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Abstract The main aim of this paper is to predict NO and

NO2 concentrations 4 days in advance by comparing two

artificial intelligence learning methods, namely, multi-layer

perceptron and support vector machines, on two kinds of

spatial embedding of the temporal time series. Hourly

values of NO and NO2 concentrations, as well as meteo-

rological variables were recorded in a cross-road

monitoring station with heavy traffic in Szeged, in order to

build a model for predicting NO and NO2 concentrations

several hours in advance. The prediction of NO and NO2

concentrations was performed partly on the basis of their

past values, and partly on the basis of temperature,

humidity and wind speed data. Since NO can be predicted

more accurately, its values were considered primarily when

forecasting NO2. Time series prediction can be interpreted

in a way that is suitable for artificial intelligence learning.

Two effective learning methods, namely, multi-layer per-

ceptron and support vector regression are used to provide

efficient non-linear models for NO and NO2 time series

predictions. Multi-layer perceptron is widely used to pre-

dict these time series, but support vector regression has not

yet been applied for predicting NO and NO2 concentra-

tions. Three commonly used linear algorithms were

considered as references: 1-day persistence, average of

several day persistence and linear regression. Based on the

good results of the average of several day persistence, a

prediction scheme was introduced, which forms weighted

averages instead of simple ones. The optimization of these

weights was performed with linear regression in linear case

and with the learning methods mentioned in non-linear

case. Concerning the NO predictions, the non-linear

learning methods give significantly better predictions than

the reference linear methods. In the case of NO2, the

improvement of the prediction is considerable, however, it

is less notable than for NO.
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1 Introduction

Nitric oxide (NO), as one of the nitrogen oxides (NOx), is a

highly reactive gas. Human activity has drastically

increased the production of nitric oxide by traffic. It

is produced by the chemical union of O2 and N2 in the

cylinders of internal combustion engines. (However, the

catalytic converter in automobile exhaust systems reduces

air pollution by oxidizing hydrocarbons to CO2 and H2O

and, to a lesser extent, converting nitrogen oxides to N2 and

O2.) Nitric oxide plays a major role in the photochemical

reactions, which lead, among other things, to the formation

of nitrogen dioxide (NO2) and photochemical smog. Since

NO2 absorbs in the visible wavelength region, creating

brown cloud over megacities (e.g., Mexico City and Bei-

jing), can be photolysed and yield oxygen atoms that can

react with molecular oxygen to create ozone. NO2 and the

NO/NO2 ratio are important in tropospheric chemistry.

Nitrogen dioxide is formed primarily from burning fuel

in motor vehicles, power plants, and other industrial,
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commercial, and residential sources that burn fossil fuels.

Nitrogen oxides, reacting with other substances in the air,

form acid rain that accelerate the corrosion of buildings and

monuments, and reduce visibility.

Exposure to nitrogen dioxide can irritate the lungs and

may lower resistance to respiratory infections. Sensitivity

increases for people with asthma and bronchitis. NO2 is

also a major source of fine particulate pollution, which is a

significant health concern.

Due to the harmful effects of these pollutants on human

health, it is important to have reliable methods enabling the

prediction of their concentrations several hours in advance,

so that the public authorities could avoid the harmful

consequences of severe air pollution episodes.

The more accurate prediction of future values of a time

series will improve performance in each field of everyday

life. The classical statistical procedures, as well as neural

network have already been applied for short-term predic-

tion of air pollutants by several authors.

Artificial neural networks appear as useful alternatives

to traditional statistical modelling techniques in many

scientific disciplines. They are composed of a large number

of possible non-linear functions (neurons) each with

several parameters that are fitted to data through a com-

putationally intensive training process. Some statisticians

and forecasters, who prefer the statistical approach to

forecasting may disregard the performance of neural

networks because of their lack of rigorous statistical

foundation. However, neural networks do fit comfortably

with the heterogeneous background of alternative fore-

casting techniques.

Gardner and Dorling [1] present wide fields of recent

applications of the multi-layer perceptron as one type of

artificial neural network in the atmospheric sciences. They

applied MLP neural networks to model hourly NOx and

NO2 concentrations in Central London from basic hourly

meteorological data [2]. The results of the models perform

well when compared to those received by using regression

based models. They also demonstrated that MLP neural

networks offer several advantages over traditional multi-

variate linear regression models. Jorquera et al. [3]

developed an accurate forecast of ozone episodic days for

downtown Santiago, Chile. The simple model structure

included a combination of persistence and daily maximum

air temperature as input variables. The model was validated

by comparing the outcome of three different modelling

schemes: linear model, fuzzy models and neural networks.

The three forecasts developed present significant

improvement of successful forecasts compared with pure

persistence. Predictions of PM2.5 [4], as well as NO and

NO2 [5], plus SO2 concentrations [6] were compared, and

produced by three different methods: persistence, linear

regression and multi-layer perceptron neural networks.

