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A technique has been developed which in principle allows the determination of the full

rotational–vibrational eigenspectrum of triatomic molecules by treating the important singularities

present in the triatomic rotational–vibrational kinetic energy operator given in Jacobi coordinates

and the R1 embedding. The singular term related to the diatom-type coordinate, R1, deemed to be

unimportant for spectroscopic applications, is given no special attention. The work extends a

previous [J. Chem. Phys., 2005, 122, 024101] vibration-only approach and employs a generalized

finite basis representation (GFBR) resulting in a nonsymmetric Hamiltonian matrix [J. Chem.

Phys., 2006, 124, 014110]. The basis set to be used is obtained by taking the direct product of a

1-D DVR basis, related to R1, with a 5-D nondirect-product basis, the latter formed by coupling

Bessel-DVR functions depending on the distance-type coordinate causing the singularity,

associated Legendre polynomials depending on the Jacobi angle, and rotational functions

depending on the three Euler angles. The robust implicitly restarted Arnoldi method within the

ARPACK package is used for the determination of a number of eigenvalues of the nonsymmetric

Hamiltonian matrix. The suitability of the proposed approach is shown by the determination of

the rotational–vibrational energy levels of the ground electronic state of H3
+ somewhat above its

barrier to linearity. Convergence of the eigenenergies is checked by an alternative approach,

employing a Hamiltonian expressed in Radau coordinates, a standard direct-product basis, and

no treatment of the singularities.

I. Introduction

Although strategies and codes applicable not only to the three-

,1 but to the four-,2–6 five-,7 and even six-atomic8 variational

(ro)vibrational problems have appeared, many of these exact

approaches can be employed efficiently only for the lower end

of the full spectrum. This presents a considerable problem as

there is significant interest in high-lying states which are hardly

amenable to experiments but should be possible to determine

with the sophisticated techniques of molecular quantum me-

chanics (see, e.g., ref. 9–11). Theoretical techniques that do not

treat the singularities occurring12 in the rotational–vibrational

Hamiltonians may result in sizeable errors for some of the

higher-lying rovibrational wave functions which depend on

coordinates characterizing the singularity. Even though such

singularities are not actually physical, they can have practical

implications. They arise because it is not possible mathemati-

cally to separate rotational motion from internal motion

without transforming to a coordinate system in which, in

some region, the Jacobian of the transformation vanishes,

leading to singularities in the Hamiltonian when expressed in

the system coordinates. If a singular region contains a config-

uration of physical interest, it cannot be described with such a

coordinate choice. It is however often possible to choose a

transformation in which the Jacobian vanishes only in regions

which are physically inaccessible in the energy range of inter-

est. Thus, the choice of coordinates, though mathematically

arbitrary, and the related choice of basis functions do have

physical and computational consequences. In certain practical

applications it may be possible to avoid the consequences of

singularities by appropriate coordinate choices and/or suitable

computational protocols; for examples, see ref. 2 and 13–17.

Results obtained with variational procedures which are able to

determine accurate rotational–vibrational eigenenergies up to

the dissociation limit(s) of the related potential energy surfaces

(PESs) are still relatively scarce.18–22 The most efficient codes

employ variants of the discrete variable representation (DVR)

technique23–27 and the related quadrature approxima-

tion,25,28,29 and for triatomic species the use of rovibrational

Hamiltonians expressed in orthogonal coordinates30 has be-

come widespread.28,31,32

As to vibrational (J= 0) triatomic Hamiltonians in internal

coordinates, different strategies have been developed for treat-

ing the singularities characterizing them. Henderson et al.15

combined a direct-product basis with an analytic formula to

calculate the matrix elements of the R�22 -dependent part of the
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Sutcliffe–Tennyson kinetic energy operator [see eqn (1b) be-

low] by using spherical oscillator functions33 and extra trans-

formations. Watson14 advocated the use of hyperspherical

coordinates34 to avoid the radial singularity problem. Bramley

et al.20 advocated the use of a nondirect product basis with a

Jacobi Hamiltonian within a pseudospectral Lanczos algo-

rithm. Mandelshtam and Taylor21 advanced a simple and

efficient direct-product DVR procedure made suitable to treat

the singularity numerically by symmetrization of the sinc-

DVR basis employed and use of an angular momentum cutoff.

A simple and efficient regularization technique advocated by

Baye et al.35 can also be used to treat terms singular in the

Hamiltonian during grid-based variational calculations. This

approach has been employed to treat the radial singularities

present in three-body vibrational Hamiltonians employing

model potentials (harmonic, Gaussian, and Coulomb poten-

tials).36

If the radial and angular singularities present in the kinetic

energy operator are coupled, an optimal basis is always a non-

direct product of the functions of the coupled coordinates.

Nevertheless, to the best of our knowledge, there are only two

techniques available that treat the singularities using a non-

direct-product basis. Bramley et al. (BTCC)20 advocated an

approach that treats the radial singularity in a triatomic

vibrational problem by using 2-D nondirect-product polyno-

mial basis functions, which are the analytic eigenfunctions of

the spherical harmonic oscillator Hamiltonian. In 2005 some

of the authors of this study published37 a similar nondirect-

product basis method employing a generalized finite basis

representation (GFBR) method27,38 for the triatomic vibra-

tional problem, whereby Bessel-DVR functions, developed by

Littlejohn and Cargo,39 were coupled to Legendre polyno-

mials. These basis functions are not polynomials; therefore, a

standard Gauss quadrature could not be used to determine the

potential energy matrix. The same authors later40 much

improved their technique for computing the elements of the

potential energy matrix (see also below).

