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Abstract The aim of this paper is to analyse how

meteorological elements relate to extreme Ambrosia

pollen load on the one hand and to extreme total pollen

load excluding Ambrosia pollen on the other for

Szeged, Southern Hungary. The data set comes from a

9-year period (1999–2007) and includes previous-day

means of five meteorological variables and actual-day

values of the two pollen variables. Factor analysis with

special transformation was performed on the meteo-

rological and pollen load data in order to find out the

strength and direction of the association of the

meteorological and pollen variables. Then, using

selected low and high quantiles corresponding to

probability distributions of Ambrosia pollen and the

remaining pollen loads, the quantile and beyond-

quantile averages of pollen loads were compared and

evaluated. Finally, a nearest neighbour (NN) tech-

nique was applied to discriminate between extreme

and non-extreme pollen events using meteorological

elements as explaining variables. The observed below

or above quantile events are compared with events

obtained from NN decisions. The number of events

exceeding the quantile of 90% and not exceeding that

of 10% is strongly underestimated. However, the

procedure works well for quantiles of 20 and 80%, and

even better for those of 30 and 70%. Using a nearest

neighbour technique, explaining variables in decreas-

ing order of their influence on Ambrosia pollen load

are temperature, global solar flux, relative humidity,

air pressure and wind speed, while on the load of the

remaining pollen are temperature, relative humidity,

global solar flux, air pressure and wind speed.

Keywords Ambrosia � Extreme daily pollen load �
Meteorological elements � Factor analysis including

special transformation � t test � Nearest neighbour

technique

1 Introduction

Connection of meteorological elements with pollen

concentrations is widely studied in the literature.

Finding a statistically significant association between

the daily pollen level and daily meteorological ele-

ments is of great practical importance. These kinds of

examinations concern all pollen types and include

correlation analyses (Celenk et al. 2009; Kasprzyk and

Walanus 2010), forecasting characteristics of the

pollen season (Garcı́a-Mozo et al. 2009; Kasprzyk

2009) and pollen concentration using regression mod-

els (Makra et al. 2004; Ocana-Peinado et al. 2008),
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neural and neuro-fuzzy models (Aznarte et al. 2007) or

multivariate statistical methods (Hart et al. 2007;

Makra et al. 2006).

However, the role of the values of meteorological

elements in forming extreme daily pollen concentra-

tions has received so far a low attention. Frei (2004,

2006) studied the occurrences of extreme events

(storms, floods or droughts) with extreme birch and

grass pollen concentrations in the data set of Basel. The

heat wave over Europe in summer 2003 with mean

temperature exceeding the 1961–1990 mean by about

5�C in June, July and August substantially influenced

pollen phenology and pollen production in Switzerland

(Gehrig 2006). The grass pollen season was most

affected starting 1–2 weeks earlier and ending 7–33

days earlier than in general. Extreme high Chenopo-

dium, Plantago and Poaceae daily pollen concentra-

tions were measured in this pollen season. Cariňanos

et al. (2000) analysed the yearly distribution and

severity of Artemisia and Chenopodiaceae-Amarantha-

ceae pollen, indicating the highest and very high pollen

levels in a rural area with sub-desert climate and

extreme dryness.

Due to the worldwide increasing trend and ever-

increasing frequency of extreme high temperatures,

the start of flowering occurs several days earlier;

furthermore, a trend towards higher annual pollen

quantities and an increase in the highest daily mean

pollen concentrations can also be observed (Frei 2008;

Frei and Gassner 2008). Recent climate change, the

global warming may facilitate to extend habitat region

of herbaceous and arboreal plants contributing to the

increase in pollen levels and exacerbation of their

adverse effects, hence to the rise of pollen sensitivity

and respiratory admissions due to a pollen allergy.

The purpose of this paper is to analyse how

previous-day values of meteorological elements relate

to actual-day values of extreme Ambrosia pollen load

on one the hand and to those of extreme total pollen

load excluding Ambrosia pollen on the other. In the

paper, value of pollen load below its quantiles 10, 20

and 30% and above the quantiles 90, 80 and 70% are

considered extreme (A p-quantile (0 \ p \ 100%) qp

is the value below which the pollen load occurs with

relative frequency p). Our aim was to determine the

chance of occurrence of extreme pollen load for a day

in association with the former-day meteorological

variables. In this way, results may help physicians and

sensitive people to prepare to adverse effects of

extreme high pollen loads. This is why actual mete-

orological variables were disregarded. In order to get a

first insight into the relationship between pollen load

variables and meteorological variables, a factor anal-

ysis with special transformation was performed first.

