An objective analysis and ranking of cities on environmental and social factors

Makra, L., Horváth, Sz. and Sümeghy, Z.

Department of Climatology and Landscape Ecology, University of Szeged, H-6701 Szeged, P.O.B. 653, Hungary; e-mail: <u>makra@geo.u-szeged.hu</u>; lupo@geo.u-szeged.hu; sumeghy@geo.u-szeged.hu

1. Introduction

In Hungary, 236 cities accounting for 65.7 percent of the country's population, were registered on January 1, 2001. Environmental factors in cities such as housing, transportation, air quality and public green space, etc., are important to the quality of life. But which cities have cleaner air, more urban parkland, or more pleasant climate? Which do a better job at organising traffic systems, waste management or public sanitation? Which cities are wasteful in their use of water or energy? To answer these questions, at least at a preliminary level, the so-called "Green Cities Index" which ranks cities on several environmental criteria, was developed (Cutter, S.L., 1992).

Ranking cities according to their environmental quality and level of environmental awareness is not a simple task. Over the years, many quality-of-life rankings comparing countries or cities, have appeared in special literature (Kerényi, A., 1995), although few have focused on environmental criteria (e.g. Cutter, S.L., 1992; Kerényi, A., 1995). In this study, 25 environmental indicators were initially considered for each of the 236 Hungarian cities. Indicators, which were not shared by all cities were subsequently omitted. As well, the cities were ranked by population and population density. However, these two parameters were not included for ranking according to the Green Cities Index, since larger and more densely populated cities do not necessarily have poorer environmental quality. Because environmental regulations in many cities have become increasingly more stringent, part of the data used in this study may be obsolete by publication date. Consequently, Green Cities Index rankings should be viewed as a measure of environmental quality and concern at a given point in time.

The data basis for the study are drawn from the statistical yearbooks of Hungarian counties and Budapest for 2000.

2. Environmental indicators

Seven different categories of environmental indicators ranging from water consumption to air quality were included in the Green Cities Index. Specific measures within each category were selected on the basis of data availability. Some related measures were combined to yield new, composite measures. Altogether 25 indicators were considered initially but only 19 were retained. The seven categories and their 19 indicator elements, are listed in Table 1.

Data on all 19 indicators are available for only 88 of the 236 cities in the data base. Hence, further analyses are based on those 88. Though these indicators are neither perfect nor exhaustive, they enable an overall comparison among the relevant cities.

Table 1. Categories and Indicators Used for Compiling the Green Index for Hungarian Cities and Counties

		INDICATO	RS		
CATEGORIES	Serial number	Elements	Units		
Water Consumption	1	Water use	m ³ / capita / year		
	2	Gas consumption	m ³ / household / year		
Energy Consumption	3	Electric energy consumption	kWh / household / year		
	4	Degree days	sum of heating and cooling degree days		
	5	Ratio of households connected to gas conduit network	percent		
Public Utilities Supply	6	Ratio of dwellings connected to drinking water conduit network	percent		
	7	Ratio of dwellings connected to public sewerage system	percent		
	8	Public sewerage system	m / km drinking water conduit		
Traffic	9	Supply with passenger car	inhabitants per passenger car		
	10	Drained-off waste water total	m ³ / capita / year		
Wasterman	11	Total waste removed	m ³ / capita / year		
Waste management	12	Ratio of dwellings connected to regular waste removal system	percent		
	13	Public green area	m ² / capita		
	14	Ratio of constructed inner roads	percent		
Settlement amenities factors	15	Ratio of constructed public surfaces cleaned regularly	percent		
	16	Housing	occupants / dwelling		
	17	Average concentration of particulates deposited	$g / m^2 / 30 days$		
Air Quality [£]	18	Average concentration of sulphur-dioxide	$\mu g / m^3$		
	19	Average concentration of nitrogen-dioxide	$\mu g / m^3$		

^{ξ} Based on average of non-heating half-year (200.04.01 – 2000.09.01) and average of heating half-year (2000.10.01 – 2000.03.31). Heating (cooling) degree-days are defined as the number of days when the mean temperature is above (below) 18°C, with each day weighted by the number of degrees above (below) 18°C. This parameter can be used as a measure of energy use for space heating (cooling) (Cutter, S,L. 1992). 18°C is considered the optimum temperature.