Furthermore, Perez and Reyes [7] improved PM2.5 pre-

dictions several hours in advance with a type of neural

network which was equivalent to a linear regression. The

effect of meteorological conditions was included by using

real values of temperature (T), relative humidity (H) and

wind speed (W) at the time of the intended prediction as

inputs to the different models. It was revealed that a three-

layer neural network gave the best results to predict the

concentrations of the pollutants in the atmosphere of

downtown Santiago, Chile several hours in advance, when

hourly concentrations of the previous day were used as

input. A multivariate regression model is also used by [8]

for comparing with the results obtained by using the neural

network model. Their results indicate that the neural net-

work is able to give better predictions with less residual

mean square error than those given by multivariate

regression models. Mechaqrane and Zouak [9] compared a

linear model with MLP, when predicting indoor tempera-

ture of a building. Maqsood et al. [10] used data of

temperature, wind speed and relative humidity to train and

test seven different models for weather forecasting. With

each model, they made 24 h ahead forecasts for all seasons.

In comparison, they found the ensemble of neural networks

to produce the most accurate forecasts.

Agirre-Basurko et al. [11] developed two multi-layer

perceptron based models and one multiple linear regression

based model. The models utilized traffic variables, mete-

orological variables and O3 and NO2 hourly levels as input

data. The performances of these three models were com-

pared with persistence of levels and the observed values.

The results indicated improved performance for the multi-

layer perceptron-based models over the multiple linear

regression models if they considered predictions for more

than 3 h in advance. Hansen et al. [12], by using neural

network techniques, achieved impressive increases in

forecasting accuracy. According to their results, genetic-

algorithms-guided selections of neural network architec-

tures displayed distinct improvements over statistical

refinements and other heuristic architectures. Additionally,

they concluded that neural networks could improve fore-

casting performance dramatically and found structure in

data, which remained hidden to other techniques. Accord-

ing to the investigations of Small and Tse [13], an artificial

neural network is particularly well suited to modelling

chaotic time series data. Castillo and Melin [14] also use

neural networks for simulation and forecasting economic

time series. The performance of the neural networks

(MLPs) was compared with classical regression models.

Time series prediction gave the best result when neural

networks were used, compared to that of the other regres-

sion models. Kukkonen et al. [15] evaluated five neural

network models (MLPs), a linear statistical model and a

deterministic modelling system for the prediction of urban
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NO2 and PM10 concentrations. They found that the non-

linear neural network models performed slightly better in

terms of the model performance values than the deter-

ministic model. Furthermore, the results also showed

improved performance for most of the neural network

models, compared with the linear statistical model, both for

predicting NO2 and PM10 concentrations. Ordieres et al.

[16] compared three different topologies of neural net-

works to two classical models: a persistence model and a

linear regression. The results clearly demonstrated that the

neural approach not only outperformed the classical mod-

els but also showed fairly similar values among different

topologies.

Besides the good non-linear regression abilities of neu-

ral networks, they also have some drawbacks. During the

neural network optimization process, we have to move on

to a surface having many local optima. Neural network’s

learning/optimizing algorithms cannot avoid from being

stuck in a local optimum, which can lead to a sub-optimal

solution. Another important deficiency is that the structure

of a network is not given in advance; therefore, we have to

optimize it as well. It means that we have to decide how

many neurons and hidden layers would be necessary, and

what kind of activation function or functions would be

appropriate, and how to connect neurons with each other to

form a network. Fortunately, an MLP with two hidden

layers can approximate an arbitrary function [17–19],

which negates some drawbacks mentioned above, however,

the others remain unsolved.

Support vector regression addresses these limitations and

gives promising results [20]. The basic idea, which is behind

the SVR technique, is to start with linear regression, which

has no parameters or only a few, and able to control the

possible hypotheses (capacity) by considering the width of

the margin of the regression plane. It would be useful to

extend this technique in order to hold the almost parameter-

less property and the capacity control of the possible

hypotheses, as well. An MLP, which is also an extension of

the linear regression technique, chooses an explicit way for a

non-linear description. It takes several linear regression

methods and non-linearizes them by an activation function

to get building blocks of the model. Then, it connects these

blocks together to make a comprehensive non-linear model.

This approach makes it hard to control the good properties

of the regression mentioned above. Applying implicit

mapping via a kernel function, an SVR redefines the dot

product in the linear regression method in order to get a

linear regression-like method. Due to the implicit non-linear

mapping, this regression becomes non-linear. Thus, the

simple and good properties of the linear regression are

inherited. The implicit mapping provides an implicit

description instead of the neural network’s explicit one,

which expresses the model required with an explicitly

defined composite function. While SVR solves several

drawbacks of the MLP (optimizing many parameters,

choosing topology; being stuck in a local optimum [21]), it

brings a new problem; namely, choosing an appropriate

kernel function [22]. Nevertheless, this problem can be

solved easily by choosing a proper kernel function from a

small set. We have to maintain some additional parameters;

namely, capacity control and parameters of the chosen

kernel function [23]. Several papers suggest that SVR per-

forms well in many time series prediction problems [24–29].

