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Two methods are developed, when solving the related time-independent Schro¨dinger equation
~TISE!, to cope with the singular terms of the vibrational kinetic energy operator of a triatomic
molecule given in orthogonal internal coordinates. The first method provides a mathematically
correct treatment of all singular terms. The vibrational eigenfunctions are approximated by linear
combinations of functions of a three-dimensional nondirect-product basis, where basis functions are
formed by coupling Bessel-DVR functions, where DVR stands for discrete variable representation,
depending on distance-type coordinates and Legendre polynomials depending on angle bending. In
the second method one of the singular terms related to a distance-type coordinate, deemed to be
unimportant for spectroscopic applications, is given no special treatment. Here the basis set is
obtained by taking the direct product of a one-dimensional DVR basis with a two-dimensional
nondirect-product basis, the latter formed by coupling Bessel-DVR functions and Legendre
polynomials. With the basis functions defined, matrix representations of the TISE are set up and
solved numerically to obtain the vibrational energy levels of H3

1 . The numerical calculations show
that the first method treating all singularities is computationally inefficient, while the second method
treating properly only the singularities having physical importance is quite efficient. ©2005
American Institute of Physics.@DOI: 10.1063/1.1827594#

I. INTRODUCTION

During the last three decades several solution strategies
were proposed and related codes developed for the accurate
computation of rovibrational energy levels of small
molecules,1 sometimes up to the dissociation limit~s!. The
most efficient codes seem to employ variants of the discrete
variable representation~DVR! technique2–7 and the related
quadrature approximation,4,8,9 and for triatomic species the
use of the Sutcliffe-Tennyson rovibrational Hamiltonian10

has become widespread.8,11 Strategies and codes applicable
for the four-,12–16 five-,17–19 and six-atomic20 ~ro!vibrational
problems have appeared. Nevertheless, accurate computation
of rovibrational states of triatomic molecules still provides a
challenge when singularities in the Hamiltonian come into
play.6

Singularities will always be present in an internal coor-
dinate rovibrational Hamiltonian expressed in the moving
body-fixed frame.21 Theoretical techniques that do not treat
the singularities in the rovibrational Hamiltonian may result
in sizeable errors for some of the higher-lying rovibrational
wave functions, which have significant amplitude at the sin-
gularities. Radial singularities in the Hamiltonian become
relevant especially for X3 species among triatomic molecules
but they may lead to eigenvalue convergence problems in

other, larger species, as well. We note in this respect that
Gottfried, McCall, and Oka22 recently measured transitions
from energy levels of the H3

1 molecular ion above the barrier
to linearity, when the isosceles equilibrium geometry of H3

1

is flattened by insertion of one of the hydrogens into a H2

unit, present on the ground electronic state at about 10 000
cm21 above the ground vibrational level. These high-energy
experimental transitions provide a critical test of purelyab
initio techniques employed for their calculation, as a prelimi-
nary analysis by Gottfried, McCall, and Oka22 indicated.

Apart from approaches which avoid the introduction of
certain singularities during construction of the
Hamiltonian,23–26i.e., a priori, we are aware of only a fewa
posteriori strategies to cope with singular terms in rovibra-
tional Hamiltonians when solving the related time-
independent Schro¨dinger equation by means of~nearly!
variational techniques.

Henderson, Tennyson, and Sutcliffe27 combined a direct-
product basis with an analytic formula to calculate the matrix
elements of theR2

22 part of the kinetic energy operator@see
Eq. ~1! below# by using spherical oscillator functions28 and
extra transformations. Using this algorithmall the bound vi-
brational states of H3

1 have been calculated successfully.
Watson29 employed an artificial wall of 1016 cm21 for

undesired linear and nonphysical regions of the potential en-
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ergy surface~PES! in his calculations, based on three Morse
coordinates corresponding to H–H bonds, on H3

1 . This pro-
cedure did not work above the barrier to linearity; conse-
quently, Watson advocated the use of hyperspherical coordi-
nates to avoid the radial singularity problem.

