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Several techniques of varying efficiency are investigated, which treat all singularities present in the

triatomic vibrational kinetic energy operator given in orthogonal internal coordinates of the two

distances–one angle type. The strategies are based on the use of a direct-product basis built from

one-dimensional discrete variable representation (DVR) bases corresponding to the two distances

and orthogonal Legendre polynomials, or the corresponding Legendre-DVR basis, corresponding to

the angle. The use of Legendre functions ensures the efficient treatment of the angular singularity.

Matrix elements of the singular radial operators are calculated employing DVRs using the

quadrature approximation as well as special DVRs satisfying the boundary conditions and thus

allowing for the use of exact DVR expressions. Potential optimized (PO) radial DVRs, based on

one-dimensional Hamiltonians with potentials obtained by fixing or relaxing the two non-active

coordinates, are also studied. The numerical calculations employed Hermite-DVR, spherical-

oscillator-DVR, and Bessel-DVR bases as the primitive radial functions. A new analytical formula

is given for the determination of the matrix elements of the singular radial operator using the

Bessel-DVR basis. The usually claimed failure of the quadrature approximation in certain singular

integrals is revisited in one and three dimensions. It is shown that as long as no potential

optimization is carried out the quadrature approximation works almost as well as the exact DVR

expressions. If wave functions with finite amplitude at the boundary are to be computed, the basis

sets need to meet the required boundary conditions. The present numerical results also confirm that

PO-DVRs should be constructed employing relaxed potentials and PO-DVRs can be useful for

optimizing quadrature points for calculations applying large coordinate intervals and describing

large-amplitude motions. The utility and efficiency of the different algorithms is demonstrated by

the computation of converged near-dissociation vibrational energy levels for the H+
3 molecular ion.

I. Introduction

There are three principal approaches used for exact (within

the given potential energy surface, PES) variational nuclear

motion computations based on solving the time-independent

(ro)vibrational Schrödinger equation. The first and most

widely employed technique is based on internal coordinates

and prederived, tailor-made Hamiltonians, see, e.g., ref. 1, and

usually requires the development of separate computer

codes2–8 for each new system. This approach has been mostly

developed for triatomic and to some extent tetratomic systems

and has been used to compute spectra of molecules exhibiting

large-amplitude motions and even complete (up to the first

dissociation limit) (ro)vibrational spectra.9,10 The second, to

some extent universal approach11,12 does not require developing

separate computer codes for molecules of different size and

bonding arrangement and it is based on rectilinear normal

coordinates and the Eckart–Watson Hamiltonian.13 It can be

used efficiently for semirigid molecules but quickly looses its

effectiveness for treating large-amplitude motions and for

systems with multiple minima. The third, fully numerical,

universal, and almost ‘black-box’ approach14–17 exhibits the

favorable characteristics of the first two approaches, as it is

built upon internal coordinates and is applicable to almost

all full- or reduced-dimensional systems, coordinates, and

coordinate embeddings using a single code. This approach is

not yet ready for extremely demanding applications like the

computation of the full spectrum, i.e., the complete rotational–

vibrational line-list of a molecule, which is one of the long-term

goals of our research efforts. In what follows, the discussion

concentrates on the first approach and only on triatomic

systems, though generalizations of the results obtained will also

be provided.

If so-called singular nuclear configurations, corresponding

to singularities present in the kinetic energy operator, are
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energetically accessible by the nuclear motions investi-

gated, special care must be exercised to avoid the resulting

numerical problems during variational computation of

(ro)vibrational energy levels. Theoretical techniques that do

not treat these singularities may result in unconverged eigen-

energies; therefore, these methods cannot be employed when

the goal is the determination of the complete (ro)vibrational

spectrum.

There is a history of treatments offered to circumvent

the radial singularity problem present in first-principles

rovibrational spectroscopy. In 1993, Henderson, Tennyson,

and Sutcliffe (HTS)18 reanalyzed their 3-dimensional discrete

variable representation (DVR) vibrational calculations in

Jacobi coordinates for the H+
3 molecular ion in order to

find the source of the ‘‘nonvariational’’ behaviour of their

results highlighted by Carter and Meyer.19 The discrepancy

was traced back to the failure of the standard quadrature

approximation in certain integrals appearing during the DVR

representation of the Hamiltonian. Different solution strategies

of the radial singularity problem observed in Jacobi coordinates

were proposed. The first, a priori solution strategy avoids the

singularity problem by switching to a different coordinate

system. One can use nonorthogonal valence coordinates (i.e.,

two bond lengths and a bond angle). Valence coordinates, in

comparison with Jacobi coordinates, are less well adapted to

the potential, and despite their effective lack of singularities,

they are a poor choice for very floppy molecules, like H+
3 .6

Along the same line, Watson20 advocated the use of hyper-

spherical coordinates21 to avoid the radial singularity

problem. Another, a posteriori strategy is based on the use

of orthogonal coordinates, e.g. Jacobi coordinates, but with

the proper treatment of the radial singularities. Two types of

strategies should be mentioned. In the first approach, direct

product of elementary basis functions having the proper

boundary conditions are used and the matrix elements of the

singular oparators are computed analytically, thus avoiding

the use of the quadrature approximation. This strategy was

followed by HTS utilizing the spherical oscillator functions

and a successive contraction and diagonalization technique.18

A similar strategy was followed by Bramley and Carrington6

for the calculation of the vibrational energy levels of H+
3

but using an iterative Lanczos approach. The second approach

is based on appropriate nondirect-product bases designed

to avoid the numerical consequences of the radial singularities.

It is important to note that the radial singularity is coupled

to the angular singularity, because when one of the radial

coordinates becomes zero the Y coordinate becomes undefined

(see eqn (1) below). Therefore, an optimal basis is always a

nondirect-product of functions depending on the coupled

coordinates. Nevertheless, to the best of our knowledge

there are only two techniques available that treat the singula-

rities using a nondirect-product basis. Bramley et al.22

advocated an approach that treats the radial singularity in a

triatomic vibrational problem by using two-dimensional non-

direct-product polynomial basis functions, which are the

analytic eigenfunctions of the spherical harmonic oscillator

Hamiltonian. In 2005 two of the authors of the present

paper and their co-workers23 advocated a similar nondirect-

product basis method employing a generalized finite basis

representation (GFBR) method24 for the triatomic vibrational

problem, whereby Bessel-DVR functions, developed by

Littlejohn and Cargo,25 were coupled to Legendre poly-

nomials. This approach was further improved in 200626 and

was augmented with the treatment of the rotational motion

in 2007.27

Although an optimal basis for treating the singularity

problem is a nondirect-product basis, the use of a direct-

product basis, though it results in a longer expansion of the

wave functions, has considerable advantages. First, the matrix

elements of the potential energy operator can be computed

more easily using a direct-product basis. Second, the structure

of the Hamiltonian matrix is simpler if a direct-product basis is

employed, allowing much more efficient coding of the matrix-

vector multiplications required for an iterative eigensolver.

(Note that this second problem hindered the use of the

algorithms proposed in ref. 23, 26 and 27). In this paper

different approaches based on direct-product basis sets will

be considered, which would allow the efficient computation of

the complete line-list of triatomic molecules. In 2006,

using contracted basis functions and direct diagonalizations,

computation of seemingly converged energies of all high-

lying vibrational states of the H+
3 molecular ion required

the use of a large parallel supercomputer.9,10 Therefore, it

appears to be still necessary to further improve the efficiency

of those techniques which can solve the time-independent

(ro)vibrational Schrödinger equation while treating the

important singularities and thus, in principle, are able to

determine the full (ro)vibrational spectra of small molecules.

This paper examines efficient a posteriori routes and makes

recommendations on how to compute the full vibrational

eigenspectrum of triatomic molecules at a modest cost.

One should not forget that the ability to perform such

calculations is also a requirement to compute the yet exotic

resonance (quasibound) states of molecular systems via a

bottom-up approach.

II. Theoretical background

Several strategies exist to set up a matrix representation of a

vibrational Hamiltonian of triatomic molecules (see, e.g.,

ref. 3–7, 18–20, 22 and 23). In the past two decades the

use of orthogonal internal coordinate systems (O) became

widespread because kinetic energy operators in orthogonal

coordinates lack cross-derivative terms and thus have a very

simple form. The Sutcliffe–Tennyson vibrational Hamiltonian

of triatomic molecules1 using orthogonal coordinates {R1,R2,Y},

e.g. Jacobi28 or Radau29 coordinates, is written in atomic

units as

Ĥ ¼� 1

2m1

@2

@R2
1

� 1

2m2

@2

@R2
2

� 1

2m1R2
1

þ 1

2m2R2
2

� �
@2

@Y2
þ cotY

@

@Y

� �
þ V̂ðR1;R2;YÞ;

ð1Þ

where V̂ is the potential energy operator, m1 and m2
are appropriately defined1 mass-dependent constants, R1

and R2 denote the two stretching-type coordinates, Y is a
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bending-type coordinate, and the volume element for integra-

tion is sin YdR1dR2dY.