Both MLPs and SVRs have several successful applica-

tions in the field of prediction (see above). Therefore, they

are readily chosen for predicting NO and NO2 series. When

a Gaussian kernel is used in an SVR, it corresponds to a

radial basis MLP with Gaussian radial basis functions

(‘rbf’) and one hidden layer. While the size of the hidden

layer is unknown in the MLP approaches, the SVR auto-

matically sets it. The size, i.e., the number of hidden

neurons, is obtained as a result of the SVR optimization

procedure. Hidden neurons and support vectors correspond

to each other. Thus, the centre problem of the radial basis

network is solved since the support vectors serve the cen-

tres of the basis functions. Considering this fact, radial

basis network is not used in the paper. Instead of the radial

basis function, a sigmoid activation function was used in

our MLPs. The use of sigmoid-like functions is popular in

the practice for both MLP and SVR [30, 31]. The appli-

cation of the sigmoid function is even more justified, since

training algorithms of these neural networks do not require

positive definite property of the activation function, as

opposed to an SVR, which needs positive definiteness for

its kernel function [21]. In case of SVR, the parameters of

the sigmoid function were set so that the function has

positive definite property [32]. It allows us to compare the

results of the application of the sigmoid-like function by

two learning techniques.

In spite of the fact that neural networks and SVR are

different learning techniques, the learnt hypotheses can be

the same [33]. This is also a reason for comparing these

methods.

The aim of the paper is to predict hourly averages of NO

and NO2 concentrations in a traffic junction in Szeged

downtown, which has heavy traffic especially in rush

hours. Furthermore, the methods mentioned above are

compared with the reference ones. Reference methods do

not have any parameters; nevertheless, our MLP and SVR

methods have some. They were set by preliminary tests on

the historical data by grid search in the parameter space of

the algorithms, considering the suggestions of the program

libraries used. Generally, these suggestions lead to good

enough results, which are proved by our experiments as

well. Nevertheless, parameter tuning by grid search leads

to further considerable improvements.
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2 Geographical, topographical, climatological

and air quality characteristics of Szeged

2.1 The geographical position and topographical

characteristics of Szeged

Szeged, as the largest town in SE Hungary (20�06E;

46�15N), is located at the confluence of the Tisza and Maros

Rivers characterized by a landscape of extensive flats and an

elevation of 79 m a.s.l. (Fig. 1). The built-up area covers a

region of about 46 km2 with about 165,000 inhabitants.

Szeged and its surroundings are not only characterized

by extensive lowlands, but this city also has the lowest

elevation value not only in Hungary but in the Carpathian

Basin as well, rendering it a so-called ‘‘basin in the basin’’

or ‘‘double basin’’ situation. This special situation favours

the development of stronger anticyclonic activity, enabling

higher concentrations of pollutants in the air.

2.2 The climatic conditions of Szeged

The climate of Szeged is characterised by hot summers and

moderately cold winters. The distribution of rainfall is

fairly uniform during the year, with a share of 29 and 19%

for the summer (JJA) and the winter (DJF) seasons,

respectively. Mean daily summer temperatures are around

22.4�C, while the mean daily winter temperatures are

2.3�C. The irradiance values also exhibit large-scale

variances with an average of 20.2 and 4.2 MJ m-2 in

summer and winter days, respectively. The most frequent

winds blow along the NNW–SSE axis, with prevailing air

currents arriving from NNW (42.3%) and SSW (24%) in

the summer and from SSE (32.6%) and NNW (30.8%)

during the winter. Due to its unique geographical position,

Szeged is characterised by relatively low wind speeds with

mean daily summer and winter values of 2.8 and 3.5 m s-1,

respectively. The highest hourly wind speeds have been

recorded during the spring with a rate of 5 m s-1 [34].

2.3 The air quality conditions of Szeged

Urban air quality largely depends on the actual measured

values of meteorological parameters. The recorded aver-

ages of these variables for the city of Szeged are

the following: annual mean temperature: 11.2�C; mean

January and July temperatures: -1.2�C and 22.4�C,

respectively, relative humidity: 71%; mean annual precip-

itation total: 573 mm; mean annual sunshine duration:

2,102 h; and mean annual wind speed: 3.2 m s-1.

The city structure is very simple, characterized by an

intertwined network of boulevards, avenues and streets

sectioned by the River Tisza (Fig. 1). However, this sim-

plicity largely contributes to the concentration of traffic, as

well as air pollution within the urban areas.

The industrial area is mainly restricted to the north-

western part of the city. Thus, the prevailing westerly and

Fig. 1 The geographical

position of Szeged, Hungary

and built-up types of the

city (left, up) a city centre

(2–4-storey buildings),

b housing estates with

prefabricated concrete slabs

(5–10-storey buildings),

c detached houses (1–2-storey

buildings), d industrial areas,

e green areas, (1): monitoring

station
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northerly winds tend to carry the pollutants deriving from

this area towards the centre of the city.

