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An effective and general algorithm is suggested for variational vibrational calculations of N-atomic
molecules using orthogonal, rectilinear internal coordinates. The protocol has three essential parts.
First, it advocates the use of the Eckart-Watson Hamiltonians of nonlinear or linear reference
configuration. Second, with the help of an exact expression of curvilinear internal coordinates �e.g.,
valence coordinates� in terms of orthogonal, rectilinear internal coordinates �e.g., normal
coordinates�, any high-accuracy potential or force field expressed in curvilinear internal coordinates
can be used in the calculations. Third, the matrix representation of the appropriate Eckart-Watson
Hamiltonian is constructed in a discrete variable representation, in which the matrix of the potential
energy operator is always diagonal, whatever complicated form the potential function assumes, and
the matrix of the kinetic energy operator is a sparse matrix of special structure. Details of the
suggested algorithm as well as results obtained for linear and nonlinear test cases including H2O,
H3

+, CO2, HCN/HNC, and CH4 are presented. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2756518�

I. INTRODUCTION

Breaking away from the traditional treatment of molecu-
lar rotational-vibrational spectra using perturbational ap-
proaches, variational computation of rovibrational levels was
introduced by Handy and co-workers1,2 in the 1970s, follow-
ing the introduction of simple and exact Hamiltonians by
Watson for nonlinear3 and linear4 molecules, based on the
use of regular rectilinear normal coordinates.

Many important developments in theoretical molecular
spectroscopy came after these groundbreaking studies which
used exact kinetic energy operators in �nearly� variational
computations. These investigations5–22 were aimed at deter-
mining a large number of accurate rotational-vibrational en-
ergy levels of polyatomic species of increasing size and com-
plexity. This goal has been more or less achieved for
triatomic species,23 for which exceedingly accurate potential
energy surfaces �PESs� can be developed. Nevertheless, for
larger systems even the best direction to pursue in nuclear
motion computations has not been completely clear, espe-
cially when the aim is the determination of spectra up to the
dissociation limits.

Two directions have been followed. One is based on
Hamiltonians expressed in curvilinear internal coordinates,7

e.g., valence coordinates, offering the advantage that such
Hamiltonians, with appropriately chosen basis sets, matrix
element computations, and diagonalization techniques, can
approximate the complete eigenspectrum of molecules. Due
to obvious dimensionality problems, this technique could

only be pursued for small species, most importantly for tri-
and tetratomics. Based on the most simple arguments, the
other direction prefers to have a single Hamiltonian which
would be the same for almost all molecular systems. This is
offered by the Hamiltonians of Watson,3,4 expressed in a set
of rectilinear normal coordinates. While the Eckart-Watson
Hamiltonians are general, and thus make the introduction
and programming of tailor-made Hamiltonians for each new
system exhibiting particular bonding arrangements unneces-
sary, the use of this Hamiltonian has been limited by two
difficulties. First, these Hamiltonians, by design, do not effi-
ciently describe all large amplitude motions due to the recti-
linear nature of the coordinates they are built on. Second,
due to the numerical integration schemes employed, in gen-
eral it has proved to be impossible to use PESs expressed in
arbitrary coordinates with these Hamiltonians without resort-
ing to some kind of an expansion of the PES in normal
coordinates, thus separating, to a certain extent, the other-
wise nonseparable functions. The best solution within the
finite basis representation �FBR� developed so far for the
separability of the potential is due to Jung and Gerber9 and
Carter et al.10–12 and is called the n-mode representation. In
its most sophisticated form it allows exact treatment of up to
five modes. This shortcoming of the method excludes the
possibility of exact vibrational computations for systems
having more than four atoms even if related highly accurate
PESs were available. While the first shortcoming originates
from the coordinate choice of the Eckart-Watson Hamilto-
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nians, the second problem, related to the PES, can be elimi-
nated if one �a� represents the Hamiltonian using the discrete
variable representation �DVR� technique,24–26 employed suc-
cessfully in variational approaches based on internal coordi-
nate Hamiltonians, and �b� applies a formalism allowing the
exact expression of arbitrary internal coordinates in terms of
rectilinear internal �e.g., normal� coordinates. The DVR rep-
resentation of the Eckart-Watson Hamiltonians is not without
precedent in the literature, and such �ro�vibrational calcula-
tions have already appeared.13–21 Seideman and Miller13 de-
veloped DVRs for both the linear and nonlinear Eckart-
Watson Hamiltonians and applied them for the H2+H
reaction system. Later, Yonehara et al.15 worked out an effi-
cient DVR Eckart-Watson algorithm based on a partial sum-
mation technique,16 and applied it for formaldehyde. A simi-
lar approach that applies generalized vibrational coordinates
was developed in a series of papers by Luckhaus and co-
workers and a set of four-atomic molecules, H2CO, HONO,
H2O2, and NH3, was studied.18–21 In all these methods the
DVR is based on an equidistant grid and Chebyshev polyno-
mials.

We suggest here an algorithm, referred to as DEWE in
what follows, standing for discrete variable representation
�D� of the Eckart-Watson �EW� Hamiltonian with exact in-
clusion of an arbitrary potential energy function �E�, for
high-accuracy nuclear motion calculations of a general poly-
atomic molecule. The three essential elements of the sug-
gested DEWE algorithm are as follows. First, apply the gen-
eral form of the Eckart-Watson Hamiltonians, cited later in
Eqs. �10� and �22� for the nonlinear and linear reference
geometries, respectively, that work in rectilinear normal co-
ordinates. Second, apply a �semi�global PES or a high-
accuracy force field expressed in any set of curvilinear inter-
nal coordinates �e.g., valence coordinates� that can be exactly
matched to any given values of rectilinear internal �e.g., nor-
mal� coordinates following the transformation given later in
Eq. �32�. Third, represent the kinetic and the potential energy
operators in DVR. In this representation the potential energy
matrix, within Gaussian quadrature accuracy, is always diag-
onal, no matter how complicated the actual potential function
is. The form of the kinetic energy operator is given irrespec-
tive of the actual system, and the higher the dimensionality
of the problem, the sparser the matrix representation of the
whole operator is. The required eigenpairs of the sparse ma-
trix, with a special structure, of the Eckart-Watson Hamil-
tonian operators can be obtained efficiently with iterative
algorithms, like the Lanczos method.27 Based on this algo-
rithm a computer code was written and tested, using avail-
able PESs and force fields for nonlinear �H2O �Ref. 23� and
H3

+ �Ref. 28�� and linear �CO2 �Ref. 29� and HCN/HNC
�Ref. 30�� triatomic molecules and for methane.31 In the sec-
ond half of the paper results obtained for these test cases are
presented and discussed briefly.

II. RECTILINEAR INTERNAL COORDINATES

A. Nonlinear reference configuration

Let us consider a nonlinear molecule with N nuclei
whose instantaneous Cartesian coordinates fixed in the labo-

ratory are denoted by xi �i=1,2 , . . . ,N�. To describe internal
motions of the molecule it is useful to separate the three
translational and three orientational variables.32

First, a set of redundant body-fixed rectilinear Cartesian
coordinates is chosen �zi�,

xi − X = Czi, �1�

i=1, . . . ,N, where X stands for the coordinate of the center
of nuclear mass, and matrix C is an orthogonal matrix that
gives the spatial orientation of the body-fixed frame com-
pared to the laboratory frame. Thus, the first Eckart
condition,33 that separates the motion of the center of nuclear
mass �mi denotes the mass of the ith nucleus� is written as

�
i=1

N

mizi = 0. �2�

Next, we introduce displacement coordinates from a refer-
ence geometry ci, in practice usually �but not necessarily�
chosen to be the minimum of the PES, as

�i = zi − ci. �3�

Furthermore, to settle the spatial orientation of the body
frame, the second Eckart condition requires that

�
i=1

N

mici � �i = 0 . �4�

In general, a set of 3N−6 nonredundant, rectilinear in-
ternal coordinates are defined in terms of the displacement
coordinates as

Qk = �
i=1

N

�
�

b�ik��i = �
i=1

N

bik
T �i,

�5�
Qk � �− �, + ��, k = 1,2, . . . ,3N − 6, � = x,y,z .

