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A simple variational procedure, termed DOPI for discrete variable representation—
Hamiltonian in orthogonal coordinates—direct product basis–iterative diagonalization, is
described and applied to compute low-lying vibrational band origins (VBOs) of the triatomic
systems H2O, CO2, and N2O, employing published empirical and theoretical sextic force fields.
While in these cases no difficulties arise when quartic potentials are used, the limited range of
applicability of 6th-order potentials presents difficulties for the variational determination of
VBOs, in particular for the higher-lying bending states. For H2O, transformation of quadratic
and quartic force fields from simple bond stretching to Simons–Parr–Finlan (SPF) coordinates
results in computed VBOs deviating less from experiment. This, however, does not hold for the
VBOs computed from the transformed sextic force fields where the two representations
provide highly similar results. While use of empirical quartic and sextic force fields result in a
much better reproduction of experimental VBOs than that of ab initio force fields, especially at
higher (fifth- and sixth-) order the empirical force constants, obtained through different
refinement procedures, do not correspond to the associated derivatives of the potential energy
surface (PES). Rotational constants characterizing low-lying vibrational states have been
evaluated as expectation values using inertia tensor formulas in the Eckart and principal axis
frames. Only the Eckart axes should be used for these computations and they yield accurate
vibrationally averaged rotational constants.

1. Introduction

Due to considerable methodological developments
of the last two decades, building partially on seminal

early papers of Handy and co-workers [1], accurate
variational description of the nuclear motion of even
highly excited small quantum systems has become
a relatively straightforward task [2]. For triatomic
systems solution of the rovibrational problem was
made particularly tractable by the introduction of
the discrete variable representation (DVR) [3–10] of

the Hamiltonian. For somewhat larger systems this and
similar procedures have been applied with considerable

success. Nowadays solution strategies have started to
appear to not only the four- [11–20] but also the five-
[21–23] and six-particle [24] problems.

Nevertheless, one old difficulty of nuclear motion
computations, that of the representation of the potential
energy surface (PES), still plagues applications of even
the most sophisticated theoretical and computational
procedures. For example, while for a triatomic system
electronic structure computations on the order of 1000,
about 10 per degrees of internal freedom, is usually
sufficient for a good overall representation of the
global PES [25], in order to obtain a similar precision
for a 4-atomic molecule would require 106 computa-
tions, a truly formidable computational task even on
today’s powerful computers. The simplest way of
avoiding this problem is offered by the traditional
approach to PESs, namely the expansion of the
potential in a Taylor series about a reference, usually
the equilibrium, geometry. While such force field
expansions [26, 27] may not provide a good representa-
tion of the PES for systems undergoing large-amplitude
motions, for many systems of practical interest an
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anharmonic force field representation of the PES should
provide at least the first important stepping stone to
understand the complex internal dynamics of the
system.
A further development, as compared to the 1960s and

1970s when (higher-order) force field expansions first
became popular [28–33], is the widespread availability
of analytic derivatives of the electronic energy in several
electronic structure codes [34, 35]. For example, Kállay
et al. [36, 37] recently reported the availability of
analytic first and second derivatives at cetain multi-
reference configuration interaction (MR-CI), multire-
ference coupled cluster (MR-CC), and the full
configuration interaction (FCI) levels. Therefore, apart
from cost, computation of force fields up to the sextic
terms should present, even at high levels of electronic
structure theory, little technical difficulty. Quartic
force fields, the usual limit when anharmonic force
fields are employed within the boundaries of second-
order vibrational perturbation theory (VPT2) [38–43],
have been computed for relatively large systems, e.g., for
the 17-atom amino acid L-proline [44].
Nevertheless, it must be admitted that over the years

higher-order force fields fall somewhat out of favor.
For example, to our best knowledge [26] complete sextic
force fields in internal coordinates are available only
for a handful of triatomic systems, N2O [45–48], CO2

[49–52], and H2O [53]. This disfavour is due to several
factors. First, it is exceedingly difficult to determine
accurate higher-order force constants strictly from
experimental information. Therefore, this approach
has been abandoned by experimentalists once the
precision of ab initio anharmonic force fields [26] has
been widely recognized. Second, force fields computed
from electronic structure codes are in Cartesian repre-
sentation and it is a nontrivial, though computationally
easily tractable, task to transform these force fields to
more meaningful representations, especially to those
given in terms of curvilinear internal coordinates. Third,
polynomial expansions are subject to limited ranges
of applicability due to the eventual breakdown of the
expansion. Fourth, it was observed a long time ago that
quartic force fields give excellent frequencies when
used with VPT2 formulas, a precision of 1–2 cm�1 in
the frequencies is not unusual [54], but use of variational
procedures resulted in much larger deviations from
experiment. This is a somewhat unfortunate situation
since variational procedures make the use of somewhat
complex procedures [40, 53, 55] treating resonances
unnecessary. Nevertheless, based on the methodological
advancements related to variational treatments of the
vibrational motion of molecules [56], renewing studies
on the utility of force fields for the prediction of
rovibrational dynamics and spectra seemed timely to us.

We note the recent variational studies of Zúniga and
co-workers [57–60] especially in this respect.

In this paper we investigate the expected precision
of vibrational frequencies and vibrationally averaged
rotational constants when computed from force fields

of differing order and of differing standard coordinate
representations. We restrict our attention to the
triatomic systems N2O, CO2, and H2O, for which
complete sextic force fields are available from the

literature. After the Introduction we give details con-
cerning an exceedingly simple strategy for the varia-
tional solution of the triatomic vibrational problem

(section 2). In section 3 we report results on vibrational
frequencies and their accuracy obtained by this solution
strategy and high-order force fields available to us for

N2O [45–48], CO2 [49–52], and H2O [53]. In section 4
the expectation values of the rotational constants in the
first few vibrational states are compared when the wave-
functions correspond to different representations of the

related PESs. The paper is ended with conclusions.

2. Simple variational solution of the triatomic

vibrational motion problem

Several strategies exist to set up a matrix represen-
tation of a multidimensional vibrational Hamiltonian
(see [11–24] and [61–65]). One of the simplest possible

strategies, first advocated probably in [11], is as follows:
the Hamiltonian is expanded in orthogonal (O) coordi-
nates [66,67], its matrix is represented by the discrete
variable representation (DVR) [3–7] coupled with a

direct product (P) basis, and advantage is taken of the
sparsity and the special structure of the resulting
Hamiltonian matrix whose required eigenvalues can be

determined extremely efficiently by variants of the
iterative (I) Lanczos technique [68]. The resulting
procedure is termed DOPI for DVR – Hamiltonian in
O coordinates – P basis – iterative (sparse Lanczos)

diagonalization. The DOPI procedure, described below
only briefly as its elements have been discussed before,
has been programmed up and used exclusively during

this study of triatomic systems.
The vibrational Hamiltonian of triatomic molecules

using the orthogonal Jacobi [69] or Radau [70] coordi-

nates {R1,R2,Y} can be written in atomic units as [67]
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where V̂V is the potential energy operator, �1 and �2

are well-defined [67] mass-dependent constants, R1
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and R2 denote two stretching-type coordinates, Y is
a bending-type coordinate, and the volume element for
integration is sinYdR1dR2dY.