As briefly, and perhaps incompletely, summarized, various

techniques have been developed to solve the radial singularity

problem occurring in variational vibrational computations.

Again, to the best of our knowledge methods have not yet

appeared that treat all the important radial singularities in the

full 6-D rotational–vibrational Hamiltonian of triatomic mo-

lecules using nondirect-product bases. Therefore, the work

described here had been executed with three particular aims in

mind. First, we wanted to extend our nondirect-product

technique37 and code based on Bessel-DVR functions and

GFBR so that it could be used to obtain the full rotational–

vibrational eigenspectrum of triatomic molecules. Second,

recognizing that determination of a large number of eigenva-

lues of large nonsymmetric Hamiltonians is a nontrivial

problem, we wanted to test the utility of the implicitly re-

started Arnoldi technique,41 as implemented in the ARPACK

package,42 to obtain a desired set of rotational–vibrational

eigenenergies. At the same time, the use of a non-polynomial

nondirect-product basis is a good test of the GFBR methods.

Third, a particularly straightforward test of the algorithm is

offered by computing rotational–vibrational energy levels of

X3 species, H3
+ in this paper, somewhat above their barrier to

linearity. Convergence of the eigenvalues in the case of H3
+

can be checked with a particularly simple direct-product DVR

computation31,32 utilizing the orthogonal Radau coordi-

nates.43 The advantage of the Radau coordinates is that they

minimize the problem of a radial coordinate going to zero with

low-energy linear structures. Of course, the Radau coordinate

Hamiltonian is not devoid of the singularity problem but it

shows up only at considerably higher energies. Convergence

characteristics and computer resource utilization of the dras-

tically different approaches used to determine rotational–

vibrational eigenenergies of H3
+ allow for interesting and

useful comparisons.

II. Algorithmic details

A. Coordinate system, Hamiltonian, and basis functions

Singularities will always be present in an internal coordinate

rotational–vibrational Hamiltonian expressed in a rotating

body-fixed frame.12 The number and type of singularities

depend on the choice of the internal coordinate system and

the embedding of the axis system chosen. In the orthogonal

Jacobi coordinate system, the coordinate R1 is the diatomic

distance, R2 is the separation of the third atom from the center

of mass of the diatom, and Y is the enclosed angle. The

singularity associated with R1 (eqn (1), vide infra) occurs for

the nuclear coalescence point of the diatom, which is a

physically irrelevant region for rovibrational computations

because the potential energy value is going to be infinite and

the wave function tends to vanish there. For this reason it is

clearly advantageous to choose for the z-axis of the molecule-

fixed frame to lie along the R1 coordinate, called the R1

embedding.30 In this embedding the molecular plane is per-

pendicular to the y-axis. The rovibrational Hamiltonian of a

triatomic molecule in Jacobi coordinates (R1, R2, Y) and

employing the R1 embedding is given in atomic units as30,44

Ĥrot-vib ¼ T̂ þ V̂ ¼ T̂vib þ T̂ rot-vib þ V̂ ; ð1aÞ

T̂vib ¼ �
1

2m1

@2

@R2
1

� 1

2m2

@2

@R2
2

� 1

2m1R2
1

þ 1

2m2R2
2

� �

� @2

@Y2
þ cotY

@

@Y
� j2z
sin2 Y

� �
;

ð1bÞ

T̂ rot-vib ¼
1

2m1R2
1

ðĴ2 � 2Ĵzĵz � Ĵþ ĵ� � Ĵ� ĵþÞ ð1cÞ

where m1 and m2 are the usual reciprocal reduced masses, the

volume element of integration is taken as dR1dR2d(cosY), Ĵ is

the total angular momentum, and ĵ refers to the rotational

angular momentum of the diatom.

T̂ has three singularities, at R1 = 0, at R2 = 0, and at

sin Y = 0. As has been emphasized repeatedly, the R1 = 0

singularity needs no special attention. The Y-dependent part

of eqn (1b) is always singular if the molecule vibrates to the

linear geometry or, in a more technical sense, if the basis

functions sample the linear geometry. This sin Y = 0 singu-

larity does not mean generally that R2 is also zero. However,

the R2 = 0 singularity is coupled with the angular singularity,
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because if R2 is zero then Y becomes undefined. Therefore, in

the Jacobi coordinate system one should use20 a 2-D {R2, Y}

nondirect-product basis for treating the radial singularity in R2

which is coupled with the angular singularity.

The full 6-D basis function with angular momentum J,

parity p [p = (0/1) corresponds to (odd/even)], and the usual

quantum numbers M = |m| and K = |k|, corresponding to

space-fixed and body-fixed projections of the rotational angu-

lar momentum on the z axis, can be written as

FK
n1;n2;‘

ðR1;R2;YÞCJp
MKðj; w;cÞ: ð2Þ

In eqn (2) CJp
MK(j, w, c) is the rotation function (parity-

adapted symmetric-top eigenfunctions), which depends on

the three Euler angles defining the orientation of the body-

fixed frame with respect to the laboratory frame.