The conceptually simplest variational techniques employ

direct-product (P) basis sets for setting up the matrix

representation of Ĥ. Let us define a general three-dimensional,

orthogonal and normalized direct-product basis as

fwn1ðR1Þwn2ðR2ÞF‘ðcosYÞgN1�1;N2�1;L�1
n1¼0;n2¼0;‘¼0 , where the number of

R1-, R2-, and Y-dependent functions are N1, N2 and L,

respectively. One can now build theN1N2L�N1N2L-dimensional

Hamiltonian as

H ¼ K
N1�N1
1 � I

N2�N2
2 � IL�LY þ I

N1�N1
1 � K

N2�N2
2 � IL�LY

þ R
N1�N1
1 � I

N2�N2
2 � KL�L

Y

þ I
N1�N1
1 � R

N2�N2
2 � KL�L

Y þ V;

ð2Þ

where

ðKNj�Nj

j Þnj ;n0j ¼ hwnj ðRjÞj �
1

2mj

@2

@R2
j

jwn0
j
ðRjÞi

j ¼ 1 or 2;

ð3Þ

ðRNj�Nj

j Þnj ;n0j ¼ hwnj ðRjÞj
1

2mjR2
j

jwn0
j
ðRjÞi

j ¼ 1 or 2;

ð4Þ

ðKL�L
Y Þ‘;‘0 ¼

hF‘ðcosYÞj �
@2

@Y2
þ cotY

@

@Y

� �
jF‘0 ðcosYÞi;

ð5Þ

the matrices IN1�N1
1 , IN2�N2

2 , and IL�LY mean N1�N1-, N2�N2-,

and L�L-dimensional unit matrices, respectively, and the

elements of the N1N2L�N1N2L-dimensional potential energy

matrix are

ðVÞn1n2‘;n01n02‘0 ¼

hwn1ðR1Þwn2ðR2ÞF‘ðcosYÞ Vj jwn0
1
ðR1Þwn0

2
ðR2ÞF‘0 ðcosYÞi:

ð6Þ

Due to the appearance of the unit matrices in all the kinetic

energy terms and assuming that V is not a full matrix, the

matrix representation of the Hamiltonian results in an extre-

mely sparse matrix of special structure whose eigenvalues

can thus be obtained efficiently by an iterative (I) eigensolver.

The above-described procedure, first advocated probably

in ref. 6, is termed here OPI based on the abbreviations

introduced. In almost all of the OPI techniques, building

of the Hamiltonian matrix, whether done explicitly or not,

cost negligible computer time and thus the time-determining

step of these methods is the computation of the variational

eigenpairs through a large number of matrix-vector multi-

plications. The speed of an iterative eigensolver depends

on the sparsity and the structure of the Hamiltonian

matrix. The number of nonzero elements of H depends

on the choice of the basis functions and the employed

integration techniques used for calculating elements of

R
N1�N1
1 , RN2�N2

2 , and V [see eqn (4) and (6)]. Therefore, in

what follows different choices for the product basis functions

will be considered.

II.1 D
3
OPI

By employing DVR functions30 for all three variables, one can

set up the DVR representation of Ĥ. The resulting procedure

was termed DOPI in Ref. 4, where D stands for DVR and the

other abbreviations have been defined above. For the purposes

of the present discussion, let us call the DOPI technique

D3OPI, where the superscript 3 indicates that the DVR is

employed in all three dimensions. Employing D3OPI, the

matrices KN1�N1
1 , KN2�N2

2 , and KL�L
Y have elements which can

be obtained by analytical formulae,30 while elements of the

coordinate-dependentRN1�N1
1 andRN2�N2

2 matrices are calculated

using the quadrature approximation resulting in a diagonal

matrix representation. D3OPI makes use of one of the principal

advantages of the DVR representation, namely that the matrix

V is diagonal. Nevertheless, since some of the off-diagonal

matrix elements of H are non-zero anyway, this considerable

simplification is not fully needed when the full representation

of Ĥ is considered. The D3OPI final Hamiltonian matrix is

extremely sparse with only (N1+N2+L�2)N1N2L nonzero

elements, all at places known a priori (see the top panel

of Fig. 1).

While the diagonal matrix representation of the R̂�21 and

R̂�22 operators ensures that there are only a modest number of

nonzero elements in H, there might be a limitation for the

application of D3OPI due to the possible failure of the

quadrature approximation when one of the radial coordinates

goes to zero. It has generally been assumed6,18 that one cannot

use the quadrature approximation for calculating the integrals

given in eqn (4) if one wants/needs to treat the radial singularities.

Nevertheless, appropriate basis functions can be chosen which

satisfy the boundary conditions, namely wn1(R1 = 0) = 0 and

wn2(R2 = 0) = 0, allowing the exact computation of the matrix

elements of the singular radial terms.

II.2 ED3OPI

The D3OPI protocol can be modified by choosing radial

DVR bases in such a way that the integrals in eqn (4) are

nonsingular and use analytical formulae for calculating the

requested matrix elements. The resulting procedure is termed

ED3OPI, where E stands for the use of exact-DVR during the

determination of the matrix representations of the singular

operators. Due to the fact that the matrices R
N1�N1
1 and

R
N2�N2
2 become full matrices, H will become a much less

sparse matrix with (N1L+N2L�L)N1N2L nonzero elements

(see second panel of Fig. 1).

HTS18 employed this technique and used spherical-

oscillator DVR functions. However, they employed a

successive diagonalization and truncation technique instead

of an iterative eigensolver whereby the large increase in the

number of nonzero Hamiltonian matrix elements requires

different considerations. These computations proved to be

considerably more expensive than those based on diagonal

R
N1�N1
1 and R

N2�N2
2 matrices.

Thus, the question arises of how to treat the singularities

without introducing extra matrix elements into the D3OPI
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Hamiltonian. For this, one has to look for a modification of

the D3OPI procedure which does not compromise the sparsity

and structure of H.

II.3 D2FOPI

One seemingly useful approach is to employ DVR only for the

two radial coordinates and use a finite basis representation

(FBR) for the coordinate Y. This protocol can be termed

D2FOPI, where F stands for FBR in the angular dimension.

By employing the Legendre polynomials, Pl(cosY), for

describing the bending motion, advantage can be taken of

the fact that the Legendre polynomials are the analytic

eigenfunctions of the Y-dependent part of the kinetic

energy operator. Therefore, KL�L
Y is diagonal in this represen-

tation; thus, the matrices R
N1�N1
1 � I

N2�N2
2 � KL�L

Y and

I
N1�N1
1 � R

N2�N2
2 � KL�L

Y are also diagonal. Naturally, when

a mixed DVR-FBR technique is used, the potential energy

matrix will cease to be diagonal. However, due to the 2D

DVR, the matrix V remains block-diagonal, containing

blocks of dimension L�L (third panel of Fig. 1). The matrix

elements of V can be calculated using a Gauss–Legendre

quadrature as

ðVÞn1n2‘;n01n02‘0 ffi
XL
k¼1

wkP‘ðqkÞVðrn1 ; rn2 ; qkÞP‘0 ðqkÞdn1;n01dn2;n02 ;

ð7Þ

where wk are the Gauss–Legendre quadrature weights corres-

ponding to the quadrature points qk. The points rn1 and

rn2 correspond to the R1- and R2-dependent DVR bases,

respectively. Most importantly, as can be seen in Fig. 1, no

new nonzero matrix elements are introduced; theHmatrix has

exactly the same structure employing either D3OPI or D2FOPI.

II.4 ED2FOPI

Finally, let us consider what happens if one does not use the

quadrature approximation for calculating the elements of

R
N1�N1
1 and R

N2�N2
2 within D2FOPI. This method, where the

integrals given in eqn (4) are obtained using exact-DVR

Fig. 1 Pictorial representation of the shape and the nonzero elements of the matrices appearing in eqn (2) corresponding to different procedures,

namely, D3OPI, ED3OPI, D2FOPI, and ED2FOPI (for the sake of clarity, N1 = 3 and N2 = 4 have been chosen, see text).
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expressions and an FBR is used in 1D corresponding to the

angular coordinate, is termed ED2FOPI. Here, advantage

can be taken of the properties of Legendre polynomials, which

ensure that the matrices K
N1�N1
1 � I

N2�N2
2 � IL�LY and

I
N1�N1
1 � K

N2�N2
2 � IL�LY have the same structure as the matrices

R
N1�N1
1 � I

N2�N2
2 � KL�L

Y and I
N1�N1
1 � R

N2�N2
2 � KL�L

Y , respec-

tively. This means that no new nonzero matrix elements arise

when all the singularities in eqn (1) are treated employing

ED2FOPI.