Then, averages of meteorological variables under

quantile and beyond-quantile events of Ambrosia

pollen and the remaining pollen loads were compared

and evaluated. If these averages differ significantly,

the possibility of distinguishing between extreme and

non-extreme pollen events using meteorological ele-

ments as explaining variables can be expected.

Therefore, a nearest neighbour (NN) technique was

applied to discriminate between extreme and non-

extreme pollen events using meteorological elements.

2 Materials and methods

2.1 Location and data

Szeged (46.25�N; 20.10�E), the largest settlement in

South-eastern Hungary, is located at the confluence of

the rivers Tisza and Maros (Fig. 1). The area is

characterised by an extensive flat landscape of the

Great Hungarian Plain with an elevation of 79 m

AMSL. The city is the centre of the Szeged region with

203,000 inhabitants. The climate of Szeged belongs to

Köppen’s Ca type (warm temperate climate) with

relatively mild and short winters and hot summers

(Köppen 1931). The pollen content of the air was

measured using a 7-day recording ‘Hirst-type’ volu-

metric trap (Hirst 1952). The air sampler is located on

top of the building of the Faculty of Arts at the

University of Szeged some 20 m above the ground

surface (Fig. 1) (Makra et al. 2008).

In order to determine the association between

meteorological variables on the one hand and Ambrosia

pollen load as well as the total pollen load excluding

Ambrosia pollen on the other, previous-day values of

five meteorological variables (mean temperature, mean

global solar flux, mean relative humidity, mean sea-

level pressure and mean wind speed) and actual-day

values of the two pollen variables were considered. In

another work we received that out of temperature,

relative humidity, wind speed and global solar flux, the

most important predictor was the daily mean global

solar flux for rainy days (Makra and Matyasovszky

2011). Concerning mean sea-level pressure (MSLP),
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we refer to Schäppi et al. (1998) who identified a strong

positive correlation between daily average air temper-

ature and daily grass pollen count. This correlation

arises due to anomalies in MSLP, reflecting the

association of MSLP with different direction of air-

flows in the forming of pollen load. A slight refinement

of the methodology could involve not only previous-

day meteorological variables as influencing variables

but their two (or more) days earlier values as well.

However, it was found that earlier-days meteorological

parameters deliver negligible further information on

the actual-day pollen concentration (Makra and

Matyasovszky 2011).

Meteorological data were collected in the monitor-

ing station (operating by the Environmental and

Natural Protection and Water Conservancy Inspector-

ate of Lower-Tisza Region, Szeged) located in the

downtown of Szeged at a distance of about 10 m from

the busiest main road and with 2 km distance of the

pollen trap. Though the meteorological station is an

urban monitoring station, within such a distance,

meteorological data can be considered representative

Fig. 1 Location of Europe

with Hungary (upper panel)
and the urban web of Szeged

with the positions of the data

sources (lower panel).
1 meteorological monitoring

station, 2 aerobiological

station. The distance

between the aerobiological

and the meteorological

station is 2 km
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to associate them with pollen characteristics at the

pollen station.

Besides pollen of Ambrosia (ragweed), pollen of

further 23 relevant taxa is taken into account. In

Szeged, aerobiological measurements have been per-

formed since 1989 (Makra et al. 2005). Pollen of

altogether 24 taxa can be detected in the city (Makra

et al. 2006). Ragweed in Szeged discharges the most

pollen of all taxa. The ratio of Ambrosia pollen

amounts to around 60–71% of the total pollen release

in the air of Szeged in the late summer period (Juhász

and Juhász 2002). For Szeged, the sensitivity of

patients to ragweed is 83.7%, while it is 51.8% to

mugwort and 56.7% to grass pollen (Kadocsa and

Juhász, 2000). The taxa considered are as follows: Acer

(maple), Alnus (alder), Ambrosia (ragweed), Artemisia

(mugwort), Betula (birch), Cannabis (hemp), Carpinus

(hornbeam), Chenopodiaceae (goosefoots), Corylus

(hazel), Fraxinus (ash), Juglans (walnut), Morus

(mulberry), Pinus (pine), Plantago (plantain), Platanus

(platan), Poaceae (grasses), Populus (poplar), Quercus

(oak), Rumex (dock), Salix (willow), Taxus (yew), Tilia

(linden), Ulmus (elm) and Urtica (nettle).