3 Data basis

3.1 Local meteorological and air pollution data basis

The data come from the monitoring station, which is

located in Szeged downtown in a crossroad with heavy

traffic (Fig. 1). The station is operated by the ATIKÖFE

(Environmental protection inspectorate of Lower-Tisza

Region, Branch of the Ministry of Environment). The

training database comprises the period between 1 Sep-

tember 2000 and 12 March 2001, including autumn 2000,

as well as the winter of the years 2000/2001. Hourly

average mass concentrations of NO and NO2 (in lg m-3),

as well as hourly means of temperature (�C), relative

humidity (%) and wind speed (m s-1) are considered for

the period indicated. On the other hand, prediction occur-

red for the time span of 13–16 March, 2001.

4 Time series prediction

In the time series prediction, the aim is to predict the value

of a variable that varies in time using previous values and/

or other variables. Typically, the variable is continuous, so

time series prediction is usually a specialized form of

regression. Several authors [35] transformed the temporal

dimension of a time series into a spatial vector of the l

dimension embedding space by taking a moving window

over the last l elements of the series. We can define two

kinds of forecasts: (a) when no other information is used

apart from the time series being examined (i.e., predicting

without external variables); and (b) when other information

is also available, (i.e., predicting with external variables).

4.1 Prediction without external variables

Suppose we have a real-valued time series fytgn
t¼1; i.e., the

historical values of the series. When other time series,

which can affect the y series are not given, the task is to

predict yn+k values with k [ 0 based on the historical

values. In other words:

ynþk ¼ hðyn; yn�1; . . .; yn�ðl�1ÞÞ; k; l [ 0 ð1Þ

The usual way to make the prediction is to find an appro-

priate l and a function h, which describes the relation

between l consecutive elements and the next element of the

series. Here, l denotes the historical window size and k

represents the horizon of the future.

Our first aim is to use the above prediction schemes to

predict NO and NO2 time series. Secondly, external

influences (external variables) are considered to improve

the results obtained if possible.

4.2 Prediction with external variables

In some cases other time series are also known, which can

influence the y-series under examination. They are called

the external variables. If several factors are available,

we can represent them as a vector series consisting of

more than one scalar time series; namely, fztgn
t¼1 ¼

fzt1; . . .; ztmgn
t¼1; m [ 0: We can include this information

in Eq. (1):

ynþk ¼ hðẑnþk; yn; yn�1; . . .; yn�ðl�1ÞÞ; k; l [ 0 ð2Þ

Now suppose the (n+k)th value of the z-series or its esti-

mate is known from some source, which will be denoted by

bzn: Unfortunately, the problem of obtaining the information

about bzn is similar to that of Eq. 1. Hence, the z-series

prediction should be made before yn prediction. When the

aim is to predict only the future value of yn+k, the predic-

tion is called a one-step-ahead prediction. However, if we

intend to estimate values beyond yn+k, we have to use the

previously predicted values in the h function, and we call

this a many-step-ahead prediction, especially with N-step-

ahead predictions where the intention is to forecast the next

N values.

5 Inductive learning

The inductive learning of a concept requires recognizing a

hypothesis for this concept after presenting training

instances, which is supervised by a defined classification.

The instances are generally given in the following format

during the learning/training process:

xi1; xi2; . . .; xil
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

attributes

; yi
|{z}

class
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ith instance

; i 2 N ð3Þ

In order to seek a relation (the hypothesis) between the

attributes and their classes, a h function based on the

training instances has to be approximated:

yi ¼ hðxi1; xi2; . . .; xilÞ ð4Þ

The above formula is suitable for the prediction schemes

in Chap. 4 if we make an appropriate replacement in the

arguments of the h function. The ith instance means the ith

data window, while yi is the value to be predicted. From

here on, this more general notation will be used. The

artificial intelligence (AI) learners were applied multi-layer
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perceptron and support vector regression; both of them

have good approximation characteristics [18, 36].

5.1 Multi-layer perceptron (MLP)

The two-layered MLP is capable of approximating arbi-

trary finite sets of real numbers [18]. Hence, a maximum

two hidden-layered MLP was used with a sigmoid activa-

tion function:

rðxÞ ¼ 1

1þ e�x
ð5Þ

where the input and output layers have linear units. When

the l attributes of the ith learning instance take the form xi1,

… , xil, then the class of this instance produced by the one

hidden-layered MLP is shown in Eq. (6), while the result

of the one hidden-layered MLP is described in Eq. (7).

Equation (6) is a special one hidden-layered MLP called

Perceptron, which is the building block of the multi-layer

perceptron.

o1s
i ¼ r

X
l

tþ1

w1s
t xit þ w1s

bias

 !

ð6Þ

yi ¼
X

l2

r¼1

wro
1s
i

yi ¼
X

l2

r¼1

wrr
X

l1

s¼1

w2r
s o1s

i þ w2r
bias

 ! ð7Þ

oi
1s output of the sth perceptron for the ith

instance

wi
1s

, wt
2r

,

wr

weights in the first and second layers and

output unit

wbias
1s

, wbias
2r biases in the first and second layers

l1,l2 number of perceptrons in the first and second

layers

r sigmoid activation function

Changing the weights is the basis of the learning process.