With Watson’s particular choice of internal coordinates3 or-
thogonality is required and lik coefficients are introduced as

bik = �milik, �6�

Qk = �
i=1

N

�milik
T �i,

�7�
i = 1,2, . . . ,N and k = 1,2, . . . ,3N − 6.

The elements of l�R3�N��3N−6�, when the orthogonality and
the Eckart conditions �2� and �4� are taken into account, sat-
isfy

�
i=1

N

lij
Tlik = � jk, �

i=1

N

�milik = 0, and �
i=1

N

�mici � lik = 0

j,k = 1,2, . . . ,3N − 6. �8�

A few comments are in order. Equations �8� form an under-
determined system of equations for the elements of l. The
well-known rectilinear normal coordinates can be regarded
as a special case of the coordinates introduced in Eq. �5�,
requiring that the set of Qk’s diagonalizes both the kinetic
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and harmonic potential energy matrices, as well as that
Eqs. �8� are fulfilled. In the general case, however, one can
build a set of orthogonal, rectilinear coordinates describing
the internal motion of a molecule satisfying Eqs. �8� that is
independent of the actual model potential.

B. Linear reference configuration

In the case of a linear reference structure, the three de-
grees of freedom of translational motion can be similarly
separated as in the nonlinear case. To separate the rotational
coordinates, however, the rotational Eckart condition, Eq.
�4�, reduces so that the orientation of only that axis can be
determined along which the reference configuration of the
molecule lies. So, out of the three Euler angles, �, �, and �,
only two can be considered to be independent. Let us choose
the pair � and �, while � can be set to a constant �e.g., zero�,
or for the sake of generality it can be considered as an arbi-
trarily chosen function of � and �. As a result of this, there
will be only 2 rotational and 3N−5 vibrational degrees of
freedom.

Taking these facts into consideration, orthogonal, recti-
linear internal coordinates can be defined, similarly to the
case of the nonlinear reference configuration4 as

Qk = �
i=1

N

�milik
T �i,

�9�
Qk � �− �, + ��, k = 1,2, . . . ,3N − 5.

The elements of l�R3�N��3N−5� satisfy similar conditions to
those given in Eqs. �8�, out of which the last one simplifies
due to the linear nature of the reference configuration.

III. THE ECKART-WATSON HAMILTONIANS

A. Nonlinear reference configuration

The vibration-rotation Hamiltonians for a nonlinear ref-
erence configuration34 was rearranged by Watson in 1968,3

who worked in the set of orthogonal, rectilinear internal co-
ordinates defined by Eq. �7�. This rearranged Hamiltonian is
referred to as Eckart-Watson Hamiltonian �of a nonlinear ref-
erence configuration� and has the following simple form:3

Ĥ =
1

2�
�	


�	�Ĵ� − �̂���Ĵ	 − �̂	� −
�2

8 �
�


�� +
1

2 �
k=1

3N−6

P̂k
2 + V̂ .

�10�

The vibration-only part is

Ĥvib =
1

2�
�	


�	�̂��̂	 −
�2

8 �
�


�� +
1

2 �
k=1

3N−6

P̂k
2 + V̂ , �11�

or with the introduction of a useful notation,

Ŵnm = n ·
1

2�
�	


�	�̂��̂	 − m ·
�2

8 �
�


�� +
1

2 �
k=1

3N−6

P̂k
2 + V̂ ,

�12�

with n, m=0,1. In the above formulas P̂k is the momentum

conjugate to Qk �k=1,2 , . . . ,3N−6�, Ĵx, Ĵy, and Ĵz are the
components of the total angular momentum, and

�̂� = �
kl=1

3N−6

kl
�QkP̂l �Coriolis coupling operator� , �13�


�	 = �I�−1��	 �generalized inverse inertia tensor� , �14�

I�	� = I�	 − �
klm=1

3N−6

km
� lm

	 QkQl, �15�

and

kl
� = �

	�

e�	��
i=1

N

l	ikl�il, �16�

where e�	� denotes the Levi-Civita symbol. The generalized
inverse inertia tensor � in Eq. �14� can be factorized as


�	 = �
��

�I�−1���I��
0 �I�−1��	, �17�

where

I�	� = I�	
0 +

1

2 �
k=1

3N−6

ak
�	Qk, �18�

ak
�	 = 2�

���

e���e	���
i=1

N

�mic�il�ik, �19�

and I0 is the inertia tensor at the reference structure. The
Jacobian35 of the coordinate transformation from Cartesian
to internal coordinates given in Eq. �7� and the Euler angles
is

J � �det 
�−1/2 sin� = �det I��1/2 sin� , �20�

and J−1 is involved in the operator �10�, where det I� stands
for the determinant of the I� generalized inertia tensor. The
volume element of the integration is

dV = d� sin�d�d�dQ1dQ2 ¯ dQ3N−6,

where �, � and � are Eulerian angles with �� �0,�� and
Qk’s are the vibrational coordinates. Whenever det I� equals
zero �or equivalently det I�=0 from the factorization given in
Eq. �17��, the operator �10� �and of course �11� as well� be-
comes singular. In numerical studies the singularity of the
operators can be remedied if it is assured that the wave func-
tion vanishes at the singular points. This can be done, for
instance, by multiplying it by the square root of the
Jacobian.36

B. Linear reference configuration

In 1970 Watson simplified Hougen’s isomorphic
rotation-vibration Hamilton operator37 of molecules with lin-
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ear reference configuration applying orthogonal, rectilinear
internal coordinates. Let the molecule’s reference configura-
tion lie along the z axis, then

c�i = ��zczi, � = x,y,z , �21�

and the form of the simplified Hamiltonian that is called the
�linear� Eckart-Watson Hamiltonian4 is

Ĥlin =



2
��Ĵx� − �̂x�2 + �Ĵy� − �̂y�2� +

1

2 �
k=1

3N−5

P̂k
2 + V̂ . �22�

The vibration-only part has the form

Ĥvib,lin =



2
��̂x

2 + �̂y
2� +

1

2 �
k=1

3N−5

P̂k
2 + V̂ , �23�

or with the introduction of a practical notation,

Ŵn = n ·



2
��̂x

2 + �̂y
2� +

1

2 �
k=1

3N−5

P̂k
2 + V̂ , �24�

where n=0,1. In the above formulas P̂k is the momentum

conjugate to Qk, Ĵx�, and Ĵy� are the components of the total
angular momentum, and

�̂� = �
kl=1

3N−5

kl
�QkP̂l, � = x,y , �25�


 = I0/�I��2, �26�

I� = I0 +
1

2 �
k=1

3N−5

akQk, �27�

and

I0 = �
i=1

N

miczi
2 , ak = 2�

i=1

N

�miczilzik. �28�

The Jacobian35 of the transformation from Cartesian to
orthogonal, rectilinear internal coordinates �Eq. �9�� and Eu-
ler angles is

J � 2�I��2�I0�−1 sin � , �29�

and

dV = d� sin �d�dQ1dQ2 ¯ dQ3N−5.

Again, like in the case of a nonlinear reference structure, J−1

is involved in the operator �22�, thus the Eckart-Watson
Hamiltonian becomes singular whenever I�=0. This singu-
larity can be treated if the wave function vanishes in the
singular points, as was discussed in the case of a nonlinear
reference geometry.

C. The potential

The kinetic energy parts of both Eckart-Watson Hamil-
tonians, Eqs. �10� and �22�, are thus completely specified. As
to the potential energy term, nowadays it is usually obtained
from electronic structure computations and its accuracy is
crucial from the point of view of the accuracy of the calcu-
lated �ro�vibrational energy levels. In the following, some

technical aspects are considered concerning the numerical
calculation of the potential energy operator’s matrix ele-
ments.