A three-dimensional direct product basis

f�n1 R1ð Þ�n2 R2ð ÞF‘ cosYð Þg
N1�1,N2�1,L�1
n1,n2,‘¼0 is employed for

setting up the matrix representation of ĤH. The

Legendre–DVR basis fF‘ðcosYÞgL�1
‘¼0 is a natural choice

for the description of the bending motion because

Legendre polynomials P‘ cosYð Þ are the analytical

eigenfunctions, with eigenvalues ‘(‘ þ 1), of the

Y-dependent part of the kinetic energy operator. The

corresponding DVR representation can be set up via

the so-called transformation method. This involves a

Q coordinate matrix with matrix elements Q‘,‘0 ¼

P‘ cosYð Þ
� �� cosY P‘0 cosYð Þ

�� �
, and the quadrature points

qi
� �L

i¼1
are the eigenvalues of the Q matrix, while

the T transformation matrix is defined by the eigen-

vectors of the Q matrix. T transforms from finite basis

representation (FBR) to DVR:
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Note that an analytic formula is also available to
determine KYð Þn,n0 [7]. For the stretching coordinates
R1 and R2 one can choose from several one-dimensional
DVR basis, �nj Rj

� 	� �Nj�1

nj¼0
with qij

� �Nj

ij¼1
quadrature

points. One can obtain the matrix elements of the
corresponding differential operators,
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using exact analytical formulas [7]. Finally, the
DVR representation of the remaining part of the
kinetic energy operator matrix, ðR�2

j Þnj ,n0j
¼ h�nj ðRjÞ

j1=ð2�jR
2
j Þj�n0j

ðRjÞi, can be calculated using the quad-
rature approximation,

ðR�2
j Þnj ,n0j

¼
1

2�jq2nj
�nj ,n0j : ð4Þ

Expressions (2)–(4) have been used exclusively during
programming of the kinetic energy operator in the DVR
representation.

The form of the exact kinetic energy operator is

the same for the different triatomic molecules, whether

symmetric or nonsymmetric, linear or nonlinear, but

this cannot be said about the approximate potential

energy. Here advantage is taken of another simplifying

aspect of the DVR representation, namely that the

matrix of the potential energy operator V̂VðR1,R2, cosYÞ

is diagonal:

ðVdiagÞn1n2‘,n01n
0
2
‘0 ¼ Vðqn1 ,qn2 ,q‘Þ�n1n2‘,n01n

0
2
‘0 : ð5Þ

One can now build the N1N2L�N1N2L-dimensional
Hamiltonian matrix by computing direct products of
matrices defined in equations (2)–(4) and adding the
diagonal potential energy matrix to their sum:

HDVR ¼KR1
� IR2

� IYþ IR1
�KR2

� IY

þR�2
1 � IR2

�KYþ IR1
�R�2

2 �KYþVdiag:
ð6Þ

In equation (6) IR1
, IR2

, and IY mean N1�N1-, N2�N2-,
and L�L-dimensional unit matrices, respectively.
HDVR is a sparse matrix with N1 þN2þð L� 2ÞN1N2L
nonzero elements. (See figure 1 for a pictorial repre-
sentation of the relevant matrices. Note that the third
and fourth matrices on the right-hand side of equation
(6) have the same structure.) In a typical application
withN1 ¼ N2 ¼ 50 andL ¼ 100 more than 99.9% of the
matrix elements are zero. Consequently, one can easily
diagonalize large (even orders beyond 100 000�100 000)

Figure 1. Pictorial representation of the non-zero elements of the matrices appearing in Eq. (6) (for the sake of clarity, N1 ¼ 3 and
N2 ¼ 4).
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matrices using a Lanczos algorithm specialized for
extremely sparse matrices.

Finally, note should be made of two more highly

useful aspects of working in the DVR representation

of the Hamiltonian. First, it is straightforward to delete

undesirable basis functions as it simply means the neglect

of the corresponding quadrature point. Second, in a

DVR representation computation of expectation values

of a function f ðR1,R2, cosYÞ is particularly simple,

f ðR1,R2, cosYÞ
� �

v
¼

XN1,N2,L

n1,n2,‘¼1

Cn1n2‘,v

� 	2
f ðqn1 ,qn2 ,q‘Þ, ð7Þ

where matrix C contains the eigenvectors of the HDVR

matrix. The latter rewarding aspect of a DVR repre-
sentation will be utilized in section 4.

The computer code DOPI3, written in FORTRAN

and based upon the above simple procedure, can be

obtained from the authors upon request [71].

3. Vibrational band origins from force

field representations

The VBOs of H2O, CO2, and N2O have been

computed using published theoretical and empirical

force field representations of the potential of these

molecules given in the usual {STRE,STRE, BEND}

representation, where STRE and BEND stand for the
usual [72] simple bond stretching and angle bending

coordinates, respectively, and the DOPI technique (see

section 2). In the DOPI3 program we have used
Hermite-DVR basis for the stretching coordinates and

Legendre-DVR for the bend. The potential energy

function has been built using force constants, of

different representation and order, of the three triatomic
molecules. For the only nonlinear molecule, H2O, for

convergence of the lowest 13 vibrational band origins

(VBOs) to within 0.1 cm�1 the size of the DVR basis had

to be increased only to 15 for the stretches and 25 for
the bend, corresponding to a Hamiltonian matrix of

dimension 5 625� 5 625. It is important to note, how-

ever, that 25 basis functions for describing the bending
motion of the linear molecules, CO2 and N2O, are not

enough; in these cases the size of the Legendre–DVR

basis had to be increased to 80 and a larger Hamiltonian

matrix of dimension 18 000� 18 000 had to be diag-
onalized. Due to the use of the efficient sparse Lanczos

algorithm none of the diagonalizations took more than

a few minutes on an average personal computer. None

of the calculation used more than 30Mb of memory.

Table 1. Zero-point energy (0 0 0) and the first 13 vibrational band origins of H2
16O, in cm�1, obtained from complete theoretical

force fields of different order, with deviations from experiment, theory–experiment, given in parentheses.

Quadratic Quartic Sexticd

(v1 v2 v3) STREa SPFb STREa SPFb STREa SPFb Expt.c

(0 0 0) 4694.0 (55.5) 4665.0 (26.5) 4646.2 (7.7) 4637.8 (�0.7) 4633.5 (�5.0) 4636.6 (�1.9) 4638.5

(0 1 0) 1659.3 (64.6) 1634.0 (39.3) 1600.6 (5.9) 1598.5 (3.8) 1594.4 (�0.3) 1594.4 (�0.3) 1594.7

(0 2 0) 3306.1 (154.5) 3255.3 (103.7) 3165.2 (13.6) 3160.6 (9.0) 3143.3 (�8.3) 3143.2 (�8.4) 3151.6

(1 0 0) 3842.9 (185.8) 3721.7 (64.6) 3709.9 (52.8) 3658.6 (1.5) 3654.6 (�2.5) 3654.3 (�2.8) 3657.1

(0 0 1) 3943.0 (187.1) 3813.2 (57.3) 3808.7 (52.8) 3755.2 (�0.7) 3752.5 (�3.4) 3751.9 (�4.0) 3755.9

(0 3 0) 4942.4 (275.6) 4864.9 (198.1) 4691.8 (25.0) 4684.3 (17.5) 4632.6 (�34.2) 4632.4 (�34.4) 4666.8

(1 1 0) 5529.0 (294.0) 5358.5 (123.5) 5299.0 (64.0) 5240.6 (5.6) 5229.1 (�5.9) 5228.3 (�6.7) 5235.0

