ASSESSMENT OF THE AIR QUALITY IN A MIDDLE-SIZED CITY, SZEGED, HUNGARY

László Makra¹*, Rita Béczi*, Gábor Motika** and Helmut Mayer*** ^{*}University of Szeged, Szeged, Hungary; **Environmental Protection Inspectorate of Lower-Tisza Region, Szeged, Hungary; ***University of Freiburg, Freiburg, Germany

Abstract

In this study, based on a five-year air pollutant data set from the downtown of a middle-sized Hungarian city, Szeged, the frequency distribution of the air stress index ASI_{Sz} is compared with the frequency distribution of the new air quality index DAQx. Both indices were developed by German researchers and are on a daily basis. The varying forms of both frequency distributions are mainly caused by the impact-related concentration ranges of single air pollutants, which are typical of air quality indices. Especially carbon-monoxide and PM_{10} have a stronger influence on the determination of values of air quality indices.

Key words: air pollution, air stress index (ASI), air quality index (DAQx)

1. INTRODUCTION

There are a lot of questions on the impacts of the atmospheric environment on human beings which are focussed on the regional scale (e.g. landscape planning). To get answers, methods of human-biometeorology have to be applied (Mayer, 1993). Among the human biometeorological effective complexes two are of great importance in the regional scale: the thermal effective complex (Matzarakis and Mayer, 1997; Matzarakis et al., 1999; 2000) and the air quality effective complex (Mayer et al., 2002a; 2002b). They have to be assessed in a human biometeorologically significant manner. Assessment of air quality developed only a few studies in Hungary (e.g. Makra and Horváth, 2001.). The objective of this article is twofold: on the one hand, to give a brief overview of assessment methods; and, on the other hand, to discuss exemplary results for air pollution data basis of Szeged.

2. METHODS

Standards for the assessment of single air pollutants exist in almost every country of the world, e.g. in EU directives. However, these standards are insufficient in view of the persistent demands (e.g. from planners) for the assessment of the air quality, which is not limited to a single air pollutant. Therefore, indices on the basis of routinely monitored air pollutants were developed. They can be categorized into two groups (Mayer et al., 2002a). The first group includes indices, which are only statistical and have no direct relation to the well-being and health of human beings. They indicate mainly the content of air pollution in the ambient air and, therefore, are called air stress indices ASI. They can be calculated according to the following formulas:

$$ASI = \sum_{i=1}^{n} \left[\frac{C}{R} \right]_{i} \qquad \qquad ASI = \frac{1}{n} * \sum_{i=1}^{n} \left[\frac{C}{R} \right]_{i}$$
(1)

with a symbol description in Table 1.

	formula (1a)	formula (1b)
	mean stress (year, day)	short-term stress
n	number of air pollutants	number of air pollutants
С	time specific concentration of the air pollutant i	number of cases per calendar year: air pollutant specific limit values are exceeded
R	time specific reference (limit) value of the air pollutant i	number of cases per calendar year: air pollutant specific limit values are not to be exceeded

Table 1. Description of air stress indices in formulas (1a) and (1b)

 $Planning\mbox{-related air stress index ASI_1 for mean stress, developed by the Office of Environmental Protection, Division Urban Climate, City of Stuttgart, Germany:$

¹Corresponding author address: László Makra, Department of Climatology and Landscape Ecology, University of Szeged, H-6701 Szeged, P.O.B.: 653; e-mail: makra@geo.u-szeged.hu

$$ASI_{1} = \frac{1}{4} * \left(\frac{C(SO_{2})}{20\mu g / m^{3}} + \frac{C(NO_{2})}{40\mu g / m^{3}} + \frac{C(PM_{10})}{40\mu g / m^{3}} + \frac{C(benzene)}{5\mu g / m^{3}} \right)$$
(2)

C: arithmetical annual mean values (μ g/m³); reference values (denominators of the addable sums): air pollutant specific EU standards.