In summary, this exact-DVR technique, as well as D3OPI and

D2FOPI result in exactly the same Hamiltonian matrix struc-

ture, with (N1+N2+L�2)N1N2L nonzero elements (Fig. 1).

III. Efficiency of matrix-vector multiplications

The computational cost of an iterative eigensolver mostly

depends on the speed of the multiplication of the matrix H

with an arbitrary vector v. Consider an arbitrary full matrix of

dimension N1N2L�N1N2L. In this case the computational cost

of a matrix-vector multiplication scales as (N1N2L)
2. Now, let

us take advantage of the sparsity and special structure of H

whereby the cost of a matrix-vector multiplication becomes

proportional to the number of nonzero elements of H

(see section II and Fig. 1).

In the case of a direct-product matrix an even more efficient

matrix-vector multiplication can be employed, advocated in

ref. 6, called sequential summation. An element of the product

vector of the matrix H defined in eqn (2) and vector v is

ðHvÞn1n2‘ ¼
XN1�1

n0
1
¼0

XN2�1

n0
2
¼0

XL�1
‘0¼0
½ðKN1�N1

1 Þn1;n01ðI
N2�N2
2 Þn2 ;n02ðI

L�L
Y Þ‘;‘0

þ ðIN1�N1
1 Þn1;n01ðK

N2�N2
2 Þn2;n02ðI

L�L
Y Þ‘;‘0

þ ðRN1�N1
1 Þn1;n01ðI

N2�N2
2 Þn2;n02ðK

L�L
Y Þ‘;‘0

þ ðIN1�N1
1 Þn1;n01ðR

N2�N2
2 Þn2;n02ðK

L�L
Y Þ‘;‘0

þ ðVÞn1n2‘;n01n02‘0 �ðvÞn01n02‘0 : ð8Þ

After some algebra, eqn (8) can be rearranged as

ðHvÞn1n2‘ ¼
XN1�1

n0
1
¼0
ðKN1�N1

1 Þn1;n01ðvÞn01n2‘

þ
XN2�1

n0
2
¼0
ðKN2�N2

2 Þn2;n02ðvÞn1n02‘

þ
XN1�1

n0
1
¼0
ðRN1�N1

1 Þn1;n01
XL�1
‘0¼0
ðKL�L

Y Þ‘;‘0 ðvÞn0
1
n2‘0

þ
XN2�1

n0
2
¼0
ðRN2�N2

2 Þn2;n02
XL�1
‘0¼0
ðKL�L

Y Þ‘;‘0 ðvÞn1n02‘0

þ
XN1�1

n0
1
¼0

XN2�1

n0
2
¼0

XL�1
‘¼0
ðVÞn1n2‘;n01n02‘0 ðvÞn01n02‘0 : ð9Þ

Computing eqn (9) directly, in order to obtain Hv, one

needs to perform (N1+N2+N1L+N2L+N1N2L)N1N2L

multiplications. However, if one introduces v0 A RN1�N2�L,

where ðv0Þn1n2‘ ¼
PL�1
‘0¼0
ðKL�L

Y Þ‘;‘0 ðvÞn1n2‘0 , (computation of v0

requires N1N2L
2 multiplications) and substitutes it in the

third and fourth terms of eqn (9), one can compute Hv

with (N1+N2+N1+N2+N1N2L)N1N2L+N1N2L
2 multipli-

cations altogether. The relative decrease of the computational

time can be significant if one uses a DVR-like method,

where V is diagonal; thus, only (N1+N2+N1+N2+1)

N1N2L+N1N2L
2=(2N1+2N2+L+1)N1N2L multiplications

are needed instead of (N1+N2+N1L+N2L+1)N1N2L.

When calculating Hv in the D3OPI, D2FOPI and ED2FOPI

representations, all the terms in eqn (9) have at most one sum,

thus, the above introduced method cannot be used and the

number of required multiplications scales with the number of

nonzero elements (N1+N2+L�2)N1N2L. However, in the

case of the ED3OPI representation, where the third and fourth

terms of eqn (9) have two sums, one can employ sequential

summation, which decreases the computational cost signifi-

cantly, since only (2N1+2N2+L+1)N1N2L multiplications

are required whereas the number of nonzero elements is

(N1L+N2L�L)N1N2L.

IV. Radial basis functions

IV.1 Primitive basis functions

In section II the equations were given with arbitrary radial

basis functions, i.e. wnj(Rj), and the actual forms of these

functions were not specified. During the present study three

radial basis sets were considered.

The first is the Hermite-DVR basis,30 with corresponding

spectral basis functions

wVBRnj
ðRjÞ ¼ NnjHnj ðKjðRj � Rj;0ÞÞe�K

2
j ðRj�Rj;0Þ2=2; ð10Þ

where

Nnj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kj

2nj nj !
ffiffiffi
p
p

s
;

Hnj
is the njth Hermite polynomial, Kj ¼ 2q

Kj¼1
Nj

=ðRmax
j � Rmin

j Þ
and Rj;0 ¼ ðRmin

j þ Rmax
j Þ=2, where q

Kj¼1
Nj

is the largest eigen-

value of Qj (see below) with Kj = 1 (largest appropriate

Gaussian quadrature point), and Rmin
j and Rmax

j are free

parameters. The Hermite-DVR basis can be set up via the

so-called transformation method.31 The coordinate matrices

are defined as

ðQjÞnj ;n0j ¼ hw
VBR
nj
ðRjÞjRj jwVBRn0

j
ðRjÞi; j ¼ 1 or 2: ð11Þ

The eigenvalues of Qj provide the radial quadrature points,

while the eigenvectors, ordered in a matrix, Tj, form the

transformation matrix, which is used to set up the DVR of

the differential operators. The definition of Kj ensures that all

the quadrature points are in the interval [Rmin
j , Rmax

j ]. This

basis does not satisfy the wnj(Rj =0)= 0 boundary conditions;

thus, the integral defined in eqn (4) becomes singular and

cannot be computed analytically.
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The second basis set is based on the spherical-oscillator

functions

wVBRnj
ðRjÞ ¼ Nnj ;aþ1=22

1=2K
1=4
j ðKjR

2
j Þ
ðaþ1Þ=2

� e�KjR
2
j =2Laþ1=2

nj
ðKjR

2
j Þ;

ð12Þ

where a is a free parameter, Laþ1=2
nj

is an associated

Laguerre polynomial, Nnj,a+1/2 is the norm of Laþ1=2
nj

,

Kj ¼ q
ð2Þ;Kj¼1
Nj

=ðRmax
j Þ

2, where q
ð2Þ;Kj¼1
Nj

is the largest eigenvalue

of Q
(2)
j (see below) if Kj = 1 (largest appropriate Gaussian

quadrature point), and Rmax
j is a free parameter. The DVR is

set up similarly to the Hermite-DVR; however, the matrix of

the square of the coordinate is employed,

ðQð2Þj Þnj ;n0j ¼ hw
VBR
nj
ðRjÞjR2

j jwVBRn0
j
ðRjÞi; j ¼ 1 or 2: ð13Þ

thus, the quadrature points are the square roots of the

eigenvalues of Q(2)
j . The definition of Kj ensures that all the

quadrature points are in the interval (0, Rmax
j ]. This basis for

a = 0 satisfies the boundary conditions of the problem, i.e.,

wnj(Rj = 0) = 0, and results in non-singular integrals in eqn (4)

for all a Z 0; thus, eqn (4) can be obtained via an exact DVR

expression as in ref. 18. In this case, the exact FBR, i.e. the

variational basis representation (VBR) of eqn (3) and (4) can

be obtained analytically as18,32

ðKVBR
j Þnj ;n0j ¼�

1

2mj

Kj

2
Nnj ;aþ1=2Nn0

j
;aþ1=2

� ð2njþaþ3=2ÞGðnjþaþ3=2Þ
nj !

dnj ;n0j

2
4
þGðnjþaþ3=2Þ

n0j !
dnj�1;n0j þ

Gðn0jþaþ3=2Þ
nj !

dnj ;n0j�1

�aðaþ1Þ
Xminðnj ;n0jÞ

l¼0

Gðlþaþ1=2Þ
l!