3. The Green Cities Index

3.1. Method

The Green City Index is derived as follows

- (a) The statistics on each indicator for each city was compiled from the Year books
- (b) Each indicator element is represented with a serial number (1 − 19). See column 2 of Table 1.
- (c) For each indicator element, cities were ranked from the most environmentally friendly (1) to least friendly (88) based on their statistics as determined in step (a). These ranks represent city scores on each indicator. The scores are listed in Table 2 under the identifying serial number.
- (d) The rank scores achieved for each city over the 19 indicator elements were averaged. The resulting figure is the City Green Index (column 3, Table 3).
- (e) Finally, the Green City Indices were ranked to yield the Final Sequence (column 2, Table 3). The Final Sequence (FS) places the cities in rank order from the best (1) to the worst (88) based on step (d). FS is a rank of ranks.

It is noted that the indicator elements were not weighted to reflect their relative importance to environmental quality or overall contribution to making a city liveable. Rather, they illustrate how each city fared when compared to others.

Human activities are the greatest source of contaminants in the environment. Thus, population and population density might be important environmental factors. But their implications to environmental quality are freqently contradictory since increases in the size of either variables or both, do not automatically indicate a tendency towards poorer environmental quality. For example, compact and highly centralised cities with high population densities, have the advantage of decreasing passenger car traffic between city centre and the suburbs thus contributing to lower air pollution loads. However, such advantage may be mitigated by more concentrated sources of pollution and waste, and more congestion. On the other hand, cities that sprawl and are dispersed, resulting in lower population densities, may have a harder time providing mass transit, but they may have more open space. On balance, large centralised cities tend to have greater difficulty achieving the same level of environmental quality than smaller cities. To test the impact of population and population density on the Green Index, a second set of Final Sequence (modified sequence) based on 21 indicator elements – the nineteen original ones, plus population and population density – was derived.

(1 = best, 88 = worst)																			
City		Environmental indicators																	
	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.
Ajka	40	60	49	76	79	43	24	81	48	52	41	67	28	67	18	49	61	73	24
Baja	71	41	31	41	23	46	54	36	26	73	28	64	11	55	73	16	86	20	27
Balassagyarmat	9	70	75	80	59	52	43	57	55	70	13	48	79	71	58	76	44	74	70
Balatonalmádi	82	49	15	61	71	41	44	37	10	43	84	86	38	81	51	2	12	53	18
Balatonboglár	73	38	52	13	30	63	25	16	3	49	42	83	18	37	1	6	17	4	13
Balatonföldvár	87	20	14	12	53	71	1	8	2	86	80	87	4	11	9	1	17	4	14
Balatonfüred	65	63	62	61	74	1	57	24	7	53	81	81	6	82	29	21	12	53	19
Balatonlelle	83	36	26	14	63	1	28	13	7	57	66	82	1	56	31	10	17	4	15
Bátonyterenye	4	37	33	81	45	66	68	73	83	7	37	63	27	29	13	25	22	64	40
Békés	23	35	37	58	20	58	83	68	80	6	21	50	72	70	16	33	77	86	26
Békéscsaba	30	23	23	56	19	73	63	80	44	77	34	15	42	54	33	21	43	80	30