The function FK
n1;n2 ;‘

(R1, R2, Y) is taken as the product of a

1-D DVR basis {wn1(R1)} with a Bessel-DVR set {Fcn2
(R2)}

times an associated Legendre polynomial set {PK
c (cos Y)}:

FK
n1;n2 ;‘

ðR1;R2;YÞ ¼ wn1 ðR1ÞF‘n2ðR2ÞPK
‘ ðcosYÞ: ð3Þ

The index c couples the associated Legendre polynomials to

the Bessel-DVR functions, which are defined as

F‘n2ðR2Þ ¼ ð�1Þn2þ1
ffiffiffiffiffiffi
Kv

p
zvn2

ffiffiffiffiffi
2z
p

z2 � z2vn2
JvðzÞ ð4Þ

where z = Kv R2, Kv = zvN2
/Rmax

v , zvn2 is the n2th zero of the

Bessel function of fractional order Jv(z), and v ¼ ‘þ 1
2
. The set

of Bessel grid points is defined as rcn2 = zvn2/Kv, thus all the

grid points are in the interval 0 o rcn2 rRmax
v . The

v-dependent Rmax
v is a free parameter used to define the range

of the R2 coordinate.

The size of the basis set in an actual calculation is defined as

follows. The number of R1-dependent functions is N1. The

total number of Bessel-DVR functions is N2 for each c and the

number of associated Legendre polynomials is L for each K.

The index c is set to run from K to K + L � 1. K goes from 0

to J, with the exception of the even-parity functions, where the

K = 0 rotation function does not exist. The size of the total 6-

D basis is therefore N1N2L(J + 1 � p). The rk1 radial points

are defined for the R1-dependent functions, whereas for each K

a set of L angular Gaussian quadrature points qKk is defined

corresponding to the set of PK
c associated Legendre polyno-

mials. Therefore, the size of the angular grid is L(J + 1 �p).

B. The kinetic energy matrix

The matrix representation of T̂vib, starting with the integral

over the angular coordinates, is

hPK
‘ C

Jp
MK jT̂vibjPK 0

‘0 C
Jp
MK 0 i ¼ T̂

ð1Þ
‘ d‘;‘0dK ;K 0 þ T̂

ð2Þ
‘ d‘;‘0dK;K 0 ; ð5Þ

where

T̂
ðjÞ
‘ ¼ �

1

2mj

@2

@R2
j

þ 1

2mjR2
j

‘ð‘þ 1Þ ð6Þ

and j = 1 or 2.

The matrix elements of the R1-dependent T̂
(1)
c operator are

computed as

ðTð1Þ‘ Þn1;n01 ¼ ðT
ð1ÞÞn1;n01 þ ðR

�2
1 Þn1;n01‘ð‘þ 1Þ; ð7Þ

where the matrix elements of the corresponding differential

operator,

ðTð1ÞÞn1;n01 ¼ wn1ðR1Þj �
1

2m1

@2

@R2
1

jwn0
1
ðR1Þ

� �
; ð8Þ

can be obtained by exact analytical formulae.45 The DVR

representation of the R�21 part of the kinetic energy operator

matrix is calculated using the quadrature approximation and

the radial points rn1 as

ðR�21 Þn1;n01 ¼ wn1ðR1Þj
1

2m1R2
1

jwn0
1
ðR1Þ

� �
ffi 1

2m1r2n1
dn1;n01 : ð9Þ

As to the R2-dependent T̂(2)
c operator, we avoid using the

quadrature approximation for computing its matrix elements

in order to treat the R2
�2 singularity. The matrix elements

of T̂(2)
c ,

ðTð2Þ‘ Þn2;n02 ¼ F‘n2ðR2ÞjT̂
ð2Þ
‘ jF‘n02 ðR2Þ

D E
; ð10Þ

are evaluated using an analytical formula taken from

ref. 37 and 39.

Employing eqns (7) and (10), the DVR/FBR representation

of T̂vib is written as

ðTvibÞn1n2‘K ;n01n02‘0K 0 ¼ ðT
ð1Þ
‘ Þn1 ;n01dn2 ;n02d‘;‘0dK ;K 0

þ dn1;n01ðT
ð2Þ
‘ Þn2 ;n02d‘;‘0dK ;K 0 : ð11Þ

For the matrix representation of T̂rot-vib one takes advantage

of the properties of the CJp
MK(j, w, c) rotational functions. The

matrix representation of T̂rot-vib is

ðTrot-vibÞn1n2‘K ;n01n02‘0K 0 ¼ð
~RK
1 Þn1 ;n01dn2 ;n02d‘;‘0dK ;K 0

þ ð~R�21 Þn1;n01dn2;n02ðB
þ
K Þ‘;‘0dKþ1;K 0

þ ð~R�21 Þn1;n01dn2;n02ðB
�
K Þ‘;‘0dK�1;K 0 ;

ð12Þ

where

ð~RK
1 Þn1;n01 ¼

JðJ þ 1Þ � 2K2

2m1r2n1
dn1;n01 ; ð13aÞ

ðB�KÞ‘;‘0 ¼ �ð1þ dK0 þ dK�1;0Þ1=2L�JKL�‘Kd‘�1;‘0 ; ð13bÞ

and L�ZK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZðZþ 1Þ � KðK � 1Þ

p
.

