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ABSTRACT The Born-Oppenheimer potential energy surface(s) underlies
theoretical and computational chemistry (whether one considers a single
or multiply coupled surfaces). The recent progress in representing these
surfaces, rigorously obtained from electronic structure calculations, is the
focus of this Perspective. Examples of potentials of complex molecules,
namely, CH3CHO, CH5

þ, and H5
þ, and molecular complexes, namely, water

clusters, are given.

T he potential energy surface (PES) plays a central role
in the theory and computational simulation of virtually
all types of molecular interactions of interest to che-

mists and physical chemists especially. The PES (and here, we
consider a single so-called Born-Oppenheimer PES), to-
gether with a treatment of the nuclear dynamics, is the major
approach taken by theoretical and computational chemists to
perform their research. Often times, owing to the complexity
of the problem, only stationary points, that is, minima and
saddle points, and associated harmonic frequencies are the
extentof thePES that is obtained. Thesedata are generallynot
sufficient for a dynamics study, and instead, they are the input
of statistical theories, such as Transition-State Theory. In any
case, it is clear that a highly accurate, that is, high-level ab-
initio-based, full-dimensional global PES is the ideal,1-3 as is
performing a quantum mechanical treatment of the nuclear
dynamics with such a PES.

Of course, the reality of a given problem, indeed most
problems of interest, is that this ideal approach is just not
computationally feasible. Thus, compromises in both the
potential and the dynamics are often made, the specifics of
which often depend on the problem of interest. For example,
for computational modeling of water and/or water clusters,

where chemical exchange is not relevant, simple functional
forms, based on physical models, (e.g., dipole-dipole inter-
actions etc.) are typically used. Theparameters of the function
are typically determined empirically, and the nuclear motion
is typically treated using classical dynamical or statistical
mechanical methods.4 Of course, even for such nonreactive
systems, a highly accurate ab-initio-based PES is desirable. In
the case of water clusters, this has been done for rigid
monomers5 and more recently for flexible monomers.6

Another class of PESs, which is far more demanding to
representmathematically, are those for chemical reactions. In
this case, simple functional forms are highly problematic, and
other approaches are often taken. These approaches, in
particular, one with which we have had success, are the focus
of this Perspective. It important to also note that one can avoid
any representation of the PESbyemploying direct dynamics,7

also known as ab initio molecular dynamics (AIMD). This
generally means running classical trajectory calculations and
obtaining the potential and its gradient by direct calls to
electronic structure codes at each time step. There is a huge
amount of literature about applications of this approach,
owing to its obvious appeal and generality. The list of limita-
tions of this approach includes the use of classical mechanics,
relatively short total integration times, small numbers of
trajectories (less and often much less than 1000), and the
use of below the highest level of ab initio theory and basis.
These limitations originate from the very large amount of
computer time and resources required to implement AIMD,
compared tomaking a function call to a routine that returns a
value of the PES at each time step. (Much more efficient
semiempirical variations of AIMD are the empirical valence
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bond method8,9 and semi-emprical electronic theories with
specific reaction parameters.10) These limitations notwith-
standing, the direct dynamics/AIMDmethod is a very power-
ful means to investigate the mechanisms of reaction dyna-
mics, as can be appreciated from some recent examples.11-13

Returning now to the focus here, substantial progress has
been made recently in the mathematical representation of
high-dimensional PESs for both reactive and nonreactive
systems with up to 10 atoms. This progress has required
significant departures from approaches that were developed
in the 1970-1980s for triatomic molecules.1-3 This was
required because those approaches scale exponentially with
the number of degrees of freedom and thus have not been
adopted for larger numbers of atoms. A number of new
strategies have been developed for larger molecules.14-18

Notable among these is the approach by Collins and co-
workers,14,15 which is based on interpolation of local force
fields and which has been applied to a number of polyatomic
reactions.