The analysis was performed for the 9-year period

1999–2007 with two data sets according to the pollen

season of Ambrosia (ragweed) (July 15–October 16)

and the pollen season of remaining pollen excluding

that of Ambrosia (January 14–October 16).

The pollen season is defined by its start and end

dates. For the start (end) of the season, we used the first

(last) date on which 1 pollen grain m-3 of air is

recorded and at least 5 consecutive (preceding) days

also show 1 or more pollen grains m-3 (Galán et al.

2001). The pollen season varies from year to year. The

earliest start date and latest end date of individual

pollen seasons are accepted to define a uniform pollen

season for each year.

It should be noted that we define pollen load as a

number indicating to which extent the body is

endangered by pollen. When calculating pollen load,

allergenic effects of all actually blooming herbaceous

and arboreal plants are considered. According to the

degree of allergenicity, pollen types can be sorted into

four categories: (1) weakly (without any allergic

symptoms), (2) moderately (infrequent, it triggers

complaints only for a few people), (3) intensely

(frequent allergen, it runs with complaints for lots of

people) and (4) severely allergenic pollen types (very

frequent allergen, it provokes strong reactions for

lots of people) (http://www.orvosweb.hu/pdf/pollen_

naptar.pdf). For example, allergenicity of Ambrosia is

severe indicated by the scale value 4, while that of

Juglans is weak denoted by the value 1. Hence, pollen

load is the sum of the pollen concentrations multiplied

by their degrees of allergenicity (http://www.pollen

index.hu/) (Fig. 2).

2.2 Methods

2.2.1 Factor analysis with special transformation

Factor analysis identifies linear relationships among

subsets of examined variables and this helps to reduce

the dimensionality of the initial database without

substantial loss of information. First, a factor analysis

was applied to the initial dataset consisting of 5

meteorological parameters as explaining variables on

the one hand and Ambrosia pollen load and that of the

Fig. 2 The mean annual

cycle of the daily pollen load

and daily pollen

concentration, 24 taxa,

Szeged, 1999–2007
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remaining pollen on the other. The procedure was

performed for the two pollen variables as resultant

variables separately in order to transform the original

variables to fewer variables. These new variables

(called factors) can be viewed as latent variables

explaining the joint behaviour of weather-pollen

variables. The optimum number of retained factors is

determined by different statistical criteria (Jolliffe

1993). The most common and widely accepted method

is to specify a least percentage (80%) of the total

variance in the original variables that has to be

achieved (Liu 2009). After performing the factor

analysis, a special transformation of the retained

factors was made to discover to what degree the

above-mentioned explaining variables affect the

resultant variable, and to give a rank and sign of their

influence (Jahn and Vahle 1968).

2.2.2 t test

Quantiles corresponding to probabilities 10, 20 and

30%, furthermore 90, 80 and 70% were determined

first. It should be noted that a p-quantile (0 \
p \ 100%) qp is the value below which the pollen

load occurs with relative frequency p. The pollen loads

were then assigned to two categories according to

whether the actual pollen load is below or not the

actual quantile. Values of daily meteorological vari-

ables corresponding to the next-day pollen load below

its quantiles 10, 20 and 30% and above the quantiles

90, 80 and 70% were analysed. The Student’s t test

(Zimmerman 1997) was used to decide whether pollen

category related means of each meteorological vari-

able differ significantly under each quantile both for

Ambrosia pollen and the remaining pollen.

2.2.3 Nearest neighbour (NN) technique

An NN technique was developed and applied in order

to decide which one of the two categories of the next-

day pollen load occurs under actual values of the 5

meteorological variables. A nearest neighbour of the

actual daily meteorological variables is identified with

the day where the explaining variables are the most

similar to the actual explaining variables. Then the

decision on the pollen load category for this case is the

category being present on the selected day.

The procedure was used for every day available.

The similarity is measured with the Euclidean distance

defined with the standardised explaining variables.

