STATISTICS

 Association
Associations between criteria

Statistical criteria

- Qualitative criteria
- Quantitative criteria
- Temporal criteria
- Regional criteria

The population has been analyzed so far according to a single criterion. From now on, the population will be examined according to two criteria, i.e. in a combination table. The purpose of the analysis is to determine the strength and sign of the relationship between the two criteria examined.

Associations between criteria

\square The two criteria (x and y) are independent, if belonging to x does not give extra information on belonging to y. (We do not deal with them.)
(e.g. no. of storks vs no. of births; yield vs no. of movie-goers);
\square There is a stochastic association between the two criteria (x and y), if on belonging to x we can conclude as a tendency on belonging to $\mathrm{y} \rightarrow$ Statistics.
(e.g. body weight vs body height; golden crown value of land vs yield);
\square The two criteria (x and y) are in a functional
relationship, if belonging to x clearly determines
belonging to $y \rightarrow$ Mathematics
(e.g. sugar beet harvest vs the amount of sugar produced; no. of movie-goers vs ticket sales);

Stochastic associations

Different criteria may have different effects:
x criterion: reason (explanatory variable) y criterion: effect (resultant variable)
\checkmark reasoneffect
? reasoneffect E.g. income level - meat consumption (qualification unimployment, use of seat belts - accident severity);
There are cases when the criteria mutually influence each other, namely the causal relationship is not clear, i.e. there is mutual causality (e.g. price - demand; family situation - alcohol consumption)

Conditions of causal relationship between two variables / criteria

a) the reason preceedes causation;
b) there is an empirical correlation between them;
c) this relationship is not the result of a third variable;

Can the direction of the association be interpreted? If yes, the relationship is positive or negative?

In case of nominal scale, for quality characteristics it cannot be interpreted.

1. e.g. gender - smoking;
2. e.g. qualification - position;

Direction: can be interpreted in case of quantitative criteria.

1. e.g. daily mean temperature - beer consumption: the hotter it is, in general, the more beer is consumed and vice versa. Positive association;
2. e.g. price - consumption: the more expensive the product, the less you usually buy. Negative association;

Real or pseudo relationship is it?

In the relationship of the variables, in the pseudo causal relationship, a third criterion plays role.
(E.g. TV sales increase vs growth in the number of divorces)

Associations between criteria

associative relationship: the associated criteria are quality related or territorial criteria (e.g. gender - smoking, gender position, qualification - position);
mixed relationship: one criterion is regional or quality criterion and the other is quantitative criterion (e.g. qualificiation - per capita monthly income; gender - per capita monthly income; position - age);
correlation: both criteria are quantitative criteria (e.g. per capita monthly income - per capita monthly food consumption; age - per capita monthly income; learning time - marks); stochastic relationship can be examined simultaneously among multiple criteria; rank correlation: both criteria can be measured on ordinal scale;

Associations between criteria

In case of associative and mixed relationships we can examine relationship between two criteria at a time.
We look for the answer whether:
\checkmark there is a connection
\checkmark if there is a connection, how strong it is between the two criteria.

Correlation analysis (examination of relationship between quantitative criteria) provides more opportunity for analysis, because here we can also consider that one of the criteria how quantifies the other.

Whether birth body length depends on birthweight? And vice versa?

Whether Y variable depends on X variable?

Whether Y variable depends on X variable?

Scatter plots

a) x and y are independent of each other [there is no one $f(x)$ function for well estimating y]

c) there is a negative - linear relationship between x and y

b) there is a positive - linear relationship between x and y

c) there is a nonlinear relationship between x and y

Independence is mutual

IMPORTANT:

If Y is independent from X ,
then X is also independent from Y

Contingency table

XM	1	2	\ldots	j	...	t	Σ
1	f_{11}	f_{12}	\cdots	f_{4}		f_{1}	f_{1}.
2	f_{21}	f_{22}	...	$f_{2 j}$...	$f_{2 t}$	f_{2}.
-							
i	f_{n}	$f_{i 2}$...	($f_{i i}$		$f_{i t}$	(f_{2},
	.	.					
.							
s	f_{51}	f_{52}	\ldots	f_{y}		f_{t}	f,
Σ	f_{1}	f_{2}	\ldots	(3)	...	f f,	(n)

Contingency table

$f_{i j}=\underset{\text { joint frequencies, actual frequency in the ith row and jth }}{\text { colume }}$
$f_{i .}=$ edge frequencies; all frequencies in the ith row; the number of elements with x variant;
$f_{. j}=$ edge frequencies; all frequencies in the jth column; the number of elements with y variant;
$n=$ the number of elements of the population

Measuring the strength of the stochastic relationship

A general scheme to the indicators:

Requirements for indicators measuring strength of the relationship:

\square they should have upper and lower limits;
\square in case of total absence of relationship its value is 0 ;
\square in case of functional relationship its value is 1 ;
\square the value of the indicator does not depend on the number of observations;

Measuring the strength of associative relationships

1) In case of alternative criteria:
2×2 contingency table:

X / Y	y_{1}	y_{2}	Total
x_{1}	f_{11}	f_{12}	$\mathrm{f}_{1 .}$
x_{2}	f_{21}	f_{22}	$\mathrm{f}_{2 .}$
Total	f_{1}	f_{2}	n

In case of independence of the two criteria: $\quad \frac{f_{11}}{f_{21}}=\frac{f_{12}}{f_{22}}$
Yule-coefficient (Y): $\quad Y=\frac{f_{11} f_{22}-f_{21} f_{12}}{f_{11} f_{22}+f_{21} f_{12}}-1 \leq Y \leq 1$

Measuring the strength of associative relationships

Characteristics of Yule-coefficient:

$$
\begin{array}{ll}
0 \leq|Y| \leq 1 & \\
Y=0 & \text { Total independence, i.e., total lack of relationship } \\
0<|Y|<1 & \text { Stochastic relationship } \\
|Y|=1 & \text { Functional relationship }
\end{array}
$$

b) YULE-coefficient (Y)

In case of alternative criteria;
With regard to the prohibition of smoking opinion of 800 people, according to gender

