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Summary – The purpose of this study is to identify long-range transport patterns that may have an important 
influence on PM10 levels in four European cities at different latitudes, namely those in Thessaloniki, Szeged, 
Helsinki and Oulu. Trajectory positions were computed using the HYSPLIT model. 4-day, 6-hourly 3D backward 
trajectory positions arriving at these locations at 1200 GMT were determined for each day over a 5-year period 
from 2001 to 2005. Non-hierarchical cluster analysis with the k-means method was applied using a Mahalanobis 
metric. The efficiency of the 2D and 3D cluster analyses were compared for each city. 
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1. INTRODUCTION 

Particulates, alternatively referred to as particulate matter (PM) or fine particles, are 
tiny particles of solid, liquid or mixed phase, suspended in a gas. In contrast, ‘aerosol’ 
refers to the particles and the gas together. Sources of particulate matter can be of 
anthropogenic or natural origin. A particle with an aerodynamic diameter of 10 μm moves 
in a gas like a sphere of unit density (1 gcm-3) with a diameter of 10 μm. PM diameters 
range from less than 10 nm to more than 10 μm. These dimensions represent the continuum 
from a few molecules up to the size where particles can no longer be carried by a gas. The 
notation PM10 is used to describe particles of 10 μm or less. 

The short and long-term exposure to high particulate matter concentrations observed 
in large cities increases the risk of respiratory (Annesi-Maesano et al. 2007) and also 
cardiovascular (Analitis et al. 2006) diseases. 

The existing PM10 regulations for EU countries are found in the document 
1999/30/EC and in the Clean Air for Europe Directive 2008/50/EC (EU Web References 1 
and 2). The numerical limit values for PM10 are 24-h means of 50 μgm-3 not to be exceeded 
for over 35 days (≈10%) of the days of the year and an annual average of 40 μgm-3. Both of 
these numbers refer to calendar years. The limit values became legally binding on January 
1, 2005. In the spring of 2008, the EU decided on the future PM regulations. The details of 
their decision can be found in EU Web Reference 1. The above limit values have been 
retained in the new regulations, but some things have changed relating to their application: 
(1) member states can obtain permission to postpone compliance with the limit values until 
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2011; (2) the subtraction of “natural” PM has been increased; (3) spatial application criteria 
have been changed. All three modifications tend to reduce public health protection 
compared to the level of protection offered by the 1999 regulations, despite the fact that the 
numbers have not changed. In sharp contrast to the new regulations, the 1999 daughter 
directive stated that the annual limit value would be reduced to 20 μgm-3 by 2010, and that 
the number of allowed exceedances of the 24-h limit value would be reduced to 7 per year, 
also by 2010, in accordance with the levels recommended in EU ‘Particles Position Paper’ 
of April 8, 1997 as limit values (EU Web Reference 3). These recommendations have 
disappeared from the new directive thus keeping the exposure levels high and, as a result, 
raising health concerns (Brunekreef and Maynard 2008). The above-mentioned legal 
framework underlines the importance of identifying the sources of PM10, and more 
specifically the exogenous (i.e. long-range transport) contribution of natural sources. 

Several authors have published backward trajectory modelling to detect the long-
range transport of pollutant air masses that may have an impact on local PM10 levels 
(Sanchez-Ccoyllo et al. 2006, Riccio et al. 2007, Salvador et al. 2008), to better describe the 
tropospheric circulations (Jorba et al. 2004) or to characterize and identify spatial and 
temporal trends of pollutants (Johnson et al. 2007, Coury and Dillner 2007). However, it 
should be stressed that single backward trajectories, generally applied so as to detect source 
regions of extreme PM episodes at a given site (Hongisto and Sofiev 2004, Cachorro et al. 
2006, Bessagnet et al. 2008) are not suitable for establishing the exact path and origin of an 
air parcel. 

On the other hand, large numbers of trajectories arriving at a given site can be 
analysed in order to discover the origin of polluted air masses. This can be performed using 
cluster analysis, a multivariate statistical technique used to determine the structure within a 
specific data set. Several authors have performed a cluster analysis in order to establish 
trajectories for a relatively small number of groups. However, it should be mentioned here 
that cluster analysis does not tell us anything about any cause-effect relationships. In other 
words, clustering is distinct from classification, because there are no pre-determined cha-
racteristics used to define the membership for a cluster, although items in the same cluster 
are likely to have many characteristics in common. This procedure has been frequently used 
to interpret the findings of studies concerning the origin and the transport of atmospheric 
pollution (Kallos et al. 2007, Grivas et al. 2008, Vardoulakis and Kassomenos 2008). 