(0 1 1) 5613.7 (282.4) 5433.6 (102.3) 5394.9 (63.6) 5334.7 (3.4) 5327.3 (�4.0) 5326.4 (�4.9) 5331.3

(0 4 0) 6569.2 (435.2) 6463.2 (329.2) 6177.1 (43.1) 6166.0 (32.0) [6213.0] [6241.7] 6134.0

(1 2 0) 7197.7 (422.6) 6980.0 (204.9) 6852.6 (77.5) 6785.8 (10.7) 6756.6 (�18.5) 6755.2 (�19.9) 6775.1

(0 2 1) 7271.0 (399.5) 7040.4 (168.9) 6947.4 (75.9) 6879.3 (7.8) 6860.2 (�11.3) 6858.9 (�12.6) 6871.5

(2 0 0) 7687.1 (485.6) 7375.7 (174.2) 7401.7 (202.2) 7210.2 (8.7) 7211.8 (10.3) 7195.0 (�6.5) 7201.5

(1 0 1) 7787.2 (537.4) 7427.9 (178.1) 7491.2 (241.3) 7258.1 (8.3) 7264.4 (14.6) 7242.6 (�7.2) 7249.8

(0 0 2) 7885.8 (440.8) 7579.8 (134.8) 7595.6 (150.6) 7446.0 (1.0) 7408.8 (�36.2) 7413.5 (�31.5) 7445.0

aSTRE stands for a force field representation in {STRE,STRE,BEND} internal coordinates. It corresponds to the quartic
Set II force field of table 3 of [53], computed at the aug-cc-pVQZ CCSD(T) level, augmented by Set I quintic and sextic constants
of the same table, all computed at the non-stationary reference geometry of rOH ¼ 0.95843 Å and aHOH ¼ 104.44�. The remaining
forces are neglected in obtaining these results. The harmonic frequencies corresponding to this force field, obtained from
a GF analysis, are !1 ¼ 3828.9 cm�1, !2 ¼ 1652.3 cm�1, and !3 ¼ 3937.7 cm�1 [53]. Note that the sextic STRE VBOs were
obtained after setting frrr0��� ¼ 0 (see text).

bSPF stands for a force field representation in {SPF, SPF, BEND} internal coordinates using re ¼ 0.95843 Å in the definition of
the SPF coordinate (see the Appendix for the transformation formulas).

cThe experimental vibrational band origins are taken from [83]. The ZPE value corresponds to the PES defined in [25].
dThe higher vibrational states � in particular the bending-type terms – cannot be computed accurately due to the breakdown of

the sextic potential as shown in figure 2.
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The program system INTDER2000 [73–75] has been

used for the exact, analytic transformation of internal

coordinate force fields up to quartic terms from

{STRE,STRE,BEND} to {SPF,SPF,BEND} represen-

tation, where SPF is the Simons–Parr–Finlan [76]

coordinate. In the definition of the SPF [76] coordinate

the respective re geometries have been used. Despite

the availability of most relevant formulas [75], no

general-purpose computer program exists for the exact

transformation of derivatives beyond fourth order.

Table 2. Zero-point energy (0 0 0) and the first 13 vibrational band origins of 12C16O2, in cm�1, obtained from complete theoretical
force fields of different order, with deviations from experiment, theory–experiment, given in parentheses.

Quadratic Quartic Sextic

(v1 v2 v3) STREa SPFb STREa SPFb STREa SPFb Expt.c

(0 0 0) 2547.2 2533.9 2537.4 2526.3 2537.0 2526.3

(1 0 0) 1267.2 (�18.2) 1260.9 (�24.5) 1276.9 (�8.5) 1274.1 (�11.3) 1276.9 (�8.5) 1274.6 (�10.8) 1285.4

(0 2 0) 1421.0 (32.8) 1410.0 (21.8) 1385.1 (�3.1) 1379.2 (�9.0) 1383.8 (�4.4) 1378.8 (�9.4) 1388.2

(0 0 1) 2408.8 (59.6) 2379.1 (29.9) 2370.6 (21.4) 2353.2 (4.0) 2368.1 (18.9) 2353.2 (4.0) 2349.2

(2 0 0) 2500.0 (�48.4) 2487.7 (�60.7) 2528.9 (�19.5) 2523.7 (�24.7) 2530.1 (�18.3) 2525.8 (�22.6) 2548.4

(1 2 0) 2702.8 (31.7) 2680.5 (9.4) 2671.1 (0.0) 2659.4 (�11.7) 2669.0 (�2.1) 2659.5 (�11.6) 2671.1

(0 4 0) 2870.1 (73.0) 2847.5 (50.4) 2784.4 (�12.7) 2773.6 (�23.5) 2780.8 (�16.3) 2771.9 (�25.2) 2797.1

(1 0 1) 3672.0 (59.2) 3631.2 (18.4) 3628.8 (16.0) 3607.3 (�5.5) 3624.7 (11.9) 3607.4 (�5.4) 3612.8

(0 2 1) 3828.0 (113.2) 3780.8 (66.0) 3738.6 (23.8) 3712.0 (�2.8) 3732.0 (17.2) 3711.5 (�3.3) 3714.8

(3 0 0) 3706.7 (�86.0) 3688.3 (�104.4) 3762.7 (�30.0) 3755.0 (�37.7) 3766.7 (�26.0) 3760.3 (�32.4) 3792.7

(2 2 0) 3959.8 (17.3) 3928.7 (�13.8) 3936.9 (�5.6) 3921.4 (�21.1) 3935.0 (�7.5) 3922.8 (�19.7) 3942.5

(1 4 0) 4144.3 (80.2) 4105.5 (41.4) 4063.8 (�0.3) 4043.9 (�20.2) 4058.8 (�5.3) 4043.4 (�20.7) 4064.1

(0 6 0) 4350.6 (125.6) 4314.5 (89.5) 4201.6 (�23.4) 4186.0 (�39.0) 4194.3 (�30.7) 4182.1 (�42.9) 4225.0

(0 0 2) 4817.5 (144.2) 4748.5 (75.2) 4722.0 (48.7) 4682.6 (9.3) 4713.2 (39.9) 4683.0 (9.7) 4673.3

aSTRE stands for a force field representation in {STRE,STRE,BEND} internal coordinates. It corresponds to the quartic force
field of table III of [49], computed at the QZ2P CCSD(T) level, employing the non-stationary reference geometry of rCO¼ 1.1600 Å,
augmented with TZ2P RHF quintic and sextic constants of the same table obtained at the same reference geometry. The remaining
forces are neglected in obtaining the VBOs of this table. Note that the sextic STRE and SPF VBOs were obtained after changing the
sign of faaaaaa.

bSPF stands for a force field representation in {SPF,SPF,BEND} internal coordinates using re¼ 1.1600 Å in the definition of the
SPF coordinate (see the Appendix for the transformation formulas).

cThe experimental vibrational band origins are taken from [84]. For the ZPE value see table 3.

Table 3. Zero-point energy (0 0 0) and the first 13 vibrational band origins of 12C16O2, in cm�1, obtained from complete
experimental force fields of different order, with deviations from experiment, calculation�experiment, given in parentheses.a

Ref. [51] Ref. [52] Ref. [50]

(v1 v2 v3) quadratic quartic sextic quadratic quartic quadratic quartic sextic Expt.