Denomination	Permit		Forbid		Total	
Man (1)	440	f_{11}	60	f_{12}	500	$\mathrm{f}_{1} \cdot$
Woman (2)	160	f_{21}	140	f_{22}	300	f_{2}.
Total	600	$\mathrm{f}_{\cdot 1}$	200	$\mathrm{f}_{\cdot 2}$	800	n

$\frac{f_{11}}{f_{21}}=\frac{f_{12}}{f_{22}}$

$$
\begin{aligned}
& f_{11} \times f_{22}-f_{21} \times f_{12}=0 \\
& Y=\frac{f_{11} \times f_{22}-f_{21} \times f_{12}}{f_{11} \times f_{22}+f_{21} \times f_{12}}
\end{aligned}
$$

$$
Y=\frac{440 \times 140-160 \times 60}{440 \times 140+160 \times 60}=0,73
$$

The relationship is stronger than medium, namely more men than women support the authorization of smoking.

Measuring the strength of associative relationships

2) Commonly used indicator (both for alternative criteria and for criteria with more than two variants): (where s is the no. of variants of one criterion, while t is the no. of variants of the other criterion): i.e., $s=n o$. of raws; $t=$ no. of columns; $n=$ total no. of frequencies of the variants, namely: $n=$ namely: $\mathrm{n}=\sum \mathrm{f}_{\mathrm{i}}=\sum \mathrm{f}_{\mathrm{i}}$
Csuprov indicator (T):

$\mathrm{T}=\sqrt{\frac{\chi^{2}}{\mathrm{n} \cdot \sqrt{(s-1)} \cdot \sqrt{(t-1)}}}$ where

where

$$
f_{i j}^{*}=\frac{f_{i .} \cdot f_{. j}}{n} \quad \begin{aligned}
& \mathbf{f}_{\mathrm{i}}=\text { total no. of frequency of the } i \text {-th row; } \\
& \mathrm{f}_{\mathrm{j}}=\text { total no. of frequency of the } j \text {-th column; } \\
& \mathbf{s} \leq \mathbf{t} ;
\end{aligned}
$$

$f_{i j}^{*}=\begin{aligned} & \text { frequency, supposed in case of independence in the } i \text {-th row and } \\ & j \text {-th column of the contingency table }\end{aligned}$

Measuring the strength of associative relationships

Characteristics of Csuprov indicator:

$$
\mathbf{0} \leq \mathbf{T} \leq \mathrm{T}_{\max }
$$

$\mathbf{s} \leq \mathbf{t} \quad$ Cramer indicator (C) is used if:
$0 \leq C \leq 1 \quad \mathrm{C}=\frac{T}{T_{\max }}$, where $\quad T_{\max }=\sqrt[4]{\frac{s-1}{t-1}} \mathbf{s} \leq \mathbf{t}$
$s=t=2 \longleftarrow \begin{aligned} & \text { In case of alternative criteria, } \mathrm{Y} \text { and } \mathrm{T} \text { can also be } \\ & \text { applied. In this case the formula of } \mathrm{T} \text { is as follows: }\end{aligned}$

$$
T=\frac{\left|f_{11} \cdot f_{22}-f_{12} \cdot f_{21}\right|}{\sqrt{f_{1} \cdot f_{12} \cdot f_{1} \cdot f_{2}}}
$$

CRAMER indicator

Basic idea: in case of total independence, calculated frequencies $f_{i j}^{*}$ are compared to actual frequencies $f_{i j}$;

The bigger the difference, the stronger the relationship.
x^{2} value to be calculated:

$$
X^{2}=\sum_{i=1}^{s} \sum_{j=1}^{t} \frac{\left(f_{i j}-f_{i j}^{*}\right)^{2}}{f_{i j}^{*}}
$$

Cramer coefficient:

$$
\begin{gathered}
C=\sqrt{\frac{\chi^{2}}{n(s-1)}} \quad(s \leq t) \\
0 \leq C \leq 1
\end{gathered}
$$

$\mathrm{C}=0$, if the two criteria are independent;
$\mathrm{C}=1$, if the relationship of the two criteria is functional relationship;

Example:

(Distribution of white collar employees according to the occupational main group and gender, 2000, III-th quarter, thousand people)

Occupational main group	Man (1)	Woman (2)	Total
I. (1)	159	83.2	242.2
II. (2)	185.2	254.4	439.6
III. (3)	179.4	325.1	504.5
IV. (4)	17.6	235.4	253.0
Total	541.2	898.1	1439.3

Calculation of X^{2}

Criterion	$f_{i j}$	$f_{i j}^{*}$	$\left(f_{i j}-f_{i j}^{*}\right)^{2} / f_{i j}^{*}$
1.1.	159	91,1	50,6
2.1.	185,2	165,3	2,4
3.1.	179,4	189,7	0,6
4.1.	17,6	95,1	63,2
1.2.	83,2	151,1	30,5
2.2.	254,4	274,3	1,4
3.2.	325,1	314,8	0,3
4.2.	235,4	157,9	38,0
Total:	1439,3	1439,3	187,0

$\chi^{2}=187$

$$
C=\sqrt{\frac{187}{1439,3(2-1)}}=0,36
$$

There is a weaker than medium relationship between the work area of white collar workers and gender.

Mixed relationship

Mixed relationship: one criterion is areal or qualitative criterion (namely not quantitative criterion), while the other is quantitative criterion (e.g. qualification - per capita gross monthly income);

When analyzing a mixed relationship, we examine whether to what extent the dispersion of the quantitative criterion is influenced by the classification according to the qualitative or the regional criterion.

Heterogeneous populations

They consist of complex and qualitatively different parts. Average of the heterogeneous population is a weighted average of the sub-population averages.