Several examples show that the long-range transport of particulates can considerably 
worsen air quality and, in this way, may increase the risk of respiratory as well as cardio-
vascular diseases. For this reason, the future PM regulations introduced by the EU in the 
spring of 2008 put more emphasis on the trans-boundary transport of particles, compared to 
those which became legally binding on January 1, 2005. 

A change is that the 2008 Directives are complemented by clearly defining natural 
sources. Moreover, they include sea sprays as additional sources. Another change in article 
20 is as follows. “Where the Commission has been informed of an exceedance attributable 
to natural sources in accordance with paragraph 1, that exceedance shall not be considered 
as an exceedance for the purposes of this Directive.” In other words, days of exceedances 
traced back to natural origin pollutant sources are to be subtracted from pollution 
exceedance days, i.e. the regulations have been softened. 

Both interpretations in the Directives (article 2.15 1999, article 20 2008) include 
“atmospheric re-suspension or transport of natural particles from dry regions”. In the 
present study, PM10 levels from four cities (Thessaloniki, Southern Europe; Szeged, Central 
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Europe and Helsinki and Oulu, both Northern Europe) (Fig. 1) have been interpreted using 
a Mahalanobis metric over a 5-year period. Furthermore, a goodness of cluster analysis is 
examined for both the two-dimensional (2D) and three-dimensional (3D) trajectory 
positions for each of the four cities. 

 
Fig. 1  Geographical position of Thessaloniki, Szeged, Helsinki and Oulu 

2. MATERIALS 

2.1. Study areas and monitoring data 

In this paper five years of daily mean PM10 data (2001-2005) taken from four 
European cities - Thessaloniki (Greece), Szeged (Hungary) and Helsinki and Oulu 
(Finland) - have been utilised (Fig. 1), and will be presented later on. 

Thessaloniki (40.64°N; 22.94°E) is the second largest city of Greece, where 
emissions come mainly from the local traffic, while the formation and transport of 
pollutants are heavily influenced by the local meteorological and topographical conditions 
(Fig. 1). The city is the centre of the Thessaloniki Metropolitan Area with 2 million 
inhabitants and a land area of 677 km2. The mean temperature is 26.4°C in July and 4.6°C 
in January, while the annual mean precipitation total is 449 mm. Eleftherio-Kordelio was 
one of the seven air-pollution monitoring stations selected for our study. The selection was 
based on the fact that this station characterises an area in the western part of the urban web 
which greatly suffers from PM10 exceedances (Tzima et al. 2009). The data sets used were 
made available via the public air quality database system of the European Environment 
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Agency (http://air-climate.eionet.europa.eu/databases/airbase). PM10 is monitored with the 
aid of a β-radiation absorption method (www.pkm.gr) with HORIBA instrumentation. 

Szeged (46.25°N; 20.10°E), the largest settlement in SE Hungary, is located at the 
confluence of the River Tisza and River Maros (Fig. 1). The area is characterised by an 
extensive flat landscape of the Great Hungarian Plain with an elevation of 79 m AMSL. 
The city is the centre of the Szeged region with 203,000 inhabitants and a land area of 876 
km2. The mean temperature is 22.4°C in July and -1.2°C in January. The annual mean 
precipitation total is 573 mm. The air quality monitoring station is located in the inner city 
area, near one of the busiest crossroads of the city. The station lies some 20 m away from 
the lead-in section of the M5 motorway with an average weekday traffic volume of 37,100 
unit vehicles per day. PM10 concentrations are recorded by the absorption of β-radiation 
(type of instrument: FH 62 I-N; manufacturer: Eberline). The station is under the 
supervision of the Environmental and Natural Protection and Water Conservancy 
Inspectorate of the Lower-Tisza Region. 