3
5 ð14Þ

ðRVBR
j Þnj ;n0j ¼

Kj

2mj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nj !Gðn0jþaþ3=2Þ
n0j !Gðnjþaþ3=2Þ

s
; nj � n0j ; ð15Þ

respectively, and the analytic elements of the coordinate

matrix defined in eqn (13) are

ðQð2Þj Þnj ;n0j ¼Nnj ;aþ1=2Nn0
j
;aþ1=2K

�1
j

� Gðnj þ aþ 5=2Þ
nj !

þGðnj þ aþ 3=2Þ
ðnj � 1Þ!

� �
dnj ;n0j

�

�Gðnj þ aþ 5=2Þ
nj !

dnj ;n0j�1�
Gðnj þ aþ 3=2Þ
ðnj � 1Þ! dnj�1;n0j

�
:

ð16Þ

The exact DVRs of eqn (3) and (4) are K
Nj�Nj

j ¼
ðTð2Þj Þ

T
KVBR

j T
ð2Þ
j and R

Nj�Nj

j ¼ ðTð2Þj Þ
T
RVBR

j T
ð2Þ
j , respectively,

where the transformation matrix, T(2)
j , contains the eigen-

vectors of Q(2)
j .

The third basis set employs the Bessel-DVR functions25

defined as

wnj ðRjÞ ¼ ð�1Þnjþ1
Kjðnj þ 1Þp

ffiffiffiffiffiffiffiffi
2Rj

p
ðKjRjÞ2 � ðnj þ 1Þ2p2

J1=2ðKjRjÞ; ð17Þ

where J1/2(KjRj) is a Bessel function of the first kind and Kj =

Njp/R
max
j . The set of Bessel grid points is defined as rnj =

(nj + 1)p/Kj, thus all the grid points are in the interval

0 o rnj r Rmax
j , where Rmax

j is a free parameter used to define

the ranges of the Rj coordinates. To the best of the authors’

knowledge these Bessel-DVR functions have not been used as

a direct product basis in triatomic vibrational calculations.

When employing the Bessel-DVR basis the analytic matrix

elements of the matrices defined in eqn (3) and (4) are obtained

as follows:

ðKNj�Nj

j Þnj ;n0j ¼ dnj ;n0j
1

2mj

K2
j

3
1� 3

2ðnj þ 1Þ2p2

 !

þð1� dnj ;n0j Þ
ð�1Þnj�n

0
j

2mj

8K2
j

p2
ðnj þ 1Þðn0j þ 1Þ

½ðnj þ 1Þ2�ðn0j þ 1Þ2�2

ð18Þ

and

ðRNj�Nj

j Þnj ;n0j ¼
ð�1Þnjþn

0
j

2mj

K2
j

p2
1

ðnj þ 1Þ2
dnj ;n0j þ

2

ðnj þ 1Þðn0j þ 1Þ

 !
:

ð19Þ

It is important to note that using the standard quadrature

approximation one would write ðRNj�Nj

j Þnj ;n0j ffi 1=ð2mjÞK2
j =

½ðnj þ 1Þ2p2�dnj ;n0j , whereas a newly derived exact formula given

in eqn (19) results in a non-diagonal matrix representation. In

other words, similarly to the spherical-oscillator-DVR, the

Bessel-DVR functions satisfy the required boundary condi-

tions allowing the analytic calculation of the matrix elements

of the singular radial operators.

IV.2 Potential optimized DVR

In order to make the matrix representation of Ĥ as compact as

possible without modifying the structure of H, the so-called

potential optimized (PO) DVR33–35 method can be employed.

The PO-DVR approach employed in this study for the

stretching coordinates can be described briefly as follows.

First, solve the eigenvalue problems of the following one-

dimensional Hamiltonians using a large number of points:

Ĥ
1D

j ¼ �
1

2mj

d2

dR2
j

þ ‘ð‘þ 1Þ
2mjR2

j

þ V̂ðRj ;Rj0 ;YÞ

j; j0 ¼ 1; 2 or 2; 1

ð20Þ

where l=0 for even-parity and l=1 for odd-parity calcula-

tions. In this study two different one-dimensional effective

potential function, V̂(Rj; Rj0, Y), were considered. In the first

approach, coordinates Rj0 and Y are fixed parameters, usually

taken as the equilibrium values. In the second approach, a

relaxed potential is employed, i.e. V̂(Rj; Rj0, Y) is obtained by

optimizing the Rj0 and Y coordinates for each value of Rj.
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The PO spectral basis functions are the first couple of

eigenfunctions of Ĥ1D
j . The choice of l=0 for even-parity

and l=1 for odd-parity states in the one-dimensional Hamil-

tonian is made to adjust the boundary behavior of the PO

spectral basis functions to the boundary properties of the

three-dimensional wave functions (for details on boundary

properties see section V and VI.1). Test calculations on the

vibrational energy levels of H+
3 show that using l=1 for even-

parity and l=0 for odd-parity states results in an increase of

the average error of the band origins above the barrier to

linearity by a few tens of cm�1 for even-parity and a few cm�1

for odd-parity states.

Next, set up the PO-DVR representation via the transfor-

mation method along the following steps.

(i) Since the spherical-oscillator-DVR and the Bessel-DVR

functions diagonalize the matrix of the square of the coordinate

operator, the matrix representation of R2
j , Q(2)

j , is set up using

the first couple of eigenfunctions of Ĥ1D
j . The PO quadrature

points are the square roots of the eigenvalues of Q(2)
j . The

transformation matrix, T(2)
j , contains the eigenvectors of Q(2)

j .

In the case of the Hermite-DVR the matrix representation

of Rj, Qj, is set up using the first couple of eigenfunctions

of Ĥ1D
j and the eigenvalues and eigenvectors of Qj are the

PO quadrature points and the transformation matrix Tj,

respectively.

(ii) Since the eigenfunctions of Ĥ1D
j are linear combina-

tions of the wnj(Rj) primitive DVR functions, the ‘‘PO-VBR’’

representation of the kinetic energy operator can be simply

obtained analytically.

(iii) The kinetic energy matrix is transformed from

‘‘PO-VBR’’ to PO-DVR by a unitary transformation employing

the matrix Tj or T(2)
j .

(iv) The matrix elements of the potential are calculated using

the new PO-DVR grid points as radial quadrature points.

V. One-dimensional tests

In order to gain a better understanding of the consequences of

the choice of basis sets satisfying or neglecting the boundary

conditions characterizing the system under investigation and

the quadrature or exact DVR approximations, it is worth first

considering some model one-dimensional tests.

Consider the following one-dimensional Schrödinger

equation,

� 1

2

d2

dR2
� 1

R

d

dR
þ ‘ð‘þ 1Þ

2R2
þ 1

2
R2

� �
cnðRÞ ¼ EncnðRÞ;

ð21Þ

where RA [0,N) and the integration volume element is R2dR.

Eqn (21) can be solved analytically for each l=0, 1, 2,. . ., and

the eigenvalues are En = 2n + l + 3/2. The eigenfunctions,

cn(R), have zero amplitude at R = 0, with the sole exception

of the l=0 case (in which case there is no R�2 singular term).

It is straightforward to show that solution of the following

ordinary differential equation,

� 1

2

d2

dR2
þ ‘ð‘þ 1Þ

2R2
þ 1

2
R2

� �
fnðRÞ ¼ EnfnðRÞ; ð22Þ

with the integration volume element of dR gives the same

eigenvalues as eqn (21). It is important to note that the

eigenfunctions of eqn (22) are the eigenfunctions of eqn (21)

multiplied by R, that is fn(R)/R = cn(R). Thus the matrix

representation of the Hamiltonian in eqn (22) with a given

basis set is equivalent with the matrix representation of the

Hamiltonian in eqn (21) with the same basis functions divided

by the R coordinate.

In this work, the matrix representations of eqn (22) were

obtained using the three different radial basis sets defined in

section IV.1 using either the quadrature approximation or the

exact-DVR representation, if possible, for the term involvingR�2.

Although the Hermite-DVR basis functions are orthogonal

and normalized in the coordinate space R A (�N, N), with

proper R0 and K choices these functions are numerically zero

at R r 0, thus are appropriate for the present model problem

with R A [0, N).