Indications:
\bar{x}_{j} : average of the j-th group
n_{j} : element no. of the i -th group
$j=1, \ldots, m$: no. of groups
$\frac{n_{j}}{n}=w_{j}:$ weight ratio

$$
\bar{x}=\frac{\sum_{j=1}^{m} n_{j} \bar{x}_{j}}{\sum_{j=1}^{m} n_{j}}=\sum_{j=1}^{m} w_{j} \bar{x}_{j}
$$

\bar{x} : average of the whole population

Heterogeneous populations

Indications:
$n=$ element no. of the population
$m=$ no. of groups
$n_{j}=$ element no. of the j-th population
$\bar{x}_{j}=$ average of the j-th group
$\bar{x}=$ average of the whole population (main average)
$x_{i j}=i$-th element no. of the j-th population

Groups	Element no.	Mean of groups	*St. dev. of groups
$\mathbf{C}_{\mathbf{1}}$	$\mathbf{n}_{\mathbf{1}}$	$\overline{\mathrm{x}}_{1}$	σ_{1}
$\mathbf{C}_{\mathbf{2}}$	$\mathbf{n}_{\mathbf{2}}$	$\overline{\mathrm{x}}_{2}$	σ_{2}
\ldots			
$\mathbf{C}_{\mathbf{k}}$	$\mathbf{n}_{\mathbf{k}}$	$\overline{\mathrm{x}}_{\mathrm{k}}$	σ_{k}
\ldots			
$\mathbf{C}_{\mathbf{m}}$	$\mathbf{n}_{\mathbf{m}}$	$\overline{\mathrm{x}}_{\mathrm{m}}$	σ_{m}
Total	\mathbf{n}	$\overline{\mathrm{x}}$	σ

*Standard deviation

Example:
Properties to be sold at a rural real estate agency in a big city

Sale price (million HUF)	No. of flats made of prefabricated concrete slabs (PCS) (piece)	No. of nonPCS flats (piece)	Total no. of flats (piece)
6,1-8,0	8	2	10
8,1-10,0	15	5	20
10,1-15,0	34	12	46
15,1-20,0	24	14	38
20,1-25,0	7	19	26
25,1-30,0	2	8	10
Total	90	60	150
	X_{p}	$\overline{\mathrm{x}}_{\text {np }}$	x
	σ_{P}	$\sigma_{N P}$	σ
$\bar{x}_{\mathrm{p}}=\frac{8 \cdot 7,0+15 \cdot 9,0+34 \cdot 12,5+24 \cdot 17,5+7 \cdot 22,5+2 \cdot 27,5}{90}=\frac{1248,5}{90}=13,872$			
$\overline{\mathrm{x}}_{\mathrm{NP}}=\frac{2 \cdot 7,0+5 \cdot 9,0+12 \cdot 12,5+14 \cdot 17,5+19 \cdot 22,5+8 \cdot 27,5}{60}=\frac{1101,5}{60}=18,358$			
$\bar{x}=\frac{10 \cdot 7,0+20 \cdot 9,0+46 \cdot 12,5+38 \cdot 17,5+26 \cdot 22,5+10 \cdot 27,5}{150}=\frac{2350}{150}=15,67$			
$\sigma_{P}=\sqrt{\frac{8 \cdot(7,0-13,872)^{2}+15 \cdot(9,0-13,872)^{2}+\ldots . .+2 \cdot(27,5-13,872)^{2}}{90}}=\sqrt{\frac{2006,3}{90}}=4,72$			
$\sigma_{\mathrm{NP}}=\sqrt{\frac{2 \cdot(7,0-18.358)^{2}+5 \cdot(9,0-18,358)^{2}+\ldots . .+8 \cdot(27.5-18,358)^{2}}{60}}=\sqrt{\frac{2112.55}{60}}=5,93$			
$\sigma=\sqrt{\frac{10 \cdot(7,0-15,67)^{2}+20 \cdot(9,0-15,67)^{2}+\ldots . .+10 \cdot(27,5-15,67)^{2}}{150}}=\sqrt{\frac{4843,335}{150}}=5,68$			

For easier viewing, calculation of the sold housing is tabulated:

Sold houses			
Type of flat	No. of properties	Avarage sales price of housing groups	*St. dev. of sales price of housing groups
PCS	90	13872	4.72
Non- PCS	60	18358	5.93
Total	150	15670	5.68
	n	$\overline{\mathrm{x}}$	σ

*Standard deviation

Indications

$$
\begin{aligned}
x_{i j}-\bar{x} & =\text { full difference } \quad\left(d_{i j}\right) \\
\left(x_{i j}-\bar{x}_{j}\right) & =\text { internal difference }\left(B_{i j}\right) \\
\left(\bar{x}_{j}-\bar{x}\right) & \left.=\text { external difference } K_{i j}\right) \\
\sigma^{2} & =\text { full variance } \\
\sigma_{B}^{2} & =\text { internal variance } \\
\sigma_{K}^{2} & =\text { external variance }
\end{aligned}
$$

Calculation of variance

$$
\begin{aligned}
& \sigma^{2}=\frac{\sum_{i=1}^{n_{j}} \sum_{j=1}^{m}\left(x_{i j}-\bar{x}\right)^{2}}{n}=\frac{S}{n} \\
& \text { S: Total sum of } \\
& \text { squares } \\
& \sigma_{B}^{2}=\frac{\sum \sum\left(x_{i j}-\bar{x}_{j}\right)^{2}}{n}=\frac{\sum n_{j} \sigma_{j}^{2}}{n}=\frac{S_{B}}{n} \quad \begin{array}{c}
\mathrm{S}_{\mathrm{B}}: \text { Internal sum of } \\
\text { squares }
\end{array} \\
& \sigma_{K}^{2}=\frac{\sum n_{j}\left(\bar{x}_{j}-\bar{x}\right)^{2}}{n}=\frac{S_{K}}{n} \quad \begin{array}{c}
\text { S }_{\mathrm{k}}: \begin{array}{c}
\text { External sum of } \\
\text { squares }
\end{array}
\end{array}
\end{aligned}
$$

Relationships

$$
\begin{aligned}
& d_{i j}=B_{i j}+K_{i} \\
& x_{i j}-\bar{x}=\left(x_{i j}-\bar{x}_{j}\right)+\left(\bar{x}_{j}-\bar{x}\right) \\
& \emptyset
\end{aligned}
$$

full difference internal difference external difference

Example:

In a college, bachelor training occurs in 4 professions. The time spent on the students' daily learning is as follows.