Helsinki (60.25°N; 25.05°E), the capital of Finland, forms the core of the Helsinki 
Metropolitan Area which has 1 million inhabitants and a land area of 745 km2. The area is 
situated on the coast of the Gulf of Finland and is characterized as a lowland plain, which is 
typical for the whole of southern and western Finland. The mean temperature is 17.2°C in 
July and -4.9°C in February, while the annual mean precipitation total is 640 mm. The 
Helsinki Kallio air quality measurement station is an urban background site located in the 
inner city at the edge of a sports ground (20 m AMSL). The nearest road is some 80 m 
away with an average weekday traffic volume of about 8000 vehicles per day. The PM10 
concentrations were recorded by the absorption of ß-radiation (Eberline FH 62 IR). The 
station is operated by the Helsinki Metropolitan Area Council (Fig. 1). 

Oulu (65.02°N; 25.48°E) is the largest city in northern Finland and lies on the shores 
of the northernmost stretch of the Baltic Sea. The city of Oulu has 130,000 inhabitants and 
a land area of 370 km2. The Oulu region is known for its rapidly growing high technology 
industry sector as well as its traditional pulp, paper and steel industries. The mean 
temperature is 16.2°C in July and -9.5°C in February, and the annual mean precipitation 
total is 450 mm. Towards the inland from Oulu, the flat coastal plain gives way to extensive 
boreal forests, mires and fells that are typical for the sparsely populated part of northern 
Finland. The Oulu Centre air quality measurement station is an urban traffic site which is 
located in the inner city of Oulu in a busy (c. 7000 vehicles per day) street canyon only five 
metres from the edge of the road (5 m AMSL). The PM10 concentrations are measured with 
a tapered element oscillating microbalance (TEOM 1400). The station is run by the 
Environment Office of the Oulu region (Fig. 1). 

2.2. Backward trajectories 

Backward trajectories for Thessaloniki, Szeged, Helsinki and Oulu were computed 
using the Hybrid Single-Particle Lagrangian Integral Trajectory (HYSPLIT, version 4.8; 
http://www.arl.noaa.gov/ready/hysplit4.html) model (Draxler and Hess 1998). NOAA 
global reanalysis meteorological data were used in this procedure. These data sets are a 
subset of sea-level meteorological data received from NCEP/NCAR National Centres for 
Environmental Prediction / National Centre for Atmospheric Research 
(http://dss.ucar.edu/datasets/ds090.0/). 
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Since a single backward trajectory has a large uncertainty and is of limited 
significance (Stohl 1998), a more reliable representation of the synoptic air currents in the 
given regions was performed through the reconstruction and analysis of a large number of 
atmospheric trajectories. In this study 4-day, 6-hourly 3D backward trajectories arriving at 
the four locations at 1200 GMT were determined in order to describe the horizontal and 
vertical movements of an air parcel for the above-mentioned four cities. Trajectories 
arriving at heights h=500, 1500 and 3000 m AMSL for each day over a 5-year period from 
2001 to 2005 were computed. Then from the trajectories we selected just the 6-hourly 
positions of their tracks. 

3. METHODS 

3.1. Cluster analysis 

Cluster analysis is a common statistical technique for grouping elements in an 
objective way, such as atmospheric trajectories within large data sets. The aim of the 
method is to maximize the homogeneity of elements (in our case, backward trajectories) 
within the clusters and also to maximize the heterogeneity between the clusters. It has been 
shown that clusters of backward trajectories arriving at a given location can be replaced by 
different synoptic circulation patterns (Dorling et al. 1992). In this paper a non-hierarchical 
cluster analysis with the k-means method was applied using a Mahalanobis metric 
(Mahalanobis 1936). Input data, as clustering variables, were the 6-hourly co-ordinate 
values of the trajectories (ϕ, λ for 2D and ϕ, λ, h for 3D) (called trajectory positions) for 
the three different height levels considered. The trajectories produced for the three arrival 
heights were collected and their positions were analysed together for each city. 