The matrix representation of the total kinetic energy opera-

tor resulting from the combination of eqns (11) and (12) is

sparse and it has a particularly simple structure. Fig. 1 shows a

pictorial representation of its nonzero elements.
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C. The potential energy matrix

Elements of the potential energy matrix are defined as

Vn1n2‘K;n
0
1
n0
2
‘0K 0 ¼ VK

n1n2‘;n
0
1
n0
2
‘0dK;K 0

¼ hFK
n1 ;n2;‘

jVðR1;R2; cosYÞjFK
n0
1
;n0
2
;‘0 idK ;K 0 ;

ð14Þ

where advantage is taken of the fact that the potential energy

operator does not depend on the Euler angles.

Since the Bessel-DVR functions are non-polynomial and in

order to take advantage of a quadrature approximation, we

evaluate the potential energy matrix elements by means of the

generalized finite basis representation (GFBR).40 Two meth-

ods are considered for determining the matrix representation

of the potential energy operator.

Method I employs a symmetric GFBR written as

VK ffiðSKÞ�1=2VVK ðSKÞ�1=2

¼ðSKÞ�1=2FFKVK
diagðFFK ÞþðSKÞ�1=2;

ð15Þ

where SK = FFK (FFK)+ and

ðVK
diagÞk1‘2k2k;k01‘02k02k0 ¼ Vðrk1 ; r‘2k2 ; qKk Þdk1;k01d‘2;‘02dk2;k02dk;k0 :

ð16Þ

For each K, an N1N2L � N1N2L
2-dimensional sparse rectan-

gular matrix of special structure, FFK, is defined as

FFK
n1n2‘;k1‘2k2k

¼w1=2
k1

w
1=2
‘2k2
ðwK

k Þ
1=2wn1ðrk1ÞF‘n2ðr‘2k2ÞP

K
‘ ðqKk Þ

¼dn1 ;k1w
1=2
‘2k2
ðwK

k Þ
1=2F‘n2 ðr‘2k2 ÞPK

‘ ðqKk Þ;
ð17Þ

where wn1 (rk1) = wk1

�1/2 dn1,k1, and wk1
and wK

k are Gaussian

weights. wc2k2
were set to 1 during the computations. The

implementation of Method I involves two steps. First, the

matrices VVK and SK are computed as

ðVVKÞn1n2‘;n01n02‘0 ¼
XN1

k1¼1

XN2

‘2¼1

XL
k2¼1

XL
k¼1

FFK
n1n2‘;k1‘2k2k

� ðVK
diagÞk1‘2k2k;k1‘2k2kFF

K
k1‘2k2k;n

0
1
n0
2
‘0

¼ dn1;n01
XN2

‘2¼1

XL
k2¼1

XL
k¼1

w‘2k2w
K
k F‘n2ðr‘2k2ÞPK

‘ ðqKk Þ

� Vðrk1 ; r‘2k2 ; qKk ÞF‘0n02ðr‘2k2ÞP
K
‘0 ðqKk Þ

ð18Þ

and

ðSK Þn1n2‘;n01n02‘0 ¼
XN1

k1¼1

XN2

‘2¼1

XL
k2¼1

XL
k¼1

FFK
n1n2‘;k1‘2k2k

FFK
k1‘2k2k;n

0
1
n0
2
‘0

¼ dn1 ;n01
XN2

‘2¼1

XL
k2¼1

XL
k¼1

w‘2k2w
K
k F‘n2ðr‘2k2ÞPK

‘ ðqKk ÞF‘0n02ðr‘2k2ÞP
K
‘0 ðqKk Þ:

ð19Þ

Next, the expression for VK is obtained through matrix multi-

plications. The explicit expression for the matrix elements is

ðVKÞn1n2‘;n01n02‘0 ¼
XN1N2L

j¼1

XN1N2L

i¼1
ðSK Þ�1=2n1n2‘;i

VVK
i;j

 !
n1n2‘;j

ðSK Þ�1=2
j;n0n0

2
‘0 :

ð20Þ

Fig. 1 Pictorial representation of the shape and the nonzero elements of the matrices appearing in eqns (20) or (21) and (22)–(25), (for the sake of

clarity, N1 = 3 and N2 = 4). In this figure the total rovibrational Hamiltonian matrix, Hrot-vib, is given for J = (3/4) for (odd/even) parity. The

matrix B� is either the subdiagonal B+ or the superdiagonal B� in H(K,K+1) or H(K,K�1), respectively.
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The N1N2L � N1N2L-dimensional VK is a block-diagonal

matrix containing N2L � N2L-dimensional blocks (see Fig. 1).