Planning-related air stress index ASI₂ for short-term stress, developed by the Office of Environmental Protection, Division Urban Climate, City of Stuttgart, Germany:

$$ASI_2 = \frac{1}{4} * \left(\frac{N(SO_2)}{24} + \frac{N(NO_2)}{18} + \frac{N(PM_{10})}{35} + \frac{N(CO)}{1} \right)$$
(3)

N: number of cases per calendar year, air pollutant specific EU limit values are exceeded; reference values (denominators of the addable sums): number of cases per calendar year, air pollutant specific EU limit values are not to be exceeded [SO₂: 350 µg/m³ (1 h mean value), NO₂: 200 µg/m³ (1 h mean value), PM₁₀: 50 µg/m³ (daily mean value), CO: 10 mg/m³ (highest daily running 8 h mean value)] (Mayer et al., 2002a).

A graded assessment scale (Table 2) is available for the air stress indices ASI₁ and ASI₂ (Mayer et al., 2002a), which e.g. can serve as basis for planning specific recommendations with respect to the air quality.

Table 2. Assessment of the air quality conditions on the basis of ASI₁ and ASI₂ (Mayer et al., 2002a)

ASI1: no single	air pollutant exceeds the corresponding lim	it value
ASI₂: no single specific limit va	e air pollutant shows a higher number of o lues are exceeded than the permitted numb	cases per calendar year with air pollutant per
level l	very low air stress	ASI ₁ , ASI ₂ < 0.2
level II	low air stress	$0.2 \leq ASI_1, ASI_2 < 0.4$
level III	moderate air stress	$0.4 \leq ASI_1$, $ASI_2 < 0.6$
level IV	distinct air stress	$0.6 \leq ASI_1, ASI_2 < 0.8$
level V	strong air stress	$ASI_1,ASI_2 \geq 0.8$
ASI1: no less th	an one air pollutant exceeds the correspon	ding limit value
ASI ₂ : no less t pollutant specif	han one air pollutant shows a higher nur ic limit values are exceeded than the permit	mber of cases per calendar year with air ted number
level VI	extreme air stress	independent of ASI_1 and ASI_2

Air stress index ASI_{Sz} on a daily basis, developed by the Federal State Institute for Environmental Protection Baden-Wuerttemberg, Karlsruhe, Germany:

$$ASI_{Sz} = \frac{C(SO_2)}{350\mu g/m^3} + \frac{C(CO)}{10m g/m^3} + \frac{C(NO_2)}{200\mu g/m^3} + \frac{C(O_3)}{180\mu g/m^3} + \frac{C(PM_{10})}{50\mu g/m^3}$$
(4)

Lower index sz indicates data sets of Szeged city, to which this air stress index is applied). C(SO₂), C(NO₂), and C(O₃): highest daily 1 h mean values (μ g/m³), C(CO): highest daily running 8 h mean value (mg/m³), C(PM₁₀): daily mean value (μ g/m³); limit values from EU directives.

 ASI_{Sz} classes and ranges are as follows: I: $ASI_{Sz} < 0.5$; II: $0.5 \le ASI_{Sz} < 1.1$; III: $1.1 \le ASI_{Sz} < 1.7$; IV: $1.7 \le ASI_{Sz} < 2.3$; V: $2.3 \le ASI_{Sz} < 2.9$; VI: $ASI_{Sz} \ge 2.9$.

Impact-related indices, which are called air quality indices, constitute the second group of indices for the assessment of the air quality effective complex. Such indices are very rare, because it is difficult to quantify the impacts of air pollutants on the well-being and health of human beings. The methodology of air quality indices is to assign concentrations of ambient air pollutants to different air pollutant specific ranges. The air quality index itself is represented by the highest index class among the considered air pollutants. The relation to the impact on human beings is given by different classified ranges of air pollutant concentrations, which are derived from epidemiological and toxicological investigations.