Table 2. Green cities rankings on the environmental indicators considered

Bonyhád	15	52	67	6	37	48	15	15	24	29	25	1	55	16	56	73	78	26	23
Budaörs	86	64	58	60	7	80	35	2	1	87	68	37	75	84	64	82	24	9	65
Budapest	88	15	45	49	67	32	11	- 7	9	88	49	1	26	60	1	3	37	84	83
Cegléd	11	44	35	52	46	61	75	85	72	17	24	75	78	79	61	63	23	2	61
Csongrád	43	24	4	44	38	77	78	83	76	11	44	84	32	76	30	4	0	68	75
Debrecen	36	32	24	69	44	33	38	34	58	79	17	19	68	68	26	38	50	61	20
Dombóvár	31	71	72	4	81	75	67	72	59	18	52	73	30	53	22	33	56	24	22
Dorog	17	83	85	23	76	1	1	65	62	35	45	12	53	25	35	35	45	36	78
Dunakeszi	64	67	68	50	1	49	65	59	13	33	43	49	82	86	17	65	1	10	42
Dunaújváros	78	1	12	37	4	36	10	4	73	71	76	68	9	40	25	27	88	72	52
Eger	63	26	18	75	26	50	23	30	34	68	83	45	41	47	11	15	38	52	29
Esztergom	14	85	70	24	78	40	53	44	48	32	15	23	74	74	40	61	6	38	88
Fonyód	85	29	6	10	73	1	16	86	6	56	75	76	3	66	21	14	17	4	16
Gárdony	84	33	3	39	56	47	5	50	15	45	86	72	15	7	87	71	33	83	66
Göd	74	81	69	51	18	38	82	60	25	8	4	21	87	88	64	83	1	10	43
Gyöngyös	62	31	46	70	55	65	62	14	23	69	35	74	40	30	52	11	30	56	12
Győr	19	6	34	33	9	67	32	31	21	84	79	9	14	28	10	43	76	62	76
Gyula	66	21	22	57	15	69	58	58	52	64	39	78	19	42	41	19	39	79	10
Hajdúnánás	37	48	61	74	46	83	85	77	87	21	8	11	76	65	47	57	48	29	6
Hajdúszoboszló	20	43	10	68	25	1	86	74	68	31	65	79	77	18	63	47	16	34	31
Hatvan	41	59	57	65	14	1	84	84	51	14	88	40	31	22	71	30	62	44	9
Jászberény	18	51	59	64	43	58	74	42	44	19	73	71	67	30	85	17	9	23	8
Kalocsa	54	46	60	45	22	87	50	23	40	55	82	62	44	8	57	45	66	21	11
Kaposvár	47	14	38	1	21	24	29	29	36	44	70	39	52	45	7	40	40	19	38
Kazincbarcika	24	3	5	87	48	41	13	40	84	24	47	14	33	21	20	47	73	85	39
Kecskemét	29	25	21	46	32	72	66	66	18	60	27	43	70	78	34	31	84	27	59
Keszthely	56	39	54	22	52	51	30	1	14	41	53	41	50	57	68	21	83	31	2
Kistelek	39	22	50	41	27	82	88	87	77	3	60	88	45	80	53	4	42	66	77
Kisvárda	21	68	73	72	39	78	76	20	60	80	11	1	81	14	50	81	55	59	73
Komárom	57	76	76	40	68	21	48	39	42	63	61	26	34	64	79	41	54	35	54
Komló	16	47	48	21	86	15	4	12	82	22	12	55	13	13	70	27	63	32	68
Kőszeg	34	54	78	47	71	44	18	38	63	47	56	54	17	24	49	76	40	1	32
Lenti	58	9	39	26	34	17	72	55	22	26	29	1	62	43	59	43	87	33	1
Lőrinci	12	74	83	66	42	86	87	88	81	4	7	46	88	1	38	45	28	49	3
Mátészalka	27	69	74	78	60	21	69	10	39	61	20	52	66	17	43	73	53	70	81
Miskolc	35	10	7	85	28	17	21	17	79	48	10	13	29	59	46	25	32	82	57
Mohács	13	42	25	5	74	55	46	71	73	51	55	44	48	9	76	12	70	25	41
Mór	32	77	77	38	58	1	50	63	47	34	63	66	46	77	77	76	82	88	63
Mosonmagyaróvár	68	75	84	36	77	60	49	19	26	78	72	33	54	44	55	61	71	77	86
Nagykanizsa	60	7	2	30	15	17	22	5	32	50	5	30	43	35	54	36	79	41	5
Nagymaros	75	88	27	29	80	26	73	45	75	16	62	85	86	23	88	17	1	10	44
Nyíregyháza	53	40	29	73	39	36	40	43	30	46	19	59	21	73	19	76	68	46	82
Orosháza	33	53	16	48	30	85	77	70	71	54	50	65	65	75	44	7	58	81	28
Oroszlány	5	80	66	28	87	1	6	3	70	36	18	27	35	12	8	41	69	55	60
Ózd	1	12	11	82	50	79	70	78	86	9	2	56	8	15	77	36	49	76	49
Pápa	61	28	64	34	33	44	55	69	65	82	38	10	64	41	72	64	51	37	58
Pásztó	2	55	65	79	35	29	79	82	57	1	54	76	83	32	74	31	36	63	48
Pécs	42	13	41	16	49	24	17	53	34	39	14	58	10	58	75	21	65	57	74
Pilisvörösvár	52	87	55	25	10	62	80	9	42	5	23	47	2	85	64	87	1	10	45
Sajószentpéter	3	61	30	88	29	84	71	26	88	27	59	34	71	19	62	84	85	87	71
Salgótarján	59	45	19	86	57	1	36	76	66	75	3	35	57	27	14	8	63	75	51
Siklós	50	66	88	1	88	54	59	79	46	12	1	61	22	1	1	52	45	30	47
Siófok	77	30	20	27	54	55	34	32	4	59	74	57	16	39	27	9	17	4	17
Sopron	45	16	42	19	13	1		33		81	51	1	37	51	23	57	80	67	85
1								1										· ·	

