STATISTICS

RATIOS

Statistical analysis with ratios

Ratios

Concept of ratios

- Types of ratios
\square Distribution and coordination ratios
\square Dynamic ratios
\square Associations between ratios
\square Intensity ratios

Ratios

Ratio (V): quotient of two statistical data being associated

$$
V=\frac{A}{n}, \begin{gathered}
\text { where A: object of comparison } \\
(\text { data to be related })
\end{gathered}
$$

B: base of comparison (benchmark)

- from identical data (\%, or coefficient)
- from different data (intensity)

Types of ratios

* From grouping rows (series)
\square Distribution ratio (Vm)
\square Coordination ratio (Vk)
* From comparative rows (series)

D Dynamic ratio (Vd: Vdl and Vdb)
\square Task- and performance indicator ratio (Vf and V)
\square Areal comparative ratio (Vö)

* From descriptive rows (series)
- Intensity ratio (Vi)

Types of ratios

Distribution ratio (Vm): ratio of the part and the whole
Coordination ratio: ratio of two parts of the population
\square Dynamic ratio: a quotient calculated from the individual data of the time series

$$
\mathbf{V}=\frac{\mathbf{A}(\text { data of the actual period })}{\mathbf{B}(\text { data of the base period })}
$$

\square Intensity ratio: a ratio calculated from data of a population of different types and different units; however, being associated with each other

Types of ratios

\square Distribution ratio (Vm):

$$
\mathrm{Vm}=\frac{\mathrm{A} \text { (a part of the population) }}{\mathrm{B} \text { (the whole population) }}
$$

E.g.: a group of students comprises 26 boys and 32 girls, altogether 58 students (100\%).

$$
\begin{aligned}
& \mathrm{Vm}=\frac{26}{58}=0,45 \rightarrow 45 \% \text { ratio of boys } \\
& \mathrm{Vm}=\frac{32}{58}=0,55 \rightarrow 55 \% \text { ratio of girls }
\end{aligned}
$$

Types of ratios

$\square \underline{\text { Coordination ratio (Vk): }}$

$$
\mathrm{Vk}=\frac{\mathrm{A} \text { (actual ratio of the population) }}{\mathrm{B} \text { (base ratio of the population) }}
$$

E.g.: movie-visitor females: 1942 women; movie-visitor males: 1876 men;

$$
\left.\begin{array}{l}
\mathrm{Vk}=\frac{1942}{1876}=1,035
\end{array} \begin{array}{l}
1035 \text { movie-visitor women get to } \\
1000 \text { movie-visitor men; }
\end{array}\right] \begin{array}{ll}
\mathrm{Vk}=\frac{1876}{1942}=0,966 & \begin{array}{l}
966 \text { movie-visitor men get to } \\
1000 \text { movie-visitor women; }
\end{array}
\end{array}
$$

Types of ratios

D Distribution ratios can be calculated from coordination ratios even without the knowledge of the original data

$$
\mathrm{Vm}=\frac{1000}{1000+1035}=49,14 \quad \mathrm{Vm}=\frac{966}{1000+966}=49,14
$$

Ratio of women:

$$
\mathrm{Vm}=\frac{1035}{1000+1035}=50,85 \quad \mathrm{Vm}=\frac{1000}{1000+966}=50,86
$$

Dynamic ratios

\square Base ratio

$$
V d b / b=\frac{y_{t}}{y_{b}}
$$

\square Chain ratio

$$
V d l \cdot l=\frac{y_{i}}{y_{i-1}}
$$

Task 1.

Data on tourism, 2000-2005

yr	foreigners arriving to Hungary	Hungarians going abroad					
	thousand people	thousand people	$	$	2000	31141	11167
:---:	:---:	:---:					
2001	30679	12966					
2002	31739	14283					
2003	31412	17558					
2004	36635	18622					
2005	38555						

- Analyze the number of foreigners arriving to Hungary and the number of Hungarians going abroad using base ratios and chain ratios!

Solution

yr	Base ratios	
	foreigners arriving to Hungary	$(2000=100 \%)$
2000	100	$\frac{11167}{11065} \cdot 100=100,92$
2001	$\frac{30679}{31141} \cdot 100=98,52$	$\frac{12966}{11065} \cdot 100=117,18$
2002	$\frac{31739}{31141} \cdot 100=101,92$	$\frac{14283}{11065} \cdot 100=129,08$
2003	$\frac{31412}{31141} \cdot 100=100,87$	$\frac{17558}{11065} \cdot 100=158,68$
2004	$\frac{36635}{31141} \cdot 100=117,64$	$\frac{18622}{11065} \cdot 100=168,30$
2005	$\frac{38555}{31141} \cdot 100=123,81$	