(0 0 0) 2543.5 2533.7 2532.9 2548.7 2537.1 2547.7 2536.0 2535.4

(1 0 0) 1275.8(�9.6) 1286.8(1.4) 1285.1(�0.3) 1280.4(�5.0) 1286.5(1.1) 1279.2(�6.2) 1285.4(0.0) 1285.0(�0.4) 1285.4

(0 2 0) 1421.9(33.7) 1388.7(0.5) 1387.7(�0.5) 1426.3(38.1) 1390.0(1.8) 1425.2(37.0) 1389.0(0.8) 1387.5(�0.7) 1388.2

(0 0 1) 2392.0(42.8) 2349.2(0.0) 2346.4(�2.8) 2393.4(44.2) 2351.2(2.0) 2393.7(44.5) 2350.2(1.0) 2347.3(�1.9) 2349.2

(2 0 0) 2521.1(�27.3) 2553.1(4.7) 2547.5(�0.9) 2530.6(�17.8) 2549.9(1.5) 2528.1(�20.3) 2547.9(�0.5) 2547.6(�0.8) 2548.4

(1 2 0) 2701.8(30.7) 2677.9(6.8) 2671.8(0.7) 2709.7(38.6) 2674.5(3.4) 2707.9(36.8) 2672.3(1.2) 2669.4(�1.7) 2671.1

(0 4 0) 2877.9(80.8) 2800.7(3.6) 2798.8(1.7) 2887.2(90.1) 2802.2(5.1) 2884.9(87.8) 2799.8(2.7) 2795.3(�1.8) 2797.1

(1 0 1) 3664.5(51.7) 3615.9(3.1) 3610.7(�2.1) 3670.6(57.8) 3617.5(4.7) 3669.6(56.8) 3615.2(2.4) 3609.7(�3.1) 3612.8

(0 2 1) 3811.6(96.8) 3716.1(1.3) 3712.5(�2.3) 3817.4(102.6) 3721.0(6.2) 3816.6(101.8) 3718.5(3.7) 3710.7(�4.1) 3714.8

(3 0 0) 3740.6(�52.1) 3802.3(9.6) 3790.1(�2.6) 3755.2(�37.5) 3793.6(0.9) 3751.3(�41.4) 3791.1(�1.6) 3791.7(�1.0) 3792.7

(2 2 0) 3967.2(24.7) 3958.0(15.5) 3943.7(1.2) 3979.6(37.1) 3947.5(5.0) 3976.7(34.2) 3944.1(1.6) 3940.0(�2.5) 3942.5

(1 4 0) 4142.4(78.3) 4079.6(15.5) 4065.4(1.3) 4154.7(90.6) 4071.2(7.1) 4151.8(87.7) 4067.5(3.4) 4060.9(�3.2) 4064.1

(0 6 0) 4366.5(141.5) 4234.4(9.4) 4232.5(7.5) 4380.8(155.8) 4235.2(10.2) 4377.2(152.2) 4231.2(6.2) 4221.2(�3.8) 4225.0

(0 0 2) 4784.0(110.7) 4676.8(3.5) 4665.9(�7.4) 4786.8(113.5) 4681.0(7.7) 4787.3(114.0) 4678.5(5.2) 4667.9(�5.4) 4673.3

aThe sextic VBOs were obtained after setting "cut ¼ 20 000 cm�1 (see text). All results reported correspond to
{STRE,STRE,BEND} internal coordinates and re(CO) ¼ 1.1600 Å. The experimental (Expt.) VBOs were obtained from [84].
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Nevertheless, the explicit expressions for triatomic
molecules, given in the Appendix, allowed this trans-
formation to be carried out to sixth order.
The VBOs obtained for the parent isotopomers, the

only ones considered in this study, of H2O, CO2, and

N2O are summarized in tables 1–5. Atomic masses [77]
have been used throughout for the nuclear motion
calculations.

For all three molecules studied the ab initio force fields
have been obtained at non-stationary reference geo-

Table 4. Zero-point energy (0 0 0) and the first 13 vibrational band origins of 14N2
16O, in cm�1, obtained from complete

theoretical force fields of different order, with deviations from experiment, theory–experiment, given in parentheses.

Quadratic Quartic Sextic

(v1 v2 v3) STREa SPFb STREa SPFb STREa SPFb Expt.c

(0 0 0) 2441.1 2436.8 2425.4 2423.4 2425.0 2423.5

(0 2 0) 1212.0(43.9) 1208.1(40.0) 1213.5(45.4) 1213.1(45.0) 1214.4(46.3) 1214.3(46.2) 1168.1

(1 0 0) 1353.1(68.2) 1346.0(61.1) 1307.8(22.9) 1305.8(20.9) 1306.2(21.3) 1305.7(20.8) 1284.9

(0 0 1) 2319.5(95.7) 2301.2(77.4) 2266.4(42.6) 2260.8(37.0) 2263.6(39.8) 2260.8(37.0) 2223.8

(0 4 0) 2392.8(70.2) 2384.6(62.0) 2406.6(84.0) 2405.4(82.8) 2410.6(88.0) 2410.4(87.8) 2322.6

(1 2 0) 2585.1(123.1) 2571.5(109.5) 2530.7(68.7) 2527.2(65.2) 2528.9(66.9) 2528.3(66.3) 2462.0

(2 0 0) 2722.4(159.1) 2706.1(142.8) 2614.2(50.9) 2608.5(45.2) 2609.4(46.1) 2608.5(45.2) 2563.3

(0 2 1) 3528.5(164.5) 3502.1(138.1) 3454.0(90.0) 3446.8(82.8) 3451.2(87.2) 3448.2(84.2) 3364.0

(0 6 0) 3551.9(85.3) 3538.8(72.2) 3550.7(84.1) 3538.6(72.0) 3542.1(75.5) 3538.7(72.1) 3466.6

(1 0 1) 3672.0(191.2) 3639.9(159.1) 3584.2(103.4) 3582.3(101.5) 3594.6(113.8) 3594.3(113.5) 3480.8

(1 4 0) 3786.8(165.9) 3766.9(146.0) 3729.5(108.6) 3724.3(103.4) 3730.3(109.4) 3729.6(108.7) 3620.9

(2 2 0) 3958.8(210.5) 3932.8(184.5) 3842.3(94.0) 3832.9(84.6) 3835.7(87.4) 3834.4(86.1) 3748.3

(3 0 0) 4113.3(276.9) 4085.7(249.3) 3922.1(85.7) 3910.9(74.5) 3912.6(76.2) 3911.1(74.7) 3836.4

(0 0 2) 4639.0(221.6) 4592.6(175.2) 4507.4(90.0) 4491.3(73.9) 4497.0(79.6) 4491.2(73.8) 4417.4

aSTRE stands for a force field representation in {STRE,STRE,BEND} internal coordinates. It corresponds to the sextic force
field of table 3 of [46], computed at the cc-pVTZ CCSD(T) level. The nonstationary reference structure is as follows: rNN ¼ 1.1273 Å
and rNO ¼ 1.1851 Å. All force constants designated by d in table 3 of [46] were assumed to be zero. The remaining forces are
neglected in obtaining these results.

bSPF stands for a force field representation in {SPF,SPF,BEND} internal coordinates using re(NN) ¼ 1.1273 Å and
re(NO) ¼ 1.1851 Å in the definition of the appropriate SPF coordinates (see the Appendix for the transformation formulas).

cThe experimental (Expt.) vibrational band origins are taken from [47]. For the ZPE value see table 5.

Table 5. Zero-point energy (0 0 0) and the first 13 vibrational band origins of 14N2
16O, in cm�1, obtained from complete

experimental force fields of different order, with deviations from experiment, calculation–experiment, given in parentheses.