The well-known back-propagation method with momen-

tum is used for adjusting the weights during the training

process. An implementation was provided by the Weka

software library [37, 38].

5.2 Support vector regression (SVR)

There are two commonly used support vector machines for

regression; namely, the e-SVR algorithm and its extension

the m-SVR algorithm [25]. We chose the m-SVR because it

has an advantage compared to e-SVR. Namely, it is able to

adjust automatically the width of the e-tube around the

function being approximated. An SVR maps the xi =

xi1,…,xil attributes to a generally higher dimension space,

called the feature space via a / : Rl?RL, L C l map

function. Then it makes a linear fit to certain accuracy by

optimizing the weights w = w1,…,wL and wbias:

yi �
X

L

j¼1

wj/ðxijÞ þ wbias ð¼ w;/ðxiÞh i þ wbiasÞ ð8Þ

We can reformulate Eq. 8 by expanding the weight

vector as a linear combination of the instance vectors

w ¼
P
n

t¼1

ða�t � atÞ/ðxtÞ; a�t ; at� 0 :

� �

X
n

t¼1

ða�t � atÞ /ðxtÞ;/ðxiÞh i þ wbias

ð¼
X

n

t¼1

ða�t � atÞjðxt; xiÞ þ wbiasÞ
ð9Þ

where j is a kernel function belonging to the / mapping.

To obtain at
*, at; m-SVR maximizes the following quadratic

problem for C, m [ 0:

� 1

2

X
n

i;j¼1

ða�i � aiÞjðxi; xjÞða�j � ajÞ þ
X

n

i¼1

ða�i � aiÞyi ð10Þ

subject to the constraints

X
n

i¼1

ða�i þ aiÞ ¼ 0

X
n

i¼1

ða�i þ aiÞ�Cnm

0� a�i þ ai�C

Three kinds of well-known kernel functions were

employed: (a) a radial basis function jðxi; xjÞ ¼
e�c xi�xjk k2

; (b) a polynomial one jðxi; xjÞ ¼ �c xi,xj

� �d

and (c) a sigmoid-like function, namely the hyperbolic

tangent jðxi; xjÞ ¼ tanh c xi,xj

� �� �

; where tanhðxÞ ¼
ðex � e�xÞ=ðex þ e�xÞ: A m-SVR implementation was

provided by the LibSVM software library [39, 40].

5.3 Model selection by grid search (GS)

Reference model, i.e., linear regression and persistence,

have no parameters to tune, therefore, they are a good

choice for making a basis of these experiments. However,

MLP and m-SVR are sophisticated techniques, they suffer

from the parameter selection problem, which has a large

influence on the results. Both models have several

parameters which have default values provided by the

libraries used, but for the sake of good prediction these
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parameter values need modification according to the

underlying distribution of the historical data. Among the

several parameter estimation techniques the grid search is

the most reliable because it makes exhaustive search in the

parameter space. Of course, only a subspace of the whole

can be discovered due to the huge amount of computational

efforts. LibSVM and Weka libraries have built in model

selections using grid search technique hence, we relied on

them. We compared prediction performance with and

without model selection, i.e., using standard library settings

of parameters and setting parameters by grid search on the

‘‘subspace’’, more exactly on a grid of the possible

parameter values.

In case of the MLP, for calculating the optimal number

of neurons in the layers, we used a grid with interval [1,

24] of integers for one coordinate and interval [0, 24] of

integers for the other, respectively, to the number of

neurons in the first and second layer of the MLP, where

back propagation algorithm was used as training. The grid

which was used in the optimization of the parameters of

the m-SVR was the following: m parameter from 0.01 to

0.99 with initial steps of 0.05 and the c parameter from

0.1 to 8.0 with initial steps of 1.0, where further steps

were taken by the usual two factor exponential

enlargements.

6 Experiments

In our experiments real meteorological data were used,

which came from a monitoring station located in the city of

Szeged in Hungary. The time series examined were 1-h

averages of nitric oxide and nitrogen dioxide, which con-

sisted of a 6-month data set in the period 1 September

2000–16 March 2001.

The diurnal cycles of NO and NO2 have the shape of a

double wave (Fig. 2), with bigger amplitudes for NO than

for NO2. Due to the traffic density, the concentration of NO

is relatively higher on weekdays, than on weekends (Fig. 4).

This effect can also be observed for the secondary substance

NO2 (Fig. 4). The average diurnal variations on weekdays

are higher for NO than for NO2, because NO2 has a longer

lifespan than the more reactive NO (Fig. 2). Generally, NO

concentrations are higher in the morning, than in the

evening (Fig. 2). This can be explained by the fact that in

the morning the rush hour is shorter, and the atmosphere

near the surface is more stable than in the evening. The low

NO concentrations early in the afternoon result mainly from

the reduction of O3 by NO [41]. NO2 concentration depends

on that of NO; hence, concentration of the latter pollutant is

very useful to predict NO2 levels (Fig. 2).