Method II, involving a minor modification of Method I,

provides a considerably more efficient algorithm for determin-

ing VK. The key idea40 is that for each c a set of quadrature

points {rck2} can be chosen satisfying Fcn2
(rck2) = wck2

�1/2

dn2,k2, where w
�1=2
‘k2
¼ ð�1Þk2þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kvzvk2=2

p
J 0vðzvk2Þ. There are

two possible choices for the radial points {rck2}, as they can

be coupled to the bra or the ket of eqn (14). In eqn (21), vide

infra, we have used the former, whereas the use of the latter

would have resulted in the transpose of VK. Then, the matrix

elements are

ðVKÞn1n2‘;n01n02‘0 ffi
XN1

k1¼1

XN2

k2¼1

XL
k¼1

wk1w‘k2w
K
k wn1ðrk1ÞF‘n2ðr‘k2Þ

� PK
‘ ðqKk ÞVðrk1 ; r‘k2 ; qKk Þwn01ðrk1ÞF‘0n02ðr‘k2ÞP

K
‘0 ðqKk Þ

¼
XN1

k1¼1

XN2

k2¼1

XL
k¼1

wk1w‘k2w
K
k w
�1=2
k1

dn1;k1w
�1=2
‘k2

dn2;k2

� PK
‘ ðqKk ÞVðrk1 ; r‘k2 ; qKk Þw

�1=2
k1

dn0
1
;k1F‘0n02

ðr‘k2ÞPK
‘0 ðqKk Þ

¼ dn1;n01w
1=2
‘n2

F‘0n0
2
ðr‘n2Þ

XL
k¼1

wK
k P

K
‘ ðqKk ÞVðrn1 ; r‘n2 ; qKk ÞPK

‘0 ðqKk Þ:

ð21Þ

It is important to note that in Method II a basis function

dependent (c-dependent) grid is used. Further details can be

found in ref. 40. Use of Method I results in a symmetric

potential energy matrix, while that of Method II in an asym-

metric matrix.

D. The final Hamiltonian matrix and its eigenvalues

To set up the matrix representation of the Hamiltonian, it is

useful to group the basis functions into separate sets of even

and odd parity. The total Hamiltonian matrix for a given J is

built up of blocks (Fig. 1), and one cycles through K to build

the Hamiltonian matrix, where K also denotes the index of the

cycle.

The matrix elements of the final rotational–vibrational

Hamiltonian can be given as

ðH rot-vibÞn1n2‘K ;n01n02‘0K 0 ¼ ðTvibÞn1n2‘K ;n01n02‘0K 0

þ ðTrot-vibÞn1n2‘K ;n01n02‘0K 0 þ ðV
K Þn1n2‘;n01n02‘0dK ;K 0 :

ð22Þ

Fig. 1 shows the structure of the Hamiltonian matrix, whereby

ðTK Þn1n2‘;n01n02‘0 ¼ ðT
ð1Þ
‘ Þn1;n01dn2;n02d‘;‘0

þ dn1 ;n01ðT
ð2Þ
‘ Þn2n02d‘;‘0 þ ð

~RK
1 Þn1;n01dn2;n02d‘;‘0 ;

ð23Þ

ðH ðK;K�1ÞÞn1n2‘;n01n02‘0 ¼ ðR
�2
1 Þn1;n01dn2;n02ðB

�
K Þ‘;‘0 ; ð24Þ

and

H ðK ;KÞ ¼ TK þ VK : ð25Þ

Building the kinetic energy matrix, as compared to that of

the potential energy matrix, requires almost no computer time.

Therefore, to judge the cost of the computation of the

Hamiltonian matrices through Methods I and II it is enough

to consider the cost associated with assembling VK. In Method

I, each element of the potential matrix is computed using the

same grid of N1N2L
2 points, which requires on the order of

N2L
2 additions for each nonzero element [see eqns (18) and

(19)]. In Method II, the same integral can be obtained employ-

ing only N1N2L special points corresponding to the appro-

priate Bessel-DVR function. Furthermore, the use of the

N1N2L special points within Method II requires only a single

summation, see eqn (21). Consequently, building the Hamil-

tonian matrix according to Method II is about N2L times less

expensive than that using Method I. For the largest calcula-

tions presented this means close to three orders of magnitude

saving when building VK. For Methods I and II the final

symmetric or asymmetric Hamiltonian matrices have the same

structure (Fig. 1). One can take advantage of the considerable

sparsity and special structure of these Hamiltonian matrices by

employing an iterative algorithm for the computation of the

required eigenpairs or eigentriplets. Diagonalization of an

asymmetric Hamiltonian matrix requires about twice as much

effort as that of a symmetric matrix. For all problems of

practical interest, the time-determining step of Method I is the

expensive computation of the potential energy matrix, scaling

as (J + 1 � p)N1N2
3L4. Due to the simplification introduced

in Method II, its time-determining step becomes the computa-

tion of the eigenvalues. Use of special iterative algorithms and

efficient matrix-vector product evaluations during the deter-

mination of the eigenvalues makes Method II appealing for

nuclear motion computations when the determination of the

full rotational–vibrational spectrum is the goal, especially if

the use of a nondirect-product basis results in a compact

representation.

Determination of eigenenergies of a nonsymmetric matrix is

not a simple task. Furthermore, given the efficient computa-

tion of the Hamiltonian matrix using Method II means that

most of the computer time is spent on the determination of the

eigenvalues. The relatively widely known implicitly restarted

Arnoldi method,41 whose robust implementation is available

within the ARPACK package,42 has been incorporated into

our code. During the matrix-vector multiplications advantage

has been taken of the sparsity and the special structure of the

Hamiltonian. The implicitly restarted Arnoldi algorithm

proved very stable in all test computations. For the symmetric

case a local implementation31 of the standard sparse-matrix

Lanczos algorithm46 has been used. The same algorithm was

employed for the standard direct-product computations utiliz-

ing the DOPI3R code,31,32 where DOPI stands for DVR (D) of

the Hamiltonian in orthogonal (O) internal coordinates using

a direct-product (P) basis followed by iterative (I) diagonaliza-

tion of the resulting sparse Hamiltonian.