Ref. [48] Ref. [47] Ref. [45]

(v1 v2 v3) quadratic quartic sextic quadratic quartic quadratic quartic sextic Expt.

(0 0 0) 2386.3 2370.8 2370.8 2386.0 2370.2 2388.7 2370.1 2371.0

(0 2 0) 1165.6(�2.5) 1168.5(0.4) 1168.7(0.6) 1165.5(�2.6) 1168.2(0.1) 1165.9(�2.2) 1166.6(�1.5) 1168.4(0.3) 1168.1

(1 0 0) 1329.2(44.3) 1287.0(2.1) 1285.8(0.9) 1329.3(44.4) 1286.3(1.4) 1329.1(44.2) 1283.9(�1.0) 1284.7(�0.2) 1284.9

(0 0 1) 2280.3(56.5) 2226.2(2.4) 2225.3(1.5) 2279.7(55.9) 2226.4(2.6) 2284.7(60.9) 2217.4(�6.4) 2223.3(�0.5) 2223.8

(0 4 0) 2300.6(�22.0) 2323.2(0.6) 2323.7(1.1) 2300.5(�22.1) 2322.5(�0.1) 2301.3(�21.3) 2319.1(�3.5) 2323.2(0.6) 2322.6

(1 2 0) 2520.6(58.6) 2465.9(3.9) 2464.4(2.4) 2520.6(58.6) 2464.4(2.4) 2520.7(58.7) 2460.0(�2.0) 2463.3(1.3) 2462.0

(2 0 0) 2668.4(105.1) 2569.9(6.6) 2565.9(2.6) 2668.6(105.3) 2567.6(4.3) 2668.2(104.9) 2563.1(�0.2) 2564.0(0.7) 2563.3

(0 2 1) 3414.1(50.1) 3367.6(3.6) 3368.3(4.3) 3413.8(49.8) 3367.0(3.0) 3415.1(51.1) 3349.4(�14.6) 3366.3(2.3) 3364.0

(0 6 0) 3443.1(�23.5) 3467.0(0.4) 3468.2(1.6) 3442.3(�24.3) 3465.8(�0.8) 3448.0(�18.6) 3461.0(�5.6) 3467.6(1.0) 3466.6

(1 0 1) 3609.1(128.3) 3490.8(10.0) 3485.7(4.9) 3608.5(127.7) 3489.6(8.8) 3613.5(132.7) 3465.4(�15.4) 3482.5(1.7) 3480.8

(1 4 0) 3676.3(55.4) 3627.0(6.1) 3624.7(3.8) 3676.3(55.4) 3625.2(4.3) 3676.7(55.8) 3617.7(�3.2) 3623.9(3.0) 3620.9

(2 2 0) 3875.8(127.5) 3758.9(10.6) 3753.3(5.0) 3876.0(127.7) 3755.2(6.9) 3875.8(127.5) 3747.7(�0.6) 3751.4(3.1) 3748.3

(3 0 0) 4023.2(186.8) 3850.5(14.1) 3841.8(5.4) 4023.4(187.0) 3845.4(9.0) 4022.7(186.3) 3838.9(2.5) 3839.3(2.9) 3836.4

(0 0 2) 4510.8(93.4) 4425.7(8.3) 4422.8(5.4) 4510.4(93.0) 4427.0(9.6) 4512.2(94.8) 4394.0(�23.4) 4418.4(1.0) 4417.4

aThe VBOs computed from the sextic force field of Lacy and Whiffen [45] were obtained after setting "cut ¼ 15 000 cm�1 (see
text). All results reported correspond to {STRE,STRE,BEND} internal coordinates. The reference structures are as follows:
re(NN) ¼ 1.127292 Å and re(NO) ¼ 1.185089 Å [48], re(NN) ¼ 1.1282 Å and re(NO) ¼ 1.1843 Å [47], and re(NN) ¼ 1.12598 Å
and re(NO) ¼ 1.18624 Å [45]. The experimental (Expt.) VBOs were obtained from [47].
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metries, corresponding to the best available estimates
of the empirical equilibrium structures of the molecules
at the time. In principle, compared to the traditional
El’yashevich–Wilson GF or the VPT2 approaches, no
difficulty arises from the existence of nonzero forces
in the expansion of the potential when it is used in
a variational solution of the nuclear motion problem.
Therefore, one could avoid the non-zero force dilemma
[74] hindering the general use of force fields obtained
at nonstationary geometries. Since the ab initio force
fields have been obtained at high levels of electronic
structure theory, the remaining forces are usually
rather small. Nevertheless, the effect of the inclusion
of the forces in the potential on the VBOs is far from
being negligible. For example, in the case of CO2, where
the remaining force is the largest, the change for the
(0 0 0) and (2 0 0) VBOs, computed from the sextic
STRE ab initio force field, is þ 81 cm�1 and �47 cm�1,
respectively. The computed VBOs obtained neglecting
all the forces are in all cases considerably closer to
experiment than those obtained with the inclusion of the
forces in the potential. Therefore, one important
conclusion of this study is that remaining forces in the
ab initio expansion of the potential should be neglected
even in variational nuclear motion treatments.
Consequently, results given in tables 1, 2, and 4
correspond to this choice, i.e. neglect forces in the
expansion of the potential.
The next important question concerns the utility of

including quintic and sextic constants in the expansion
of the potential. The higher the order of the expan-
sion the better the agreement is between the computed

and the experimental VBOs. Especially gratifying is the
improvement for H2

16O, the lightest of the molecules
considered and the only one with single bonds, which
are well described by the CCSD(T) [78] (coupled cluster
theory with single and double excitations augmented
with a perturbational estimate of triple excitations)
theory employed for the ab initio force field calculation.
For the fundamental levels of H2O obtained when the
full sextic {STRE, STRE, BEND} force field is used to
represent the potential the average error in reproducing
the experimental fundamentals is 2.1 cm�1, while use of
only the corresponding quartic expansion results in an
average agreement not better than 37.2 cm�1. Therefore,
it may seem worth expanding the potential beyond the
quartic terms if a variational approach is employed for
the calculation of the VBOs. Nevertheless, in almost all
cases studied here use of the full sextic potential
presented difficulties during the variational calculations
of the VBOs due to the increased susceptibility of the
potential to breakdown at quadrature points farther
away from equilibrium. To illustrate this point a one-
dimensional cut corresponding to the bending motion is
presented for H2O (figure 2). At 6th order it is not the
stretching part of the potential that may cause
considerable problems for the variational solution of
the vibrational problem but the bending part. The sextic
potential has a breakdown when the bending angle goes
above 2.7 rad with a corresponding energy barrier as
low as 7 500 cm�1. This means that the higher VBOs,
especially those involving more than three quanta in the
bending, cannot be computed with high accuracy from
the present force field representation of the potential.
(The quartic force field expansion has no similar
problem.) Nevertheless, convergence of the lower-
lying VBOs can be achieved even if some of the
Hamiltonian matrix elements have (somewhat) unrea-
sonable values.