We have implemented a different approach, which is
based on global fitting of ab initio electronic energies using
a fitting basis that is manifestly invariant with respect to all
permutations of like atoms.19,20 This invariance property of
the PES should be obvious, and although noted some years
ago,3 it was not systematically exploited as a general fitting
method until fairly recently by us. (The approach has been
suggested by several groups for the special case of XY4
molecules21,22 and nicely applied recently to the challenging
cation CH4

þ.23) A triatomic molecule that illustrates this
invariance property is O3, for which the symmetric group is
of order 3! = 6. First, it should be clear that the three
internuclear distances form a closed set under these permuta-
tions. Letting [1, 2, 3] denote the initial arrangement of the
three atoms, consider the permutation (2, 3, 1). It is easy to
see that this permutation maps the initial internuclear dis-
tances r12, r13, r23 to r23, r12, r13. Thus, a monomial basis
function r12

a r13
b r23

c maps onto r23
a r12

b r13
c , and it is easy to see

that the sum of these monomials produces a basis function
that is invariant under this particular permutation.Application
of the remaining four permutations generates four other
monomials, and finally the sum of all six monomials yields
a basis function that is invariant with respect to all permuta-
tions. Clearly then, a set of such symmetrized basis functions
can be used to represent the PES. In actual applications of this
approach, the variables used for fitting are transformed inter-

nucleardistances, that is, yR=exp(-rR/λ), whereR runs from
1 to N(N - 1)/2, the number of internuclear distances for an
N-atommolecule, and λ is a constant typically in the range of
2-3 bohr.

Clearly this procedure, which we term monomial symme-
trization, becomes tedious for larger molecules and clusters
such as CH5

þ and (H2O)3, which have large symmetric
groups. Software to perform the mapping of internuclear
distances by the permutations, the generation of symme-
trized monomials, and relating at least some of them from
lower order ones for virtually anymolecule has beenwritten.24

(For more information, see http://www.mcs.anl.gov/re-
search/projects/msa/.)

The procedure of monomial symmetrization provides a
basis for the vector space of invariant polynomials. The basis
is typically truncated at some maximum polynomial degree,
and expansion coefficients relative to that truncated basis
may then be obtained by standard least-squares procedures.
The generic basis function that is obtained this way is the sum
of #G terms, where #G denotes the number of elements of
the relevant symmetry group. These basis functions, and
therefore the fitted function, are expensive to evaluate.

Fortunately, there is a branch of algebra, computational
invariant theory, that provides powerful algorithms to obtain
compact representations of the vector space of invariant
polynomials.25 This representation of invariant polynomials
relies on the concept of families of so-called primary and
secondary invariant polynomials. These are invariant poly-
nomials of the yR variables. The number of primary invariant
polynomials is equal to the number of variables, N(N - 1)/2,
and the number of secondary invariant polynomials depends
on the group and its representation and also on the choice of
primary invariant polynomials. In termsof these polynomials,
the potential can be represented by a compact expression,
given elsewhere.19,20

For each molecular symmetry group of interest, the gen-
eration of primary and secondary invariant polynomials has
been done with the computer algebra package MAGMA.26 A
large library of these polynomials for up to 10 atoms exists
and is available for download at theWebsite http://iopenshell.
usc.edu/downloads/ezpes/. More details and some examples
are given in the recent review by Braams and Bowman.20

Examples of Complex Molecules. More than 20 potential
energy surfaces have been generated using these fitting
methods. These include reactive potentials of considerable
complexity, of which CH3CHO is one example that we briefly
consider here. Other PESs describe complex molecules and
clusters. Examples that we consider here are CH5

þ, H5
þ, and,

very briefly, water clusters.
First consider CH3CHO. Ohno and co-workers27 have

located 98 stationary points (minima and saddle points) on
the PES. This numberdoes not take into account the permuta-
tional symmetry of this system. The importance of describing
this permutational invariance is illustrated by the radi-
cal-radical reaction CH3þHCOfH2þ CH2CO. In principle,
any of the H and C atoms of the reactants can appear in any
combination of the H and C atoms of the products. Of course,
energetics and other features of the PES together with the
dynamics determine the actual outcomes; however, it is clear
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that a completely unbiased approach requires that the PES
describe all possible pathways. Using the approach described
above, we have developed a global PES for this system,28

which does describe the complexity implied by the numberof
stationary points aswell as the permutational symmetry. (The
order of the symmetric group here is 4!2! = 48.) This
publishedPESandanewer unpublishedoneare fits to roughly
200000 electronic energies. This is actually amodest number
of energies considering that CH3CHO has 15 vibrational
degrees of freedom and 21 internuclear distances, which by
either measure is a high dimensionality (and “rugged”). The
PES does describe many reaction channels, and these are
indicated in Figure 1, with an emphasis on the unimolecular
dissociation of acetaldehyde to CH4 þ CO and CH3 þ HCO.
Interest in the these channels has focused on the “roaming”
pathway to the molecular products, instead of the conven-
tional pathwayover themolecular transition state, labeledTS4
in the figure.28-30