Sümeg	28	57	51	3	66	1	61	62	41	10	32	80	85	69	82	80	67	45	55
Százhalombatta	67	4	71	59	1	30	45	25	11	62	85	16	25	32	1	66	8	17	33
Szécsény	6	78	86	83	61	15	56	51	64	15	87	18	47	32	69	52	25	60	72
Szeged	81	5	17	17	8	23	42	52	50	83	67	20	51	61	32	12	27	69	87
Székesfehérvár	72	8	31	35	3	31	18	28	12	76	58	28	23	20	42	55	56	78	84
Szekszárd	44	50	43	7	69	17	13	27	17	66	31	60	59	52	45	38	52	18	50
Szentendre	80	84	56	9	41	57	39	56	5	42	69	69	56	62	81	66	15	16	67
Szentlőrinc	26	79	79	11	83	76	37	49	69	23	33	51	73	1	84	86	59	42	34
Szigetvár	8	73	82	8	84	1	63	48	54	28	6	42	39	1	39	71	75	28	64
Szolnok	70	17	13	55	24	35	31	18	55	85	78	38	7	45	60	20	47	22	7
Szombathely	48	18	36	43	11	39	8	46	20	58	26	31	63	36	1	49	26	10	56
Tapolca	22	34	47	30	64	1	47	64	37	20	36	29	36	38	24	70	11	48	25
Tata	46	82	80	15	70	74	60	54	28	40	9	24	5	50	48	55	10	38	35
Tatabánya	10	86	28	18	85	34	20	11	61	38	16	1	24	6	12	27	74	58	80
Tiszaújváros	55	2	9	84	35	26	3	6	33	72	77	24	20	48	1	49	12	50	21
Tiszavasvári	25	56	63	71	51	68	81	67	85	2	40	1	58	83	83	85	34	47	62
Vác	49	27	40	53	5	26	27	47	38	74	57	32	61	72	37	59	31	3	69
Várpalota	51	62	53	32	82	1	7	75	67	37	64	22	60	26	15	52	72	71	36
Veresegyház	79	72	1	53	6	70	52	22	31	13	46	53	80	87	64	88	1	10	46
Veszprém	69	19	44	63	12	63	33	41	18	65	48	36	69	63	28	66	60	51	53
Záhony	38	58	87	77	62	88	9	21	78	25	22	16	84	1	86	59	35	65	79
Zalaegerszeg	76	11	8	20	17	53	41	35	15	67	30	1	12	10	36	73	81	40	4
Zirc	7	65	81	67	65	81	26	61	53	30	71	70	49	49	80	66	28	43	37

3.1. Ranking the Cities – Final Sequence Results

The final sequence of the cities shows some surprising results (Table 3.) Nagykanizsa, near the Hungarian-Croatian border, is the highest-ranked city. Though ranks achieved in concentration of deposited particlates (79), water consumption (60), ratio of cleaned public area total (54) and waste water drainage (50) are relatively poor, the city's high rank placing in gas and electric energy consumption (ranked 7, and 2, respectively), development of the public sewerage system (5) and waste removal total, enables it to win its coveted position as the most environmentally friendly city in the country. Nagykanizsa is followed by settlements around Lake Balaton: Balatonföldvár (2), Balatonboglár (3) and Balatonlelle (4). Among the major cities, Szombathely (5), Zalaegerszeg (7) and Kaposvár (8) are stand out (Table 3.).

Mosonmagyaróvár (88), Mór (87) and Balassagyarmat (86) are the worst ranked cities (Table 3) inspite of their relatively good placing in a number of indicators. Mosonmagyaróvár is 19th ranked in development of public sewerage system and 33rd in the the ratio of dwellings connected to regular waste removal system. Mór is ranked 1st in both the ratio of households connected to the public water conduit network and its per capita water consumption. Balassagyarmat is 9th in per capita water consumption and 13th in waste removal total. Summing up, no city is found consistently either at the top or the bottom half of the rankings on all environmental indicators. All cities in Hungary are characterised by a mix of favourable and less favourable environmental quality.