III. A numerial test: H3
+

As a numerical test, rotational–vibrational energy levels of

H3
+ have been computed employing the algorithms described

in section II. The global PES of H3
+ used in these

This journal is �c the Owner Societies 2007 Phys. Chem. Chem. Phys., 2007, 9, 3407–3415 | 3411



computations is taken from ref. 47. To show the deteriorating

effect of the R2 singularity, the rotational–vibrational energy

levels have also been computed by the direct-product DOPI

technique.31,32 Naturally, all these DOPI computations were

performed in the Jacobi coordinate system with R1 embed-

ding. When using DOPI, no attempt is made to treat the

important radial singularity involving R2 so no convergence is

expected for a large number of levels. In the Method I and

Method II computations the R1-dependent 1-D DVR basis set

was the Hermite-DVR basis, which was also used as the R1

and R2 radial bases during the DOPI computations. In DOPI,

associated Legendre-DVR functions have been employed for

Y. In all the tables and in the text the number of basis

functions is denoted as (N1 N2 L), where N1, N2, and L are

the numbers of the R1-, R2-, and Y-dependent functions,

respectively.

To test the convergence of the eigenenergies obtained from

Methods I and II, they need to be compared to tightly

converged reference values. These have been provided by

DOPI computations utilizing the Hamiltonian in orthogonal

Radau coordinates. The average discrepancies, given in energy

intervals, between the reference and those J = 2 rovibrational

energy levels of H3
+ which were computed by Methods I and

II and the Jacobi-DOPI technique are given in Table 1. The

results presented there can be summarized as follows:

(i) Even with small basis sets, basically the same results are

obtained regardless of whether Method I or II is employed.

Naturally, the two representations provide exactly the same

converged eigenenergies.

(ii) The full eigenspectrum of the nonsymmetric Hamilto-

nian matrix from Method II can contain complex eigenvalues.

In the finite basis cases the converged or nearly converged

energies are real numbers, even for the smallest, (20 20 20) case

presented in Table 1. The convergence of the imaginary part of

the eigenvalues to zero is much faster than the convergence of

the real part.

(iii) Below the barrier to linearity, which is at about 15 000

cm�1 above the minimum of the PES, treatment of the

singularities is not necessary. Therefore, Methods I and II

and the Jacobi-DOPI algorithm give basically the same eigen-

energies. As a small technicality, note that in the odd-parity

case the low-lying energy levels obtained by the DOPI proce-

dure become compromised by the radial singularity when the

number of quadrature points is increased. To obtain con-

verged results with the DOPI algorithm below the barrier to

linearity, the smallest R2 grid point has to be chosen carefully,

as it has already been discussed in ref. 37.

(iv) Above the barrier to linearity, in the even-parity case the

radial singularity does not come into play. Therefore, Methods

I and II and DOPI give highly similar results and the eigen-

energies are converging fast to their accurate values as the

number of basis functions is increased.

(v) Above the barrier to linearity, it is essential to treat the

R2-dependent radial singularity present in Jacobi coordinates

in the odd-parity case.

Table 2 contains selected odd-parity energy levels above the

barrier to linearity. Considering the pairs E231,232, E249,250,

E251,252, and E333,334, where the subscripts denote the position

of the eigenenergies in the full spectrum, one component of

each degenerate pair depends slightly on the radial singularity.

Therefore, for this component, the Method II and DOPI

results agree with each other to within 0.86 cm�1 in the case

Table 1 Average discrepancies in the given energy intervals between the converged and the incomplete basis set rovibrational energy levels of H3
+

with rotational angular momentum J= 2, all in cm�1, computed by different algortihms in the Jacobi coordinate system using the R1 embeddinga

Interval Parity
(20 20 20) (25 25 25) (30 30 30)

Method Ib Method IIb DOPIc Method Ib Method IIb DOPIc Method Ib Method IIb DOPIc

0–10000 Odd 0.05 0.05 0.05 0.00 0.00 0.01 0.00 0.00 0.06
Even 0.05 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00

10000–11000 Odd 0.05 0.06 0.06 0.01 0.01 0.02 0.00 0.00 0.05
Even 0.06 0.06 0.06 0.01 0.01 0.01 0.00 0.00 0.00

11000–12000 Odd 0.23 0.22 0.22 0.02 0.02 0.02 0.00 0.00 0.04
Even 0.23 0.22 0.22 0.02 0.02 0.02 0.00 0.00 0.00

12000–13000 Odd 0.14 0.13 0.14 0.02 0.02 0.03 0.00 0.00 0.07
Even 0.11 0.11 0.12 0.02 0.02 0.02 0.00 0.00 0.00

13000–14000 Odd 0.50 0.49 0.49 0.03 0.03 0.03 0.00 0.00 0.05
Even 0.45 0.45 0.45 0.03 0.03 0.03 0.00 0.00 0.00