The next illustrations are to the notoriously floppy carboca-
tion CH5

þ and the slightly less floppy cation H5
þ. Both cations

have a symmetric group of order 5! = 120, and the PES
should be invariant with respect to all of those permutations.
The first full-dimensional, permutationally invariant PES for
CH5

þwas reported in 2003 andwas the first application of the
permutationally invariant bases described above.31 This PES
was used in diffusion Monte Carlo (DMC) calculations of the
zero-point state to rigorously characterize the degree of
delocalization over the 120 minima.32 A newer PES based
on fitting 36000 CCSD(T)/aug-cc-pVTZ energies that also
describes dissociation to CH3

þ þ H2 was reported in 2006.33

It should be noted that a PES for CH5
þ using the interpolation

approach of Collins and co-workers and made permutation-
ally invariant by replicating the force fields was developed
and used in DMC calculations of the zero-point state.34 This
approach was also used to develop the first global PES for
H5

þ.35 We have reported a newer, permutationally invariant
PES for H5

þ.36

The equilibrium structures and some relevant low-lying
saddle points for CH5

þ and H5
þ are shown in Figure 2; these

are important in understanding the fluxional nature of these
molecules. As seen, CH5

þ has two low-lying saddle points that
separate the global minima. These are easily overcome in the
zero-point state (which has an energy of 10917 cm-1), which
exhibits complete scrambling of the H atoms across the 120
permutationally equivalent global minima. For H5

þ, the low-
lying saddle point indicates that a better picture of this cation
is as a proton bound to the H2 dimer, and indeed, this is born
out by rigorous calculations briefly described below.

Avarietyofdynamics calculations have been donewith the
latest CH5

þ PES. In particular, in 2006, we and Anne McCoy
reported predictions of the IR spectra of CH5

þ37 and its
deuterated isotopologues.38,39 The motivation for those pre-
dictions was to investigate spectroscopic signatures of “quan-
tum localization” that is induced by D-substitution. That is, by
breaking themass symmetry, itwas shownquantitatively that
the H atom prefers to concentrate at the H2 site of the global
minimum, shown in Figure 2. A careful analysis of DMC
calculations of the zero-point density of these and other
isotopologues provided weights for the location of D and H
atoms. These weights were used in anharmonic variational

Figure 1. Indicated stationary points of the CH3CHO potential energy surface and indicated fragments.
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calculations of the IR spectra for the various configurations
and then scaled by the DMC weights to obtain final spectra.
The opportunity to test these predictions against experiment
has just been made possible by new IR action spectra of
isotopologues ofCH5

þ.40We showacomparisonofa subset of
the predicted and experimental spectra in Figure 3. The
experimental spectra shown here were taken with digitizing
software from Figure 2 of ref 40 and do not reproduce the
small, high-frequency “noise” superimposed on the signal. As
seen, there is very good agreement between theory and
experiment, which validates the quantitative predictions of
the degree of localization in these isotopologues, aswell as the
accuracy of the PES.

Turning now to H5
þ, we and Duncan and co-workers

recently reported a comparison of calculated and experimen-
tal dissociation spectra ofH5

þ andD5
þ inwhich themotion of

the central proton “shuttling” between the two H2 groupswas
shown to have clear spectroscopic signatures.41 The calcu-
lated spectra extended to lower frequencies than experiment
and predicted a very intense feature which has been ascribed
to the fundamental of the delocalized proton stretch. The
spectrum and the ground-state density of the proton stretch
are shown in Figure 4. This intense spectral feature awaits
experimental verification; however, we are confident that this
delocalized sharedprotonmode is accurately predictedby the
calculations.

Here, we briefly consider one of the most widely studied
and important molecular complexes, water. The term “com-
plex” here simply means an assembly of many H2O mono-
mers, which is of course what physical chemists mean by
“water.”Thedistinction between “water”and “water clusters”
is mainly a matter of the number of monomers and, to some
extent, the properties being studied. In any case, we simply

wish to briefly indicate the way in which permutationally
invariant fitting has made an impact in this area. A detailed
account of this work has very recently appeared,6 and we
refer the interested reader there for details. The key element
in the approach that we have taken is the established rate of
convergence of electronic energies of a number of water
clusters in terms of an N-body (monomer) representation.
Careful work by several groups5,42,43 has established that the
two- and three-body interactions account for roughly 80%
and nearly 20% of the total energy, respectively, and thus,
these interactions are the crucial building blocks of a general
potential for large numbers of monomers. In view of this, we
have developed full-dimensional ab-initio-based (and permu-
tationally invariant) PESs for the water dimer/two-body44-46