Environmental quality of Hungarian cities is best in the western and southern parts of Transdanubia, where Green Cities Index values are smallest. There are no clear regional patterns in the rest of the country (Fig. 1.).

3.2. Examining the potential impact of population on the Green Index

The possible consequence of including population and population density in the Green Index was examined by comparing the rankings obtained with the inclusion of the two variables (modified Final Sequence) and those calculated without them (original Final Sequence). The Spearman's rank correlation coefficient, which was utilized for this purpose, yielded a value of of 0.94 significant at the 99.9% confidence level. This means that there is a significant connection between the original and modified groups of indicators. We would be in error once in 1000 cases. Hence, the original final sequence is not substantially influenced by not considering population and population density. This result indicates that, although not perfect, the Green Cities Index, as calculated, is a reasonably fair method of providing an environmental rating for cities in Hungary.

4. The Green Counties Index

The 19 Hungarian counties were also ranked from the most environmentally friendly to the worst. The same environmental indicators used for the cities were applied. The so-called Green Counties Index values are the average of the scores achieved by all cities within the county. The average scores on each of the 19 indicator elements are tabulated in Table 4. The Green Counties Index, similar to the cities, is effectively a rank of ranks. Low numbers indicate better environmental quality.

The final rank order of the counties also shows some interesting results (Table 5). Somogy is the greenest county of Hungary. Though it is almost the most wasteful in water consumption (ranked 18) and average in waste removal (13), its favourable ranking in public green area total (1), average sulphur dioxide concentration (1), energy requirement and electric energy consumption (2 and 4, respectively), regularly cleaned constructed public surfaces (3) and average concentration of particulates deposited (3) make it the most environmentally county in the nation. Somogy is followed by Zala and Vas respectively. Both Zala and Vas score well in environmental factors related to infrastructural and social developments and to a lesser extent, in physical factors such as air quality and green areas. The Green Counties Index is a good measure of the general development of the counties. It well reflects the fact that the western part of the country, namely Transdanubia, is much more environment-sensitively developed than eastern Hungary.

The seven counties, which did the best are all found in Transdanubia (Somogy, Zala, Vas, Komárom-Esztergom, Veszprém, Baranya and Győr-Moson-Sopron) while the five counties, which did the worst, are all found in the Great Hungarian Plain: Szabolcs-Szatmár-Bereg, Hajdú-Bihar, Békés, Bács-Kiskun and Heves (Table 5). Szabolcs-Szatmár-Bereg, Hajdú-Bihar and Békés, however, do well in some indicators. For example, in Szabolcs-Szatmár-Bereg county, waste removal total (ranked 2), waste water drainage (4) and management of public sewerage system (5) are all very favourable. In Hajdú-Bihar county, per capita water consumption (2), waste removal (3) and the average nitrogen-dioxide concentration (4) rank well. In Békés county, the number of inhabitants per dwelling (2), electric energy consumption per capita (3), dwellings connected to gas conduit (5) and the average nitrogen-dioxide concentration (6) are among the best in the country.

As in cities, no one county is found consistently at either at the top or the bottom half of the rankings on all indicators. In general, Transdanubian counties enjoy better placement than counties in eastern Hungary (Fig. 2).

5. Objective classification of the cities and counties

5.1. Method

Objective classification of the cities and counties examined was made with the help of cluster analysis. The aim was to group cities and counties objectively based on similarity in environmental conditions. The basis for the classification is to maximise the homogeneity of cities and counties within the clusters and maximise the heterogeneity among them. The database for the analysis consisted of city (county) scores in each of the 19 environmental indicators measured in 2000.

Table 3.