Our experiments showed that concentrations of NO are

more precisely predictable than NO2. Therefore, the NO

series were also used as an external variable to predict NO2

[5, 2]. Temperature (T), relative humidity (H) and wind

velocity (W) as external variables were employed by sev-

eral authors [11, 2, 15], [5, 42]. Thus, values of these

meteorological variables might be included as inputs to an

algorithm in order to improve the forecast of NO and NO2

concentrations.

One-step-ahead prediction was applied for a 4-day

forecast (13–16 March) for the period 1 September–12

March (Fig. 2). Weekend data, because of the less traffic,

were omitted from the database. Similar assumptions can

be found in the following papers: [11, 2, 15, 5, 42]. The

time series have received natural 24-h periods, confirmed

by their autocorrelation diagram (Fig. 3).

When external variables were applied in the experi-

ments, their real values were used in order to avoid

cumulative errors. However, it is important to examine

relations between the time series considered and the

external variables mentioned.

The performance of the mentioned AI methods was

compared with three commonly used reference algorithms.

The first reference algorithm is called linear regression

(LR), where the past values of the data were weighted to

result prediction. The next reference algorithm is the per-

sistence, which models the persistence of the values of the

days. A prediction value of a future hour has the same

value as that for the same hour of the previous day. This

simple technique works well on this problem because the

series has a 24-h periodicity (Fig. 4). Average values of

several past days can lead to a better persistence method;

namely, to the averages of several-day persistence (per-

sistence average). Consequently, the persistence and the

persistence average are not able to handle external vari-

ables. Agirre-Basurko et al. [11], Gardner and Dorling [2],

Kukkonen et al. [15] and Perez and Trier [5] showed that

Fig. 2 Real values of the NO and NO2 series at the forecasting (test)

term
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all the reference methods mentioned work well on NO and

NO2 predictions. They also revealed that these reference

methods can be as good as an MLP or, in certain cases,

even better.

Our experiments showed that the persistence average

performed well better than the persistence itself. Based on

the good results of persistence average, a prediction

scheme was introduced, which forms not equally weighted

averages instead of simple persistence average. Optimiza-

tion of these weights was performed by linear regression in

linear case and by the learning methods mentioned in non-

linear case. Another difference between the persistence

average and the schemes introduced (Scheme 3–4 in

Table 1 and Scheme 7–8 in Table 2) is that 2–10-day

looking back periods were employed instead of the whole

historical days averages. Example, in case of a 3-day

looking back period, it is NO(t+k) = h(NO(t-23), NO(t-

47), NO(t-71)) = h(NO[t-23, t-47, t-71]), k = 1, ...,

24. These schemes can be applied to the NO and NO2

series predictions. However, the weights were adjusted by

optimization learning weights.

Different kinds of MLP learners were used according to

the number of neurons in the hidden layers. They are

denoted as MLPl1;l2 where l1 and l2 mean the number of

neurons in the first and second hidden layers, respectively.

Beside the MLPs, different kinds of m-SVRs were trained

by the mentioned kernel types for each hour in a day. They

provide learner-specific hypotheses, which will be denoted

by MLPl1;l2 and m� SVRfrbf;poly2;poly3;sigmoidg (degree is

shown in the subscripts in case of the polynomial kernel,

e.g. degree is 2 when poly2 appears). Linear regression,

persistence and persistence average have no parameters but

MLP and m-SVR have some, which need to be set properly.

Standard library settings (LS) were chosen for each in

order to analyse their standard behaviour on the data. In the

case of MLP, these settings were as follows: learning rate

was 0.3, momentum was 0.2, and the number of training

epochs was 500. Weka software library [37] suggests

MLP1,0, MLPa,1, MLPa,a/2 to use, where ‘‘a’’ is the number

of attributes. A scheme was chosen for the best model of

these three different models, which was denoted by MLP

(LS). Due to the different library suggestions, MLP (LS)

can be varied from scheme to scheme. This is the case for

the m-SVR (LS) as well, where the four kinds of kernels

(rbf, poly2, poly3, sigmoid) gave alternatives, however, in

fact, rbf and poly2 performed good enough on the prob-

lems. For other parameters of the m-SVR learner the

following settings were chosen: c is 1/a, m is 0.5, and e is

Fig. 3 Autocorrelation of the

NO (left) and NO2 series (right)

Fig. 4 Hourly average values of NO (left) and NO2 (right) in the historical period
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0.1. When grid search tuned the parameters of the learners,

then abbreviation (GS) was used to define the presence of

automatic parameter selection process.

First, an integrated result is shown characterizing the

performance. The normalized root mean squared error

(see NRMSE in Eq. 11) gives rough but important

integrated information about the performance. Normali-

zation of the error is important to compare the

predictions of the time series obtained in different places

or times.

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1

yi�ŷið Þ
n

2
q

stdevðyiÞ
; ð11Þ

where ŷ is the estimation of the yi-series and n is the length

of the series, while stdev is the abbreviation of the standard

deviation. In order to get a detailed comparison of the

predictions, the daily averages of the hourly absolute errors

(jyi � ŷj) were also analyzed in the forecast period. Thus,

we can define those hours of the day, where a method

performs well.

