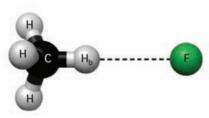

THEORETICAL METHODS AND ALGORITHMS

Critical points bifurcation analysis of high-/ bending dynamics in acetylene

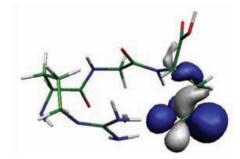

Vivian Tyng and Michael E. Kellman

The bending dynamics of acetylene with pure vibrational angular momentum excitation and nonzero quantum number ℓ are analyzed through the method of critical points analysis to find new anharmonic modes born in bifurcations of the low energy normal modes.

J. Chem. Phys. 131, 244111 (2009)

GAS PHASE DYNAMICS

Accurate *ab initio* potential energy surface, dynamics, and thermochemistry of the F+CH $_4$ \rightarrow HF+CH $_3$ reaction


Gábor Czakó, Benjamin C. Shepler, Bastiaan J. Braams, and Joel M. Bowman

The reaction dynamics of the gas-phase reaction between a fluorine atom and a methane molecule are studied, and an accurate 12-dimensional potential energy surface (PES) is developed based on 19,384 *ab initio* energy points. Quasiclassical trajectory calculations of the reaction using the new PES are reported.

J. Chem. Phys. **130**, 084301 (2009)

The parent anion of the RGD tripeptide: Photoelectron spectroscopy and quantum chemistry calculations

Xiang Li, Haopeng Wang, Kit H. Bowen, G. Grégoire, F. Lecomte, Jean-Pierre Schermann, and Charles Desfrançois

The gas-phase conformation of the intact parent unprotected RGD-peptide anion is investigated using a combination of anion photoelectron spectroscopy and quantum chemistry calculations of its low-energy stable structures.

J. Chem. Phys. **130**, 214301 (2009)