Standardisation is necessary to ensure the same

magnitude of each explaining variable and hence to

provide the same importance of them. It was per-

formed for every explaining variable separately by

dividing the difference between data and their mean by

the standard deviation. Due to the annual trends in

both the pollen loads and the meteorological variables,

a time window h was defined around each actual day

t of the year and the nearest neighbours were searched

within days from t - h to t ? h of the years.

Additionally, not only the unique nearest neighbour

but the first k nearest neighbours were selected and the

final decision on the category was defined as the

majority decision of the k number individual deci-

sions. Parameters h and k were determined from the

first 8 years (learning set) as to provide a best ratio of

good decisions to all decisions, and the procedure was

verified using data of the last year.

3 Results and discussion

3.1 Factor analysis with special transformation

and t test

After performing the two-factor analyses, 4 factors

were retained both for the pollen season of Ambrosia

and the pollen season of remaining pollen excluding

that of Ambrosia. In order to calculate the rank of

importance of the explaining variables (meteorolog-

ical parameters) for determining the resultant variable

(pollen variables), loadings of the retained factors

were projected onto Factor 1 with a special transfor-

mation (Jahn and Vahle 1968) (Tables 1, 2).

It is found that except for wind speed, the remaining

four meteorological variables display significant asso-

ciations with Ambrosia pollen load. Temperature and

global solar flux indicate positive proportional, while air

pressure and relative humidity inversely proportional

associations with Ambrosia pollen loads. Explain-

ing variables in decreasing order of their substantial

influence on Ambrosia pollen load are temperature, air

pressure, global solar flux, and relative humidity

(Table 1).

The remaining pollen load excluding that of

Ambrosia indicates notable association with all five

meteorological variables (Table 2). The signs of the

connections between the meteorological parameters

Aerobiologia (2012) 28:337–346 341

123



and the remaining pollen are the same as they are

between the meteorological parameters and Ambrosia

pollen (Table 1, 2). The meteorological variables thus

affect the two pollen variables similarly despite their

different pollen seasons. Explaining variables in

decreasing order of their influence are relative humid-

ity, global solar flux, temperature, wind speed and air

pressure. Importance of the individual meteorological

parameters based on their factor loadings differ in

determining the two pollen variables due to their

different characteristics including different length of

pollen seasons and different climate requirements

(Tables 1, 2).

The t test shows rather significant differences

between means of meteorological variables corre-

sponding to below and above the quantiles of pollen

loads excluding Ambrosia (Table 3) potentially due to

the annual trends in both the meteorological elements

and the pollen load. Here, 14.65% is used instead of

10% as the relative frequency of zero loads is 14.65%.

However, similar differences are less significant for

the load of Ambrosia pollen mainly for wind speed and

partially for low quantiles (Table 3). This might partly

due to the fact that annual trends are not so charac-

teristic during the relatively short pollen season of

Ambrosia. One may suspect, therefore, that these

highly significant differences are found due to just the

annual cycles inherent in both the meteorological

variables and pollen concentrations.

Factor analysis gave a first insight into the

relationship between pollen load variables and mete-

orological variables and the t test showed, the

possibility of distinguishing between extreme and

non-extreme pollen events using meteorological ele-

ments as explaining variables.

3.2 NN technique

In order to clarify whether the 5 meteorological

elements as explaining variables are informative to

discriminate between extreme and non-extreme pollen

events, an NN technique outlined in Sect. 2.2.3 was

applied. The optimal time window h is 3 and 5 days

for Ambrosia pollen load and total pollen load

excluding Ambrosia pollen, respectively. The choice

of such a small window for Ambrosia pollen is

reasonable because the pollen load varies in a very

wide range (from 0 to 5,540 in the 8 years) during a

relatively short pollen season. In contrast, the load of

the remaining pollen varies in a narrower range (from

0 to 3,020 in the 8 years) during a three times longer

period. The optimal number k of nearest neighbours is

7 for Ambrosia pollen and 5 for the remaining of

pollen, respectively. The larger value of k for Ambro-

sia seems to balance the narrower time window.