Table 1 NRMSE of the one-step ahead predictions of the NO series, according to different prediction schemes, using reference model (italic

letters), and learning models with selected library settings (LS) and optimized settings by grid search (GS)

NO Scheme 1 (S1) Scheme 2 (S2) Scheme 3 (S3) Scheme 4 (S4)

NO[t, t–1,…, t–23]

each hour of the

previous day

NO[t, t–1,…, t–23], W(t+k) each

hour of the previous day and

a known factor for the prediction time

NO[t–24+k, t–48+k]

2-day step back

for the same hour

NO[t–24+k, t–48+k], W(t+k)

2-day step back for the same

hour and a known factor for

the prediction time

NRMSE NRMSE NRMSE NRMSE

Linear regression 0.369 0.381 0.437 0.408

Persistence 0.408 0.408 0.408 0.408

Persistence average 0.386 0.386 0.386 0.386

M-SVR (LS) 0.291 0.284 0.314 0.279

MLP (LS) 0.351 0.365 0.583 0.583

M-SVR (GS) 0.224 0.212 0.276 0.206

MLP(GS) 0.259 0.298 0.511 0.484

The following settings were found the best and applied for the models to the (S1, S2, S3 and S4) schemes, separately: kernel types of m-SVR (LS)

were (poly2, poly2, rbf, rbf); kernel types of m-SVR (GS) were (rbf, poly2, poly2, rbf); number of nodes in the hidden layers of MLP (LS) were

([24, 12], [24, 1], [1, 0], [1, 0])

Table 2 NRMSE of the one-step ahead predictions of the NO2 series, according to different prediction schemes, using reference model (italic

letters), and learning models with selected library settings (LS) and optimized settings by grid search (GS)

NO2 Scheme 5 (S5) Scheme 6 (S6) Scheme 7 (S7) Scheme 8 (S8)

NO2[t, t–1, …, t–23]

each hour of the previous

day

NO2[t–23+k, t–47]

2-day step back

for the same hour

NO2[t–24+k, t–48+k],

H(t+k), 2T(t+k), W(t+k)

2-day step back for the same

hour and known factors

for the prediction time

NO2[t–24+k, t–48+k], H(t+k),

T(t+k),W(t+k), NO(t+k)

2-day step back for the

same hour and known factors

for the prediction time

NRMSE NRMSE NRMSE NRMSE

Linear regression 2.154 0.963 0.816 0.735

Persistence 1.286 1.286 1.286 1.286

Persistence average 0.889 0.889 0.889 0.889

m-SVR (LS) 0.757 0.871 0.744 0.744

MLP (LS) 1.216 1.073 0.903 0.849

m-SVR (GS) 0.662 0.672 0.647 0.600

MLP(GS) 1.095 0.895 0.810 0.794

The following core settings were found the best and applied for the models to the (S1, S2, S3 and S4) schemes, respectively: kernel types of m-

SVR (LS) were (poly2, poly2, rbf, rbf); kernel types of m-SVR (GS) were (rbf, rbf, rbf, rbf); number of nodes in the hidden layers of MLP (LS)

were ([1, 0], [1, 0], [1, 0], [1, 0])
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Since the series have 24-h periods, it is expedient to

choose the size of the embedding dimension, i.e., the

window size for a prediction scheme 24 (e.g. NO(t+k) =

h(NO[t, t-1,…,t-23]), k = 1,...,24).

6.1 NO series prediction

We found that the Scheme 4 type predictions gave the best

results if we used only 2-day looking back period in the

past, where looking back trials were applied from 2 to

10 days. Based on Schemes 1 and 3 (factor-less predic-

tions), investigations were made by extending these

schemes with external variables: wind velocity, humidity

and temperature; first one of them at a time, then all of

them together. Results showed that only wind velocity

could improve the accuracy of the predictions (Schemes 2

and 4 in Table 1). These factors seem to have less signif-

icance to improve the results of Scheme 1. However, the

factorless results are very impressive. It is to be noted that

if external variables are used, they also need to be pre-

dicted. Thus, the results received might be worse due to the

cumulative prediction error.

The SVR predictions with the appropriate kernel func-

tion performed significantly better than the others. SVR

with Gaussian (rbf) and polynomial kernel seems to be an

efficient predicting tool with schemes.

Schemes 3 and 4, which look back more than 1 day in

the past, did not generally bring additional improvements

without using external variables, and showed slightly better

results in some cases when wind velocity was used. It is

clear that this factor has some, probably non-linear, influ-

ences on the NO series (Table 1; Figs. 5, 6).

The SVR error curves show smoother and more reliable

predictions in average than the MLP, which produced

several peaks, e.g., around 9 am, (Figs. 5, 6). The external

variable, the wind velocity, was able to regularize the MLP

results and brought improvements in Fig. 6.

On one hand, reference methods gave good results

while, on the other, the applied SVR technique outper-

formed the results of the reference methods. It is to be

noted that, however, MLP produced good results, it was not

enough on Schemes 3 and 4 where the MLP performance

found to be worse than the references.