The potential can be approximated by a Taylor series of
normal coordinates expanded about the minimum of the
PES.8,38 The higher the order of this expansion, the higher
the accuracy of the PES in the proximity of the minimum.
Nevertheless, the most accurate potentials are �semi�global
potentials given in a suitable set of curvilinear internal coor-
dinates. Until now combination of the general Eckart-Watson
Hamiltonians of an N-atomic molecule and such a highly
accurate PES seemed to be unfeasible. The main problem
was that generic PESs are unsuitable for the numerical inte-
gration schemes that have been used for determining the po-
tential energy matrix. Here we show that arbitrary nonsepa-
rable potentials can be efficiently used with the Eckart-
Watson Hamiltonians. First, one has to construct an
expression for the curvilinear internal coordinates �e.g., va-
lence coordinates� in terms of the orthogonal, rectilinear in-
ternal �e.g., normal� coordinates �Eq. �7� or �9��. Second, the
DVR of the Hamiltonian should be constructed that is clearly
the most suitable choice in the present case.

IV. CURVILINEAR INTERNAL COORDINATES
EXPRESSED IN TERMS OF ORTHOGONAL,
RECTILINEAR INTERNAL COORDINATES

Let the bond vectors rpi �i , p=1,2 , . . . ,N and i�p� in a
molecule with N nuclei be defined as

rpi = xi − xp. �30�

From Eqs. �1� and �3�,

rpi = �xi − X� − �xp − X� = C�zi − zp� , �31�

and using Eqs. �7� or �9� taking into account the orthogonal-
ity conditions on lik,

39

rpi = C�ci − cp + �
k=1

D 	 1
�mi

lik −
1

�mp

lpk
Qk� . �32�

Eq. �32� gives the bond vectors in terms of Qk �k=1,2 ,
. . . ,D�. In the case of nonlinear �linear� reference configura-
tion D equals 3N−6 �3N−5� and there are three �two� inde-
pendent orientational variables involved in the direction co-
sine matrix C describing the spatial orientation. Thus,
curvilinear internal coordinates can easily be expressed en-
tirely as a function of Qk’s for an arbitrary nonlinear
N-atomic molecule. Note that curvilinear internal coordinates
�e.g., bond lengths and angles� depend only on scalar prod-
ucts of bond vectors and C is an orthogonal matrix.

As a simple example, for the case of a triatomic mol-
ecule with 3 as the apex atom, one can write

ri =��
�
�c�i − c�3 + �

k=1

D 	 1
�mi

l�ik −
1

�m3

l�3k
Qk�2

,

i = 1,2, �33�

and
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cos � =
1

r1 · r2

��
�
	c�1 − c�3 + �

k=1

D 	 1
�m1

l�1k −
1

�m3

l�3k
Qk

�	c�2 − c�3 + �

k=1

D 	 1
�m2

l�2k −
1

�m3

l�3k
Qk
 ,

�34�

where r1, r2, and � denotes the two bond lengths and the
bond angle, respectively, and D=3�4� if the reference con-
figuration is nonlinear �linear�.

V. DISCRETE VARIABLE REPRESENTATION

As the eigenfunctions of the one-dimensional harmonic
oscillator contain the normalized Hermite polynomials,
Hj�Q�, it is a natural choice to construct the basis set from
these functions in the present algorithm. Instead of the spec-
tral functions, the Hermite-DVR basis was applied due to
considerations concerning the computational efficiency
pointed out later in this section.

To build the DVR representation, the coordinate matrix
of dimension Nk�Nk was constructed with the elements
�Qk�ij = �Hi�Qk�QkHj�Qk�� for each vibrational degree of
freedom, k=1,2 , . . . ,D. For the kth vibrational degree of
freedom the quadrature points, qk,nk

, are the eigenvalues of
the kth coordinate matrix, and the Hermite-DVR basis is de-
fined as Hnk

�Qk�=� j=0
Nk−1�Tk�nk,jHj�Qk�, where columns of Tk

are the eigenvectors of Qk. The Hermite-DVR direct product
basis was constructed as ��k=1

D Hnk
�Qk��n1=1,n2=1,. . .,nD=1

N1,N2,. . .,ND .
As a result of this construction, the matrix of the coor-

dinate operator is diagonal. Furthermore, applying the
Gaussian quadrature approximation, the matrix representa-
tion of an operator that depends only on the coordinate op-
erators is always diagonal and thus the matrix representation
of the potential energy operator is simply

�HnV̂�Q�Hm� = V�q1,n1
,q2,n2

, . . . ,qD,nD
�

��n1,m1
�n2,m2

· . . . · �nD,mD
, �35�

where Hn=Hn1
�Qn1

�Hn2
�Qn2

� · . . . ·HnD
�QnD

� and n, the in-
dex of the product function, is unambiguously expressed in
terms of the n1 ,n2 , . . . ,nD indices �see Appendix for details�.
Similarly, the matrix elements of the generalized inverse in-
ertia tensor are obtained as

�Hn
�	�Q�Hm� = 
�	�q1,n1
,q2,n2

, . . . ,qD,nD
�

��n1,m1
�n2,m2

· . . . · �nD,mD
, �36�

where 
�	�q1,n1
,q2,n2

, . . . ,qD,nD
� is constructed using Eq.

�17� with the analytical inversion of the
I��q1,n1

,q2,n2
, . . . ,qD,nD

��R3�3 matrix introduced in Eq.
�18�. Thus, the extrapotential term, in the case of a nonlinear
reference geometry, can be simply calculated from Eq. �36�
and its determination has only a negligible computational
cost.

The differential operator needed in the term �1/2��kP̂k
2

can straightforwardly be computed using exact analytical
formulae.40

Computationally, the most demanding parts of the vibra-
tional Eckart-Watson Hamiltonians, Eqs. �11� and �23�, are
the terms containing the Coriolis coupling operators. The
matrix representation of these terms can be constructed in at
least two ways. According to the first route, the commutation
relations,3 for the case of a nonlinear reference structure
���
�	 , �̂��=0 ��=x ,y ,z�, are applied, resulting in

1

2�
�	

�̂�
�	�̂	 =
1

4�
�	

�
�	�̂��̂	 + �̂��̂	
�	� . �37�

Then, the truncated resolution of identity in the applied basis
is inserted between 
�	 and �̂� in the first term, and between
�̂	 and 
�	 in the second term on the right hand side of Eq.
�37�. Applying the diagonal matrix representation of 
�	, a
matrix element in the nth row and mth column can be calcu-
lated as

�Hn� 1

2�
�	

�̂�
�	�̂	�Hm�
= �

�	

���	�nn + ���	�mm

4
����	�nm, �38�

where in the �̂��̂	 product Qk-, � /�Qk-, Qk
2-, Qk� /�Qk-, and

�2 /�Qk
2-type operators are present, whose matrix representa-

tions are calculated analytically based on Ref. 40, and the
use of the commutation relations ensures that the constructed
matrix is symmetric.

The second route uses the form given on the left hand
side of Eq. �37� and inserts the truncated resolution of iden-
tity twice, both from the left and the right of 
�	. Again,
applying the fact that the matrix representation of 
�	 is
diagonal, the matrix element in the nth row and mth column
is

�Hn� 1

2�
�	

�̂�
�	�̂	�Hm�
=

1

2�
�	

�
p=1

N

����np���	�pp��	�pm, �39�

where N=N1 ·N2¯ND. Considering the special structure of
the matrix of �̂�, the matrix elements given in Eq. �39� can
be calculated without explicitly carrying out the summation
over all the grid points in the computer code. The matrix
representation of the terms Qk and � /�Qk appearing in the �̂�

Coriolis coupling operator can again be calculated
analytically.40 Explicit DVR formulae for an efficient calcu-
lation of �̂�
�	�̂	 are given in the Appendix.