Values of h and k were determined as to minimise the

number of false decisions only for events exceeding or

not exceeding the quantiles corresponding to pM ¼
max p; 1� pf g or pm ¼ min p; 1� pf g, respectively,

Table 1 Special transformation: effect of the explanatory

variables on Ambrosia pollen load and the rank of importance

of the explanatory variables on their factor loadings trans-

formed to Factor 1 for determining the resultant variable

Variables Weight Rank

Ambrosia (pollen m-3 day-1) 1.000 –

Temperature (�C) 0.153 1

Global solar flux (W m-2) 0.136 3

Relative humidity (%) 20.110 4

Air pressure (hPa) 20.143 2

Wind speed (m s-1) 0.045 5

Rank 1 = highest weight, that is the most important

meteorological variable; rank 5 = lowest weight, that is the

least important variable

Thresholds of significance: italic: x0.05 = 0.068; bold:

x0.01 = 0.090)

Table 2 Special transformation: effect of the explanatory

variables on total pollen load excluding Ambrosia pollen and

the rank of importance of the explanatory variables on their

factor loadings transformed to Factor 1 for determining the

resultant variable

Variables Weight Rank

Total pollen excluding Ambrosia (pollen

m-3 day-1)

1.000 –

Temperature (�C) 0.188 3

Global solar flux (W m-2) 0.237 2

Relative humidity (%) 20.276 1

Air pressure (hPa) 20.068 5

Wind speed (m s-1) 0.121 4

Rank 1 = highest weight, that is the most important

meteorological variable; rank 5 = lowest weight, that is the

least important variable

Thresholds of significance: italic: x0.05 = 0.041; bold:

x0.01 = 0.054
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as there is a tendency to underestimate these events

and overestimate the complementary events.

Tables 4 and 5 compare the observed below or above

quantile events to events obtained from NN decisions.

Quantiles p = 10 and 90% are not included here

because the number of events exceeding the quantile of

90% and not exceeding that of 10% is strongly

underestimated even with the optimal time window

and the number of nearest neighbours. The percentage

of correct decisions is slightly over 30% for this case,

while the similar percentage for complementary events

(not exceeding the quantile of 90% and exceeding that

of 10%) is around 97–99%. The procedure, however,

works quite well for quantiles of 20 and 80%, and even

better for those of 30 and 70%. The question is whether

pollen loads corresponding to the quantiles of 20–30%

and 70–80% can be labelled extremes. The answer is

yes when taking into account the clinical threshold of

pollen load. Specifically, Kadocsa et al. (1991) detected

Ambrosia pollen sensitisation over 10 pollen grains

m-3 air in Szeged. The quantile of 30% (pollen load

of 28 for Ambrosia, Table 3) corresponds to 7 pollen

grains/m3 air that approximately fit the limit of 10

pollen grains/m3 air concentration being a clinical

threshold for sensitive people (Kadocsa et al. 1991). In

contrast, the quantile of 80% accompanied with pollen

load 552 for Ambrosia (Table 3) is well above the

clinical threshold of pollen load, and hence, this value

indicates serious adverse effects for those being sensi-

tive for respiratory ailments.

The relative frequency of the number of decisions

for exceeding the quantiles of 80, 70, 20 and 30% is

21.1, 31.1, 82.2 and 72.6% respectively in the learning

set, and 20.2, 30.1, 84 and 73.4% respectively in the

test set for Ambrosia (Table 4). Similar relative

frequencies for the remaining pollen are 20.4, 29.3,

79.4 and 71.1% for the learning set and 20.4, 29.6, 80.0

and 70.8% for the test set, respectively (Table 5).

These numbers explain that the NN procedure avoids

substantial under or overestimation of event frequen-

cies defined by the above quantiles, especially for the

pollen load without Ambrosia. The relative frequency

of good decisions for exceeding/not exceeding the

different quantiles show that the five meteorological

elements as explaining variables are informative to

discriminate between extreme and non-extreme pollen

events. It should be noted that the larger the percent-

ages in above–above or below–below rows-columns

in Tables 4 and 5, the better is the estimation delivered

by the NN technique.