Profession	Time spent on daily learning (hr)		Students (\%)
	Mean x_{j}	*St. deviation	
Human resources	1,5	1,2	24
Management	2,25	0,8	26
International management	1,75	1,5	20
Finance \& accounting	2,75	1,3	30

*Standard deviation
Calculate $\sigma_{B}, \sigma_{K} \sigma$ and interpret them!

Solution

$$
\begin{aligned}
& \bar{x}=0,24 \cdot 1,5+0,26 \cdot 2,25+0,2 \cdot 1,75+0,3 \cdot 2,75=2,12 \\
& \sigma_{K}^{2}=0,24 \cdot(1,5-2,12)^{2}+\ldots+0,3 \cdot(2,75-2,12)^{2}=0,2431 \\
& \sigma_{k}=0,49 \\
& \sigma_{B}^{2}=0,24 \cdot 1,2^{2}+0,26 \cdot 0,8^{2}+0,2 \cdot 1,5^{2}+0,3 \cdot 1,3^{2}=1,469 \\
& \sigma_{B}=1,212 \\
& \sigma^{2}=\sigma_{B}^{2}+\sigma_{K}^{2} \\
& \sigma^{2}=1,469+0,2431=1,7121 \rightarrow \sigma=1,308
\end{aligned}
$$

Indicators of mixed relationships

Variance-ratio: show that to what extent (in percentage) the classification of a quality or areal criterion affects dispersion of a quantitative criterion.

$$
H^{2}=\frac{\sigma_{K}^{2}}{\sigma^{2}}=1-\frac{\sigma_{B}^{2}}{\sigma^{2}}=\frac{S_{K}}{S}=1-\frac{S_{B}}{S}
$$

Quotient of standard deviations (square root of variance-ratio): shows that how strong is the relationship between the nonquantitative (grouping) and quantitative criteria.

$$
H=\sqrt{H^{2}}=\sqrt{\frac{\sigma_{K}^{2}}{\sigma^{2}}}=\frac{\sigma_{K}}{\sigma}=\sqrt{1-\frac{\sigma_{B}^{2}}{\sigma^{2}}}=\sqrt{\frac{S_{K}}{S}}=\sqrt{1-\frac{S_{B}}{S}}
$$

Interpretation of the indicators of the mixed relationships

$$
\begin{aligned}
& 0<H<1 \\
& 0<H^{2}<1 \\
& H=H^{2}=0 \quad \text { Stochastic relationships } \\
& \text { Total independence, total lack of relationship }
\end{aligned}
$$

$$
H=H^{2}=1 \quad \text { Functional, deterministic relationship }
$$

CORRELATION AND REGRESSION

Basic concepts

- The relationship between quantitative criteria is called correlation;
- Correlation analysis: measurement of the strength of relationship between quantitative criteria;
\square Regression analysis: deals with quantification of the impact of the quantitative criteria on each other, as well as with the direction and extent of these impacts;

If the correlation is based on a one-way causal relationship:

- the criterion as cause is called explanatory variable (X);
- the criterion as effect is called resultant variable (Y);

Indicators of the strength of the relationship

Covariance

It shows the direction of the relationship between X and Y quantitative variables.
It is based on the differences from the means of X and Y variables, namely on $x-\bar{x}$ and $y-\bar{y}$

$$
\begin{gathered}
\mathrm{d}_{\mathrm{x}}=\mathrm{x}-\overline{\mathrm{x}} \quad \mathrm{~d}_{\mathrm{y}}=\mathrm{y}-\overline{\mathrm{y}} \\
\mathrm{C}=\frac{\sum \mathrm{d}_{\mathrm{x}} \mathrm{~d}_{\mathrm{y}}}{\mathrm{n}-1}=\frac{\sum \mathrm{xy}}{\mathrm{n}-1}-\overline{\mathrm{x}} \cdot \overline{\mathrm{y}} \\
\mathrm{C}=\mathrm{r} \cdot S_{\mathrm{x}} \cdot S_{\mathrm{y}}
\end{gathered}
$$

s_{x} : standard deviation of $\mathbf{x} ; \mathrm{s}_{\mathrm{y}}$: standard deviation of \mathbf{y}; r : correlation coefficient between x and y;

Characteristics of covariance

- The sign of the covariance shows the direction of the relationship.
- There is no upper limit of the absolute value of the covariance.
\square The absolute value of the covariance is maximum, if there is a linear relationship between x and y, namely:

$$
\left|C_{\max }\right|=\sigma_{x} \cdot \sigma_{y}
$$

- The covariance is symmetrical in the two variables, i.e. X and Y are interchangeable in the formula.
- If the criteria are independent, then $\mathrm{C}=0$. (However, this is not true conversely: if $C=0$, then the relationship is uncorrelated, but not necessarily independent. Independence means more severe conditions than uncorrelation.)
\square Since C is unit-dependent, so it is advisable to divide by the maximum value, and you get a signed indicator: namely the linear correlation coefficient:
$r_{x y}=\frac{C_{x y}}{\sigma_{x} \cdot \sigma_{y}}$ it can also be calculated: $r_{x y}=\frac{\sum d_{x} d_{y}}{\sqrt{\sum d_{x}^{2} \cdot \sum d_{y}^{2}}}$
- This indicator measures the strength of the linear relationship, so if it shows a value close to 0 , you may have a linear relationship, but weak; but it is also possible that the relationship is strong, but it is not linear.
\square In a case of one variable, the covariance regarding itself is variance. The variance is therefore a special case of covariance:

$$
C_{x x}=\sigma_{x}^{2}
$$

Earnings and monthly saving of a company's employees

Worker	$\begin{gathered} \text { Wage (x) } \\ \text { (HUF / } \\ \text { worker) } \end{gathered}$	Monthly savings (y) (HUF/month)	d_{x}	d_{v}	$\mathrm{d}_{\mathrm{x}} \mathrm{d}_{v}$	$\mathrm{d}_{\mathrm{x}}{ }^{2}$	$\mathrm{d}_{\mathrm{v}}{ }^{2}$
1	120000	13000	-13000	-3010	39130000	169000000	9060100
2	90000	10000	-43000	-6010	258430000	1849000000	36120100
3	220000	35000	87000	18990	1652130000	7569000000	360620100
4	150000	18000	17000	1990	33830000	289000000	3960100
5	100000	12000	-33000	-4010	132330000	1089000000	16080100
6	115000	12500	-18000	-3510	63180000	324000000	12320100
7	160000	20000	27000	3990	107730000	729000000	15920100
8	130000	13800	-3000	-231000	, 106800 ${ }^{\circ}$	$19080880 \text { ו }$	8084100
9	145000	14000	12000	-2010	-24120000	144000000	4040100
10	100000	11800	-33000	-4210	138930000	1089000000	17724100
Total	1330000	160100	1200	$+90$	4.bs'2votod	Slotodo	-143072909