Solution

| Yr | Chain ratios | |
| :---: | :---: | :---: | (previous year = 100\%)

Dynamic ratios

Relationships between ratios

1. For the 1st (Oth) period chain ratio cannot be provided
2. For the period selected as permanent base, the value of base ratio is 1 , namely 100\%
3. In the period following the permanent base period, base ratio and chain ratio equal.
4. From chain to base: base ratio of a given period can be calculated as a multiplication of the chain ratios of the actual period and the previous period

$$
l_{2} \cdot l_{3} \ldots \cdot l_{k}=b_{k} \rightarrow \prod_{i=2}^{\kappa} l_{i}=b_{i}
$$

5. From base to chain: chain ratio of a given period can be calculated as a quotient of the base ratios of the actual period and the previous period

$$
\frac{b_{i}}{b_{i-1}}=l_{i}
$$

Associations between ratios

In case of foreigners arriving to Hungary:
E.g.: $\quad 1_{2002}=\frac{b_{2002}}{b_{2001}}=\frac{1,0192}{0,9852}=1,0345$

In case of Hungarians going abroad:
E.g.: $\quad b_{2003}=l_{2001} \cdot l_{2002} \cdot l_{2003}=1,0092 \cdot 1,1611 \cdot 1,1016=1,2908$

Relationship between distribution ratio and dynamic ratio

Site	Price income $($ MFt $)$	Price income $(\%)$		Dynamic ratio (\%)	
	$\mathrm{t}_{0 i}$	$\mathrm{t}_{1 \mathrm{i}}$	$\mathrm{t}_{0 \text { i }}(\%)$	$\mathrm{t}_{1 \mathrm{ii}(\%)}$	
A	30	36	20	19	120
B	40	60	27	32	150
C	70	77	47	41	110
D	10	14,5	6	8	145
Total:	150	187,5	100	100	125

$$
\begin{aligned}
& \overline{\mathrm{V}}=\frac{\sum_{\mathrm{i}} \mathrm{t}_{\mathrm{li}}}{\sum_{\mathrm{i}} \mathrm{t}_{0 \mathrm{i}}}=\frac{187,5}{150}=\frac{187,5}{150}=1,25 \\
& \overline{\mathrm{~V}}=\frac{\sum_{\mathrm{i}} \mathrm{t}_{0 \mathrm{i}} \cdot \frac{\mathrm{t}_{1 \mathrm{i}}}{\mathrm{t}_{0 \mathrm{i}}}}{\sum_{\mathrm{i}} \mathrm{t}_{0 \mathrm{i}}}=\frac{30 \cdot 1.2+40 \cdot 1,5+70 \cdot 1,1+10 \cdot 1,45}{150}=\frac{187,5}{150}=1,25 \\
& \overline{\mathrm{~V}}=\frac{\sum_{\mathrm{i}} \frac{\mathrm{t}_{0 \mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{t}_{0 \mathrm{i}}} \cdot \frac{\mathrm{t}_{1 \mathrm{i}}}{\mathrm{t}_{0 \mathrm{i}}}}{\sum_{\mathrm{i}} \frac{\mathrm{t}_{0 \mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{t}_{0 \mathrm{i}}}}=\frac{0,2 \cdot 1,2+0,27 \cdot 1,5+0,47 \cdot 1,1+0,06 \cdot 1,45}{1}=1,25 \\
& \overline{\mathrm{~V}}=\frac{\sum_{\mathrm{i}} \mathrm{t}_{1 \mathrm{i}}}{\sum_{\mathrm{i}} \frac{\mathrm{t}_{1 \mathrm{i}}}{\frac{\mathrm{t}_{1 \mathrm{i}}}{\mathrm{t}_{0 \mathrm{i}}}}}=\frac{187,5}{\frac{36}{1,2}+\frac{60}{1,5}+\frac{77}{1,1}+\frac{14,5}{1,4}}=1,25
\end{aligned}
$$

Types of ratios

E.g., in the base year (last year) I assembled 100 cars, while I planned 120 for this year, but only 110 have.

Task indicator ratio (Vf):

$$
\mathrm{Vf}=\frac{\text { Planned data in the actual period }}{\text { Data in the base period }} \quad \mathrm{Vf}=\frac{120}{100}=1,2
$$

\square Performance indicator ratio (Vt):
$\mathrm{Vt}=\frac{\text { Actual data in the actual period }}{\text { Planned performance for the actual period }}$

$$
\mathrm{Vt}=\frac{110}{120}=91,66
$$

Types of ratios

\square Areal comparative ratio (Vö):

$$
\mathrm{V} \ddot{=}=\frac{\text { Data of the area }}{\text { Data of the base area }}
$$

E.g.: comparison of the population of Heves county and Borsd-Abauj-Zemplén county:

$$
\text { Vö }=\frac{\text { Population of Heves county }}{\text { Population of BAZ county }}=\frac{328000}{739143}=0,4437
$$

Intensity ratio

$\mathrm{Vi}=\mathrm{A} / \mathrm{B}$ shows that by which intensity the examined pehomenon occurs near some other pehnomena.