Explaining variables in decreasing order of their

influence on Ambrosia pollen load are temperature,

Table 3 Results of t test

p 90% 80% 70% 10% 20% 30%

q90 = 1,016 q80 = 552 q70 = 348 q10 = 4 q20 = 12 q30 = 28

Ambrosia

T xx xxx xxxx xxx x xx

G xxx xxxx xxxx x

RH xxx xxxx x xx

P xxxx xx xxx xxxx xxxx xxxx

W xx

p 90% 80% 70% 14.65% 20% 30%

q90 = 333 q80 = 245 q70 = 188 q14.65 = 1 q20 = 17 q30 = 50

Total pollen excluding Ambrosia

T xxxx xxxx xxxx xxxx xxxx

G xx xxxx xxxx xxxx xxxx xxxx

RH xxxx xxxx xxxx xxxx xxxx xxxx

P x xxx xxx xxx xxx xxx

W xxx xxxx xxxx xxxx xxxx xxxx

Significance levels for differences between means of meteorological variables corresponding to below and above the p quantiles qp of

pollen loads. Symbols x, xx, xxx and xxxx refer to the 10, 5, 1 and 0.1% probability levels, respectively. T temperature, G global solar

flux, RH relative humidity, P air pressure, W wind speed
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global solar flux, relative humidity, air pressure and

wind speed, while on the load of the remaining pollen

are temperature, relative humidity, global solar flux,

air pressure and wind speed. These orders were

determined with the help of the numbers of good

decisions for events of exceeding or not exceeding

the quantiles corresponding to pM or pm. The NN

technique was performed with omitting a specific

explaining variable from all of the five variables. This

narrower set of variables delivered fewer good deci-

sions than the entire set of variables. The larger the

effect of this underlying variable on good decisions,

the larger is its influence on the extreme pollen load.

Performing this procedure with each variable provided

an order of their importance. It should be noted that the

rank of importance of the meteorological elements

determining the two pollen variables partly differ from

the above orders when using factor analysis with

special transformation. Its reason is that factor anal-

ysis explores linear relationships among variables

coming from two sources, namely the relationship

between two variables is partly due to the similarity

(or dissimilarity) of their annual cycles but partly due

to the correlation between variations around these

annual cycles. Hence, factor analysis shows an overall

picture, while the NN technique reflects the relation-

ship between daily variations of explaining variables

and pollen loads excluding the annual cycles when

using time windows. Additionally, application of the

NN procedure allows a nonlinear relationship between

explaining variables and pollen loads.

3.3 Comparison of similar studies and techniques

Finding relationships between pollen level character-

istics and meteorological elements has a vast amount

of literature, but extreme daily pollen concentration

has received so far a relatively low attention. For

instance, besides studies mentioned in the Sect. 1,

Antepara et al. (1995) found that daily peak pollen

values higher than 50 grains m-3 coincide with

average daily temperatures of 18.7 ± 3�C. The total

severity of the pollination seems to depend on the

rainfall prior to the start of the pollen season.

According to their model, during pollination, the days

with the above temperature and an absence of rainfall

between 4 and 12 h will exceed the above pollen

threshold. Stach et al. (2007) found that winds coming

from the east and northeast were dominant on the peak

Artemisia pollen days in Poznaň, Poland. Other

authors in Europe (Wahl and Puls 1989; Spieksma

et al. 2000) have also indicated high influence of wind

on daily peak values of Artemisia species pollen.

Nevertheless, de Morton et al. (2011) developed a

model for the short- and long-term prediction of

atmospheric grass pollen concentrations. They found

that extreme pollen events are associated with anom-

alous downward velocities over Melbourne. This has

been demonstrated for two completely different

atmospheric conditions leading to extreme pollen

count increase in Melbourne.

These results, however, come from case studies or

by-products of studies addressing questions not

directed at extreme pollen levels. For instance, as a

multiple linear regression model is defined on the

entire range of observed data, one might hope that

such a model is able to reproduce observed extremes,

too. Unfortunately, estimates from a regression model

are most accurate (have smallest variances) at mod-

erate values and are weakening (have increasing

variances) towards high and low values. In other

words, such techniques are not tailored to handling

extremes, and thus, a different methodology is needed

to estimate extreme pollen load events. Such a method

can be the NN technique applied in this paper.
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(Change of allergen spectrum of hay fever patients in

Southern Great Plain (1990–1998)). Orvosi Hetilap,
141(29), 12617–12620 (in Hungarian).

Kasprzyk, I. (2009). Forecasting the start of Quercus pollen

season using several methods—the evaluation of their

efficiency. International Journal of Biometeorology, 53(4),

345–353.

Kasprzyk, I., & Walanus, A. (2010). Description of the main

Poaceae pollen season using bi-Gaussian curves, and

forecasting methods for the start and peak dates for this

type of season in Rzeszow and Ostrowiec Sw. (SE Poland).

Journal of Environmental Monitoring, 12(4), 906–916.
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