Covariance

$$
\mathrm{C}=\frac{\sum \mathrm{d}_{\mathrm{x}} \mathrm{~d}_{\mathrm{y}}}{\mathrm{n}-1}=\frac{\sum \mathrm{xy}}{\mathrm{n}-1}-\overline{\mathrm{x}} \cdot \overline{\mathrm{y}}=\frac{2408200000}{9}=267577777,8
$$

Interpretation: the relationship between the earnings of the employees and the monthly amount saved is positive.

Correlation coefficient (r)

- Correlation coefficient (r) is the most important measure of the strength of linear correlations.
- The lack of relationship (uncorrelated) is indicated by the value $r=0$.
- The sign of r shows the direction of the correlation. Functional linear relationship - depending on the direction - fits either $r=+1$, or $r=-1$, respectively.
- Between extreme positions, the absolute value of the coefficient informs on the strength of the relationship.

Correlation coefficient (r)

$$
\begin{aligned}
& \mathbf{r}=\frac{\mathbf{C}}{s_{\mathbf{x}} \cdot s_{\mathbf{y}}}=\frac{\sum \mathbf{d}_{\mathbf{x}} \mathbf{d}_{\mathbf{y}}}{\sqrt{\sum \mathbf{d}_{\mathbf{x}}{ }^{2} \sum \mathbf{d}_{\mathbf{y}}^{2}}}=\frac{\sum \mathbf{x y}-\mathbf{n} \cdot \overline{\mathbf{x}} \cdot \overline{\mathbf{y}}}{\sqrt{\left(\sum \mathbf{x}^{2}-\mathbf{n} \cdot \overline{\mathbf{x}}^{2}\right)\left(\sum \mathbf{y}^{2}-\mathbf{n} \cdot \overline{\mathbf{y}}^{2}\right)}} \\
& \quad \Sigma \mathrm{d}_{\mathrm{x}} \cdot \mathrm{~d}_{\mathrm{y}}=\Sigma \mathrm{xy}-\mathrm{n} \overline{\mathrm{x}} \overline{\mathrm{y}} \\
& \quad \Sigma \mathrm{~d}_{\mathrm{x}}^{2}=\Sigma \mathrm{x}^{2}-\mathrm{n} \overline{\mathrm{x}}^{2} \\
& \quad \Sigma \mathrm{~d}_{\mathrm{y}}^{2}=\Sigma \mathrm{y}^{2}-\mathrm{n} \overline{\mathrm{y}}^{2}
\end{aligned}
$$

Correlation coefficient (r)

Worker			$\sum d_{x}$	Σd_{y}	$\sum d_{x} d_{y}$	$\sum d_{x}{ }^{2}$	$\sum \mathbf{d}_{\mathrm{y}}{ }^{2}$
Összesen	1330000	160100	0	0	2408200000	13260000000	480729000
$\mathrm{r}=\frac{-}{S_{\mathrm{x}}}$		$\frac{\sum d_{x} d_{y}}{\mathrm{~d}_{\mathrm{x}}^{2} \sum \mathrm{~d}_{\mathrm{y}}^{2}}$		260	$\xlongequal[0000 \cdot 48]{ }$	$\overline{\overline{29000}}=$	54

Interpretation: the relationship between the earnings of the employees and monthly amount saved is positive and strong.

Coefficient of determination ($\mathbf{r}^{\mathbf{2}}$)

- The coefficient of determination shows that to what extent (in percentage) the explanatory variables affects the dispersion of the dependent variable.
- Indication: r^{2}
- The coefficient of determination characterizes:
\checkmark the fit of the regression function,
\checkmark the explanatory power of the model.

Coefficient of determination ($\mathbf{r}^{\mathbf{2}}$)

$$
\mathrm{r}^{2}=0,954^{2}=0,9098=90,98 \%
$$

Interpretation: the earnings of workers influence in 90.98% the dispersion of the monthly amount saved.

Correlation

- Representation of pairs of (x, y) points belonging together;
- If there is an imaginary line, along which the point pairs occur \rightarrow linear correlation;
- Depending on the direction of the relationship: positive or negative correlation;
- If there is no such a line \rightarrow variables are uncorrelated (but not necessarily independent!)

Negative Linear Correlation

No Correlation

Positive Linear Correlation

Nonlinear Correlation

The most important characteristics of the linear correlation coefficient

1. If there is no linear correlation, then the correlation coefficient is 0 , while in case of functional relationship, the value of the correlation coefficient is +1.00 or -1.00 .
2. The value of the correlation coefficient is independent from the units [eg. the correlation between the body height and body weight is independent from the units of the variables (kg, pounds, cm, inch)].
3. The correlation coefficient is symmetric (correlation of x with $y=$ correlation of y with $x)$, that is $r(x, y)=r(y, x)$;
4. The linear correlation coefficient measures the linear relationship, not the relationship in general;

The most important characteristics of the linear correlation coefficient

5. The value of the correlation coefficient is strongly influenced by outliers. The outlier can be

- a result of an irrgeular, distorted distrubiton \Rightarrow transformation;
- measurement error \Rightarrow repeat of the measurement / exclusion of the value;

6. The correlation does not necessarily imply a causal relationship, since the

- the variable x may influence the variable y;
- the variable y may influence the variable x;
- a third factor may affect both x and y
\checkmark to one direction (positive correlation), or
\checkmark to different directions (negative correlation);

Outliers, linearity

- Regression equation:
$y=0.5 x+3$
- $r=0.816$
- 2. non-linear relationship!
- Without outlier
- 3. $r=1$
- 4. $r=0$

weak positive relationship

no relationship

strong positive relationship

strong negative relationship

What to do?

