Accurate \textit{ab initio} potential energy surface, dynamics, and thermochemistry of the \(\text{F} + \text{CH}_4 \rightarrow \text{HF} + \text{CH}_3 \) reaction

Gábor Czakó, Benjamin C. Shepler, Bastiaan J. Braams, and Joel M. Bowman

Emerson Center for Scientific Computation and Department of Chemistry
Emory University, Atlanta, GA, USA

DMC, July 6, 2009
Introduction

Quasiclassical trajectory (QCT) calculations

- **Nuclear motion: Classical mechanics**
 QCT requires around 10^7–10^8 forces, *i.e.* potential gradients

- **Electronic motion: Quantum mechanics \Rightarrow potential energies and gradients**

- **Direct dynamics**
 "on the fly" electronic energy and gradient computations
 expensive \Rightarrow low level of theory

- **Semiempirical reaction specific Hamiltonians**

- **Analytical potential energy surfaces (PES)**
 differentiation of the PES \Rightarrow inexpensive gradients
 ab initio-based *(higher level of theory)* or (semi)empirical

Applications for the F + CH$_4$ \rightarrow HF + CH$_3$ reaction
Permutationally invariant potential energy surfaces in high dimensionality

Permutational symmetry: numerical efficiency (less coefficients) important for dynamics (e.g. isomerization)

\[
V = \sum_{m=0}^{M} C_m [y_{12}^a y_{13}^b y_{14}^c y_{23}^d y_{24}^e y_{34}^f]
\]

\[
m = a + b + c + d + e + f
\]

Morse variable

\[
y_{ij} = \exp(-r_{ij} / a)
\]

Linear least-squares fit to *ab initio* energies ⇒ \(D_m\) coefficients

Implementation is based on the invariant polynomial theory

\[
V(y) = \sum_{\alpha=1}^{M} \text{poly}_\alpha(p(y))q_\alpha(y)
\]

\(p(y): N(N-1)/2\) primary invariant polynomials

\(q_\alpha(y): \) secondary invariant polynomials

Example: \(A_2B\)

\[
p_1 = r_{12} \quad q_1 = 1
\]

\[
p_2 = (r_{13} + r_{23}) / 2
\]

\[
p_3 = (r_{13}^2 + r_{23}^2) / 2
\]
Number of terms vs. total polynomial order

<table>
<thead>
<tr>
<th>Molecule</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A<sub>3</sub></td>
<td>16</td>
<td>23</td>
<td>31</td>
<td>41</td>
</tr>
<tr>
<td>A<sub>2B</sub></td>
<td>34</td>
<td>50</td>
<td>70</td>
<td>95</td>
</tr>
<tr>
<td>ABC</td>
<td>56</td>
<td>84</td>
<td>120</td>
<td>165</td>
</tr>
<tr>
<td>A<sub>4</sub></td>
<td>40</td>
<td>72</td>
<td>120</td>
<td>195</td>
</tr>
<tr>
<td>A<sub>3B</sub></td>
<td>103</td>
<td>196</td>
<td>348</td>
<td>590</td>
</tr>
<tr>
<td>A<sub>2B</sub><sub>2</sub></td>
<td>153</td>
<td>291</td>
<td>519</td>
<td>882</td>
</tr>
<tr>
<td>A<sub>2BC</sub></td>
<td>256</td>
<td>502</td>
<td>918</td>
<td>1589</td>
</tr>
<tr>
<td>ABCD</td>
<td>462</td>
<td>924</td>
<td>1716</td>
<td>3003</td>
</tr>
<tr>
<td>A<sub>5</sub></td>
<td>64</td>
<td>140</td>
<td>289</td>
<td>580</td>
</tr>
<tr>
<td>A<sub>4B</sub></td>
<td>208</td>
<td>495</td>
<td>1101</td>
<td>2327</td>
</tr>
<tr>
<td>A<sub>3B</sub><sub>2</sub></td>
<td>364</td>
<td>889</td>
<td>2022</td>
<td>4343</td>
</tr>
<tr>
<td>A<sub>3BC</sub></td>
<td>636</td>
<td>1603</td>
<td>3737</td>
<td>8163</td>
</tr>
<tr>
<td>A<sub>2B</sub><sub>2</sub>C</td>
<td>904</td>
<td>2304</td>
<td>5416</td>
<td>11910</td>
</tr>
<tr>
<td>A<sub>2BCD</sub></td>
<td>1632</td>
<td>4264</td>
<td>10208</td>
<td>22734</td>
</tr>
<tr>
<td>ABCDE</td>
<td>3003</td>
<td>8008</td>
<td>19448</td>
<td>43758</td>
</tr>
</tbody>
</table>
Full-dimensional potential energy surface for the F + CH₄ reaction

Ab initio data

\[E_{\text{PES}} = E_{\text{UCCSD(T)/aVDZ}} + E_{\text{UMP2/aVTZ}} - E_{\text{UMP2/aVDZ}} \]

Test of the composite approach
Reference: explicit UCCSD(T)/aug-cc-pVTZ
rms error (cm⁻¹)

<table>
<thead>
<tr>
<th>Energy Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_{\text{UCCSD(T)/aVDZ}})</td>
<td>904</td>
</tr>
<tr>
<td>(E_{\text{UMP2/aVDZ}})</td>
<td>1256</td>
</tr>
<tr>
<td>(E_{\text{UMP2/aVTZ}})</td>
<td>1667</td>
</tr>
<tr>
<td>(E_{\text{PES}})</td>
<td>45</td>
</tr>
</tbody>
</table>

Data points
Complex region: FCH₄ 12384
Fragment channels:
- F + CH₄ 2000
- HF + CH₃ 2000
- H₂ + CH₂F 2000
- H + CH₃F 1000

Fit to the ab initio data

4! = 24 permutations of 15 \(r_{ij} \) for FCH₄

Without permutational symmetry: 54 264 terms
Using permutational symmetry: 3 250 terms

Fit
Number of free coefficients: 3250 + 12 (short-term repulsion)
RMS fitting errors
- 0–11000 cm⁻¹: 125 cm⁻¹
- 11000–22000 cm⁻¹: 222 cm⁻¹
- 22000–55000 cm⁻¹: 536 cm⁻¹

The $\text{F} + \text{CH}_4 \rightarrow \text{HF} + \text{CH}_3$ reaction

HF vibrational and rotational distributions

QCT calculations

\[E_{\text{coll}} = 1.8 \text{ kcal/mol} \]

75 000 trajectories

Correlated HF/DF and umbrella excited CD$_3$/CHD$_2$ vibrational populations at collision energy of 2.8 kcal/mol

F + CHD$_3$(v=0) → HF(v) + CD$_3$(0v$_2$00)

F + CHD$_3$(v$_1$=1) → HF(v) + CD$_3$(0v$_2$00)

F + CHD$_3$(v=0) → DF(v) + CHD$_2$(000v$_4$00)

F + CHD$_3$(v$_1$=1) → DF(v) + CHD$_2$(100v$_4$00)
Conclusions

“In order to find a similar quality of calculations for a global PES, one would need to compare the present result with those carried out for three atom systems. This work thus represents a major breakthrough in the determination of a global PES for a polyatomic system.”

“This study also shows that an approach as QCT is capable to explain many experimental features in a polyatomic reaction as long as an accurate PES is used.”

Referee report for