Similar considerations about the structure of the matrix
representations stand for the case of a linear reference geom-
etry. In this case, however, the generalized inertia tensor is a
scalar and commutes with the Coriolis coupling operator,
��̂� , I��=0.4 Thus, according to the first approach the ele-
ments are calculated as
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�Hn�


2
��̂x

2 + �̂y
2��Hm� =

�nn + �mm

2
���x

2�nm + ��y
2�nm� ,

�40�

where the use of the commutation relations guarantees the
symmetry of the constructed matrix. In contrast to this, if the
second strategy is followed than the corresponding element
can be calculated as

�Hn�


2
��̂x

2 + �̂y
2��Hm� =

1

2 �
p=1

N

�pp���x�np��x�pm

+ ��y�np��y�pm� , �41�

where, again, N=N1 ·N2 . . .ND, and the special structure of
the matrix of �̂� can be used to efficiently execute the sum-
mation.

In spite of the fact that the first approach calculates the
matrix elements of the �̂��̂	 operator exactly, it is the second
route that should be favored as it results in a sparser matrix.
If the number of basis functions is N for all of the D dimen-
sions, then N=ND, and the number of the nonzero
elements in the matrix is at maximum N�k=0

3 � D
k

��N−1�k

�O�N 1+3/D�according to the first approach, whereas it re-
duces to N�k=0

2 � D
k

��N−1�k�O�N 1+2/D� in the second case.
The slower convergence of the second method due to the
insertion of two truncated resolutions of identity instead of
one might need to be considered only if the first few eigen-
values are to be calculated applying a small basis set. This
situation will be encountered in practice, for instance, when
larger molecular systems are treated.

Next, it is worth mentioning that if the terms containing
the Coriolis coupling operators are left out from the Eckart-

Watson Hamiltonian, see Ŵ00, Ŵ01, and Ŵ0 defined in Eqs.
�12� and �24�, respectively, then the number of the nonzero
elements is only N�k=0

1 � D
k

��N−1�k�O�N 1+1/D�. When the
dimensionality of the problem is low �e.g., D=3 for a tri-
atomic molecule with a nonlinear reference configuration�,
the number of nonzero elements in the matrix representation
of the operator missing the Coriolis terms is drastically lower
then that of the complete Eckart-Watson Hamiltonian. In
contrast to this, as the dimension of the problem increases,
the difference between the number of nonzero elements in
the two cases, O�N 1+1/D� as compared to O�N 1+2/D� or
O�N 1+3/D�, becomes less significant.

In DVR the matrix of the potential energy operator is
always diagonal, and the kinetic energy matrix has a highly
special structure. The special structure of the matrix of the

full Eckart-Watson Hamiltonian, Ŵ11, and that of the incom-

plete operators, Ŵ00, Ŵ01, and Ŵ10 introduced in Eq. �12�,
obtained when the second strategy was applied is presented
in Fig. 1 for the case of three vibrational degrees of freedom.
The Eckart-Watson Hamiltonian matrices get sparser as the
number of vibrational degrees of freedom increases. The re-
quired eigenvalues and eigenfunctions of the matrix of the
Eckart-Watson Hamiltonian constructed can be efficiently
determined with an iterative algorithm, such as the Lanczos
technique.27 In contrast to this, in FBR the structure of the
matrix of the potential energy operator would depend on the

actual potential and, for instance, in the case of a global PES
it would result in a full matrix, that obviously would
make the diagonalization part of the algorithm prohibitively
expensive.

VI. TEST MOLECULES WITH NONLINEAR
REFERENCE CONFIGURATIONS

The vibrational part of the Eckart-Watson Hamiltonian
corresponding to a nonlinear reference structure, Eq. �11�,
was applied for the case of H2

16O with the so-called
CVRQD PES,23 for H3

+ with the PES published in Ref. 28,
and for 12CH4 with the T8 force field31 within the present
DEWE algorithm. The H3

+ system is not a typical molecule
fitting in the traditional normal coordinate picture; neverthe-
less, a convenient set of Qk’s defined in Eq. �7� can be built.
Elements of lik introduced in Eq. �6� were generated with
INTDER2000.41 As a matter of fact, a normal coordinate analy-
sis was carried out with some reliable, user supplied force
constants �not necessarily those of the actual potential�, as a
result of which lik coefficients were obtained meeting the
orthogonality and Eckart conditions formulated in Eq. �8�
with the actual masses and the chosen reference configura-
tion. The reference configuration is not necessarily the equi-
librium one. As to its actual choice significant tolerance was
observed in the convergence rate of the eigenvalues, given
that the reference structure is reasonable. These coefficients
were applied in the DEWE calculations and their actual val-
ues affected only the rate of convergence.

As the potential expressed in curvilinear internal coordi-
nates is exactly included in the DEWE nuclear motion treat-
ment, the resulting eigenvalues can be directly compared
with the results obtained from traditional treatments, like the
DOPI �DVR �D�–Hamiltonian in orthogonal �O�
coordinates–direct product �P� basis–iterative �I�
diagonalization,22 where the Sutcliffe-Tennyson curvilinear
internal coordinate Hamiltonian7 of triatomic species is ap-
plied� scheme. The results obtained are given in Tables I–III
for H2

16O, H3
+, and 12CH4, respectively.

The influence of each term in the kinetic energy part of
the Eckart-Watson Hamiltonian, Eq. �12�, on the calculated
energy levels was also studied in detail. Results obtained

with the three incomplete Ŵ00, Ŵ01, and Ŵ10 operators, as
well as with the complete Eckart-Watson Hamiltonian,

Ŵ11= Ĥvib, are presented and discussed.

FIG. 1. Pictorial representation of the nonzero elements of the matrices of

the Ŵ00, Ŵ01, Ŵ10, and Ŵ11 operators in the case of three vibrational degrees
of freedom with the number of basis functions N1=3 and N2=4 while N3 is
the dimension of the small black blocks.
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TABLE I. Zero-point energy and vibrational band origins of H2
16O, in cm−1, obtained with the CVRQD PES of Ref. 23.

�v1v2v3� Ŵ00
a Ŵ01

a Ŵ10
a Ŵ11

a DOPIb

�0 0 0� 4649.22 �−10.92� 4636.30 �2.01� 4651.23 �−12.92� 4638.31 �0.00� 4638.31
�0 1 0� 1582.46 �12.61� 1581.58 �13.49� 1595.94 �−0.87� 1595.08 �0.00� 1595.08
�0 2 0� 3126.70 �25.49� 3124.64 �27.56� 3154.22 �−2.02� 3152.20 �0.00� 3152.20
�1 0 0� 3656.95 �0.10� 3657.23 �−0.18� 3656.77 �0.28� 3657.05 �0.00� 3657.05
�0 0 1� 3742.57 �13.16� 3742.98 �12.75� 3755.32 �0.41� 3755.73 �0.00� 3755.73
�0 3 0� 4628.80 �38.77� 4625.02 �42.56� 4671.26 �−3.68� 4667.57 �0.00� 4667.57
�1 1 0� 5223.39 �12.11� 5222.82 �12.67� 5236.05 �−0.55� 5235.49 �0.00� 5235.49
�0 1 1� 5281.31 �50.20� 5280.90 �50.61� 5331.88 �−0.37� 5331.51 �0.00� 5331.51
�0 4 0� 6082.54 �52.54� 6075.94� c �59.14� 6141.44 �−6.36� 6135.10� c �−0.02� 6135.08
�1 2 0� 6751.56 �24.41� 6749.85 �26.11� 6777.63 �−1.66� 6775.97 �0.00� 6775.96
�0 2 1� 6783.89 �88.26� 6782.41 �89.74� 6873.53 �−1.38� 6872.15 �0.00� 6872.15
�2 0 0� 7198.09 �3.10� 7198.68 �2.52� 7200.62 �0.57� 7201.19 �0.00� 7201.19
�1 0 1� 7236.32 �12.90� 7236.99 �12.23� 7248.55 �0.67� 7249.22 �0.00� 7249.22
�0 0 2� 7421.10 �23.78� 7421.86 �23.02� 7444.12 �0.76� 7444.88 �0.00� 7444.88
�0 5 0� 7477.38� d �66.48� 7465.40c �78.46� 7555.48� d �−11.62� 7544.19c �−0.33� 7543.86
�1 3 0� 8237.86 �37.22� 8234.43� c �40.65� 8278.39 �−3.31� 8275.10� c �−0.01� 8275.08
�0 3 1� 8246.69 �128.08� 8243.69 �131.08� 8377.55 �−2.78� 8374.77 �0.00� 8374.77
�2 1 0� 8739.73 �22.19� 8739.45 �22.47� 8762.14 �−0.22� 8761.92 �0.00� 8761.92
�1 1 1� 8758.87 �48.16� 8758.77 �48.26� 8807.10 �−0.07� 8807.03 �0.00� 8807.03
�0 6 0� 8792.77d �79.40� 8771.13c�101.04� 8896.06d �−23.89� 8875.62c �−3.45� 8872.17
�0 1 2� 8925.07 �75.32� 8925.06 �75.33� 9000.34 �0.05� 9000.40 �0.00� 9000.39

aResults obtained with the DEWE algorithm applying the operator Ŵnm=n · �1/2���	
�	�̂��̂	−m · ��2 /8���
��+ �1/2��k=1
3N−6P̂k