Outliers

- It is subjective, what the outlier is (usually outside of 2 standard deviations);
- Check the database
- Really fair value? Batting? Measurement error?
- If real data - unique evaluation:
- it is inadvisable automatically to exclude;
- if it really distorts the overall picture, it is possible;
- Check if outliers have significance. Are they surely outliers, or just they do not fit our theory?

Non-linearity

- If not monotonous, no sense of correlation. If monotonous ...
- Linear transformation can be made? [e.g. logarithmic transformation - at first the figure scaling can be tested (Axis/Scaling)];
- Performing a non-parametric test (Spearman rank correlation test); \checkmark less sensitive;
- A function should be looked for that matches it, and describes it correctly;
- Along one variable the sample is shared into 4-5 groups of equal width. ANOVA is performed so that this variable is the grouping variable.

THE IMPACT OF AN OUTLIER TO THE STRENGTH AND SIGNIFICANCE OF THE CORRELATION COEFFICIENT

Evaluation of the strength of the correlation (relationship between the two variables). A simplificated solution.

Correlation coefficient	Strength of the relationship
$0.00-0.25$	No, or very weak
$0.25-0.50$	Weak
$0.50-0.75$	Very strong
$0.75-1.00$	

ATTENTION! A correlation coefficient of higher than $|0.95|$ is suspected. It suggests that one of the values follows from the other, or determined by the other.

Conditions of calculating linear (Pearson) correlation coefficient

- Versions of the criteria variants are selected randomly of a larger population;
- Observations should be independent of each other;
- A sample should never be selected from different populations, because it will show a false-significant correlation, nevertheless there is no relationship between the two variables either in the one, or in the other sample;
- Both x and y samples should be selected from a population of normal distribution;
- If this is not the case, non-parametric procedure (Spearman correlation coefficient) should be performed and calculated.

HOW IS IT PROHIBITED CALCULATING LINEAR CORRELATION COEFFICIENT?

elephants

(L. E. Phant et al.: Big Animals, 2004;25:23-45)
mice

(B. Hamster, P. Rat: Small Animals 1998;234:56-78)

(G. Swine et al., unpublished)

REGRESSION

- Regression shows the relationship between two variables so that at the same time it also expresses the dependency rate of one variable (independent variable) to another variable (dependent variable), as well;
- linear and non-linear regression;
- simple and multiple regression;

- The fact of linear regression analysis is to draw such a straight line, distance of which is the smallest from the measuring points, i.e. it approximates them most closely (best fit regression line, i.e. the least squares method).
- The vertical distances between the points and the line are called residuals. The sum of the squares of the residuals is the variance of the residuals, the square root of which is the standard deviation of the residuals.

The regression line is the line for which the standard deviation of residuals is minimum.

Confidence interval of the regression line

 can also be determiend.

Equation of the regression line

$$
\begin{aligned}
& y=a x+b \\
& a=r \cdot \frac{\sigma_{y}}{\sigma_{x}} \\
& b=\bar{y}-a \cdot \bar{x}
\end{aligned}
$$

Does the trend coefficient differ significantly from zero?

In order to answer this question, the trend coefficient received should be divided by the standard error of the sample elements. This ratio is the "A" probe statistics (see the formula below) that is necessary to carry out the t-test:

Standard error, SE (standard deviation of the mean):

$$
S E=\frac{s}{\sqrt{n}}
$$

$$
A=\frac{\left.a \cdot \sqrt{(n-2) \sum_{i=1}^{n}\left(x_{i}-\bar{X}\right.}\right)}{\left.\sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{Y}\right.}\right)}
$$

$\mathrm{s}=$ standard deviation of the sample;
$\mathrm{n}=$ element number of the sample;
During the analysis, the value of the „A" test statistic is compared to the critical value of the t-distribution with degrees of freedom of $n-2$ ($\mathrm{n}=$ sample size). The probability level of 0.95 is generally selected.

If $A>\left.|t|\right|_{0,95} ^{\mathrm{n}-2} \Rightarrow a$ (linear trend coefficient) significantly differs from 0 ;