Dividing the basis functions defined in section IV.1 by the

R coordinate, one obtains the ‘‘equivalent’’ basis functions

for eqn (21), as discussed above. When divided by the R

coordinate, the spherical oscillator functions with a = 0 and

the Bessel-DVR functions have finite values at R = 0, the

spherical oscillator functions with a = 1 are zero at R = 0,

while the Hermite-DVR functions diverge at R = 0, thus the

latter two have improper boundary conditions (if l=0 and

a = 1). Naturally, the approximate eigenfunctions of eqn (21)

built from these basis sets will have the same boundary

properties.

As seen in Table 1, when using basis functions with proper

boundary conditions the eigenvalues converge in all l = 0, 1,

2,. . . cases with both the exact-DVR and the quadra-

ture approximation for the term involving R�2. Using the

quadrature approximation, convergence is slightly slower.

The results obtained with basis functions having improper

boundary conditions are in good agreement with what one

would expect from their boundary properties. Applying the

spherical oscillator functions with a = 1, eigenvalues seem to

converge in all l = 0, 1, 2,. . . cases, but extremely slowly for

l=0 since at R = 0 the basis functions vanish, although the

wavefunction has a finite amplitude. Using the Hermite-DVR,

only lZ 1 cases converge, the DVR matrix elements of

the singular term can only be evaluated via the quadrature

approximation, since the matrix elements in the FBR repre-

sentation diverge.

These results show that (a) the matrix representation of the

singular term can be given using either the approximate or the

exact DVR representation, and (b) if the wave function has a

finite amplitude at the boundary (l=0 case), naturally, use

of basis sets with improper boundary conditions leads to

unconverged (or extremely slowly converging) eigenvalues.

The applicability of the quadrature approximation confronts

the usual claim that the quadrature approximation fails when

used in the case of the singular term involving R�2. It is of

general interest to state that even if basis functions with

improper boundary conditions are used, with which the wave

function cannot possibly be correctly approximated, con-

verged eigenvalues can be obtained if the wave function has

zero amplitude at the boundary (lZ 1 case). This reflects the

fact that the basis functions only need to describe the wave
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function in the regions of physical interest and not in the whole

coordinate space.

VI. A three-dimensional test: all the bound

vibrational levels of H
+
3

In 2006, Tennyson and co-workers9,10 computed almost all of

the vibrational energy levels corresponding to the electronic

ground state of the H+
3 molecular ion. This was the first

study for H+
3 whereby the PES employed had the correct

dissociative behavior. A short summary of the relevant results

of ref. 9 and 10 are as follows. (1) The first dissociation energy

(D0) of H+
3 , which corresponds to the breakup H+

3 -

H2+H+, is 34 911.6 cm�1. (2) Below D0, this PES supports

687 even-parity and 599 odd-parity vibrational states. (3) All

but one state below D0 were claimed to be converged to better

Table 2 Average absolute discrepancies in the given energy intervals between the reference (ref. 10) and the incomplete basis set vibrational
energy levels of H+

3 , all in cm�1, computed with different primitive basis sets using either the quadrature approximation (Appr.) or the exact-DVR
(Exact) for the singular term in the Jacobi coordinate systema

Interval

(N1 N2 L) = (85 80 30)

Hermite Spherical (0,0)b Spherical (0,1)b Bessel

Appr. Appr. Exact Appr. Exact Appr. Exact

Even Odd Even Odd Even Odd Even Odd Even Odd Even Odd Even Odd

0–10 000 0.21 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 000–20 000 92.53 1.02 0.03 0.16 0.02 0.05 6.75 0.42 6.76 0.02 0.02 0.26 0.01 0.13
20 000–25 000 143.18 11.89 0.12 0.57 0.12 0.14 11.48 1.49 11.51 0.11 0.08 0.90 0.07 0.47
25 000–30 000 143.19 21.68 0.32 1.00 0.32 0.18 11.06 2.34 11.12 0.30 0.59 1.66 0.34 0.63
30 000–34 912 124.60 17.92 1.09 1.63 1.09 0.43 10.59 3.24 10.70 0.75 1.37 2.82 1.08 0.80

(N1 N2 L) = (95 90 35)

Hermite Spherical (0,0)b Spherical (0,1)b Bessel

Appr. Appr. Exact Appr. Exact Appr. Exact

Even Odd Even Odd Even Odd Even Odd Even Odd Even Odd Even Odd

0–10 000 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 000–20 000 63.82 0.81 0.02 0.11 0.02 0.03 5.98 0.30 5.99 0.02 0.01 0.17 0.01 0.10
20 000–25 000 114.62 3.73 0.10 0.40 0.10 0.09 10.16 1.05 10.18 0.09 0.05 0.60 0.05 0.34
25 000–30 000 120.72 4.45 0.28 0.74 0.28 0.14 9.78 1.68 9.81 0.27 0.14 1.00 0.14 0.41
30 000–34 912 122.66 9.93 1.04 1.28 1.04 0.44 9.39 2.42 9.45 0.70 0.82 1.57 0.81 0.43

a All calculations were performed with Rmax
1 = 14.00 bohr, Rmax

2 = 8.00 bohr, and m(H) = 1.007825 u. For Hermite-DVR Rmin
j = 0.05 bohr

(j = 1, 2) was used. (N1 N2 L) stands for using N1, N2, and L basis functions for the R1, R2, and Y coordinates, respectively. Numbers suffering

from convergence problems are indicated in italics. b ‘‘Spherical (n,m)’’ stands for spherical-oscillator-DVR radial basis sets with a = n and m for

the R1 and R2 Jacobi coordinates, respectively.

Table 1 Eigenvalues corresponding to the solution of the one-dimensional Schrödinger equation [eqn (22)] obtained with three different radial
DVR basis sets (Hermite-DVR, spherical-oscillator-DVR (a = 0, 1), and Bessel-DVR) using either the quadrature approximation (Appr.) or the
exact-DVR (E-DVR) for the singular R�2 terma

N = 15b N = 40b

Exact

Hermite Spherical a = 0 Spherical a = 1 Bessel Hermite Spherical a = 0 Spherical a = 1 Bessel

Appr. Appr. E-DVR Appr. E-DVR Appr. E-DVR Appr. Appr. E-DVR Appr. E-DVR Appr. E-DVR

l = 0
0 0.647 1.500 1.638 1.500 1.013 1.500 1.547 1.500 1.5
1 2.132 3.500 3.711 3.500 2.741 3.500 3.571 3.500 3.5
2 3.940 5.500 5.774 5.501 4.553 5.500 5.589 5.500 5.5
3 6.018 7.500 7.836 7.515 6.413 7.500 7.604 7.500 7.5
4 8.343 9.501 9.911 9.628 8.305 9.500 9.617 9.500 9.5
5 10.910 11.512 12.025 12.021 10.222 11.500 11.629 11.500 11.5
l = 1
0 2.428 2.480 2.511 2.450 2.500 2.464 2.520 2.496 2.499 2.500 2.498 2.500 2.499 2.501 2.5
1 4.295 4.439 4.530 4.370 4.500 4.382 4.565 4.489 4.498 4.501 4.494 4.500 4.496 4.502 4.5
2 6.256 6.368 6.562 6.280 6.500 6.222 6.665 6.479 6.496 6.502 6.489 6.500 6.493 6.503 6.5
3 8.482 8.253 8.616 8.199 8.500 7.977 8.886 8.466 8.494 8.503 8.483 8.500 8.489 8.505 8.5
4 10.995 10.081 10.721 10.153 10.500 9.842 11.295 10.450 10.492 10.504 10.476 10.500 10.485 10.507 10.5
5 13.780 11.873 12.939 12.178 12.512 12.118 13.811 12.432 12.489 12.505 12.469 12.500 12.479 12.510 12.5

a All calculations were performed with Rmax = 10.00 bohr, while Rmin = 0.05 bohr was set for the Hermite-DVR. It is noted that although the

spherical-oscillator functions with a= l are the analytic solutions of eqn (22), discrepancies compared to the exact results occur due to the fixing of

the parameter Rmax. Numbers suffering from convergence problems are indicated in italics. b N stands for the number of basis functions, i.e. grid points.
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than 1 cm�1. (4) In order to obtain these (nearly) converged

results for the high-lying vibrational states of H+
3 , at the time

of the study the use of a large parallel supercomputer with a

couple of hundred processors was required.

The ground-state PES used in our study and taken from

ref. 10 is called PPKT2, which is an adjusted version of the

former PPKT PES of ref. 36. The same masses as in ref. 10

were employed, making comparison of our results with those

of Munro and co-workers10 straightforward. Note also that

Munro et al.10 employed Radau coordinates, whereas all the

computations of the present study have been performed in the

Jacobi coordinate system, where the R2 = 0 singularity comes

into play much sooner, at the barrier to linearity, which is only

about 9 950 cm�1 above the ZPVE of H+
3 . In what follows, we

use the vibrational levels of ref. 10 as reference values.