Bramley et al.30 ~BTCC! employed an efficient tech-
nique treating the radial singularity by using two-
dimensional nondirect-product basis functions, which are the
analytic eigenfunctions of the spherical harmonic oscillator
Hamiltonian,31 which includes a harmonicR2 potential. After
theR2

2 potential was added to the kinetic energy operator, the
matrix elements of theR2- andΘ-dependent part of the ki-
netic energy operator@see again Eq.~1! below# could be
calculated analytically resulting in a diagonal finite basis rep-
resentation~FBR! matrix. Consequently, theR2

2 potential had
to be subtracted from the potential energy. The potential en-
ergy with the harmonic2R2

2 term had only diagonal nonzero
matrix elements in theR1 DVR but off-diagonal nonzero
elements in the (R2 ,Θ) FBR, which were calculated by us-
ing the quadrature approximation.

Instead of the nondirect-product FBR/DVR approach of
BTCC, Mandelshtam and Taylor32 advocated a simple and
efficient direct-product DVR procedure made suitable to
treat the singularity numerically by symmetrization of the
sinc-DVR basis employed and use of an angular momentum
cutoff.

A simple and efficient regularization technique advo-
cated by Baye and co-workers33 can also be employed to
treat terms singular in the Hamiltonian during grid-based
variational calculations. This approach has been employed to
treat the radial singularities present in triatomic rovibrational
Hamiltonians.34

In this paper we describe a FBR strategy based on the
use of Bessel-DVR functions, developed recently by Little-
john and Cargo,35 and several resulting implementations for
coping with the radial singularity present, for example, in the
Sutcliffe-Tennyson triatomic vibrational Hamiltonian ex-
pressed in orthogonal internal coordinates.10 A concise over-
view of discrete Bessel representations was published by
Lemoine36 in 2003, making their detailed discussion in this
paper unnecessary.

After the Introduction we describe in Sec. II what type
of singularities are present in the Sutcliffe-Tennyson tri-
atomic vibrational Hamiltonian expressed in orthogonal in-
ternal coordinates and how we propose to treat the radial
singularity if it becomes important during solution of the
related time-independent Schro¨dinger equation. In Sec. III an
implementation of a possible FBR method using three-
dimensional nondirect-product basis in orthogonal Radau or
Jacobi coordinate systems is discussed. The potential energy
matrix is set up employing two different FBRs. In Sec. IV an
efficient algorithm is described, whereby the singularity
problem is solved in the Jacobi coordinate system by using a
two-dimensional nondirect-product basis. The paper is ended
with Conclusions~Sec. V!.

II. SINGULARITIES IN THE SUTCLIFFE-TENNYSON
TRIATOMIC VIBRATIONAL HAMILTONIAN IN
ORTHOGONAL COORDINATES

In the Sutcliffe-Tennyson Hamiltonian10 the vibrational
kinetic energy operator of a triatomic molecule in the or-
thogonal Jacobi37 or Radau38 coordinates (R1 ,R2 ,Θ) is writ-
ten in atomic units as

K̂52
1

2m1

]2

]R1
2
2

1

2m2

]2

]R2
2
2S 1

2m1R1
2

1
1

2m2R2
2D

3S ]2

]Θ2
1cotΘ

]

]ΘD , ~1!

wherem1 andm2 are appropriately defined mass-dependent
constants,10 and the volume element of integration is
dR1dR2d(cosΘ). In a mathematical senseK̂ has three sin-
gularities, at R150, at R250, and at sinΘ50. The
Θ-dependent part of Eq.~1! is always singular if the mol-
ecule vibrates to the linear geometry or, in a more technical
sense, if the basis functions sample the linear geometry.

A solution strategy of the bending singularity problem is
offered by the differential equation

2S ]2

]Θ2
1cotΘ

]

]ΘD P,~cosΘ!5,~,11!P,~cosΘ!,

~2!

where the analytic eigenfunctions$P,(cosΘ)%,50
L21 are the

classical orthogonal Legendre polynomials. Therefore, Leg-
endre polynomials are especially suitable basis functions for
solving the bending singularity problem and most of the
variational ~ro!vibrational programs indeed use Legendre-
DVR basis39 for describing angle-bending motions.

In most cases the radial~stretching-type! singularities
present in Eq.~1! may be ignored because the value of the
potential energy function is very high and the wave function
is going to vanish when theR1 or R2 coordinates closely
approach or are equal to zero. In the case of the H3

1 molecu-
lar ion, however, one must solve the radial singularity prob-
lem as linear geometries, arising from the insertion of the
third H into a bond between two Hs, are sampled at rela-
tively low energies. Clearly, one cannot use the quadrature
approximation for computing the matrix elements of theR1

22

andR2
22 operators when they become singular.