Average of rankings of the environmental indicators considered; namely, the Green Cities Index, and the final sequence of the cities (1 = best, 88 = worst)

			of the cities $(1 = best,$		
City	Final sequence	Green Cities Index	City	Final sequence	Green Cities Index
Nagykanizsa	1	29.89	Gyula	45	44.63
Balatonföldvár	2	30.58	Balatonfüred	46	44.79
Balatonboglár	3	30.68	Salgótarján	47	44.89
Balatonlelle	4	32.11	Jászberény	48	45.00
Szombathely	5	32.89	Hajdúszoboszló	49	45.05
Tiszaújváros	6	33.00	Dunakeszi	50	45.47
Zalaegerszeg	7	33.16	Hatvan	51	45.63
Kaposvár	8	33.32	Veresegyház	52	46.00
Siófok	9	34.32	Balatonalmádi	53	46.21
Százhalombatta	10	34.63	Kalocsa	54	46.27
Fonyód	11	34.74	Várpalota	55	46.58
Bonyhád	12	34.79	Kecskemét	56	46.74
Tapolca	13	35.95	Nyíregyháza	57	46.95
Tatabánya	14	36.26	Gárdony	58	47.21
Miskolc	15	36.84	Csongrád	59	47.26
Komló	16	37.16	Veszprém	60	47.42
Oroszlány	17	37.21	Esztergom	61	47.74
Lenti	18	37.68	Göd	62	47.78
Szolnok	19	38.26	Dombóvár	63	48.16
Győr	20	38.58	Békés	64	48.37
Sopron	21	39.05	Lőrinci	65	48.84
Kazincbarcika	22	39.37	Nagymaros	66	50.00
Budapest	23	39.74	Cegléd	67	50.74
Székesfehérvár	24	39.89	Hajdúnánás	68	50.84
Szekszárd	25	39.91	Pápa	69	51.05
Pécs	26	40.00	Szentendre	70	51.14
Keszthely	27	40.32	Sümeg	71	51.32
Eger	28	40.74	Szécsény	72	51.42
Dunaújváros	29	41.21	Komárom	73	51.47
Pilisvörösvár	30	41.63	Ajka	74	51.58
Siklós	31	42.26	Pásztó	75	51.63
Szeged	32	42.32	Mátészalka	76	51.74
Vác	33	42.47	Budaörs	77	52.00
Dorog	34	42.74	Záhony	78	52.11
Debrecen	35	42.84	Szentlőrinc	79	52.37
Szigetvár	36	42.88	Orosháza	80	53.16
Bátonyterenye	37	43.00	Kisvárda	81	53.26
Baja	38	43.26	Zirc	82	54.16
Tata	39	43.32	Kistelek	83	54.26
Mohács	40	43.95	Tiszavasvári	84	55.89
Gyöngyös	41	44.05	Sajószentpéter	85	56.79
Békéscsaba	42	44.21	Balassagyarmat	86	58.05
Kőszeg	43	44.37	Mór	87	58.68
Ózd	44	44.53	Mosonmagyaróvár	88	59.21

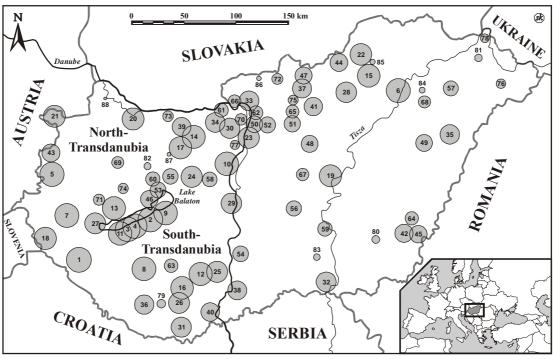


Fig. 1.

Environmental quality of cities according to their Green Cities Index. [High values (circles with large area) = favourable; Low values (circles with small area) = disadvanted] The numbers indicate the final sequence of the cities

(1 = best, 88 = worst; see Table 3)