A new impact-related air quality index obtained on a daily basis and abbreviated as DAQx (Daily Air Quality Index) was recently developed and tested by the Meteorological Institute, University of Freiburg, and the Research and Advisory Institute for Hazardous Substances, Freiburg, Germany (Mayer et al., 2002a; 2002b). DAQx considers the air pollutants SO₂, CO, NO₂, O₃, and PM₁₀. To enable a linear interpolation between index classes, DAQx is calculated for each air pollutant by

$$DAQx = \left[\left(\frac{DAQx_{up} - DAQx_{low}}{C_{up} - C_{low}} \right)^* (C_{inst} - C_{low}) \right] + DAQx_{low}$$
(5)

with C_{inst.}: highest daily 1 h concentration of SO₂, NO₂, and O₃, highest daily running 8 h mean concentration of CO, and mean daily concentration of PM10; Cup: upper threshold of specific air pollutant concentration range (Table 3); Clow: lower threshold of specific air pollutant concentration range (Table 3.); DAQxup: index value according to Cup (Table 3.); DAQxlow: index value according to Clow (Table 3.).

	er elaceliti	eatien namee (according to ot		layer et all, 20	02a; 2002b)	
SO₂ (µg/m³)	CO (mg/m³)	NO₂ (µg/m³)	Ο ₃ (μg/m³)	PM ₁₀ (µg/m³)	DAQx value	DAQx class	Classification
0- 24	0.0- 0.9	0- 24	0- 32	0.0- 9.9	0.5–1.4	1	very good
25- 49	1.0- 1.9	25- 49	33- 64	10.0–19.9	1.5–2.4	2	good
50–119	2.0- 3.9	50- 99	65–119	20.0–34.9	2.5–3.4	3	satisfactory
120–349	4.0- 9.9	100–199	120–179	35.0-49.9	3.5–4.4	4	sufficient
350-999	10.0–29.9	200–499	180–239	50.0-99.9	4.5-5.4	5	poor
≥ 1000	≥ 30.0	≥ 500	≥ 240	≥ 100	≥ 5.5	6	very poor

Table 3. Assignment of ranges of specific air pollutant concentrations to DAQx values and DAQx classes inclusive of classification names according to school marks (Mayer et al. 2002a: 2002b)

3. DATA BASIS

The data basis of the study is formed by 30-minute air pollutants concentrations (SO₂, NO₂, CO, O₃, PM₁₀) of the monitoring station in the downtown of Szeged, for the five-year period between 1997-2001.

		Noting data for calle		(OI ₂ , 70	
year	¹ SO ₂	¹ NO ₂	² PM ₁₀	³ PM ₁₀	⁴CO
1997	6.11	67.24	85.56	83.56	90.14
1998	78.38	89.01	73.20	73.15	88.49
1999	99.81	95.53	72.76	72.60	99.18
2000	98.90	89.34	99.01	98.08	98.36
2001	98.65	98.95	96.36	95.07	98.08

|--|

. . . .

¹1 h mean values; used for calculation of ASI₁ and ASI₂; ²1 h mean values; used for calculation of ASI₁; ³daily mean values; used for calculation of ASI₂. It was calculated if at least 20 one-hour mean was at disposal on a given day; ⁴highest daily running 8 h mean value. It was calculated if at least 20 one-hour mean was at disposal on a given day.

3. RESULTS

An assessment scale was developed for ASI1 and ASI2 in order to characterise the air quality (Table 2.). Considering only values of either ASI1, or ASI2, air quality of Szeged can be characterised by strong air stress (level V) in each examined year. For further analysis (see Table 2.): on the one hand, concentration of PM₁₀ (considering for calculation of ASI₁) exceeds its limit value in each five year; on the other hand, both for PM₁₀ and CO the number of actual exceedings of the specific limit values (considering for calculation of ASI2) is several times higher than that of the permitted exceedings in each five year. Consequently, independently from the actual values of either ASI₁ or ASI₂, air quality of Szeged city can be characterised by extreme air stress (level VI) (Table 2.).