To move forward let us consider the matrix representa-
tion of K̂ using Legendre polynomials

^P,uK̂uP,8&5K̂R1 ,,d,,,81K̂R2 ,,d,,,8 , ~3!

where

K̂Rj ,,52
1

2m j

]2

]Rj
2

1
1

2m jRj
2

,~,11! ~4!

and j 51 or 2. The Bessel-DVR functions developed recently
by Littlejohn and Cargo,35

H Fnnj
~Rj !5~21!nj 11

kj nznnj
A2Rj

~kj nRj !
22znnj

2
Jn~kj nRj !J

nj 50

Nj 21

,
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wheren5,11/2 andznnj
are the zeros of the Bessel func-

tions Jn(z), are suitable to solve the radial singularity prob-
lem as the matrix elements of theK̂Rj ,, operators can be
evaluated using a simple analytical formula35

~KRj ,,!nj ,n
j8
5^Fnnj

uK̂Rj ,,uFnn
j8
&

5dnj ,n
j8

1

2m j

kj n
2

3
F 11

2F S ,1
1

2D 2

21G
znnj

2
G

1~12dnj ,n
j8
!

1

2m j
~21!nj 2nj8

38kj n
2

znnj
znn

j8

~znnj

2 2znn
j8

2
!2

. ~5!

The radial grid points can be obtained asr n j nj
5znnj

/kj n ,

wherekj n5znNj
/Rj n

max; therefore, all theNj grid points are in

the interval 0,r n j nj
<Rj n

max.

III. FULL TREATMENTS OF SINGULARITIES IN
ORTHOGONAL COORDINATE SYSTEMS

The three-dimensional nondirect-product basis
$Fnn1

(R1)Fnn2
(R2)P,(cosΘ)%n1 ,n2 ,,50

N121,N221,L21, where n5,

11/2, can be used for solving the singularity problems both
in the Jacobi and the Radau coordinate systems. Using a
FBR, the sparse kinetic energy matrix can be obtained ana-
lytically as

~KFBR!n1n2,,n
18 ,n

28 ,8

5~KR1 ,,!n1 ,n
18
dn2 ,n

28
d,,,81dn1 ,n

18
~KR2 ,,!n2 ,n

28
d,,,8 . ~6!

The matrix representation of the potential energy operator
V̂(R1 ,R2 ,cosΘ) can be set up via different FBR methods.6

One can useN1N2L basis functions and the corresponding
(N1L)(N2L)L quadrature points, i.e., retaining all radial
quadrature points corresponding to all possible values of,,
$r n1n1

%,1 ,n150
L21,N121

^ $r n2n2
%,2 ,n250

L21,N221
^ $q,%,51

L , where n1 and

n2 are,111/2 and,211/2, respectively, and theq,s are the
zeros of PL(cosΘ). Therefore, a N1N2L
3N1N2L3-dimensional matrixF can be set up as

Fn8n
18n8n

28,8,n1n1n2n2,

5wn1n1

1/2 wn2n2

1/2 w,
1/2Fn8n

18
~r n1n1

!Fn8n
28
~r n2n2

!P,8~q,!, ~7!

wherewn1n1
, wn2n2

, andw, are the quadrature weights cor-
responding to ther n1n1

, r n2n2
, and q, grid points, respec-

tively. It is straightforward to calculate the function values of
the Legendre polynomialsP,8(cosΘ) at theq, quadrature
points. One can set up theQ coordinate matrix with matrix
elements Q,,,85^P,(cosΘ)ucosΘuP,8(cosΘ)&, and the
quadrature points$q,%,51

L are the eigenvalues of theQ ma-
trix, while the T transformation matrix is defined by the
eigenvectors of theQ matrix. The elements of theT matrix

are T,8,,5w,
1/2P,8(q,), where thew,s are the Gaussian

quadrature weights. Calculation of the function values of the
normalized Bessel-DVR basisFn8n

j8
(Rj ) at the r n j nj

radial

grid points is more involved. First one needs to determine the
zeros of theJn8(z) Bessel functions, and then compute the
radial grid pointsr n j nj

. Whenn8Þn j in Fn8n
j8
(r n j nj

), one has

to calculate the function values of the Bessel functions
Jn8(kj n8r n j nj

). In the case ofn85n j the function values of
the normalized Bessel-DVR basis functions are

Fn8n
j8
(r n8nj

) 5 (21) nj8 1 1Akj n8 zn8n
j8
/ 2 Jn8

8 (zn8n
j8
) dn

j8 , nj
,

where the required function values of the Bessel derivative
functions Jn8

8 (zn8n
j8
) can be obtained by usingJn8

8 (zn8n
j8
)

5Jn821(zn8n
j8
).