After a careful, term by term investigation of the
sextic potentials it turned out that the apparent
problems with obtaining converged eigenvalues can be
eliminated by changing the values of certain force
constants. In particular, in the case of H2O setting
frrr0��� ¼ 0 solves the otherwise unsurmountable diag-
onalization problem. With this (nonphysical) choice all
diagonalizations were successful giving converged
results for the lower levels, though for the higher-lying
bending states the VBOs could not be converged to
better than a few cm�1, while all other VBOs even with
medium-size basis sets were converged to better than
0.01 cm�1. Therefore, in table 1 the sextic results
presented for H2O correspond to this choice and the
problematic, only quasi-converged VBOs are given in
brackets. For CO2 the problematic force constant is
faaaaaa, whose computed value is negative [49]. Setting
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Figure 2. One-dimensional cuts of the potential energy
surface representations of H2O along the Y ¼ aHOH

angle bending coordinate using {STRE,STRE,BEND}
internal coordinates and bond stretching coordinates fixed
at re ¼ 0.95843 Å.
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this theoretical force constant to positive values solved
the problem during determination of converged eigen-
values. However, this has not proved to be sufficient
when experimental force fields have been used. Note
also that faaaaaa of CO2 has been recomputed in this
study at the all-electron aug-cc-pCVQZ [79] CCSD(T)
level, where faaaaaa¼ þ 193 aJ rad�6. For N2O the
empirical force field of Lacy and Whiffen [45], which
contains several large unphysical coupling constants
[46], seems to be extremely problematic in this respect.
Here the diagonalization problem could not be solved
by changing the sign of faaaaaa. Note also that for N2O
we were not able to reproduce the variational VBO
results of Zúniga and co-workers [58], the deviations
between the two sets of results are on the order of a
few cm�1.
Another, perhaps more appealing solution to the

problem of computing converged eigenvalues involves
the introduction of a cutoff value, "cut, employed in the
following fashion: whenever the value of the potential
calculated from the quadratic force field is larger
than "cut at a quadrature point, the appropriate
potential value is substituted by the corresponding
harmonic value irrespective of the order of the force
field actually employed. The practical problem with this
approach is that it seems to protract the convergence of
almost all of the VBOs and if it is chosen to be too
low no convergence of the VBOs can be achieved.
Nevertheless, it seems to lead to converged results in the
cases investigated. Therefore, this solution was
employed for the problematic computation of VBOs
obtained from sextic empirical force fields of CO2

and N2O.

In line with a number of previous studies, when
lower-order expansions of the potential are used, the
agreement between experiment and theory becomes
considerably better when the representation is changed
from STRE to SPF coordinates. Again, especially
pronounced is the improvement for the light H2O
molecule. However, when the full sextic force field is
used to represent the potential of H2O, the error in
the prediction of the vibrational levels with up to
1 quantum in the bending mode is 9.1 and 7.3 cm�1 for
the STRE and SPF representations, respectively.
Therefore, another important result of this study is
that the difference between the sextic STRE and SPF
representations of the PES is hardly significant. This
observation is in line with results obtained by Zúniga
and co-workers for CO2 and N2O [57,58] and by us for
N2O. Furthermore, for the pure stretching VBOs the
sextic SPF force field results in a slightly worse
agreement with experiment than the quartic SPF field.
Deviations between the quartic and sextic STRE and
SPF force field results for CO2 presented in table 2 can
be traced to the treatment of residual forces during the
computation of the VBOs. Namely, the SPF force fields
employed for the computation of the VBOs were
obtained by the exact transformation of the {STRE,
STRE, BEND} force fields, i.e. the forces on the CO
stretching coordinates have been included during the
transformation. Nevertheless, as advocated above, the
resulting forces on the SPF coordinates have been
neglected during the VBO calculations. If the forces are
included in the representation of the PES or the SPF
force field is transformed with the assumption of zero
forces in the {STRE, STRE, BEND} representation, the

Table 6. Selected stretching force constants of N2O computed at different levels of coupled-cluster theory.a

cc-pVDZ cc-pVTZ

Force constant CCSD CCSDT CCSDTQ CCSD CCSD(T) CCSDT

fr 0.1837 �0.3870 �0.4280 0.1445 �0.0313 �0.0801

fR �0.0860 �0.1530 �0.1671 0.0162 0.0006 �0.0592

frr 21.23 21.04 20.94 19.17 18.76 19.00

fRR 13.11 13.98 13.43 12.06 12.33 12.38

frrr �156.2 �155.6 �155.3 �143.4 �142.6 �142.6

fRRR �111.6 �109.9 �109.6 �102.6 �100.7 �101.1

frrrr 914.1 913.6 917.9 831.0 839.8 831.7

fRRRR 658.1 658.2 659.6 606.9 605.0 606.2

frrrrr �5198 �5210 �5190 �4836 �4812 �4842

fRRRRR �3358 �3546 �3567 �3138 �3367 �3308

frrrrrr 27025 28539 28404 31324 26961 31688

fRRRRRR 24006 22607 21972 21798 19214 20607

aUnits for the force constants are consistent with energy measured in attojoules and stretching coordinates (r and R) in
angstroms. The force fields have been evaluated at the reference structure of r(NN) ¼ 1.1273 Å and R(NO) ¼ 1.1851 Å [46].
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Table 7. Differences between vibrationally averaged and equilibrium rotational constants, in cm�1, corresponding to ground and
fundamental vibrational levels of H2

16O.a

Quadratic Quartic Sextic

(v1 v2 v3) PAS Eckart PAS Eckart PAS Eckart Expt.

(0 0 0) hAiv�Ae 1.8597 1.4440 0.9432 0.5536 0.8827 0.4910 0.4945

(0 0 0) hBiv�Be 0.0239 0.4395 �0.4455 �0.0560 �0.4715 �0.0798 �0.0588

(0 0 0) hCiv�Ce 0.0304 0.0304 �0.2759 �0.2759 �0.2940 �0.2940 �0.2370

(0 0 0) hCCoriv�Ce 0.1097 �0.1998 �0.2178 �0.2370

(1 0 0) hAiv�Ae 2.4814 2.0379 0.4371 0.0407 0.2084 �0.2008

(1 0 0) hBiv�Be 0.2047 0.6481 �0.6183 �0.2219 �0.7026 �0.2934

(1 0 0) hCiv�Ce 0.1691 0.1691 �0.4069 �0.4069 �0.4684 �0.4684

(1 0 0) hCCoriv�Ce 0.2531 �0.3311 �0.3921

(0 1 0) hAiv�Ae 4.4880 3.6207 4.4915 3.7561 4.5279 3.7930

(0 1 0) hBiv�Be 0.0324 0.8996 �0.6225 0.1129 �0.6668 0.0681

(0 1 0) hCiv�Ce �0.0067 �0.0067 �0.3260 �0.3260 �0.3462 �0.3462

(0 1 0) hCCoriv�Ce 0.1846 �0.1389 �0.1584

(0 0 1) hAiv�Ae 2.8373 1.7719 0.5584 �0.4550 0.3208 �0.7077

(0 0 1) hBiv�Be �0.3702 0.6952 �1.1148 �0.1014 �1.2001 �0.1716

(0 0 1) hCiv�Ce �0.0165 �0.0165 �0.5807 �0.5807 �0.6427 �0.6427

(0 0 1) hCCoriv�Ce 0.1090 �0.4648 �0.5263

aAll results obtained from ab initio {STRE,STRE,BEND} force fields of different order [53]. See footnote a to table 1.
PAS ¼ rotational constants in principal axes system, Eckart ¼ rotational constants in the Eckart frame. The equilibrium rotational
constants corresponding to the reference geometry of the force field expansions are as follows: Ae ¼ 27.3154 cm�1,
Be ¼ 14.5747 cm�1, and Ce ¼ 9.5038 cm�1. Experimental (Expt.) effective rotational constants were taken from [85]; the reported
differences correspond to equilibrium rotational constants Ae ¼ 27.3861 cm�1, Be ¼ 14.5804 cm�1, and Ce ¼ 9.5147 cm�1, based
on the final structure of [25].