VI.1 Test of the quadrature approximation

In the first set of test computations, the vibrational energy

levels of H+
3 up to the first dissociation limit have been com-

puted using the primitive basis sets defined in section IV.1.

The computations applied either exact-DVR (the ED2FOPI

representation) or the quadrature approximation (the D2FOPI

representation) during the evaluation of the singular matrix

elements defined in eqn (4). The results obtained are summarized

in Table 2. Wave functions corresponding to even-parity

energy levels larger than the barrier to linearity might have

finite amplitude at R2 = 0. In correspondence with 1D results,

eigenvalues obtained with basis sets having improper boundary

conditions for the even-parity states, i.e. Hermite-DVR and

spherical oscillator-DVR with a = 1, show huge average

errors in the even-parity levels for energy regions above the

barrier to linearity. Also in agreement with the 1D experience,

computations using the quadrature approximation seem to

give the same results as the ones using exact-DVR, but with

slightly slower convergence rate, especially for the odd-parity

states. Here it is noted that near the dissociation energy (D0), a

few lines are missing completely for all the primitive basis sets.

This is due to setting the Rmax
j , j A {1, 2} parameters too small,

i.e. Rmax
1 = 14.00 and Rmax

2 = 8.00 bohr; thus, the quadrature

points are not sampled from areas where diffuse wave

functions might still have substantial amplitudes. A study of

such diffuse states is given in ref. 10 and 37. As seen in Table

S1 of the ESI,w increasing the Rmax
j parameters to larger

values, i.e. Rmax
1 = Rmax

2 = 17.65 bohr, leads to noticeable

errors, the number of quadrature points (DVR basis functions)

for such large coordinate ranges is insufficient to achieve

converged results using primitive DVR basis sets. (The proper

PO-DVR computations give the complete set of states as

discussed in section VI.2).

As expected, the Hermite-DVR gives much worse even-

parity results than odd levels; however, the odd energies

Fig. 2 Pictorial representation of the effective one-dimensional

potentials of H+
3 in Jacobi coordinates obtained by fixing at equili-

brium (squares) or relaxing (triangles) the other two non-active

coordinates [see eqn (20)].

Table 3 Average absolute discrepancies in the given energy intervals
between the reference (ref. 10) and the incomplete basis set vibrational
energy levels of H+

3 , all in cm�1, computed with primitive and PO
Bessel-DVR bases using exact-DVR and either the ‘‘fixed’’ or
‘‘relaxed’’ potentials in the one-dimensional Hamiltonians in the
Jacobi coordinate systema

Interval

(N1 N2 L) = (85 80 30)

Primitive PO (fix) PO (relax)

Even Odd Even Odd Even Odd

0–10 000 0.00 0.00 0.44 0.00 0.00 0.00
10 000–20 000 0.01 0.13 152.73 43.01 0.03 0.03
20 000–25 000 0.07 0.47 302.35 156.27 0.15 0.13
25 000–30 000 0.34 0.63 354.29 213.19 0.45 0.38
30 000–34 912 1.08 0.80 363.72 242.92 1.19 1.06

(N1 N2 L) = (95 90 35)

Primitive PO (fix) PO (relax)

Even Odd Even Odd Even Odd

0–10 000 0.00 0.00 0.24 0.00 0.00 0.00
10 000–20 000 0.01 0.10 133.32 36.94 0.01 0.02
20 000–25 000 0.05 0.34 260.28 131.64 0.05 0.06
25 000–30 000 0.14 0.41 302.24 176.45 0.16 0.12
30 000–34 912 0.81 0.43 310.72 201.60 0.47 0.43

a All calculations were performed with m(H) = 1.007825 u. For

calculations with PO basis Rmax
j = 17.65 bohr (j = 1, 2), for

calculations with primitive basis Rmax
1 = 14.00 and Rmax

2 = 8.00 bohr

were used. During the PO-DVR 500 primitive basis functions were

included for both stretching-type coordinates. Constrained coordinate

values for the fixed-PO-DVRs were as follows: R1 = 1.649990, R2 =

1.428930 bohr, and cos(Y) = 0. (N1 N2 L) stands for usingN1,N2, and

L basis functions for the R1, R2, and Y coordinates, respectively.
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are unconverged as well. The poor results obtained with

Hermite-DVR for odd-parity states (including band origins

under the barrier to linearity as well) can be greatly improved

by optimizing (increasing) the Rmin
j parameters; however, for

even-parity states this does not reduce the error introduced by

the improper boundary properties.

On the basis of the results obtained with primitive

DVRs, the following can be stated. If one were to compute

(ro)vibrational energy levels with wave functions having a

finite amplitude at the boundary, basis sets with proper

boundary conditions need to be used. Then, both the quadrature

approximation and the exact-DVR can be applied for the

evaluation of the singular terms, even when the wave function

does not vanish at the singular nuclear configurations. The use

of exact-DVR is recommended because of faster convergence,

unless the quadrature approximation results in major com-

putational benefits.

VI.2 Test of the PO-DVR

Computations for testing the properties and usefulness of

potential optimized basis functions, introduced in section IV.2,

have also been carried out. Table 3 shows the comparison of

results obtained by primitive Bessel-DVR and PO Bessel-DVR

both with ‘‘fixed’’ (at equilibrium) and ‘‘relaxed’’ potentials

[see eqn (20)]. The different one-dimensional effective

potentials for H+
3 are shown in Fig. 2. Table 4 summarizes

the results computed using PO basis sets, obtained from

‘‘relaxed’’ effective potentials, built from the different radial

functions introduced in section IV.1, and calculated via both

the quadrature approximation and the exact-DVR (if the

latter exists).

PO-DVR can supply more compact basis functions

compared to the primitive basis set; thus, faster convergence

can be expected. However, it is clear from Table 3 that great

caution is warranted when using PO-DVR. Although much

faster convergence has been experienced for low-energy eigen-

states with both ‘‘fixed’’ and ‘‘relaxed’’ PO-DVRs, eigenvalues

with energies above 10 000 cm�1 relative to the ZPVE have

huge errors if the ‘‘fixed’’ PO-DVR is used. Concerning the full

spectra, ‘‘relaxed’’ PO-DVR computations show faster

convergence than the corresponding primitive basis sets, as

long as exact-DVR is used. The advantage of the ‘‘relaxed’’

PO-DVR is especially pronounced when the Rmax
j parameters

are set large enough for calculating the highly diffuse states, as

these were missing from the primitive basis set calculations at

lower Rmax
j values. It is important to emphasize that the use of

the PO-DVR, based on effective potentials obtained by fixing

the non-active coordinates at their equilibrium values, can be

advantageous for the low-lying levels (the ‘‘relaxed’’

PO-DVR is even better);14 however, this method should not

be employed if the computation of the complete spectrum is

the goal. Fig. 2 clearly shows that the R1-dependent effective

potential gives improper dissociation behavior and the

R2-dependent potential hinders the sampling of the PO

quadrature points in the near-zero region if the frozen

coordinates are at equilibrium. The latter problem was

realized by Bramley and Carrington,6 who suggested fixing

the R1 Jacobi coordinate at 1.5 Å (the equilibrium value is

about 0.87 Å); thus, the R2-dependent effective potential had a

Table 4 Average absolute discrepancies in the given energy intervals between the reference (ref. 10) and the incomplete basis set vibrational
energy levels of H+

3 , all in cm�1, computed by different PO-DVR basis sets using either the quadrature approximation (Appr.) or the exact-DVR
(Exact) for the singular term in the Jacobi coordinate systema

Interval

(N1 N2 L) = (85 80 30)

Hermite Spherical (0,0)b Spherical (0,1)b Bessel

Appr. Appr. Exact Appr. Exact Appr. Exact

Even Odd Even Odd Even Odd Even Odd Even Odd Even Odd Even Odd

0–10 000 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 000–20 000 49.90 0.29 0.03 2.81 0.03 0.03 2.31 3.17 2.32 0.02 0.03 3.04 0.03 0.03
20 000–25 000 75.89 1.03 0.16 10.39 0.16 0.14 3.81 10.83 3.86 0.11 0.15 10.40 0.15 0.13
25 000–30 000 74.96 1.46 0.49 16.36 0.45 0.39 3.36 15.39 3.49 0.30 0.48 14.80 0.45 0.38
30 000–34 912 70.79 1.77 1.44 20.10 1.27 1.10 2.40 17.47 2.68 0.75 1.34 16.73 1.19 1.06