A FBR for the matrix representation of the Schro¨dinger
equation of the Hamiltonian can be written as

HC5~K1VFBR!C5~K1S2dFVdiagF1Sd21!C5CE,
~8!

whereS5FF1, d is a real number, the diagonalE and the
C matrices contain the eigenvalues and eigenvectors of the
Hamiltonian matrix~H!, respectively, and

Vn1n1n2n2,,n
18n

18n
28n

28,8
diag

5V~r n1n1
,r n2n2

,q,!dn1n1n2n2,,n
18n

18n
28n

28,8 . ~9!

Equation~8! remains valid if one employs more quadrature
points than the number of basis functions. In this caseVFBR

and consequently the eigenvalues become dependent on the
weight functions. In all the computations reported the
weightswn1n1

51 andwn2n2
51 were employed.

One can set up different FBRs varying parameterd in
Eq. ~8!. Settingd51 andd51/2 an asymmetric6 ~AS-FBR!
and a symmetric2 ~S-FBR! representation can be defined, re-
spectively. Using the AS-FBR the N1N2LN1N2L-
dimensional potential energy matrix becomesasymmetric.
The advantage of this representation is twofold:~a! AS-FBR
corresponds to the optimal-generalized DVR,6 which is the
most accurate generalized DVR method; and~b! when AS-
FBR is employed with the same number of basis functions
and quadrature pointsVFBR and the eigenvalues of the
Hamiltonian will not depend on the weights.

Two algorithms were programmed. In both cases Eq.~6!
was employed for the calculation of the kinetic energy ma-
trix @K in Eq. ~8!# elements, while either AS-FBR@d51 in
Eq. ~8!# or S-FBR@d51/2 in Eq.~8!# was used for setting up
the matrix of the potential energy.

The numerical results, on the example of the H3
1 mo-

lecular ion employing the PES of Polyanskyet al.,40 are pre-
sented in Table I. The vibrational eigenenergies~VE! have
also been calculated by a standard DVR technique termed
DOPI ~DVR—Hamiltonian in orthogonal~O! coordinates—
direct product ~P! basis—iterative ~I! sparse Lanczos
eigensolver!,11,12 which employs analytic formulas39 and the
quadrature approximation during calculation of the kinetic
energy matrix elements. While this PES is not the most ac-
curate available for H3

1 , it has the distinct advantage that its
dissociative behavior is correct, thus numerical results em-
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ploying quadrature points far from equilibrium are not sub-
ject to imprecision. The vibrational calculations have been
carried out employing the Jacobi coordinate system. Note
that although these coordinates do not carry the full symme-
try of H3

1 , which possessesS3 permutational symmetry, this
in itself causes no difficulty in obtaining an accurate vibra-
tional eigenspectrum of H3

1 , though it clearly hinders sym-
metry classification of the eigenstates.

In all cases studied the two different representations
have been found to yield almost identical VEs,41 indepen-
dently of the convergence of the solution. This can be ex-
plained by the use ofN1N2L3 quadrature points, much
higher than the number of basis functions,N1N2L. It must
also be noted that the computation of the potential energy
matrix needs a large amount of CPU time. To wit, a rela-
tively small computation, e.g., withN15N25L516, when
even the lowest-lying VBOs are only quasiconverged, needs
several days of CPU time on an average personal computer.42

Therefore, this mathematically rigorous FBR treatment of
the singularity problem proves to be computationally unfea-
sible.

IV. AN EFFICIENT ALGORITHM
IN JACOBI COORDINATES

In the Jacobi coordinate system, whereR1 represents a
diatomic distance andR2 the separation of the third atom
from the center of the mass of the diatom, theR150 singu-
larity will not occur in physically relevant cases because the
potential energy value is going to be infinite and the wave
function is going to vanish near nuclear coalescense points.