County Environmental indicators																			
County							Env	iror	me	ntal	ind	licat	ors						
	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.
Bács-Kiskun	15	6	5	10	10	19	18	19	5	10	З	19	18	13	13	3	18	6	8
Baranya	11	13	17	1	17	9	6	6	10	3	6	13	2	9	17	7	15	7	12
Békés	10	5	3	12	5	18	17	18	16	13	7	17	14	18	8	2	12	19	6
Borsod-Abaúj-Zemplén	1	17	8	19	12	14	10	4	19	2	З	5	16	4	11	11	13	18	11
Csongrád	16	2	2	8	2	15	15	15	14	18	16	11	9	12	7	1	2	16	18
Fejér	14	10	7	7	3	2	8	2	9	14	17	7	10	2	15	17	17	17	15
Győr-Moson-Sopron	13	11	18	6	6	5	3	9	1	19	19	1	5	8	1	15	16	15	19
Hajdú-Bihar	2	9	11	15	14	12	19	16	17	15	3	10	19	17	12	15	7	9	4
Heves	7	14	12	16	7	13	12	14	11	17	18	14	17	6	9	4	8	11	3
Jász-Nagykun-Szolnok	4	7	6	14	9	10	16	13	18	8	8	18	13	14	19	6	4	4	2
Komárom-Esztergom	5	19	14	5	19	3	2	3	12	9	11	2	8	3	5	10	10	10	17
Nógrád	3	16	13	18	15	1	9	17	15	16	15	6	12	7	4	5	9	14	14
Pest	17	18	9	11	1	16	13	10	2	1	1	16	3	19	18	19	1	3	13
Somogy	18	3	4	2	11	8	4	8	4	5	13	8	1	11	3	8	3	1	5
Szabolcs-Szatmár-Bereg	8	12	16	17	13	17	14	5	13	4	2	15	11	16	10	18	14	13	16
Tolna	6	15	19	4	18	11	11	12	7	7	11	12	15	10	16	9	11	4	7
Vas	9	4	15	9	8	4	5	7	6	11	13	4	6	5	2	12	5	2	10
Veszprém	12	8	10	13	16	6	1	11	8	6	9	9	7	15	6	12	6	12	9
Zala	19	1	1	3	4	7	7	1	3	12	9	3	4	1	14	12	19	8	1

Table 4.
Green counties rankings on the environmental indicators considered
(1 = best, 19 = worst; the numbers indicate the counties)

Table 5.

Average of rankings of the environmental indicators considered; namely, the Green Counties Index, and the final sequence of the counties (1 = best, 19 = worst; the numbers indicate the counties)

County	Final sequence	Green Counties Index
Somogy	1	6.32
Zala	2	6.79
Vas	3	7.21
Komárom-Esztergom	4	8.79
Veszprém	5	9.26
Baranya	6	9.53
Győr-Moson-Sopron	7	10.00
Pest	8	10.05
Fejér	9	10.16
Jász-Nagykun-Szolnok	10	10.16
Borsod-Abaúj-Zemplén	11	10.42
Csongrád	12	10.47
Tolna	13	10.79
Nógrád	14	11.00
Heves	15	11.21
Bács-Kiskun	16	11.47
Békés	17	11.58
Hajdú-Bihar	18	11.89
Szabolcs-Szatmár-Bereg	19	12.32

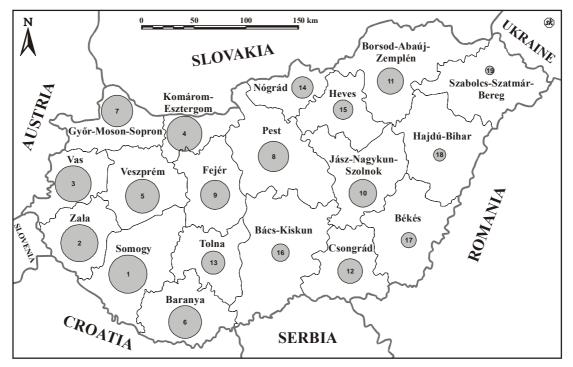


Fig. 2.

Environmental quality of counties according to their Green Counties Index. [High values (circles with large area) = favourable; Low values (circles with small area) = disadvanted] The numbers indicate the final sequence of the counties (1 = best, 19 = worst; see Table 5)

5.2. Results

5.2.1. Cities

The 88 cities were divided into 6 groups. Three groups (Groups 2, 4 and 5) have few cities within them (Fig. 3). Group 2 contains three settlements in Zala county (Nagykanizsa, Zalaegerszeg, Lenti), as well as Bonyhád, Keszthely and Dunaújváros. Four cities in Group 4 are located in the Lake Balaton region (Balatonalmádi, Balatonlelle, Fonyód, Balatonföldvár), the remaining two, Csongrád and Kistelek, lie east. Group 5 cities cluster around Budapest (Göd, Veresegyház, Pilisvörösvár, Dunakeszi). Three groups contain more than ten cities each; 14 in Group 1, 30 in Group 2 and 28 in Group 6.