Table of the Student t-distribution

Sz.f.	0,55	0,6	0,7	0,75	0,8	0,9	0,95	0,975	0,99	0,995
1	0,158	0,325	0,727	1,000	1,376	3,078	6,314	12,706	31,821	63,656
2	0,142	0,289	0,617	0,816	1,061	1,886	2,920	4,303	6,965	9,925
3	0,137	0,277	0,584	0,765	0,978	1,638	2,353	3,182	4,541	5,841
4	0,134	0,271	0,569	0,741	0,941	1,533	2,132	2,776	3,747	4,604
5	0,132	0,267	0,559	0,727	0,920	1,476	2,015	2,571	3,365	4,032
6	0,131	0,265	0,553	0,718	0,906	1,440	1,943	2,447	3,143	3,707
7	0,130	0,263	0,549	0,711	0,896	1,415	1,895	2,365	2,998	3,499
8	0,130	0,262	0,546	0,706	0,889	1,397	1,860	2,306	2,896	3,355
9	0,129	0,261	0,543	0,703	0,883	1,383	1,833	2,262	2,821	3,250
10	0,129	0,260	0,542	0,700	0,879	1,372	1,812	2,228	2,764	3,169
11	0,129	0,260	0,540	0,697	0,876	1,363	1,796	2,201	2,718	3,106
12	0,128	0,259	0,539	0,695	0,873	1,356	1,782	2,179	2,681	3,055
13	0,128	0,259	0,538	0,694	0,870	1,350	1,771	2,160	2,650	3,012
14	0,128	0,258	0,537	0,692	0,868	1,345	1,761	2,145	2,624	2,977
15	0,128	0,258	0,536	0,691	0,866	1,341	1,753	2,131	2,602	2,947
16	0,128	0,258	0,535	0,690	0,865	1,337	1,746	2,120	2,583	2,921
17	0,128	0,257	0,534	0,689	0,863	1,333	1,740	2,110	2,567	2,898
18	0,127	0,257	0,534	0,688	0,862	1,330	1,734	2,101	2,552	2,878
19	0,127	0,257	0,533	0,688	0,861	1,328	1,729	2,093	2,539	2,861
20	0,127	0,257	0,533	0,687	0,860	1,325	1,725	2,086	2,528	2,845
21	0,127	0,257	0,532	0,686	0,859	1,323	1,721	2,080	2,518	2,831
22	0,127	0,256	0,532	0,686	0,858	1,321	1,717	2,074	2,508	2,819
23	0,127	0,256	0,532	0,685	0,858	1,319	1,714	2,069	2,500	2,807
24	0,127	0,256	0,531	0,685	0,857	1,318	1,711	2,064	2,492	2,797
25	0,127	0,256	0,531	0,684	0,856	1,316	1,708	2,060	2,485	2,787
26	0,127	0,256	0,531	0,684	0,856	1,315	1,706	2,056	2,479	2,779
27	0,127	0,256	0,531	0,684	0,855	1,314	1,703	2,052	2,473	2,771
28	0,127	0,256	0,530	0,683	0,855	1,313	1,701	2,048	2,467	2,763
29	0,127	0,256	0,530	0,683	0,854	1,311	1,699	2,045	2,462	2,756
30	0,127	0,256	0,530	0,683	0,854	1,310	1,697	2,042	2,457	2,750
40	0,126	0,255	0,529	0,681	0,851	1,303	1,684	2,021	2,423	2,704
60	0,126	0,254	0,527	0,679	0,848	1,296	1,671	2,000	2,390	2,660
100	0,126	0,254	0,526	0,677	0,845	1,290	1,660	1,984	2,364	2,626
120	0,126	0,254	0,526	0,677	0,845	1,289	1,658	1,980	2,358	2,617
50000	0,126	0,253	0,524	0,674	0,842	1,282	1,645	1,960	2,326	2,576

What to do, if the relationship between x and y is non-linear?

- 1. You have to try to transform the values to get a linear relationship;
- 2. If this is not possible, you should work with the non-linear regression;

x	y
2.00	1654.00
4.00	1515.00
6.00	1243.00
8.00	1098.00
10.00	1032.00
15.00	874.00
20.00	754.00
25.00	653.00
30.00	567.00
35.00	587.00
40.00	

Spearman rank correlation coefficient (r_{s})

- It is known since the beginning of the 20th century, this is used most often;
- One or both variables are ordinal variables (e.g. the relationship between the taste and the colour of apple);
- Interpretation range: [-1, +1];
- If $\mathrm{r}_{\mathrm{s}}=1 \Rightarrow$ the two rankings are the same;
- If $r_{s}=0 \Rightarrow$ two rankings are independent from each other, and
- if $\mathrm{r}_{\mathrm{s}}=-1 \Rightarrow$ the two rankings are reversals of each other.
- Indication: r_{s};
- Formula:

$$
\mathrm{r}_{\mathrm{s}}=1-\left[6 \sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\mathrm{~d}_{\mathrm{i}}^{2}}{\mathrm{n}\left(\mathrm{n}^{2}-1\right)}\right]
$$

\checkmark the chronologically given sample elements x_{i} and y_{i} with the same element number are indiceted by rank numbers between 1 and n. Namely: the smallest x_{i} and y_{i} are indicated by 1 , the second smallest x_{i} and y_{i} are indicated by $2, \ldots$, the highest x_{i}, and y_{i} are indicated by n, namely the highest rank number;
\checkmark for identical values, the average rank number is written to them. In both data sets at most the one-fifth of the observations can be of the same rank number.
\checkmark form the difference of the rank numbers of the $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ pairs that are indicated by d_{i}.
\checkmark take the squares of the differences $\left(d_{i}\right)$ of the rank numbers (serial numbers) of the ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) pairs:

$$
\sum_{i}\left(\operatorname{rang}\left(x_{i}\right)-\operatorname{rang}\left(y_{i}\right)\right)^{2}=\sum_{i} d_{i}^{2}
$$

$\checkmark \mathrm{n}$: number of element pairs;

10 essays are ranked by two reviewers, as follows:

$$
\begin{aligned}
& \text { Reviewers } \\
& \begin{array}{crrrrrrrrll}
\text { A } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\text { B } & 2 & 3 & 1 & 4 & 6 & 5 & 8 & 9 & 7 & 10 \\
\text { difference }(\mathrm{d}) & -1 & -1 & 2 & 0 & -1 & 1 & -1 & -1 & 2 & 0 \\
\mathrm{~d}^{2} & 1 & 1 & 4 & 0 & 1 & 1 & 1 & 1 & 4 & 0
\end{array} \\
& r_{s}=1-\frac{6 \times 14}{1000}=1-\frac{84}{990}=0,915
\end{aligned}
$$

Ranking of the two reviewers shows high similarity. (-1: completely opposite, +1 : completely agrees)

Rank correlation

Management data of companies in a region

Region	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Turnover (M HUF)	34	30	$\mathbf{2 5}$	22	21	10	12	8	31	20
Profit (M HUF)	16	10,5	10	12	7	4	2	1	9	11
\mathbf{x}	10	8	7	6	5	2	3	1	9	4
\mathbf{y}	10	7	6	9	4	3	2	1	5	8
\mathbf{d}	0	1	1	-3	1	-1	1	0	4	-4
\mathbf{d}^{2}	0	1	1	9	1	1	1	0	16	15

$$
r_{s}=1-\frac{6 \sum d_{i}^{2}}{n\left(n^{2}-1\right)}=1-\frac{6 \cdot 45}{10\left(10^{2}-1\right)}=0,7273
$$

Interpretation: there is a stronger than medium positive relationship between the sales and profits of the companies.

Relationship between the diameter of apple blossom and the weight of apple. An example to illustrate the principle of the rank correlation method.