14000–15000 Odd 0.49 0.45 0.46 0.03 0.03 0.03 0.00 0.00 0.06
Even 0.47 0.44 0.44 0.03 0.03 0.03 0.00 0.00 0.00

15000–16000 Odd 0.76 0.70 0.67 0.04 0.03 0.26 0.01 0.01 0.21
Even 0.77 0.75 0.76 0.04 0.03 0.03 0.01 0.01 0.01

16000–17000 Odd 0.78 0.66 9.01 0.05 0.02 6.53 0.01 0.01 5.19
Even 0.71 0.67 0.64 0.03 0.02 0.03 0.01 0.01 0.01

17000–18000 Odd 0.75 0.53 16.87 0.05 0.03 14.06 0.01 0.01 10.60
Even 0.69 0.51 0.49 0.04 0.03 0.06 0.01 0.01 0.03

18000–19000 Odd 1.16 1.20 15.33 0.09 0.06 10.10 0.03 0.03 9.71
Even 1.26 1.26 1.49 0.05 0.06 0.19 0.02 0.03 0.08

a The PES of H3
+ is taken from ref. 47, the minimum of the PES is at re(HH) = 1.64999 a0. m(H) = 1.0075372 u is used during all the

computations. All the eigenenergies refer to the minimum of the PES. The number of basis functions is given as (N1 N2 L), where N1, N2, and L

denote the number of the R1-, R2-, and Y-dependent functions, respectively. b See text for the description of methods I and II. The R1 Hermite-

DVR grid points are in the interval [0.9, 4.5], while the radial R2 Bessel grid ponts are in the interval 0 o rcn2 r 3.5 + 0.001 (c + 1), all in

a0.
c DOPI = results obtained with DOPI,31,32 where the R1 and R2 Hermite-DVR grid points are in the intervals [0.9, 4.5] and [0.05, 3.55] a0,

respectively.
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of the smallest (20 20 20) basis and the average agreement is

about 0.24 and 0.11 cm�1 when the basis size is increased to

(25 25 25) and (30 30 30), respectively. The other component

depends strongly on the radial singularity; therefore, the DOPI

method using Jacobi coordinates cannot yield converged

eigenenergies. The average discrepancies between the accurate

and the computed values are 19.93, 8.97, and 6.26 cm�1

employing (20 20 20), (25 25 25), and (30 30 30) basis

functions, in order. Using Method II, the average errors

are only 0.61 and 0.02 cm�1 when using the (20 20 20) and

(30 30 30) bases, respectively.

There are nondegenerate energy levels where the correct

treatment of the singularities is important. For example, the

level E193 obtained by Method II is converged to within

0.94, 0.03, and 0.01 cm�1 using the (20 20 20), (25 25 25),

and (30 30 30) bases, respectively. However, employing the

DOPI method the convergence pattern is much worse; the dis-

crepancies are 2.19, 2.31, and 1.96 cm�1 using the same num-

ber of basis functions. This observation emphasizes the more

facile convergence characteristics of algorithms treating prop-

erly the singularities and the use of a nondirect-product basis.

Finally, a brief note concerning the accurate results referred

to in Tables 1 and 2, obtained in Radau coordinates employ-

ing the exceedingly simple DOPI algorithm.31,32 As perhaps

mentioned first by Tennyson et al.,48 in any variational

calculation of the (ro)vibrational eigenspectrum of H3
+ it is

important to distinguish between the coordinate-independent

barrier to linearity and the coordinate-dependent occurrence

of a singularity. In the Jacobi coordinate system the radial

coordinate R2 has to be treated at and above the barrier to

linearity, because R2 becomes zero exactly when the third H

atom vibrates to the center of mass of the diatom, which is by

definition the barrier to linearity of H3
+ (though not so for

many of the isotopologues). This occurs when the value of the

potential energy is about 10 000 cm�1 above the zero-point

energy (ZPE). Consequently, many of the (ro)vibrational

energy levels even just slightly above the barrier to linearity

cannot be converged by a computation of reasonable size in

Jacobi coordinates which does not treat the R2 singularity.

However, in Radau coordinates only the term containing sin

Y becomes singular at the barrier. Of course, one of the radial

Radau coordinates also becomes zero at a certain linear

arrangement, where H3 is about three times closer to H1 than

to H2 (see Fig. 2 for notation). However, the lowest energy

when one of the radial Radau coordinates is zero, is about

30 000 cm�1 above the ZPE (see Fig. 2). Therefore, singula-

rities related to the radial Radau coordinates do not need

special treatment during variational (ro)vibrational calcula-

tions of H3
+ very high up on the energy ladder. This is the

reason why converged rovibrational energies of H3
+ above the

barrier to linearity could be computed employing the DOPI

algorithm, which does not treat the radial singularities at all.

