesztettiik ki, melyekben
filogentikus informaciét is hasznaltunk. Alapfeltételezésiink az, hogy a szekvencia
adathalmazok bels6 szerkezete filogenetikus fa formajaban abrazolhat6, és hogy ennek
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révén az osztalyozas hatékonnya tehets [16; 17]. Médszereinkben az ismert és ismeretlen
osztallyal rendelkez6 szekvenciakra megkonstrualunk egy filogenetikus fat csupan a
szekvenciak hasonlésagi viszonyai alapjan. Majd a megkonstrualt fabsl nyeriink ki olyan
informaciét, amely hasznos az osztalyozas szempontjabdl. Azok a fehérjeosztalyozasi
médszerek, amelyekben filogenetikus informaciét is felhasznalnak a filogenomika targy-
korébe tartoznak [18], ezért az altalunk kifejlesztett médszerek is ide sorolhatéak.

B.1. Az eredmények tézisszerii 6sszefoglalasa

| (a) A szerz6 egy Multi-Stack alapd faépité médszert dolgozott ki, amely a legki-
sebb négyzetek kritériumot alkalmazza. Ezaltal egy djszerii faépité moédszert
kapunk, amely kompetitiv a legelterjedtebb mddszerekkel, és pontosabban
meg lehet hatarozni olyan adatbazisok evoliiciés térténetét, ahol az objek-
tumok hasonlésaga alacsonyabb. Ezt a javulast mind illesztés-mentes mind
evoliiciés tavolsagok alkalmazasanal ki lehet mutatni. Tovabba a mdds-
zer jelent6ségét emeli az, hogy a szintén legkisebb négyzetek kritériumot
hasznalé Fitch-Margoliash faépité modszernél[61] szamos tesztesetben jobb
eredményt ér el a Multi-Stack megkézelités[11].

(b) A szerzé visszavezette az MCC problémat egy binaris egészértékii programo-
zasi feladatra. Ezaltal tetszéleges részhalmazsilyozas mellett meg lehet
hatarozni a maximalis sulyi kompatibilis részhalmazokat. Tovabba a szerzé
bevezetett egy Maximum Likelihood alapi részhalmaz silyozast, mely altal
az MCC hatékonyan alkalmazhato konszenzusfa épitésre dsszehasonlitva a
legismertebb konszenzusfa-épité médszerekkel. Médszereinket a széles kér-
ben elterjedt PAUP programcsomag[20] altal konstrualt fakon hasonlitottuk
Ossze[14]. Egy valds életbdl vett fehérjecsoporton bemutattuk a gyakorlati
alkalmazhatdsagat is.

(c) A szerzé megadott egy tesztelési keretrendszert, amely alkalmas a faépité el-
Jaréasok teljes kérii 6sszehasonlitasara tébb evoliciés modell alkalmazasaval[l1;
14]. A tesztelési médszerben egy elére meghatarozott evoliicics fa alapjan
allitunk el6 mesterségesen egy szekvenciahalmazt. Majd ezen szekvencia-
halmazra a vizsgalt faépit6 médszerek alkalmazasaval allitjuk elé a filoge-
netikus fat. Ezek utan az eredeti és a kapott fa hasonlésaga alapjan meg
tudjuk becsiilni a filogenetikus analizisiink pontossagat. A tesztelési mods-
zer szélesebb kérii tesztelést tesz lehetévé, mint a hagyomanyos bootstrap
médszer, mivel a bootstrap médszer egy rogzitett szekvenciahalmazbdl vesz
djra mintat [21]. Ezzel szemben ebben a keretrendszerben megvizsgalhatjuk
a faépiték viselkedését kiilonbézé evoliciés modellek alkalmazasa mellett.

Il. (a) A szerzé a tézisében megadja a Treelnsert és a TreNN mddszert, me-
lyek ajszerii faalapi fehérjeosztalyozasi eljarasok. A korabbi filogenomi-
kai médszerekkel szemben, az itt bemutatott modszerek csak a szekven-
cia hasonlésagokat hasznaljak fel, emiatt egyszeriien alkalmazhatéak széles
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B.1. tablazat. A tézispontok és a Szerz6 publikacidinak viszonya

kérben. Tobb fehérje osztalyozasi probléman ésszehasonlitotta a faalapi
médszereket ROC analizis alkalmazasaval, és jelentGs javulast ért [17]. Az
eredmények ramutatnak, hogy érdemes filogenetikus informaciét alkalmazni
fehérje osztalyozasban.

A tézisben kidolgozasra keriilt két filogenetikusfa-alapi propagaciés méds-
zer, a TreeProp-N és a TreeProp-E. Ezek a médszerek a TreeNN algoritmus
kiterjesztéseinek tekinthetéek olyan médon, hogy a filognetikus fa struk-
tarajat felhasznalva a szekvencia hasonlésagokat feliildefinialjak. Ezen pro-
pagaciés mddszerek fehérjeosztalyozasban tovabbi javulast eredményeztek
a korabbi médszerekhez képest. [16].

A szerzd definialt egy ROC analizisen alapulo kiértékelési médszert, mellyel
egy megbizhatébb mérészam kaphaté a szekvenciahasonlésag mindségére
abban az esetben, ha kiegyensilyozatlan az osztalyok eloszlasa az adatba-
zisban [19]. Ezaltal sokkkal megbizhatobb modellkiértékelést lehet végreha-
jtani a ROC analizis segitségével. Az itt bevezetett mdodszert a szerzé nagy
méretii fehérjeadatézison tesztelte.
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