The 6 groups of the cities, considered to be the most homogenous ones according to the cluster analysis, do not form a comprehensive (contiguous) spatial system. All the 14 cities of Group 1 are found either in eastern or northern Hungary, indicating considerable dispersion. Group 2 consists of 6 Transdanubian settlements, 4 are located in the southwestern part of Transdanubia, while the other two are far from them. The 30 cities of Group 3 also exhibit considerable spatial dispersion. Here, two distinct sub-groups are found; one in the southern part of Transdanubia and the other in the northern part. Four cities in Group 4 are found around Lake Balaton, while the other two are in the southern part of the Great Hungarian Plain. All the 4 cities of Group 5 are found around Budapest. Though settlements belonging to Group 6 (28 cities) show density junctions in the middle part of Transdanubia, south of Budapest and Northern Hungary, they are considerably dispersed (Fig. 3).

Spatial distribution of cities, with symbols of their 6 clusters produced by using cluster analysis. [Right and down the sign, serial number of the cluster and the number of cities in the cluster (in parenthesis) are found.]

5.2.2. Counties

Environmental indicators for the counties, as basic data, were created by averaging scores for the cities belonging to each county. As a result, 6 groups of the counties were determined. Group A consists of Baranya, Tolna, Vas, Veszprém and Komárom-Esztergom counties; Group B comprises Fejér, Zala and Somogy counties. Group C involves only GyőrMoson-Sopron county. Group D includes the counties of the southern part of the Great Hungarian Plain (Békés, Csongrád and Bács-Kiskun counties). While Group E, the largest one, contains six counties (Heves, Nógrád, Hajdú-Bihar, Jász-Nagykun-Szolnok, Borsod-Abaúj-Zemplén and Szabolcs-Szatmár-Bereg), Group F, has only one – Pest.

The grouping of counties by using cluster analysis, separated regions more clearly. The southern part of the Great Hungarian Plain (Bács-Kiskun, Csongrád and Békés counties) is well defined. The middle part of the Great Hungarian Plain and Northern Hungary (Jász-Nagykun-Szolnok, Hajdú-Bihar, Nógrád, Heves, Borsod-Abaúj-Zemplén and Szabolcs-Szatmár-Bereg counties) stand out as well. Zala, Somogy and Fejér counties form a distinct region as do regions representing Vas, Veszprém and Komárom-Esztergom counties; Baranya and Tolna; Győr-Moson-Sopron and Pest.

Fig. 4.

Spatial distribution of counties, with symbols of their 6 clusters produced by using cluster analysis. [Right and down the sign, serial number of the cluster and the number of cities in the cluster (in parenthesis) are found.]

6. Conclusion

The aim of the study was to rank and classify Hungarian cities and counties according to their environmental quality and level of environmental awareness.

The top 5 most environmentally friendly cities are, in descending order, Nagykanizsa, Balatonföldvár, Balatonboglár, Balatonlelle and Szombathely. The bottom five are, starting with the worst, Mosonmagyaróvár, Mór, Balassagyarmat, Sajószentpéter and Tiszavasvári. Cities situated in the western and southwestern part of Transdanubia have the best environmental quality. In the rest of the country, cities with either favourable or unfavourable positions, are mixed, forming no comprehensive regional patterns.

Whereas the top 3 counties are Somogy, Vas and Zala; Szabolcs-Szatmár-Bereg, Hajdú-Bihar and Békés counties are the most disadvantaged. Environmentally most friendly counties occur in Transdanubia clearly separated from the most unfriendly ones found in eastern Hungary.

While the 6 groups of cities, considered most homogenous, do not form comprehensive spatial patterns, the classification of the counties according to cluster analysis defines six clear regions.

Acknowledgement

The authors thank A. Kerényi, A. Bartzokas, Gy. Lencsés and Z. Kovács for consultations and B. Vasköviné and B. László for handing national immission data for the period October 1, 2000 – March 31, 2001.

References

- Cutter, S.L., 1992: Green Cities. Ranking major cities by environmental quality reveals some surprises.
 In: Hammond, A. (ed.), 1992: Environmental Almanac World resources Institute -Houghton Mifflin Company, 169-186. Boston, 606 p.
- Kerényi, A., 1995: General Environmental Protection. Global concerns, possible solutions. Mozaik Educational Studio, Szeged, 383 p. ISBN 963 8024 75 5 (in Hungarian)
- Vaskövi Béláné, 2000: National air quality (immission) data 2000. April September, nonheating half-year. Egészségtudomány, XLIV/4, 366-377. (in Hungarian)

Publications of the Central Statistical Office

Statistical Year Books of the Hungarian counties, 2000 (in Hungarian) Statistical Year Book of Budapest, 2000 (in Hungarian)