Finally, it should be noted that the (ro)vibrational Hamilto-

nians can be expressed in bond coordinates and due to the

interatomic radial coordinates the radial singularities are

shifted to physically irrelevant regions. Bond coordinates are

not orthogonal; thus, the kinetic energy operator contains

Table 2 Selected rotational–vibrational eigenenergies of H3
+, with rotational angular momentum J = 2, above the barrier to linearity, all in

cm�1, computed by different algorithms in the Jacobi coordinate system using the R1 embeddinga

No.b
(20 20 20) (25 25 25) (30 30 30)

Accuratee

Method IIc DOPId Method IIc DOPId Method IIc DOPId

193 16215.98 16212.85 16215.07 16212.73 16215.03 16213.08 16215.04
231 17014.77 16995.59 17014.66 17000.34 17014.64 17003.08 17014.65
232 17015.47 17015.50 17014.69 17014.67 17014.65 17014.61 17014.65
249 17308.22 17293.50 17308.23 17304.25 17308.22 17305.89 17308.24
250 17308.24 17308.22 17308.27 17308.26 17308.25 17308.24 17308.24
251 17341.89 17322.97 17342.20 17335.01 17342.21 17337.86 17342.22
252 17342.64 17342.68 17342.25 17342.25 17342.22 17342.17 17342.22
315 18527.63 18528.08 18527.40 18527.19 18527.35 18527.23 18527.35
332 18738.54 18722.22 18737.97 18728.42 18737.94 18730.86 18737.96
333 18782.92 18757.26 18783.85 18773.56 18783.87 18777.15 18783.91
334 18783.46 18780.90 18783.89 18782.98 18783.90 18783.57 18783.91

a See footnote a of Table 1. b No. is the level number obtained by counting all the eigenvalues, regardless of their parity. c The R1 Hermite-DVR

grid points are in the interval [0.9, 4.5] and the radial R2 Bessel grid ponts are in the interval 0o rcn2 r 3.5 + 0.001(c+1), all in a0.
d See footnote

c of Table 1. e Converged results obtained by a large DOPI computation utilizing the Radau coordinate system.

Fig. 2 Energy of onset of the radial singularity, with the PES of ref.

47, as a function of the end atom distance at linear arrangement of the

three atoms of H3
+ in Jacobi and Radau coordinates. The singular

geometries occur at R(H1–H3)/R(H1–H2) = 1/2 and R(H1–H3)/

R(H1–H2) = 0.26794919 in the Jacobi and Radau coordinates,

respectively. The zero-point energy is at 4362.30 cm�1 and the first

dissociation asymptote of H3
+ is at around 37 000 cm�1.
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mixed derivatives. Furthermore, in comparision with Jacobi or

Radau coordinates, bond coordinates are a poor choice for

floppy molecules due to the slow convergence of the related

variational procedure, as pointed out before.2

IV. Summary

A (pseudo)variational method, using a tailor-made nondirect-

product basis, and a related computer code have been devel-

oped for treating the important radial singularities present in

the triatomic rovibrational kinetic energy operator given in

Jacobi coordinates in the R1 embedding allowing, in principle,

the computation of the full rotational–vibrational eigenspec-

trum of triatomic species. The algorithm involves application

of a recently proposed40 method for evaluating the potential

energy matrix elements in the generalized finite basis repre-

sentation (GFBR) required by the use of a non-polynomial

nondirect-product basis. Two realizations of the GFBR pro-

cedure have been tested, Methods I and II. In Method I,

resulting in a symmetric Hamiltonian matrix, each element of

the potential matrix VK is computed using the same grid of

N1N2L
2 points, which requires additions for each nonzero

element on the order of N2L
2 [see eqns (18) and (19)]. In

Method II, resulting in a nonsymmetric Hamiltonian matrix,

the same integral is obtained employing only N1N2L special

points corresponding to the appropriate Bessel-DVR function.

Furthermore, the use of the N1N2L special points within

Method II requires only a single summation, see eqn (21). A

highly special feature of Method II is that it employs different

grid points corresponding to the different basis functions for

determination of the potential energy matrix elements. Over-

all, Method II is about N2L times less expensive than Method

I. For the largest calculations presented this means close to

three orders of magnitude saving when building VK. There-

fore, we advocate the use of Method II in further applications.

Similarly to direct-product DVRs, in Method II the overall

cost of the nuclear motion calculation is determined solely by

the cost of obtaining the desired eigenvalues and eigen-

functions.

The relatively widely known implicitly restarted Arnoldi

method has been used to obtain the eigenvalues of the non-

symmetric Hamiltonian resulting from the use of Method II.

Within this method, during the matrix-vector multiplications

advantage can easily be taken of the sparsity and special

structure of the Hamiltonian. The implicitly restarted Arnoldi

algorithm proved very stable in all test computations. Further

refinement of the iterative determination of eigensolutions

might make Method II even more appealing for nuclear

motion computations when the goal is the determination of

the full rotational–vibrational spectrum.

The results obtained during this study show that a basis-

function-dependent grid is accurate and efficient though this

GFBR results in a nonsymmetric Hamiltonian matrix. As the

numerical tests suggest, all the at least nearly converged

eigenvalues of this Hamiltonian have zero imaginary parts.

The new algorithm easily results in converged rotational–

vibrational energy levels, for example, for X3 species above

the barrier to linearity. As a test of the algorithm, J = 2

rotational–vibrational energy levels of H3
+ have been pre-

sented. The eigenenergies obtained by the new method, based

on the use of a nondirect-product basis within Methods I and

II, are compared to converged results computed by a simple

technique,31,32 which does not treat the radial singularities but

uses the Radau coordinate system. For H3
+, the use of the

Radau Hamiltonian with a DOPI-like algorithm can be

advocated for determining eigenenergies perhaps up to about

30 000 cm�1 above the ZPE.
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