To investigate the sensitivity of indices for the assessment of the air quality conditions, frequency distributions for ASIsz as an exponent of air stress indices and DAQx as an exponent of air quality indices were calculated for Szeged downtown. ASIsz as well as DAQx are indices on a daily basis. Since ASIsz has no relation to the impact on human beings, six classes were statistically defined on the results of five-year (1997-2001) daily values.

Fig. 1. Air stress index ASI for Szeged (ASI_{Sz}) on a daily basis

Daily values of both ASI_{Sz} air stress index and DAQx air quality index were calculated for the examined five-year period. However, only daily values for the year 2001 are represented. (Fig. 1-2.). Empty sections on the figures indicate lack of data. ASI_{Sz} values – exceeding level III – presenting increased air stress as well as peak values are concentrated in the winter half-year or in the winter months (Fig. 1.). This can be explained by climatic reasons. Standard deviation of DAQx values is less than that of ASI_{Sz} values. Peak values of DAQx are also concentrated in the winter half-year (Fig. 2.); nevertheless, this is not as characteristic as in the case of ASI_{Sz} values.

Frequency distribution of ASI_{Sz} and DAQx, according to both classes and years, are different. DAQx values have generally well higher frequencies in levels 4 and 5; and, on the other hand, have less ones in the rest levels comparing to frequency distribution of ASI_{Sz} values in levels I-VI (Fig. 3-4.).

DAQx per classes, 1997-2001

■1998 ■1999 ■2000 ■2001

Fig. 3. Frequencies of $\mathsf{ASI}_{\mathsf{Sz}}$ values per classes, Szeged

Fig. 4. Frequencies of DAQx values per classes, Szeged

Carbon-monoxide and PM₁₀ are mainly responsible for the changed form of the frequencies of DAQx classes (Fig. 5.).

Fig. 5. Frequencies of ASI_{Sz} and DAQx values per classes according to the share of their pollutant components

References

Mayer, H., 1993, Urban bioclimatology, Experientia 49,957-963.

- Matzarakis, A., Mayer, H., and Iziomon, M.G., 1999, Applications of a universal thermal index: physiological equivalent temperature, *Int. J. Biometeorol.*, **43**, 76-84.
- Mayer, H., Kalberlah, F., Ahrens, D., and Reuter, U., 2002, Analysis of indices for the assessment of the air (in German), *Gefahrstoffe-Reinhaltung der Luft* **62**, 177-183.

Mayer, H., Kalberlah, F., and Ahrens, D., 2002, TLQ – Am impact related air quality index obtained on a daily basis, *Proc. Fourth Symposium on the Urban Environment, Norfolk, VA (USA)*, 80-81.

Matzarakis, A., Rutz, F., and Mayer, H., 2000, Estimation and calculation of the mean radiant temperature within urban structures, *WCASP-50, WMO/TD* **1026**, 273-278.

Matzarakis, A. and Mayer, H., 1997, Heat stress in Greece, Int. J. Biometeorol. 41, 34-39.

Makra, L. and Horváth, Sz., 2001, Assessment of air pollution in Szeged. Légkör, 46/4, 14-18. (in Hungarian)

4. CONCLUSIONS

1997

Aside from single air pollutant standards, air stress indices and air quality indices enable an additional assessment of the air quality conditions, which is primarily not limited to single air pollutants. The application of air stress indices or air quality indices depends on the specific objectives of the investigation. Temporal course of ASI₁ and ASI₂ is not clear. High values of mean air stress (indicated by ASI₁ \approx 1) as well as extremely high values of short-term air stress (indicated by ASI₂ > 20) suppose high air pollution load in Szeged.

Analysis of both ASI_{Sz} and DAQx values represents high pollution load of PM_{10} and carbon-monoxide. Examined parameters of PM_{10} and CO – which are several times higher than standards of their EU directives – substantially modifiy air quality of Szeged.