2+VCVRQD. Deviations from the

DOPI results �DOPI−Ŵnm� are given in parentheses. The reference geometry chosen was rOH=1.810 081 2 bohr and ��HOH�=104.500 00°, and nuclear
masses mH=1.007 276 5 u and mO=15.990 526 u were used throughout the calculations. The number of basis functions applied for the vibrational degrees of
freedom was �20,20,20�.
bConverged results obtained with the DOPI algorithm �Ref. 22�. Exactly the same CVRQD PES and nuclear masses were applied as in the DEWE calculations.
cDigits underlined did not converge upon the increase of the basis size due to the singularity present in the operators Ŵ01 and Ŵ11.
dEigenvalues with low convergence rate. The digits underlined did not converge tightly with the applied �20,20,20� basis set. The convergence was tested with

larger basis sets. Applying Ŵ00 with �25,25,25� and �30,30,30� basis sets the eigenvalues are 7477.37 and 7477.35 cm−1 for the �0 5 0� level and 8791.98 and

8792.27 cm−1 for the �0 6 0� level, respectively. Applying Ŵ10, the eigenvalues for the �25,25,25� and �30,30,30� basis sets are 7555.47 and 7555.47 cm−1 for
the �0 5 0� level, and 8895.73 and 8896.01 cm−1 for the �0 6 0� level, respectively.

TABLE II. Zero-point energy and vibrational band origins of H3
+, in cm−1, obtained with the PES of Ref. 28.

Symmetry Ŵ00
a Ŵ01

a Ŵ10
a Ŵ11

a DOPIb

A1 4388.84 �−26.54� 4361.91 �0.39� 4389.23 �−26.93� 4362.30 �0.00� 4362.30
E 2498.82 �22.37� 2498.72 �22.47� 2521.27 �−0.08� 2521.19 �0.00� 2521.19
E 2498.82 �22.37� 2498.72 �22.47� 2521.27 �−0.08� 2521.19 �0.00� 2521.19
A1 3178.31 �0.89� 3178.97 �0.23� 3178.53 �0.67� 3179.20 �0.00� 3179.20
A1 4753.85 �23.78� 4752.89 �24.74� 4778.50 �−0.87� 4777.63 �0.00� 4777.63
E 4923.08 �74.52� 4922.81 �74.79� 4997.83 �−0.23� 4997.60 �0.00� 4997.60
E 4923.08 �74.52� 4922.81 �74.79� 4997.83 �−0.23� 4997.60 �0.00� 4997.60
E 5530.34 �24.48� 5530.86 �23.96� 5554.27 �0.55� 5554.82 �0.00� 5554.82
E 5530.34 �24.48� 5530.86 �23.96� 5554.27 �0.55� 5554.82 �0.00� 5554.82
A1 6261.82 �2.03� 6263.11 �0.74� 6262.56 �1.29� 6263.85 �0.00� 6263.85
E 6939.94 �65.06� 6937.77 �67.23� 7006.96 �−1.96� 7005.00 �0.00� 7005.00
E 6939.97� c �65.03� 6937.80� c �67.20� 7006.98� c �−1.98� 7005.02� c �−0.02� 7005.00
A1 7181.50� c �103.10� 7179.96� c �104.64� 7286.19� c �−1.59� 7284.62� c �−0.02� 7284.60
A2 7319.43 �173.10� 7319.43 �173.10� 7492.42 �0.11� 7492.53 �0.00� 7492.53

aResults obtained with the DEWE algorithm applying the operator Ŵnm=n · �1/2���	
�	�̂��̂	−m · ��2 /8���
��+ �1/2��k=1
3N−6P̂k

2+ V̂. Deviations from the

DOPI results �DOPI−Ŵnm� are given in parentheses. The reference configuration chosen was rHH=1.649 990 0 bohr with the hydrogens on the apices of an
equilateral triangle, and mH=1.007 537 2 u. The number of basis functions applied was �19,19,19�.
bConverged results obtained with the DOPI algorithm �Ref. 22�. Exactly the same PES and nuclear masses were applied as in the DEWE calculations.
cThe digits underlined did not converge to 0.01 cm−1 with the present basis due to the singularity present in the operator�s�. Except for Ŵ00, the results became

divergent with increase in basis size, for Ŵ00 the converged values of the two levels in question are 6939.94 and 7181.48, respectively.
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A. H2O

The case of the H2
16O isotopologue was studied with the

full high-accuracy semiglobal CVRQD PES.23 The CVRQD
PES expressed in bond lengths and angles was involved in
DEWE via Eq. �33� and �34�. Energy levels obtained with
the DEWE and DOPI approaches are in full agreement ex-
cept for the higher bending levels. On one hand, it is difficult
to converge large amplitude vibrational motions within the
applied set of coordinates, and on the other hand in the large-
amplitude bending motion the singular region of the operator
is sampled. If the instantaneous configuration is linear, det I�
and thus the Jacobian becomes zero �see Eq. �20��, and the
Eckart-Watson Hamiltonian becomes singular. Consequently,
levels that significantly sample linear configurations cannot
be converged within the present approach; however, the sin-
gularity of the Eckart-Watson Hamiltonian could in principle
be treated.36

When Ŵ01 or Ŵ11 were applied, “ghost levels” appeared
amongst the obtained eigenvalues. They appear irregularly
upon the increase of the basis size, but do not affect the
numerical values of the “true” levels, at least up to the ap-
plied basis size. Such ghost levels do not converge and origi-

nate from the singularities of the Ŵ01, and Ŵ11, operators that
is carried by the second �often called extrapotential� term in

Eq. �12�.36 It is worth emphasizing that Ŵ00 and in this case

Ŵ10 are free of singularities.
As to the utility of results obtained with incomplete op-

erators, Ŵ00 provides a relatively inaccurate approximation

to the exact vibrational band origins �VBOs�. The Ŵ01 op-
erator approximates well the zero-point energy �ZPE�,
whereas all the higher levels fail significantly. Ŵ10 gives rela-
tively good values referenced to the ZPE, but the ZPE itself
has a significant error. As a rule of thumb, it is expected that
the effect of the first and the second terms in Eq. �12� scale
with the rotational constants �that can be approximated by
the equilibrium ones if a reference configuration close to the
equilibrium is applied�. Indeed, the large rotational constants
characterizing the equilibrium structure of H2

16O are in line
with the poor agreement between the exact vibrational en-
ergy levels and those obtained with the incomplete operators.

B. H3
+

The molecular ion H3
+ was studied with the global PES

published in Ref. 28. This PES expressed in Jacobi coordi-
nates was involved in DEWE by an exact expression of the
Jacobi coordinates in terms of rectilinear internal �e.g., nor-
mal� coordinates, via the scalar products of the bond vectors,
Eq. �32�.