Serial number of blossom- apple pairs	Diameter of the blossom, mm x_{i}	Rank number $\mathrm{r}\left(\mathrm{x}_{\mathrm{i}}\right)$	Weight of apple, y_{i}	Rank number $\mathrm{r}\left(\mathrm{y}_{\mathrm{i}}\right)$	Rank no. difference $\mathrm{d}_{\mathrm{i}}=\mathrm{r}\left(\mathrm{x}_{\mathrm{i}}\right)-\mathrm{r}\left(\mathrm{y}_{\mathrm{i}}\right)$
1	32	3,5	210	4	-0.5
2	18	1	150	1	0
3	36	5	235	6	-1
4	32	3,5	205	3	0.5
5	39	7	220	5	2
6	37	6	256	7	-1
7	30	2	190	2	0
8	42	8	300	8	0
Spearman correlation coefficient			$\mathrm{r}=0.9222$		

Is significant this correlation coefficient?

Does the correlation coefficient differ significatly from 0 ?

\checkmark probe statistics of the correlation coeffiicent: is of Student distribution, with degrees of freedom: $n-2$;
$\checkmark t$-test can be carried out for accepting or rejecting H_{0};

H_{0} hypothesis: $\mathrm{r}=\mathrm{r}_{0}$

H_{0} : in case of $r=0$

$$
\mathrm{t}(\mathrm{r})=\mathrm{r} \sqrt{\frac{\mathrm{n}-2}{1-\mathrm{r}^{2}}} \quad \Rightarrow \text { the critical } \mathrm{r} \text {-value: } \quad \mathrm{r} \text { crit }=\frac{\mathrm{t}}{\sqrt{\mathrm{n}-2+\mathrm{t}^{2}}}
$$

In the formula of $\mathrm{r}_{\text {crit }} t$ is determined from the table of the Student t -distribution, namely: $t \rightarrow|\mathrm{t}|_{0,95}^{\mathrm{n}-2}$
The transformation makes t -distribution from the distribution of r
\Rightarrow if $r>r_{\text {crit }} \Rightarrow r$ (linear correlation coefficient) significantly differs from 0 ;

Table of the Student t-distribution

Sz.f.	0,55	0,6	0,7	0,75	0,8	0,9	0,95	0,975	0,99	0,995
1	0,158	0,325	0,727	1,000	1,376	3,078	6,314	12,706	31,821	63,656
2	0,142	0,289	0,617	0,816	1,061	1,886	2,920	4,303	6,965	9,925
3	0,137	0,277	0,584	0,765	0,978	1,638	2,353	3,182	4,541	5,841
4	0,134	0,271	0,569	0,741	0,941	1,533	2,132	2,776	3,747	4,604
5	0,132	0,267	0,559	0,727	0,920	1,476	2,015	2,571	3,365	4,032
6	0,131	0,265	0,553	0,718	0,906	1,440	1,943	2,447	3,143	3,707
7	0,130	0,263	0,549	0,711	0,896	1,415	1,895	2,365	2,998	3,499
8	0,130	0,262	0,546	0,706	0,889	1,397	1,860	2,306	2,896	3,355
9	0,129	0,261	0,543	0,703	0,883	1,383	1,833	2,262	2,821	3,250
10	0,129	0,260	0,542	0,700	0,879	1,372	1,812	2,228	2,764	3,169
11	0,129	0,260	0,5	0,69	0,8	1,363	1,796	2,201	2,718	3,106
12	0,128	0,259	0,539	0,695	0,873	1,356	1,782	2,179	2,681	3,055
13	0,128	0,259	0,538	0,694	0,870	1,350	1,771	2,160	2,650	3,012
14	0,128	0,258	0,537	0,692	0,868	1,345	1,761	2,145	2,624	2,977
15	0,128	0,258	0,536	0,691	0,866	1,341	1,753	2,131	2,602	2,947
16	0,128	0,258	0,535	0,690	0,865	1,337	1,746	2,120	2,583	2,921
17	0,128	0,257	0,534	0,689	0,863	1,333	1,740	2,110	2,567	2,898
18	0,127	0,257	0,534	0,688	0,862	1,330	1,734	2,101	2,552	2,878
19	0,127	0,257	0,533	0,688	0,861	1,328	1,729	2,093	2,539	2,861
20	0,127	0,257	0,533	0,687	0,860	1,325	1,725	2,086	2,528	2,845
21	0,127	0,257	0,532	0,686	0,859	1,323	1,721	2,080	2,518	2,831
22	0,127	0,256	0,532	0,686	0,858	1,321	1,717	2,074	2,508	2,819
23	0,127	0,256	0,532	0,685	0,858	1,319	1,714	2,069	2,500	2,807
24	0,127	0,256	0,531	0,685	0,857	1,318	1,711	2,064	2,492	2,797
25	0,127	0,256	0,531	0,684	0,856	1,316	1,708	2,060	2,485	2,787
26	0,127	0,256	0,531	0,684	0,856	1,315	1,706	2,056	2,479	2,779
27	0,127	0,256	0,531	0,684	0,855	1,314	1,703	2,052	2,473	2,771
28	0,127	0,256	0,530	0,683	0,855	1,313	1,701	2,048	2,467	2,763
29	0,127	0,256	0,530	0,683	0,854	1,311	1,699	2,045	2,462	2,756
30	0,127	0,256	0,530	0,683	0,854	1,310	1,697	2,042	2,457	2,750
40	0,126	0,255	0,529	0,681	0,851	1,303	1,684	2,021	2,423	2,704
60	0,126	0,254	0,527	0,679	0,848	1,296	1,671	2,000	2,390	2,660
100	0,126	0,254	0,526	0,677	0,845	1,290	1,660	1,984	2,364	2,626
120	0,126	0,254	0,526	0,677	0,845	1,289	1,658	1,980	2,358	2,617
50000	0,126	0,253	0,524	0,674	0,842	1,282	1,645	1,960	2,326	2,576

Two-sided table!

Namely, if e.g. the t-threshold belonging to the 95% probability level is looked for, then under a given degree of freedom the table value of 0.975 belongs to this.

We finished for today, goodbye!

انتهينا لهُّا اليوم، وداعا!