Table 8. Differences between vibrationally averaged and equilibrium rotational constants, in 10�4 cm�1, corresponding to ground
and fundamental vibrational levels of 12C16O2.

a

Quadratic Quartic Sextic

(v1 v2 v3) PAS Eckart PAS Eckart PAS Eckart Expt.

(0 0 0) hBiv�Be 17.66 18.30 �13.21 �12.57 �13.55 �12.91 �14.19

(0 0 0) hCiv�Ce 12.97 12.97 �17.85 �17.85 �18.19 �18.19 �14.19

(0 0 0) hCCoriv�Ce 18.30 �12.57 �12.91 �14.19

(1 0 0) hBiv�Be 40.42 41.07 �2.04 �1.39 �2.81 �2.16 �14.28

(1 0 0) hCiv�Ce 29.27 29.27 �13.04 �13.04 �13.78 �13.78 �14.28

(1 0 0) hCCoriv�Ce 41.07 �1.39 �2.16 �14.28

(0 2 0) hBiv�Be 31.70 32.35 �14.86 �14.21 �15.52 �14.87 �11.53

(0 2 0) hCiv�Ce 23.93 23.93 �22.48 �22.48 �23.17 �23.17 �11.53

(0 2 0) hCCoriv�Ce 32.35 �14.21 �14.87 �11.53

(0 0 1) hBiv�Be 16.48 18.41 �48.57 �46.67 �49.81 �47.90

(0 0 1) hCiv�Ce 11.77 11.77 �53.21 �53.21 �54.44 �54.44

(0 0 1) hCCoriv�Ce 18.41 �46.67 �47.90

aAll results obtained from ab initio {STRE,STRE,BEND} force fields of different order [49]. See footnote a to table 2.
PAS ¼ rotational constants in principal axes system, Eckart ¼ rotational constants in the Eckart frame. The equilibrium rotational
constant corresponding to the reference geometry of the force field expansions is Be ¼ Ce ¼ 0.391623 cm�1. Experimental (Expt.)
effective rotational constants were taken from [86] and [52]; the reported differences correspond to the equilibrium rotational
constant Be ¼ Ce ¼ 0.3916375 cm�1 [86]. The larger than usual deviations between the sextic Eckart and the experimental results
may be partially due to the strong resonance between the levels (1 0 0) and (0 2 0).
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STRE and SPF VBOs, both for the quartic and sextic
representations, agree with each other to better than
0.5 cm�1.
Excellent agreement between experimental and com-

puted VBOs can be seen for all empirical quartic and
sextic force fields available for CO2 and N2O. While
use of empirical quartic and sextic force fields result in
a much better reproduction of experimental VBOs than
that of ab initio force fields, it is clear that especially
at higher (fifth- and sixth-) order the empirical force
constants, obtained through different refinement proce-
dures, do not correspond to the associated derivatives
of the potential energy surface (PES).
Finally, it is necessary to comment on the apparent

inaccuracy of the ab initio force fields of CO2 and N2O,
which manifests in sizeable deviations between com-
puted and experimental VBOs. While usually CCSD(T)
theory gives highly accurate force constants [54], as
can also be seen for H2O in this study, for molecules
with multiple bonds composed of highly electronegative
atoms excitations larger than triples are necessary for
the accurate characterization of the electronic structure.
To prove this point, selected force constants have been
recomputed for N2O at the coupled-cluster hierarchy
frozen-core cc-pVDZ CCSD, CCSDT, and CCSDTQ,
and cc-pVTZ CCSD and CCSDT, employing the
program MRCC [80] and the correlation-consistent
(cc) basis sets of Dunning [79], with results presented
in table 6.

4. Vibrationally averaged rotational constants

Vibrationally averaged effective rotational constants
are the principal structural results obtained from fitting
of appropriate rovibrational Hamiltonians to spectro-
scopic data. One can determine these constants from
theoretical computations basically in two ways.
The traditional route goes through VPT2 formulas
[38–42] and the vibration–rotation interaction constants
a obtained from a cubic force field expansion of the
potential. The second route, employed in this study
and preferred whenever it is feasible, computes the
effective rotational constants as expectation values
employing vibrational wavefunctions from variational
calculations.

The rotational constants of triatomic molecules as
functions of {R1,R2,Y}, which can be either Jacobi
(Radau) or traditional {STRE, STRE, BEND} internal
coordinates, can be obtained in two ways. First, one
can set up the inertial tensor I in the principal axes
coordinate system (PAS), in which case I is diagonal.
Using PAS the rotational constant functions can simply
be obtained as the inverse of the diagonal elements of I.
Second, the inertia tensor can be set up in the Eckart
coordinate system, in which case the coordinates satisfy
the Eckart conditions [72]. In this case the Imatrix is not
diagonal, and the rotational constant functions are
derived from the diagonal matrix elements of the inverse
of the I tensor neglecting the off-diagonal elements
of I�1. Consideration of the Coriolis contribution results

Table 9. Differences between vibrationally averaged and equilibrium rotational constants, in 10�4 cm�1, corresponding to ground
and fundamental vibrational levels of 14N2

16O.a

Quadratic Quartic Sextic

(v1 v2 v3) PAS Eckart PAS Eckart PAS Eckart Expt.

(0 0 0) hBiv�Be 18.71 19.50 �20.13 �19.33 �20.56 �19.77 �21.42

(0 0 0) hCiv�Ce 12.97 12.97 �25.84 �25.84 �26.27 �26.27 �21.42

(0 0 0) hCCoriv�Ce 19.50 �19.33 �19.77 �21.42

(1 0 0) hBiv�Be 31.43 32.32 �33.87 �32.97 �34.92 �34.02 �38.98

(1 0 0) hCiv�Ce 23.07 23.07 �41.21 �41.21 �42.30 �42.30 �38.98

(1 0 0) hCCoriv�Ce 32.32 �32.97 �34.02 �38.98

(0 2 0) hBiv�Be 44.90 45.73 �6.49 �5.66 �7.51 �6.69 �12.32

(0 2 0) hCiv�Ce 30.12 30.12 �22.10 �22.10 �23.04 �23.04 �12.32

(0 2 0) hCCoriv�Ce 45.73 �5.66 �6.69 �12.32

(0 0 1) hBiv�Be 17.48 19.77 �59.58 �57.32 �61.08 �58.82 �55.97

(0 0 1) hCiv�Ce 11.72 11.72 �65.31 �65.31 �66.81 �66.81 �55.97

(0 0 1) hCCoriv�Ce 19.77 �57.32 �58.82 �55.97

aAll results obtained from ab initio {STRE,STRE,BEND} force fields of different order [46]. See footnote a to table 4.
PAS ¼ rotational constants in principal axes system, Eckart ¼ rotational constants in the Eckart frame. The equilibrium rotational
constant corresponding to the reference geometry of the force field expansions is Be ¼ Ce ¼ 0.421113 cm�1. Experimental (Expt.)
effective rotational constants were taken from [45] and [47]; the reported differences correspond to the equilibrium rotational
constant Be ¼ Ce ¼ 0.421153 cm�1 [45].
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in a different I tensor but in the triatomic case only one
of the rotational constants is changed [81].
The expectation values of the rotational constants