For the VBOs presented in Table II there is nice agree-
ment between the DEWE and DOPI results; however, this
case is not trouble-free either. Ghost levels appear amongst

the true energy levels when the Ŵ01, Ŵ10, and Ŵ11 operators
are applied. The ghost levels do not converge and they do not
affect the values of the true levels up to an optimal basis size.
This behavior can be explained by the singularity of these
operators. It is important to note that the ghost levels do not
converge, thus they can easily be filtered out.

As to the incomplete operators, Ŵ00 is expected to yield
unreliable results for this system. Indeed, its use results in
really bad approximations to the energy levels of H3

+. Inclu-

sion of the extrapotential term in Ŵ01 results in an excellent
ZPE, but to obtain reliable energies referenced to the ZPE

the use of Ŵ10 is required. Similarly to the case of H2
16O,

Ŵ10 fails for the ZPE itself.

C. CH4

The first few vibrational band origins of 12CH4 were
calculated with DEWE applying the T8 eighth-order force
field31 approximation of the PES of the ground electronic
state of CH4 expressed in five-atomic Radau coordinates.42

The T8 PES was used in DEWE by an exact expression of
the five-atomic Radau coordinates in terms of rectilinear in-
ternal �e.g., normal� coordinates, via the scalar products of
the bond vectors, see Eq. �32�.

Results obtained with DEWE applying a DVR basis with
5 grid points on each vibrational degrees of freedom are
presented in Table III. For purposes of comparison the con-
verged results of Ref. 43 obtained with a �curvilinear� inter-
nal coordinate Hamiltonian are employed. The lowest six
VBOs obtained with DEWE are converged within 0.06 cm−1

on average.

TABLE III. Zero-point energy and vibrational band origins of 12CH4, in cm−1, referenced to the zero-point energy, obtained with the T8 force field of Ref. 31.

�n1n3��n2n4�sym Ŵ00
a,b Ŵ01

a,b Ŵ10
a,b Ŵ11

a,c Ref. 43

�00��00�A1 9690.9 �0.6� 9686.9 �4.6� 9695.4 �−3.9� 9691.5 �0.0� 9691.5
�00��01�F2 1299.9 �11.6� 1299.9 �11.6� 1311.6 �−0.1� 1311.5 �0.2� 1311.7

1300.0 �11.7� 1300.0 �11.7� 1311.7 �0.0� 1311.7 �0.0� 1311.7
1300.1 �11.6� 1300.1 �11.6� 1311.7 �0.0� 1311.7 �0.0� 1311.7

�00��10�E 1524.2 �9.0� 1524.2 �9.0� 1533.2 �0.0� 1533.2 �0.1� 1533.3
1524.2 �9.1� 1524.2 �9.1� 1533.3 �0.0� 1533.3 �0.0� 1533.3

aResults obtained with the DEWE algorithm applying the operator Ŵnm=n · �1/2���	
�	�̂��̂	−m · ��2 /8���
��+ �1/2��k=1
3N−6P̂k

2+VT8. The reference geometry
was a regular tetrahedron with the hydrogens on the apices and the carbon in the middle with rCH=2.057 910 bohr, and nuclear masses mH=1.007 276 u and
mC=11.996 709 u were used throughout the calculations. lik coefficients were obtained with INTDER2000 applying the diagonal, second order force constants
from Ref. 46. For each of the nine vibrational degrees of freedom five basis functions were applied.
bDeviations from the results obtained with the complete Ŵ11 operator �Ŵ11−Ŵnm� are given in parentheses.
cDeviations from the results presented in Ref. 43 ��Ref. 43� −Ŵ11�� are given in parentheses. Note that using six basis functions for each vibrational degrees
of freedom results in 0.0 deviations.
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As to the applicability of the incomplete Ŵ00, Ŵ01, and

Ŵ10 operators, with the Ŵ00 and Ŵ01 operators the VBOs
referenced to the ZPE fail significantly, in line with the rela-

tively large rotational constant of methane. Ŵ10 approximates
well the first few eigenvalues referenced to the ZPE, which
means that the extrapotential term, −��2 /2���
��, has a
nearly constant contribution to the eigenenergies. However,
there is not much merit to approximate the “exact” eigenen-

ergies with those of Ŵ10, as it contains the most expensive

part, �1/2���	�̂�
�	�̂	, of the complete Ŵ11 operator.
At this point it is appropriate to make some technical

remarks concerning the calculations applying the complete

Ŵ11 operator. In the five-atomic case �D=9� it is necessary to
calculate the Hamiltonian matrix-vector multiplications
needed in the Lanczos iterative eigensolver without explic-
itly storing the �nonzero� elements of the Hamiltonian matrix
in the main memory. This on-the-fly matrix-vector multipli-
cation was parallelized in an elementary way �with
OpenMP�, and the longest calculation employing a Hamil-
tonian of size 1.95·106�1.95·106 with 1.20·109 nonzero
elements terminated in less than one day. An even more ef-
ficient programming of the matrix-vector multiplication part

of the code DEWE must be found in order to apply it for
even larger systems while keep working on an ordinary per-
sonal computer.

VII. TEST MOLECULES WITH LINEAR REFERENCE
CONFIGURATIONS

The vibrational part of the linear Eckart-Watson Hamil-
tonian, Eq. �23�, was applied for the case of CO2 with Ché-
din’s sextic force field29 and for the HCN/HNC system with
the semiglobal so-called VQZANO+ PES.30 The lik coeffi-
cients were generated with INTDER2000 �Ref. 41� in a nor-
mal coordinate analysis to obtain coefficients that fulfill the
requirements, analogous to those formulated in Eq. �8� for
the nonlinear case, with the actual set of masses and the
chosen linear reference configuration. Similar to the nonlin-
ear case, the user supplied force constants in the normal co-
ordinate analysis do not necessarily have to be those of the
actual potential, and the reference configuration can be a
reasonable linear structure different from the equilibrium
structure.

The effects of kinetic energy terms in the Eckart-Watson
Hamiltonian of linear configuration were studied on the ob-
tained energy levels, and the notation introduced in Eq. �24�
was applied.

TABLE IV. Zero-point energy and �ro�vibrational band origins of 12C16O2, in cm−1, obtained with Chédin’s sextic force field. �Ref. 29�. �In the potential an
energy cutoff of �=20 000 cm−1 had to be applied, as described in Ref. 22�a��.

�v1 vb
l v3� Ŵ0

a,b Ŵ1
a,c

DOPId

J=0 J=1 J=2 J=3 J=4

�0 00 0� 2535.09�0.36� 2535.45�0.00� 2535.45 0.78 2.34 4.68 7.80
�0 11 0� 666.94�0.74� 667.68�0.39� 668.07 1.57 3.91 7.04
�0 11 0� 666.94�0.74� 667.68�0.39� 668.07 1.56 3.90 7.03
�1 00 0� 1284.17�0.81� 1284.98�0.00� 1284.98 0.78 2.34 4.69 7.81
�0 22 0� 1335.01�1.48� 1336.48�0.78� 1337.27 2.35 5.48
�0 22 0� 1335.01�1.48� 1336.48�0.78� 1337.27 2.35 5.48
�0 20 0� 1386.82�0.64� 1387.46�0.00� 1387.46 0.78 2.34 4.68 7.80
�1 11 0� 1930.82�1.55� 1932.37�0.39� 1932.76 1.57 3.92 7.05
�1 11 0� 1930.82�1.55� 1932.37�0.39� 1932.76 1.56 3.91 7.03
�0 33 0� 2004.23�2.20� 2006.43�1.17� 2007.61 3.14
�0 33 0� 2004.23�2.20� 2006.43�1.17� 2007.61 3.14
�0 31 0� 2074.91�1.35� 2076.27�0.39� 2076.66 1.57 3.91 7.05
�0 31 0� 2074.91�1.35� 2076.27�0.39� 2076.66 1.56 3.90 7.03
�0 00 1� 2345.83�1.49� 2347.32�0.00� 2347.32 0.77 2.32 4.64 7.74
�2 00 0� 2545.80�1.81� 2547.62�0.00� 2547.62 0.78 2.35 4.69 7.82
�1 22 0� 2583.74�2.28� 2586.02�0.78� 2586.81 2.35 5.49
�1 22 0� 2583.74�2.28� 2586.02�0.78� 2586.81 2.35 5.49
�1 20 0� 2668.48�0.95� 2669.43�0.00� 2669.43 0.78 2.34 4.67 7.79
�0 44 0� 2674.60�2.93� 2677.53�1.57� 2679.10
�0 44 0� 2674.60�2.93� 2677.53�1.57� 2679.10
�0 42 0� 2758.96�2.06� 2761.02�0.78� 2761.80 2.35 5.48
�0 42 0� 2758.96�2.06� 2761.02�0.78� 2761.80 2.35 5.48
�0 40 0� 2793.76�1.53� 2795.30�0.00� 2795.30 0.78 2.34 4.69 7.81

aResults obtained with the DEWE algorithm applying the operator Ŵn=n · �
 /2���̂x
2+ �̂y