(N1 N2 L) = (95 90 35)

Hermite Spherical (0,0)b Spherical (0,1)b Bessel

Appr. Appr. Exact Appr. Exact Appr. Exact

Even Odd Even Odd Even Odd Even Odd Even Odd Even Odd Even Odd

0–10 000 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 000–20 000 49.85 0.30 0.01 2.53 0.01 0.02 2.35 2.60 2.36 0.01 0.01 2.49 0.01 0.02
20 000–25 000 75.73 1.05 0.05 8.73 0.05 0.06 3.97 9.01 4.01 0.05 0.05 8.60 0.05 0.06
25 000–30 000 74.56 1.51 0.17 12.63 0.17 0.13 3.72 13.04 3.81 0.13 0.17 12.44 0.16 0.12
30 000–34 912 69.90 1.92 0.54 14.50 0.50 0.46 3.14 15.08 3.32 0.48 0.50 14.29 0.47 0.43

a All calculations were performed with Rmax
j = 17.65 bohr (j = 1, 2) and m(H) = 1.007825 u. For Hermite-DVR Rmin

j = 0.05 bohr (j = 1, 2) was

used. During the PO-DVR ‘‘relaxed’’ effective one-dimensional potentials were used, while 500 primitive basis functions were included for both

stretching type coordinates. (N1 N2 L) stands for using N1, N2, and L basis functions for the R1, R2, and Y coordinates, respectively. Numbers

suffering from convergence problems are indicated in italics. b ‘‘Spherical (n,m)’’ stands for spherical-oscillator-DVR radial basis sets with a = n

and m for the R1 and R2 Jacobi coordinates, respectively.
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more realistic barrier to linearity though the long range part

was compromised. It is obviously not straightforward to find

fixed values for the non-active coordinates which would

provide useful PO-DVR points for the computation of the

complete spectrum. The ‘‘relaxed’’ PO-DVR provides a

‘‘black-box’’ strategy for the determination of the PO-DVR

points based on effective potentials obtained by constrained

optimizations. Note that Lee and Light38 constructed ‘‘energy

selected bases’’ based on the same idea, i.e., employing

minimum-energy reduced-dimensional potentials. Fig. 2

shows that the ‘‘relaxed’’ potentials for H+
3 have correct

physical behaviors both at the barrier to linearity and at

dissociation. Convergence of the different PO-DVRs and

primitive DVRs in different spectral regions can be understood

qualitatively by inspecting the distribution of the quadrature

points along the coordinates for the different radial basis sets.

Fig. 3 and 4 show how the PO-DVRs ‘‘optimize’’ the distribu-

tion of the quadrature points based on their 1D effective

potentials and why the ‘‘fixed’’ PO-DVR only works well for

low-energy vibrational states.

The failure of the quadrature approximation for odd-parity

states employing PO requires further investigation. The

following test computations have been carried out:

(a) exact-PO-DVR for R1 and PO-DVR with quadrature

approximation for R2, (b) PO-DVR with quadrature approxi-

mation for R1 and exact-PO-DVR for R2, (c) PO-DVR for R1

and primitive DVR for R2 with quadrature approximation for

both, and (d) primitive DVR for R1 and PO-DVR for R2

with quadrature approximation for both. These test com-

putations showed that (a) and (d) resulted in large increases

in the average errors, whereas in cases (b) and (c) the quadra-

ture approximation did not compromise the results signifi-

cantly. Thus, we verified that the failure of the PO-DVR,

along with the quadrature approximation, occurs when

the radial singularity comes into play (R2 coordinate).

The fact that there is no convergence problem below the

barrier to linearity, see the results in the 0–10 000 cm�1 range

in Table 4, supports this statement. It is important to note that

these findings are in partial agreement with those of HTS,18

who found that the quadrature approximation caused the

convergence problems in their DVR3D computations using

contracted DVR basis functions. The contracted basis set

can be considered as PO-DVR in higher dimensions; there-

fore, this can be the reason of the similar convergence behavior

of their computations and our odd-parity PO-DVR results.

However, we cannot fully support the general statement

Fig. 4 Pictorial representation of different number of ‘‘relaxed’’

PO-DVR quadrature points with l = 0 [see eqn (20)] and keeping

Rmax
1 = Rmax

2 = 17.65 bohr.

Fig. 3 Pictorial representation of the distribution of quadrature

points using different DVRs with Rmax
1 = Rmax

2 = 17.65 bohr and

setting l = 0 during PO [see eqn (20)]. Note that the PO-DVR

quadrature points are numerically identical for the different primitive

basis sets. 85 and 80 points are shown for the R1 and R2 coordinates,

respectively.
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on the ‘‘failure of the quadrature approximation’’,18 since

we could compute converged odd-parity results well above

the barrier to linearity using primitive DVR basis sets

(having proper boundary conditions) with the common quad-

rature approximation. Furthermore, we have found that

the quadrature approximation works well for all the even-

parity states (see the Spherical (a = 0) and Bessel results

of Table 4).

We conclude that as long as exact-DVR is used, PO bases

corresponding to relaxed 1D effective potentials seem to be the

best choice with the fastest convergence (up to about 1 cm�1

for levels near the dissociation limit) and resulting in the

‘‘complete’’ (see section VI.3) set of eigenvalues even in

the uppermost region of the spectrum. Besides giving the

best numerical results, there are some other benefits of using

PO-DVR. Compared to the corresponding primitive basis,

results are less sensitive to the parameters Rmax
j , as long as they

are large enough for the 1D effective potentials to reach their

asymptotic region. Another benefit is that the results are

invariant to the actual form of the primitive basis as long as

it has proper boundary conditions and convergence is attained

for the 1D problem, i.e. eqn (20), since in this case the 1D

eigenfunctions (the PO radial basis functions) are numerically

the same for different primitive basis sets.

VI.3 Near-dissociation vibrational levels of H+
3

In Table 5 we present the highest 15 even-parity and 15 odd-

parity vibrational levels just below D0 and their dependence on

basis set size and the parameters Rmax
j (j= 1 or 2), obtained by

‘‘relaxed’’ PO exact Bessel-DVR. The complete list of our

benchmark-quality bound vibrational energy levels corres-

ponding to the PPKT2 PES of ref. 10 is given in Table S2 in

the ESI.w The largest computation employed 120 � 120 �
51 = 734 400 basis functions for each block (even and odd).

All computed energy levels near dissociation are converged to

at least about 1 cm�1. The rate of convergence is visually

demonstrated in Fig. 5. To achieve convergence for diffuse

vibrational states near dissociation the Rmax
j (j = 1 or 2)

parameters were set to 22 bohr (17.65 bohr was used for

Tables 3 and 4), although this causes the less diffuse lower

energy states to be less converged. We have found 688 even

and 599 odd parity vibrational band origins below D0. The

calculated eigenenergies are in good agreement with the results

presented by Munro et al.,10 except at the very top end of the

spectrum. For the even-parity block one additional eigenstate

was found, and deviations larger than 1 cm�1, i.e. 1–6 cm�1,

can also be seen among the last 4 and 3 band origins for the

even and odd blocks, respectively. Using Rmax
j = 17.65 bohr

Table 5 Convergence of near-dissociation vibrational band origins of H+
3 with respect to basis set size and the parameters Rmax

j (j = 1 or 2).
Results are calculated in Jacobi coordinates employing PO(relaxed) exact Bessel-DVR, deviations and band origins are all given in cm�1a

Rmax
j 17.65 19.00 20.00 21.00 22.00 22.00

Ref. 10Basisb (115 110 38) (105 100 38) (115 110 38) (120 120 45) (120 120 48) (120 120 51)