of H2O, CO2, and N2O in the ground and fundamental
vibrational states [(0 2 0) instead of (0 1 0) for the
linear molecules] are computed employing equation
(7), and the wavefunctions correspond to the ab initio
{STRE,STRE,BEND} representations of the PESs.
In PAS the rotational constant functions were derived
in {STRE,STRE,BEND} coordinates, while the rota-
tional constant functions in the Eckart coordinate
system were taken from [81], and they are functions of
Jacobi coordinates. The calculated results are presented
in tables 7–9.
One of the notable results of this study is that the

agreement between the computed and experimental
effective rotational constants is significantly better
when the rotational constant functions employed refer
to the Eckart and not the PAS coordinate system.
Especially pronounced is the difference in case of the
light H2O molecule, where the results in PAS are much
worse than in the Eckart frame. It is thus clear that the
Eckart coordinates have to be employed to compute
vibrationally averaged rotational constants as they
have been employed in the derivation of the effective
rovibrational Hamiltonians employed for the fitting
of the experimental spectra. While some have realized
this problem many years ago [81] there are cases where
effective rotational constants have been computed in
the PAS [82].
For the linear molecules, CO2 and N2O, the computed

effective rotational constants are similar in the principle
axes and Eckart coordinate systems. It is important
to note that in all cases better agreement is obtained
between computed and experimental data using the
CCor(R1,R2,Y) rotational constant function [81]. The
linear molecules have only one rotational constant, B,
which is equal to C by symmetry. This holds neither
in the PAS nor in the Eckart system when the Coriolis
contribution is neglected. Therefore, a particularly
important reason for including the Coriolis contribution
in the expressions referring to the Eckart coordinate
system is that only in this case will hCCoriv of linear
molecules be equal to hBiv, where v represents vibra-
tional quantum numbers.

5. Conclusions

One of the simplest possible technique for the
variational solution of the nuclear motion Schrödinger
equation results when the Hamiltonian is expanded in
orthogonal (O) coordinates, its matrix is represented by
the discrete variable representation (DVR) coupled
with a direct product (P) basis, and advantage is taken
of the sparsity of the resulting Hamiltonian matrix

which can thus be diagonalized extremely efficiently by
variants of sparse iterative (I) diagonalization techni-
ques. The resulting procedure is termed DOPI for
DVR – Hamiltonian in O coordinates – P basis –
iterative (sparse Lanczos) diagonalization. The DOPI
procedure has been programmed up and used exclu-
sively during this study of triatomic systems.

The utility and applicability of force field expansions
up to sextic terms for the variational computation of
vibrational band origins (VBOs), deduced from results
obtained for H2O, CO2, and N2O, may be summarized
as follows: (a) the remaining forces in the ab initio
expansion of the potential should be neglected even in
variational nuclear motion treatments; (b) the significant
difference between VBOs obtained from quadratic and
quartic force fields corresponding to STRE and SPF
representations becomes insignificant when the full
sextic force field is employed; (c) while use of empirical
quartic and sextic force fields result in a much better
reproduction of experimental VBOs than that of ab
initio force fields, it is clear that especially at higher
(fifth- and sixth-) order the empirical force constants,
obtained through different refinement procedures, do
not correspond to the associated derivatives of the
potential energy surface (PES); and (d) numerical
problems during the calculation of converged vibra-
tional eigenvalues arise when full sextic force fields
represent the potential but they can be dealt with if
caution is exercised during the build-up of the
Hamiltonian matrix.

The Eckart coordinates and not the principal
axes coordinates have to be employed to compute
vibrationally averaged rotational constants using varia-
tional vibrational wavefunctions, as only in this case can
one compare meaningfully the first-principles effective
rotational constants to their experimental counterparts.
This is due to the fact that in the derivation of the
effective rovibrational Hamiltonians used for the fitting
of experimental spectra the Eckart coordinates have
been employed. The resulting expressions must contain
the Coriolis contribution as without this two different
effective rotational constants are computed for linear
molecules.
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Appendix

Analytic formulas for the transformation of internal
coordinate force fields up to sextic terms from {STRE,

Variational vibrational calculations using force fields 2421



STRE, BEND} to {SPF, SPF, BEND} representa-

tion are given below. One can transform the complete

sextic force field of triatomic molecules using the 15

explicit analytical formulas presented as the coefficients

are the same in the formulas of different a-derivative
SPF constants (e.g., f SPFrr� ¼ r2e frr� þ 2re fr� is obtained

from f SPFrr ¼ r2e frr þ 2re fr), while the r and r0 coordinates

can be inter-changed. In the notation employed f and

fSPF mean the force constant in {STRE,STRE,BEND}

and {SPF,SPF,BEND} representations, respectively.

f SPFr ¼ refr

f SPFrr ¼ r2efrr þ 2re fr

f SPFrr0 ¼ rer
0
e frr0

f SPFrrr ¼ r3efrrr þ 6r2efrr þ 6re fr

f SPFrrr0 ¼ r2er
0
e frrr0 þ 2rer

0
e frr0

f SPFrrrr ¼ r4efrrrr þ 12r3efrrr þ 36r2efrr þ 24re fr

f SPFrrrr0 ¼ r3er
0
e frrrr0 þ 6r2er

0
e frrr0 þ 6rer

0
e frr0

f SPFrrr0r0 ¼ r2er
02
e frrr0r0 þ 2rer

02
e frr0r0 þ 2r2er

0
e frrr0 þ 4rer

0
e frr0

f SPFrrrrr ¼ r5efrrrrr þ 20r4efrrrr þ 120r3efrrr þ 240r2e frr þ 120re fr

f SPFrrrrr0 ¼ r4er
0
e frrrrr0 þ 12r3er

0
e frrrr0 þ 36r2er

0
e frrr0 þ 24rer

0
e frr0

f SPFrrrr0r0 ¼ r3er
02
e frrrr0r0 þ 2r3er

0
e frrrr0 þ 6r2er

02
e frrr0r0

þ 12r2er
0
e frrr0 þ 6rer

02
e frr0r0 þ 12rer

0
e frr0

f SPFrrrrrr ¼ r6e frrrrrr þ 30r5e frrrrr þ 300r4e frrrr þ 1200r3e frrr

þ 1800r2e frr þ 720re fr

f SPFrrrrrr0 ¼ r5er
0
e frrrrr þ 20r4er

0
e frrrrr0 þ 120r3er

0
e frrrr0

þ 240r2er
0
e frrr0 þ 120rer

0
e frr0

f SPFrrrrr0r0 ¼ r4er
02
e frrrrr0r0 þ 2r4er

0
e frrrrr0 þ 12r3er

02
e frrrr0r0

þ 24r3er
0
e frrrr0 þ 36r2er

02
e frrr0r0 þ 72r2er

0
e frrr0

þ 24rer
02
e frr0r0 þ 48rer

0
e frr0

f SPFrrrr0r0r0 ¼ r3er
03
e frrrr0r0r0 þ 6r3er

02
e frrrr0r0 þ 6r2er

03
e frrr0r0r0

þ 36r2er
02
e frrr0r0 þ 6r3er

0
e frrrr0 þ 6rer

03
e frr0r0r0

þ 36r2er
0
e frrr0 þ 36rer

02
e frr0r0 þ 36rer

0
e frr0
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[57] ZÚNIGA, J., ALACID, M., BASTIDA, A., and REQUENA, A.,
1996, J. Chem. Phys., 105, 6099.
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