2�+ �1/2��k=1
3N−5P̂k

2+ V̂Chédin6. The reference geometry was linear with an
rCO=2.192 080 0 bohr bond length. Atomic masses mC=12.000 000 u, and mO=15.994 910 u were used throughout the calculations. The number of basis
functions applied for the vibrational degrees of freedom was �16,16,16,16�.
bDeviations from the results obtained with the complete Ŵ1 operator �Ŵ1−Ŵ0� are given in parentheses.
cDeviations from the DOPI results with the lowest possible J value of that level �DOPI�Jmin�−Ŵ1� are given in parentheses.
dConverged results obtained with the DOPI algorithm �Ref. 22�. Exactly the same potential and atomic masses were applied as in the calculations with DEWE.
Rovibrational energy levels are referenced to the corresponding rovibrational level with the lowest possible J.
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A. CO2

For the case of CO2 all the energy levels obtained with
Chédin’s sextic force field29 are given in Table IV up to the
fourth bending level. Results of the present DEWE algorithm
are compared with those obtained using DOPI.22 Again, a
direct comparison can be made as in both cases the same
potential is involved.

VBOs corresponding to l=0 �where l is the quantum
number of the total vibrational angular momentum about the
linear axis, l=−vb, −vb+2 , . . ., vb−2, vb, and vb is the num-
ber of quanta of the linear bending44� obtained with the
DEWE and DOPI approaches are the same within numerical
accuracy. Besides these energy levels further ones can be
obtained in a DEWE vibrational calculation which are “miss-
ing” from a DOPI calculation for J=0 �where J stands for
the quantum number of the total angular momentum�. These
new levels do not correspond, however, to physically exist-

ing ones as the Sayvetz condition45 requires �Ĵz− �̂z��=0. In
spite of this, they can be paired with existing �ro�vibrational
levels with l�0, and these “nonphysical” VBOs could be
interpreted as the vibration-only part of the whole rovibra-
tional energy of a level with vb bending quanta �l�0�. The
true rovibrational levels can be obtained with DOPI-type
rovibrational calculations for J= l, as presented in Table IV.

Vibrational perturbation theory yields compact formulae
for the rovibrational energy,

Erotvib = Evib�v1,vb,v3� + Erot, �42�

Erot = Bv�J�J + 1� − l2� − DJ�J�J + 1� − l2�2

+ HJ�J�J + 1� − l2�3 + ¯ ,

�43�
J = l, l + 1, l + 2, . . . ,

and if J= l,

Erot � Bel , �44�

where Bv, DJ, HJ , . . . are, in order, the rotational constant, the
quartic centrifugal distortion constant, the sextic centrifugal
distortion constant, etc., discussed in detail in, for example,
Ref. 47, and Be denotes the rotational constant in the equi-
librium geometry. Equation �44� gives an approximation of
the “rotational contribution” to the lowest rovibrational level
with a given �v1 ,vb ,v3� set of vibrational quanta �stretching,
linear bending, and stretching quantum numbers, respec-
tively�.

On the basis of Eq. �43�, levels with l=0 have zero ro-
tational contribution and these are the only ones that are
obtained exactly with the vibration-only Eckart-Watson
Hamiltonian, Eq. �23�. If l�0, the vibration-only DEWE
approach delivers nonphysical vibration-only energies that
differ from the corresponding physically correct rovibra-
tional values by approximately Bel �for 12C16O2,
Be�0.39 cm−1�, given that the reference configuration ap-
plied in the DEWE calculation is close to the equilibrium
structure.

Concerning the incomplete operator, the use of Ŵ0 re-

sults in good approximations, the Ŵ0 eigenvalues are within

1–2 cm−1 of the exact VBOs, at least for the lower �ro�vi-
brational levels. This is in line with the relatively small ro-
tational constant of 12C16O2 at its equilibrium structure.

B. HCN and HNC

Rearrangement of two chemically stable isomers built up
from the �H,C,N� set of atoms, HCN and HNC, corresponds
to a large amplitude molecular motion. Conveniently chosen
internal coordinates, most importantly the orthogonal Jacobi
coordinates, describe efficiently this motion and VBOs can
be obtained within a single calculation for both the HCN and
HNC forms.30

The present normal coordinate treatment seems to be
unable to efficiently account for this large amplitude motion
and give the vibrational levels of HCN and HNC within a
single calculation. However, with the adequate choice of the
reference configuration, VBOs corresponding to the chosen
configuration can be obtained. In Table V the first few vibra-
tional energy levels �l=0� are listed obtained with the
VQZANO+ PES.30 The upper part of the table lists results
corresponding to a linear reference geometry close to the
HCN minimum, whereas the lower part of the table lists
results obtained when the reference configuration was a lin-
ear HNC structure in the DEWE approach. DOPI results are
presented for comparison, where both columns were ob-
tained within a single calculation.

For the HCN part, the DEWE and the DOPI approaches
give again the same numerical values for the VBOs. How-
ever, for HNC the VBOs showed poor convergence when

either the Ŵ1 or the Ŵ0 operators were applied. This numeri-
cal problem can originate from the influence of the energeti-
cally lower-lying HCN valley. As to the singularity, the sin-

gular region of the operator Ŵ1, where I�=0, lies far from the
equilibrium configuration, and thus it does not affect the pre-

sented levels. It is worth mentioning that Ŵ0 is free of sin-
gularities.

Concerning the effect of the Coriolis terms on the energy

levels, Ŵ0 results in reasonable values of the VBOs; how-
ever, the agreement is not as good as it was for the case of
CO2, in accord with the somewhat larger rotational constant.

VIII. SUMMARY

An efficient algorithm and a general N-atomic computer
code are presented using a Hamiltonian built upon rectilinear
normal coordinates for nuclear motion calculations. The al-
gorithm is called DEWE, standing for discrete variable rep-
resentation �D� of the Eckart-Watson �EW� Hamiltonian with
exact inclusion of the potential �E�. DEWE has several dis-
tinguishing characteristics.

First, it is based on the Eckart-Watson Hamiltonian op-
erators for nonlinear and linear reference structures. These
operators have general forms and they work in rectilinear
normal coordinates which can be automatically constructed
for a molecule. Second, highly accurate global PESs or force
fields expressed in curvilinear internal coordinates can be
involved in the nuclear motion computations exactly, due to
the analytical transformation from rectilinear normal coordi-
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nates to curvilinear internal coordinates. Third, the kinetic
and the potential energy operators are represented in DVR, in
which the matrix representation of the potential energy is
always diagonal, no matter how complicated the potential
function is in the actual coordinates, and the matrix of the
kinetic energy operator is a sparse matrix with a highly spe-
cial structure. Consequently, the required eigenpairs of the
matrix of the Eckart-Watson Hamiltonian�s� can be effi-
ciently obtained with an iterative Lanczos algorithm.