When starting the procedure, k cluster centres are selected automatically by the 
algorithm. In our case, we chose cluster numbers from 30 to 1, in decreasing order, and the 
algorithm determines the initial cluster centres for the above cluster numbers randomly. The 
individual points will join those clusters for which the distance of the point from the cluster 
centres is a minimum. Next, we add up the distances of the cluster centre and the cluster 
points cluster by cluster (RMSD = Root Mean Square Deviation) and afterwards we add up 
the RMSD values in a cluster-by-cluster manner (total RMSD). The total RMSD value 
usually decreases as the number of clusters increases. We perform the same clustering 
procedure 9 more times, in order to omit those false cases when empty clusters occur. 
(Empty clusters may occur such that, when modifying the cluster centres, the points within 
the clusters approach another cluster centre and, in this way, they will be placed into this 
other cluster.) Out of the ten clustering procedures analysed, only the one with the 
minimum total RMSD-value will be retained. 

The total RMSD (%) is used in order to select the most compact clustering with the 
least cluster number from the clustering with 30 to 1 cluster numbers, in decreasing order. 
The total RMSD (%), associated with a given cluster number, tells us about its change 
(increase) when selecting one higher cluster number in the clustering procedure. Out of all 
the pairwise neighbouring comparisons of the clusters, going from the higher cluster 
number to the smaller ones, we will stop when we reach the highest total RMSD (%) and 
choose the clustering with one higher cluster number than that indicating the highest total 
RMSD (%). 
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Applying a change in CRMSD (namely, a change in the change of RMSD) makes it 
easier to choose the proper cluster number than that for a change in RMSD. A change in 
CRMSD (%) for any cluster number is obtained if a change in RMSD (%) associated with a 
given cluster number is subtracted from that associated with the smaller cluster number. 
Namely, Change in CRMSD(clusteri+1) = Change in RMSD(clusteri) – Change in 
RMSD(clusteri+1). In this case we will choose the cluster number of all the pairwise 
neighbouring comparisons of the clusters, going from 30 to 1, in decreasing order, for 
which the change in CRMSD is the highest. 

Clustering with the k-means algorithm was performed by MATLAB 7.5.0 software. 

3.2. Analysis of variance (ANOVA) 

Before applying the ANOVA technique, the annual course of pollution data is 
removed and standardized data will be used hereafter. Standardized data sets are free of 
annual cycles and so distinguishing between average pollutant levels corresponding to types 
of trajectory positions is due to the types themselves and not related to periods of the year. 

With a data set n,...,t,xt 1=  the expected value function m(t) of xt is 
approximated by 
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According to the least squares concept, the linear system of equations 
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Furthermore, u(t) = 0, if xt is absent and u(t) = 1 otherwise. Then the annual course 
free and standardized data set is 

 nttdtmxy tt ,...,1),(/))(( =−= ,  (5) 

where d2(t) is estimated as m(t) by equations (1) to (4) but with xt replaced by 
nttmxx tt ,...,1,))(( 2* =−= . 

The variability of the daily PM10 concentrations for each city was analysed in order 
to see whether the clusters retained had any influence on the PM10 levels. More precisely, 
based on the F-test, we examined whether the differences between the cluster-averaged 
PM10 concentrations were significant. If, after performing ANOVA, we get a significant 
difference among cluster averages of PM10 concentrations, then the Tukey-test should be 
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performed in order to detect those cluster pairs that are associated with significantly 
different PM10 averages. In the reverse case if no significant difference is found, the Tukey 
test is omitted (Tukey 1985). 

The results of ANOVA should help clarify the possible role of long-range transport 
on local pollutant levels. Significant differences between PM10 concentrations of different 
cluster pairs may indicate that there is an important influence of the origin of air masses on 
local PM10 levels. 

There are several versions available for comparing means calculated from the 
subsamples of a sample. A relatively simple but effective way is to use the Tukey test. It 
performs well in terms of both the accumulation of first order errors of the test and the test 
power. Indeed, when the null-hypothesis on the equality of two expected values 
corresponding to two subsamples is rejected, the Tukey test provides a better certainty 
compared, for instance, to the Fisher test. This is why we chose to use the Tukey test. This 
or any other similar test assumes a statistical independence of the data. Consecutive air 
pollution data, however, may be correlated and give higher variances of the estimated 
means than those for uncorrelated data. The autocorrelation structure is modelled via first 
order autoregressive processes conditioned on the types of trajectory positions. For this, 
estimates of type-dependent one lag autocorrelations a are required. 