Furthermore, SVR and linear regression showed their

best results using only the wind velocity factor. They could

not improve their results using the three factors together

with Scheme 1. However, MLP could improve its result by

approximately 10% in an average using all the three fac-

tors. These self-improvements of the MLPs remained

behind the best results of the SVR. While linear regression

follows the persistence curve, the MLP and SVR reduced

significantly the prediction error after 12 h (Figs. 5, 6).

6.2 NO2 series prediction

Perez and Trier [5], and Gardner and Dorling [2] suggested

using NO series as an external variable for predicting NO2

series. Relations of the two series are shown in Fig. 2.

Perez and Trier [5] showed that the NO series can be

predicted with more accuracy than the NO2 series. Our

results confirmed this statement, since there are worse

results in Table 2 than in Table 1.

SVR with Gaussian (rbf) and polynomial kernels gave

better results in schemes as it has been displayed for the

NO predictions (Table 1).

The extension of Scheme 5 with the variants of the

factors of humidity, temperature, wind velocity and NO did

not bring any additional improvement. It is probably due to

Fig. 5 Average prediction errors of the four prediction days of the

NO series. Prediction errors are absolute errors normalized by the

standard deviation of the series. The curves are related to the best

results in Table 1. The MLP (GS) and m-SVR (GS) are compared to

the best reference result by the scheme 1 (left) and scheme 2 (right)
predictions
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the dominant number of non-factor variables in this

scheme, where 24 non-factor variables are versus maxi-

mum 4 factor variables.

The 2-day looking back period scheme (Scheme 6)

brought the best results among the 2–10-day looking back

schemes. The same phenomenon was experienced for the

NO series prediction. In addition, the above mentioned

H, W, T and NO external variables brought significant

improvements for Scheme 6 (Scheme 7–8 in Table 2).

These significant improvements were not experienced for

the NO series predictions.

Linear regression and persistence average produce bad

predictions in the rush hours (9–11 am and 18–20 pm)

compared to the other methods, however, persistence is

better considering these terms, but cannot outperform the

non-linear MLP and SVR methods in general. Neverthe-

less, the MLP sometimes produces even worse results than

the best reference method. MLP shows its best results in

the early morning hours in the NO prediction, which is in

agreement with those of Perez and Trier [5]. Figures 7, 8

show that MLP becomes better in the late afternoon hours,

when external variables are presented in the forecast of

NO2 series. SVR produces smooth error curves with

smallest errors during the whole day, while MLP gives less

reliable estimations especially for the hours around 9 am.

7 Conclusions

The experiments clearly showed that the applied forecast-

ing techniques could perform well on the prediction of NO

and NO2 concentrations. Forecasting these air pollutants is

difficult because their concentrations fluctuate widely and

depends on several factors. In many cases, the three ref-

erence algorithms proved to be successful at predicting the

future values of the time series examined. These results are

in accordance with those of Perez and Trier [5] and

Kukkonen et al. [15]. Averages of several-day persistence

Fig. 6 Average prediction errors of the four prediction days of the

NO series. Prediction errors are absolute errors normalized by the

standard deviation of the series. The curves are related to the best

results in Table 1. The MLP (GS) and m-SVR (GS) are compared to

the best reference result by the scheme 3 (left) and scheme 4 (right)
predictions

Fig. 7 Average prediction errors of the four prediction days of the

NO2 series. Prediction errors are absolute errors normalized by the

standard deviation of the series. The curves are related to the best

results in Table 1. The MLP (GS) and m-SVR (GS) are compared to

the best reference result by the scheme 5 (left) and scheme 6 (right)
predictions
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performed well. In order to profit from this good perfor-

mance, schemes based on this kind of persistence were

introduced.

MLP (GS) can improve the results of the best reference

algorithms by 21–30% in the case of NO prediction using

Scheme 1 and Scheme 2, however, it could not improve the

other schemes either in case of NO or NO2 experiments.

SVR showed 21–47% improvement for NO prediction and

18–26% for NO2 prediction. It was found that the applied

[t, t-1,…,t-23] scheme, where the previous day values

were considered, was successful for both NO and NO2

predictions. However, the several-day persistence moti-

vated [t-24+k, t-48+k,…] scheme (where several

previous days were considered) was suitable for the

external variables aided predictions, especially, for the

NO2 series. This is probably due to the less number of non-

factor variables in this scheme.

Undoubtedly, the application of machine learning tech-

niques mentioned above can be relatively simple and is

worth using.

There are several possibilities for future work. We can

transform spatial embeddings of the historical values of

NO and NO2 into a lower dimensional space in order to

have possibility to exploit better the influence of the

external factors and reduce the learning time, making more

accurate and faster predictions. Furthermore, we can make

a hybrid method using the applied prediction algorithms

together. Pre-processing of data (e.g., smoothing or de-

noising) can lead to more predictable structures. These

methods are easily adaptable for forecasting other air

pollutants.
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(Environmental protection inspectorate of Lower-Tisza Region,

Szeged, Hungary) for handing monitoring data of the meteorological

parameters and the air pollutants and Zoltán Sümeghy (Department of
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