Even
674 0.14 0.23 0.01 �0.02 34769.05 �0.38 �0.05 0.00 0.00 34769.10 34769.66
675 �0.13 0.09 0.11 0.08 34790.26 �0.26 0.00 0.00 0.00 34790.27 34790.86
676 0.24 0.04 0.07 0.16 34794.41 0.72 �0.26 0.00 0.00 34794.67 34795.46
677 �0.18 0.02 �0.05 �0.11 34811.31 �0.34 0.09 0.00 0.00 34811.22 34811.71
678 0.13 0.25 0.01 �0.02 34823.28 0.37 0.02 0.00 0.00 34823.26 34823.96
679 �0.18 �0.08 �0.05 0.00 34824.61 �0.33 0.02 0.00 0.00 34824.59 34825.22
680 �0.16 �0.10 �0.18 �0.10 34835.91 0.11 0.17 0.00 0.00 34835.74 34836.53
681 �0.07 0.27 0.09 �0.16 34851.58 �0.20 0.12 0.00 0.00 34851.46 34852.01
682 �0.05 �0.33 �0.61 �0.45 34857.66 0.24 0.47 0.00 0.00 34857.18 34858.11
683 �0.04 0.10 0.01 �0.03 34864.91 0.39 0.02 0.00 0.00 34864.89 34865.42
684 �0.25 0.17 0.10 0.07 34882.36 �0.57 0.00 0.00 0.00 34882.35 34882.98
685 0.99 0.59 0.18 �0.02 34889.16 �0.63 �0.67 �0.02 0.00 34889.83 34891.35
686 1.78 2.00 1.36 0.35 34895.71 �1.26 �1.34 0.00 0.00 34897.06 34898.00
687 3.10 2.11 0.53 0.06 34896.97 �1.11 �2.08 �0.06 0.00 34899.05 34901.02
688 13.45 9.00 1.78 0.28 34901.31 �9.58 �9.65 �1.76 0.05 34910.96 —
Odd
585 0.13 0.30 0.27 0.29 34743.53 �0.80 �0.21 0.00 0.00 34743.74 34744.51
586 0.18 0.24 0.09 0.02 34750.04 �0.56 �0.06 0.00 0.00 34750.10 34751.21
587 �2.88 �1.38 �0.01 0.43 34763.40 �2.73 �0.51 0.00 0.00 34763.91 34762.54
588 �0.66 �0.50 �0.37 �0.34 34790.70 �0.59 0.14 0.00 0.00 34790.57 34790.82
589 0.45 0.65 0.43 0.24 34794.30 �0.71 �0.18 0.00 0.00 34794.49 34795.42
590 �0.37 0.01 0.04 0.07 34808.25 �0.39 �0.09 0.00 0.00 34808.34 34808.46
591 �0.36 0.22 0.31 0.09 34811.46 �1.34 �0.23 0.00 0.00 34811.69 34812.02
592 �0.66 0.13 0.43 0.40 34823.58 �1.33 �0.26 0.00 0.00 34823.84 34823.93
593 �0.36 �0.15 0.05 0.28 34834.17 �0.83 �0.05 0.00 0.00 34834.22 34834.89
594 0.55 0.62 0.40 0.23 34835.34 0.35 �0.20 0.00 0.00 34835.54 34836.45
595 0.00 0.88 0.91 0.60 34857.27 �1.43 �0.47 0.00 0.00 34857.73 34857.93
596 0.30 0.64 0.58 0.41 34864.53 �0.69 �0.38 0.00 0.00 34864.91 34865.37
597 0.61 0.47 0.23 0.11 34881.86 0.40 �0.09 0.00 0.00 34881.94 34882.98
598 2.92 3.03 1.94 0.40 34893.64 �2.71 �2.72 0.00 0.00 34896.36 34897.10
599 3.75 1.99 0.13 0.28 34896.41 �3.15 �2.56 �0.18 �0.01 34898.97 34904.62

a The same PES and masses, i.e. m(H) = 1.007825 u, have been employed in ref. 10 and in this study. b During the PO-DVR 600 primitive Bessel-

DVR basis functions were used for both stretching type coordinates. (N1 N2 L) stands for usingN1, N2, and L basis functions for the R1, R2, andY
coordinates, respectively. Note that L stands for L basis functions for one symmetry block only, meaning 2 � L basis functions altogether.
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we also obtained only 687 even and 599 odd bound states as in

ref. 10. The increase of the largest grid points up to 19–20 bohr

resulted in the appearance of an additional even-parity level

below D0 and Rmax
j had to be increased up to 22 bohr in order

to get this new asymptotic vibrational state converged to

within 1 cm�1. The presence of further near dissociation

eigenstates was predicted in ref. 10. We have found one, but

additional highly diffuse states may exist.

VII. Summary and conclusions

Several techniques were investigated in order to develop

a highly efficient algorithm for the solution of the time-

independent vibrational Schrödinger equation. The algorithms

investigated allow the computation of complete (ro)vibrational

spectra of triatomic molecules, using orthogonal internal

coordinates of the two distance–one angle type. Effectiveness

of the possible protocols was judged by their ability to

properly treat the singularities present in the kinetic energy

operator and by the associated computational cost. The

representations D3OPI, ED3OPI, D2FOPI and ED2FOPI were

introduced, based on the use of a direct-product basis built

from one-dimensional discrete variable representation (DVR)

bases corresponding to the two distance-type coordinates

and orthogonal Legendre polynomials, or the corresponding

Legendre-DVR basis, corresponding to the angular coordinate.

The efficient analytical treatment of the angular singularity is

ensured by the use of Legendre functions, eigenfunctions of

the angular part of the kinetic energy operator. For the treat-

ment of the radial singularity the use of (a) DVRs employing

the quadrature approximation and (b) special DVRs satisfying

the boundary conditions and thus allowing for the use of exact

DVR expressions were considered. Effects of basis set boundary

conditions were also thoroughly studied. In order to obtain

more compact radial basis sets, potential optimized (PO)

DVRs, based on one-dimensional Hamiltonians with potentials

obtained by (a) fixing (in the present case at the equilibrium)

or (b) relaxing the two non-active coordinates, were also

considered. Calculations employed Hermite-DVR, spherical-

oscillator-DVRs, and Bessel-DVR bases as primitive radial

functions. A new analytical formula was given for the determi-

nation of the matrix elements of the singular R�2 operator

using a certain Bessel-DVR developed by Littlejohn and

Cargo.25 The utility of the different algorithms were demon-

strated by the computation of converged near-dissociation

vibrational energy levels of the H+
3 molecular ion.

The most important numerical results of the present study

are summarized as follows:

(1) If one were to compute (ro)vibrational energy levels with

wave functions having a finite amplitude at the boundary,

basis sets with proper boundary conditions need to be used.

(2) In the case of primitive DVRs either the quadrature

approximation or exact-DVR can be applied for the evalua-

tion of the singular terms, even when the wave function does

not vanish at the singular nuclear geometries. This statement is

in contrast to the usually claimed failure of the quadrature

approximation in certain singular integrals. This general result

can be of great help to reduce the cost of computations limited

by computer power, such as (ro)vibrational calculations on

four- or five-atomic molecules.

(3) The use of exact-DVR shows faster convergence; thus,

if the quadrature approximation does not result in major

computational benefits, the exact-DVR is recommended.

When considering such decisions, sequential summation (see

section III) should also be taken into account, since it might

significantly decrease the overall computational cost.

(4) The numerical results also show that using PO-DVRs

might be necessary to optimize the quadrature points for

calculations with larger coordinate ranges, where the number

of primitive basis functions needed for obtaining converged

results would become unaffordable. This was the case for

the computation of some extremely diffuse near dissociation

eigenstates of H+
3 in the present study. Despite their many

useful properties, see section VI.2, it is emphasized that

PO-DVRs should be constructed with great caution and

employing relaxed 1D effective potentials.

(5) For computing the near dissociation vibrational levels of

H+
3 corresponding to the electronic ground state, the use

Fig. 5 Pictorial demonstration of the convergence rate for even

(upper panel) and odd (lower panel) parity states of H+
3 com-

puted by the method of ‘‘relaxed’’ PO exact Bessel-DVR. (N1 N2 L)

stands for using N1, N2, and L basis functions for the R1, R2,

andY coordinates, respectively. Absolute deviations from the energies

obtained with the (120 120 51) basis are shown on a logarithmic

scale.
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of the ED2FOPI (see section II.4) representation (thus

exact-DVR) employing ‘‘relaxed’’ PO-DVR constructed from

either Bessel-DVR or spherical-oscillator-DVR (with a = 0 for

both R1 and R2 coordinates) seems to be the best choice. With

this method, all the 1287 (counting the E-symmetry states twice)

bound vibrational energy levels of the H+
3 molecule could be

calculated in a few days on a single processor personal computer

with a convergence of at least about 1 cm�1.

Finally, although the present study considers only vibrations,

it is important to address singularities related to the rotational

motion, as well. The form of the rovibrational Hamiltonian

depends on the choice of the embedding; for example, there

exist R1-, R2-, bisector, and z-perpendicular embeddings.1,3 In

all cases further singular terms appear in the Hamiltonian.

Among these new terms one always finds the terms R�21 or

R�22 , or both, where the conclusions of the present study, i.e.,

the performance of the quadrature approximation vs. the exact

DVR, are directly useful. In certain embeddings additional

angular singularities may arise, which may require further

considerations.
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