The above approach was tested and compared with con-
verged VBOs obtained by variational approaches centered on
curvilinear internal coordinate Hamiltonians for H2O, H3

+,
and HCN/HNC applying high-accuracy global PESs, for
CO2 with an empirical sextic force field, and for CH4 with an
eight-order force field. Exactly the same vibrational energy
levels were obtained with the curvilinear internal and the
rectilinear internal �e.g., normal� coordinate computations for
all but a few levels of the triatomic systems. Without treat-
ment of the singularity in the Eckart-Watson Hamiltonian36

for nonlinear reference structures, certain highly excited lev-
els that sample a linear geometry will fail to converge. Fur-
thermore, the description of large-amplitude vibrational mo-
tions might not be efficient in the applied rectilinear set of
coordinates.

Though DEWE can be applied for triatomics, we think
that for triatomic molecules there exist considerably more

efficient methods for nuclear motion computations, such as
DOPI, applying tailor-made Hamiltonians. The goal of the
present work was not to develop even more efficient codes
for a given set of triatomic molecules with a unique bonding
arrangement, but to suggest an approach that is generally
applicable to any polyatomic molecule irrespective of its
bonding structure. Singularity causes problems in only a
small number of molecules which can easily take a linear
form along their large amplitude internal motions. For larger,
non quasilinear species this problem will not occur. Besides
generality, the DEWE algorithm retains the important capa-
bility of approaches built upon internal coordinate Hamilto-
nians to make use of recently developed high-accuracy PESs
or efficient force fields expressed in curvilinear internal co-
ordinates. This ability is considered to be of great importance
as the accuracy of the potential involved in a �ro�vibrational
calculation is crucial from the point of view of the accuracy
of the energy levels obtained. As to the future, our goals
include the further improvement of the efficiency of our
present code and apply it to “exact” �ro�vibrational studies of
molecular systems having five to seven atoms.
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TABLE V. Zero-point energy and vibrational band origins �l=0� of �H,C,N�, in cm−1, obtained with the
VQZANO+ PES of Ref. 30.

�v1 vb
l v3�

HCN

Ŵ0
a,b Ŵ1

a,b DOPIc

�0 00 0� 3479.37�2.09� 3481.46�0.00� 3481.46
�0 20 0� 1407.96�6.95� 1414.92�0.00� 1414.92
�0 00 1� 2100.45�0.13� 2100.59�0.00� 2100.58
�0 40 0� 2787.65�13.81� 2801.46�0.00� 2801.46
�1 00 0� 3301.04�6.71� 3307.74�0.00� 3307.74
�0 20 1� 3503.66�7.33� 3510.99�0.00� 3510.99
�0 60 0� 4155.46�20.79� 4176.25�0.00� 4176.24

HNC

Ŵ0
a,d Ŵ1

a,d DOPIc

�0 00 0� 8662.69�4.40� 8667.09�0.00� 8667.09
�0 20 0� 931.77� e�10.15� 941.94� e�−0.02� 941.92
�0 40 0� 1883.76e�19.34� 1903.89e�−0.79� 1903.10
�0 00 1� 2024.53�0.41� 2024.94�0.00� 2024.94
�0 60 0� 2813.39e�21.42� 2854.56e�−19.75� 2834.80
�0 20 1� 2943.78� e�11.27� 2955.06� e�−0.01� 2955.04
�1 00 0� 3653.96�11.14� 3665.14� e�−0.04� 3665.10

aResults obtained with the DEWE algorithm applying the operator Ŵn=n · �
 /2���̂x
2+ �̂y

2�+ �1/2��k=1
3N−5P̂k

2

+VVQZANO+. Atomic masses mH=1.007 825 0 u, mC=12.000 000 u, and mN=14.003 074 u were used through-
out the calculations.
bThe reference geometry was linear with rHC=2.014 000 2 bohrs and rCN=2.179 203 2 bohrs bond lengths. The
number of basis functions applied for the vibrational degrees of freedom was �16,16,16,16�.
cResults obtained with the DOPI algorithm �Ref. 22�. Exactly the same PES and nuclear masses were applied
as in the calculations with DEWE.
dThe reference geometry was linear with rHN=1.878 000 2 bohr and rNC=2.209 000 2 bohrs bond lengths. The
number of basis functions applied for the vibrational degrees of freedom was �16,16,16,16�.
eLevels that cannot be converged within the accuracy of the underlined digits with the applied basis set. This
convergence problem can originate from the proximity of the lower HCN valley of the PES.
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APPENDIX: EFFICIENT CALCULATION OF THE
HERMITE-DVR MATRIX ELEMENTS OF THE �̂�����̂�

OPERATOR

Extract a matrix element from Eq. �39�,

�Hn�̂�
�	�̂	Hm� = �
p=1

N

����np���	�pp��	�pm, �A1�

where N=�i=1
D Ni. It is worth noting that between the index of the direct product matrix, n, and the subindices, �n1 ,n2 , . . . ,nD�,

the following unambiguous relation can be established: n= �n1−1�N2 · . . . ·ND+ �n2−1�N3 · . . . ·ND+ . . . +nD. Consequently, a
row or a column of the matrix can be referenced by either n or �n1 ,n2 , . . . ,nD�.

In the summation �A1� only those members have a nonzero contribution for which the conditions formulated below are
satisfied.

1. Diagonal elements „n=mÙni=mi, i=1,2, . . . ,D…

If ∃l� �1,2 , . . . ,D� : pl�nl and pl�ml, but of course nl=ml, and nk=mk= pk, k=1,2 , . . . , l−1, l+1, . . . ,D,

�
p=1

N

����np���	�pp��	�pn = − �
l=1

D

�
i�nl

Nl �
�	�q1,n1
, . . . ,ql,i, . . . ,qD,nD

�	�
k=1

D

Zkl
�

qk,nk

ql,nl
− ql,i


	�
k�=1

D

Zk�l
	

qk�,nk�

ql,i − ql,nl


� . �A2�

2. Off-diagonal elements „nÅm…

�A� If ∃l� �1,2 , . . . ,D� :nl�ml, nl�pl and pl�ml, but nk= pk=mk, k=1,2 , . . . , l−1, l+1, . . .D, then

�
p=1

N

����np���	�pp��	�pm = − �
i�nl

Nl �
�	�q1,n1
, . . . ,ql,i, . . . ,qD,nD

�	�
k=1

D

Zkl
�

qk,nk

ql,nl
− ql,i



�	�

k�=1

D

Zk�l
	

qk�,mk�

ql,i − ql,ml


� · �n1m1
�n2m2

· . . . · �1 − �nlml
� · . . . · �nDmD

. �A3�

�B� If ∃j , l� �1,2 , . . . ,D� :nj�pj =mj and nl= pl�ml, but nk= pk=mk, k=1,2 , . . . , j−1, j+1, . . . , l−1, l+1, . . .D, then

�
p=1

N

����np���	�pp��	�pm = − �
�	�q1,n1
, . . . ,qj,nj

. . . ,ql,ml
, . . . ,qD,nD

�	�
k=1

D

Zkl
�

qk,nk

ql,nl
− ql,ml


	�
k�=1

D

Zk�j
	

qk�,mk�

qj,nj
− qj,mj



+ 
�	�q1,n1

, . . . ,qj,mj
. . . ,ql,nl

, . . . ,qD,nD
�	�

k=1

D

Zkj
�

qk,nk

qj,nj
− qj,mj



�	�

k�=1

D

Zk�l
	

qk�,mk�

ql,nl
− ql,ml


� · �n1m1
· . . . · �1 − �njmj

� · . . . · �1 − �nlml
� · . . . · �nDmD

. �A4�
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In the above formulas dimensionless normal coordinates
were used and the notation Zkl

� =kl
����l /�k� was introduced,

where kl
� was defined in Eq. �16�, and �l and �k denote

“harmonic frequencies” corresponding to the lth and kth de-
grees of vibrational freedom. In the present calculations gen-
eral orthogonal, rectilinear internal coordinates were applied,
not necessarily the normal coordinates that correspond to the
actual potential, and the numerical value of the “harmonic
frequencies” affected only �and only slightly� the rate of con-
vergence upon the increase of the basis size.
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