and three-body interactions.47 The family of two-body poten-
tials, denotedHBBn, doaccurately describe all of the low-lying
stationary points, including of course the global minimum of
the water dimer, as indicated in Figure 5. These stationary
points describe the two-body H-bonded network, and it is
gratifying that the HBB PESs describe them very accurately.
That figure also contains the structures of the low-lying
stationary points of the water trimer and the lowest-energy
(prism) configuration of the important water hexamer, which
has only recently been established as the lowest-energy
conformation. The two- and three-body PES does correctly
predict this result and numerous other important ones. (More
details of tests and predictions of the PES are given in refs 6
and 47.) Evidently, both the short-range, that is, hydrogen-
bonded and repulsive interactions, and the long-range elec-
trostatic interactions (including induction) are capturedby the
high-quality ab initio two- and three-body PESs of water.
These PESs, especially the three-body one, are computation-
ally demanding relative to model potentials. However, the

Figure 2. Equilibrium and low-lying saddle point structures of CH5
þ and H5

þ.
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rapid increase in available computer power and resources
combined with massively parallel computing should make
this not a serious obstacle to their use. In any case, they are
much faster to evaluate than direct calls to an electronic
structure package. Therefore, in short, a highly accurate, ab
initio, and flexible PES for water complexes is basically in
hand.

We conclude this brief subsection by noting that a rapidly
converging N-body representation should also apply to many
hydrated solutes. For example, we have begun investigating

this for hydrated Cl- using the two-body HBB PES and
a previously published two-body flexible Cl- H2O PES.48

Preliminary results are extremely encouraging for structures,
energies, harmonic frequencies, and so forth in tests for
Cl-(H2O)2 and Cl-(H2O)3.

Prognosis for Future Directions. The focus of this Perspec-
tive has been on the potential energy surface and the central
role it plays in theoretical and computational chemistry. In
many ways, it is the least “glorious” and yet most onerous
component of a simulation of the nuclear dynamics. We have
indicated the recent progress that has been made in the
mathematical representation of high-dimensional, “rugged”
PESs for complex molecules, including those with many
reaction fragments and also thosewith low-energy isomeriza-
tion pathways. Exploiting the permutational invariance of the
PES is the key to the path-to-progress focused on here.

Predictions about future directions are more fun than
reliable of course. However, with that caveat in mind, here
are some thoughts. First, we expect to see ab-initio-based,
fully flexible two- and three-body potentials as the foundation
of N-body interactions for many molecular complexes. For
nonreactive complexes, for example, hydrated ions, the pro-
gress already discussed above makes this prediction a “safe”
one. More problematic is representing potentials of many
hundreds of atoms of biomolecules, where parts of the
molecule are stiff and other parts are quite floppy and where
the potential is highly rugged, that is, with many minima.

Figure 3. Low-resolution spectra of CH5
þ and indicated isotopo-

logues from predictions made in 2006 (refs 38 and 39) and recent
experiments (ref 40).

Figure 4. Low-resolution calculated spectra of H5
þ and the one-

dimensional potential and ground-state density of the proton-
transfer mode.

A highly accurate, ab initio, and
flexible PES for water complexes is

basically in hand.

Exploiting the permutational
invariance of the PES is the key to

the path-to-progress.
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Perhaps a way forward is to emulate, at least in spirit, the
highly successful QM/MM approach taken for electronic en-
ergies. The analogue for the potential energy surfacewould be
to combine say a permutationally invariant ab-initio-based

PES with a molecular mechanics or similar empirical or
semiempirical force field for a secondary set of atoms that
are not strongly interacting with the primary region. An
important step in that direction has been taken by Truhlar

Figure 5. Low-lying stationary points of the water dimer and trimer and the structure of the water hexamer predicted from ab initio two-
and three-body potential energy surfaces.
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and co-workers, using multiconfiguration molecular mecha-
nics.49 Another possible research area for the future is to
somehow hybridize direct dynamics with ab-initio-based
PESs.

Finally, with PESs obtained from first principles, that is, not
empirical or semiempirical, the treatment of the nuclear
dynamics (or statistical mechanics) will in many cases have
to consider quantum effects in order to make meaningful
comparisons with experiment. This is certainly appreciated
already for water, and a number of groups are actively work-
ing in this area. This is a huge area for future method
development as well as computational algorithms as quan-
tum (many semiclassical) approaches require, inmany cases,
quite different computational approaches from those used in
strictly classical treatments of the dynamics.
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