- Density index:
E.g. population, namely: number of people per 1 square km
- Index expressing supply:
E.g. supply with physicians
- Indices of standard:
E.g. mean salary per person, value of production per employee, GDP per person,
- Ratios:
E.g. birth numbers per 100 people; mortality ratio;

Intensity ratio

- Straight intensity ratio:

The level of the index coincides with the increase of the intensity ratio.
E.g. number of physicians / number of inhabitants (1000 people) (number of people per 1000 inhabitants)

- Inverse intensity ratio:

When the level of the phenomenon improves, then the inverse intensity ratio decreases.
E.g. number of inhabitants (1000 people) / number of physicians (1000 people) (number of inhabitants per 1 physician)

Intensity ratio

- Raw intensity ratio:
(Base is the whole population)
E.g. yield of milk / number of cows
workers / students
- Cleaned intensity ratio:
(Base of comparison is only the part being in strong connection with the phenomenon)
E.g. yield of milk / number of dairy cows teachers / students

Practice on ratios

The following data come from the statistical book of year 1998.

- The GDP / person in 1998 was 4694 USD in Hungary, 5.1% higher than a year before.
- In building industry, the number of blue collar workers per 100 labourers was 29 people, while the ratio of the labourers was 77.4% in 1998.
- In 1998, the number of births per 1000 inhabitants was 9.6;
- In higher education, 12.1 students got to one teacher in 1998.
- In PSZF, 61.9\% of the students graduated in 1998 were women.
- Population of Budapest since 1990 until 1999 (based on the data of January 1) decreased by 8.8\%.
- In 1998, fruit consumption per person was 62.9 kg .

Task: Identify the types of the above ratios and indicate the methods for calculating!

Practice on ratios

The following data come from the statistical book of year 1998.

- The GDP / person in 1998 was 4694 USD in Hungary, 5.1% higher than a year before.

Base ratio, chain ratio:

$$
\mathrm{b}_{1}=\mathrm{l}_{1}=\frac{\mathrm{y}_{1}}{\mathrm{y}_{0}}=\frac{4694}{\mathrm{x}}=1,051
$$

Task: Identify the types of the above ratios and indicate the methods for calculating!

Practice on ratios

The following data come from the statistical book of year 1998.

- In building industry, the number of blue collar workers per 100 labourers was 29 people, while the ratio of the labourers was 77.4% in 1998.

Distribution ratio:

$$
\frac{29}{100+29}=\frac{29}{129}=0,225
$$

Coordination ratio:

$$
\frac{29}{100}
$$

Distribution ratio:
Ratio of labourers: 77,4\%

Task: Identify the types of the above ratios and indicate the methods for calculating!

Practice on ratios

The following data come from the statistical book of year 1998.

- In 1998, the number of births per 1000 inhabitants was 9.6

Straight intensity ratio: the number of newborns / number of inhabitants (1000 people)

Task: Identify the types of the above ratios and indicate the methods for calculating!

Practice on ratios

The following data come from the statistical book of year 1998.

- In higher education, 12.1 students got to one teacher in 1998.

Cleaned intensity ratio:

Task: Identify the types of the above ratios and indicate the methods for calculating!

Practice on ratios

The following data come from the statistical book of year 1998.

- In PSZF, 61.9\% of the students graduated in 1998 were women.

Distribution ratio: $\quad 61,9 \%$ of the students are women

Task: Identify the types of the above ratios and indicate the methods for calculating!

Practice on ratios

The following data come from the statistical book of year 1998.

- Population of Budapest since 1990 until 1999 (based on the data of January 1) decreased by 8.8%.

$$
\text { Base ratio: } \quad \mathrm{b}_{1}=\frac{\mathrm{y}_{1}}{\mathrm{y}_{0}}=0,912
$$

Task: Identify the types of the above ratios and indicate the methods for calculating!

Practice on ratios

The following data come from the statistical book of year 1998.

- In 1998, fruit consumption per person was 62.9 kg .

Straight intensity ratio, index expressing supply, index of standard

Task: Identify the types of the above ratios and indicate the methods for calculating!

We finished for today, goodbye!

انتهينا لهُّا اليوم، وداعا!