In order to compare the averages corresponding to the ith and jth clusters (i.e. Mi and 
Mj), the test statistic 
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is used, where MSE is the empirical variance calculated from concentration data associated 
with both clusters. (Note that the Fisher test uses the entire data set when calculating the 
MSE.) If ni and nj denote the values of data corresponding to individual clusters, then 
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Here Eq. (7) becomes 1/nh = 1/ni + 1/nj for uncorrelated data (a=0), resulting in the 
classical Tukey test statistic. 

Next we applied a simplification for estimating type dependent one lag 
autocorrelations. As the average time step between two consecutive concentration data sets 
associated with the same type is n/ni we will write ai = R(n/ni), where R(k) is the 
autocorrelation for lag k estimated from the entire data set via 
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Here  
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3.3. Goodness of cluster analysis and comparison of 2D – 3D clustering  

When comparing a goodness of cluster analysis in 2D – 3D clustering, the procedure 
should give good results if concentration values associated with the 2D or 3D clusters are 
well separated. For this purpose, two methods can be applied. 1) We can count the number 
of cluster pairs having significantly different average concentrations both for 2D and 3D 
clustering procedures. Then these values for both clustering procedures should be divided 
by the total number of cluster pairs. 2) We can compare the internal and external distances 
of the two cluster systems. In this case we should work with the same metric (Mahalanobis 
metric) used in the cluster analysis. Here distances should be divided by 96 (4 days x 4 
moments/day x 2 dimensions x 3 levels) and 144 (4 days x 4 moments/day x 3 dimensions 
x 3 levels), respectively to allow one to make a better comparison. Let this ultimate distance 
be d(x,y) between vectors x and y. Take the internal distance for the ith cluster as the 
average of distances between the cluster elements and the Mi cluster centre using distance 
d. Next, consider the average of the internal distances of the individual clusters. This will 
be the internal distance ID. The smaller the ID the better the cluster analysis is, because the 
clusters will be compact. Take distances dij=d(Mi,Mj), i,j=1,…,N forming a symmetric NxN 
matrix (with zero diagonal elements), where N is the number of clusters. The higher the dij 
values, the better the cluster analysis since each cluster will be well separated. The average  

 ∑∑
= ≠−

N

i ijj
ijd

NN 1 ,)1(
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of these distances is called external distance ED. 
Although an ideal system of clusters has a small ID with a large ED, increasing the 

cluster number usually results in a smaller ID with a smaller ED for a given data set to be 
clustered. In other words, when we use more and more clusters the price to be paid for 
improving compactness is a worsening average separation. However, with two different 
data sets (2D and 3D data sets) it may happen that a) clustering with a smaller cluster 
number produces a smaller ID with a larger ED; b) clustering with a bigger cluster number 
gives a smaller ID with a smaller ED; c) any other possible case. In the first case, the 
clustering with fewer clusters is made more efficient, as it produces more compact and 
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more separated clusters. In the second and third cases (especially in the second case) 
subjective judgements are needed when comparing the internal and external distances for 
the 2D and 3D situations. 

3.4. Statistical characterization of PM10 episodes 

The role of long-range transport was studied by analysing cluster occurrence on days 
when 24-h mean PM10 concentrations exceeded the limit value of 50 μgm-3. For this reason, 
two statistical indices related to the probability (INDEX1) and frequency (INDEX2) of 
daily PM10 episodes associated with different clusters of trajectory positions were 
calculated in the same manner as Borge et al. (2007). For a given site and cluster, INDEX1 
is defined as 

 
i

i
i D

D
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100
(%)1 )50( ⋅

= 〉 , (14) 

where Di is the number of days for which a backward trajectory associated with cluster i is 
present (namely, number of occurrences of cluster i), and D(>50)i is the number of 24-h PM10 
exceedances (namely, days with 24-h mean PM10 > 50 μgm-3 with occurrence of cluster i. 
INDEX1 tells us the likelihood of an exceedance occurring for a given cluster. In a similar 
way, INDEX2 is defined as 
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= 〉 , (15) 

where E is the total number of 24-h PM10 exceedances recorded at a given site. INDEX2 
can be interpreted as the likelihood of certain trajectory position being present on a PM10 
exceedance day. These two cluster-related indices whose values range from 0 to 100% 
provide complementary information on the influence of different atmospheric circulation 
patterns on PM10 levels (Borge et al. 2007). 
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