Therefore, in the Jacobi coordinate system one can use
a two-dimensional $R2 ,Θ% nondirect-product basis for
treating the remaining radial singularity, as was done, for
example, by BTCC.30 The full three-dimensional basis can
be given by $xn1

(R1)Fnn2
(R2)P,(cosΘ)%n1 ,n2 ,,50

N121,N221,L21,

where$xn1
(R1)%n150

N121 is a one-dimensional DVR basis~e.g.,

Hermite-DVR basis!. One can obtain the matrix elements of
the corresponding differential operator,

~KR1
!n1 ,n

18
5^xn1

~R1!u2
1

2m1

]2

]R1
2

uxn
18
~R1!&, ~10!

using exact analytical formulas.39 The DVR representation of
the R1

22 part of the kinetic energy operator matrix
(R1

22)n1 ,n
18
5^xn1

(R1)u1/(2m1R1
2)uxn

18
(R1)& can be calcu-

lated using the quadrature approximation

~R1
22!n1 ,n

18
5

1

2m1r n1

2
dn1 ,n

18
. ~11!

In the case of a Hermite-DVR basis, employed in the calcu-
lations reported in this paper,

r n1
5

qn1

qN1

R1
max2R1

min

2
1

R1
max1R1

min

2
, ~12!

whereqn1
s are the appropriate Gaussian quadrature points.

Consequently, all grid points are defined in the interval
@R1

min ,R1
max#. This way one can ensure that all grid points are

in a physically meaningful region.

TABLE I. Zero-point energy and the first 13 vibrational eigenenergies of H3
1 , in cm21, computed by the full

FBR treatment of the singularities as described in Sec. III. The PES of H3
1 is taken from Ref. 40 with the

minimum atr e(HH)51.649 99 bohrs.m(H)51.007 537 2u is used during all the computations. The number of
basis functions is given as (N1 N2 L), where N1 , N2 , and L denote the number of theR1-, R2-, and
Θ-dependent functions, respectively. The radial grid points are in the intervals 0,r n1n1

<3.51@0.001(n1

11/2)# and 0,r n2n2
<3.01@0.001(n211/2)#, all in bohr. Without symmetry analysis of the wave function or

symmetrization of the basis functions no proper symmetry labels can be attached to the degenerate levels;
therefore, these labels are omitted here. The zero-point energy of H3

1 is the first entry of this table. All other
eigenenergies refer to this energy.

Symmetry

~10 10 10! ~16 16 16!

AccuratecAS-FBRa S-FBRb AS-FBRa S-FBRb

A1 4375.95 4375.94 4362.30 4362.30 4362.30
E 2449.29 2449.32 2521.19 2521.19 2521.19
E 2569.12 2569.03 2521.20 2521.20 2521.19
A1 3232.63 3232.53 3179.21 3179.21 3179.20
A1 4854.15 4854.17 4777.66 4777.66 4777.63
E 4893.82 4893.67 4997.61 4997.61 4997.60
E 5135.71 5135.61 4997.64 4997.64 4997.60
E 5492.34 5492.40 5554.82 5554.82 5554.82
E 5723.98 5723.28 5554.93 5554.93 5554.82
A1 6432.95 6432.48 6263.94 6263.94 6263.85
E 6577.50 6577.58 7005.02 7005.02 7005.00
E 7253.74 7252.94 7005.24 7005.24 7005.00
A1 7265.72 7265.79 7284.71 7284.71 7284.60
A2 7613.55 7613.64 7492.57 7492.57 7492.53

aSee text for the definition of AS-FBR.
bSee text for the definition of S-FBR.
cConverged results obtained by the DOPI algorithm~Ref. 11!, where the number of basis functions is~30 30 30!
and theR1 andR2 Hermite-DVR grid points are in the intervals@0.9,3.5# and @0.05,2.95# bohr, respectively.

024101-4 Czakó et al. J. Chem. Phys. 122, 024101 (2005)

Downloaded 16 Dec 2004 to 157.181.193.177. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Finally, using Eqs.~5!, ~10!, and~11! the DVR/FBR rep-
resentation of the kinetic energy operator can be calculated
by

~KDVR/FBR!n1n2,,n
18n

28,8

5~KR1
!n1 ,n

18
dn2 ,n

28
d,,,81~R1

22!n1 ,n
18
dn2 ,n

28
,~,11!d,,,8

1dn1 ,n
18
~KR2 ,,!n2 ,n

28
d,,,8 . ~13!

In the last section the two different FBRs, AS-FBR, and
S-FBR, were found to yield identical VEs. Therefore, the
potential energy matrix is set up using the more advanta-
geous S-FBR resulting in a symmetric representation. Define
the N1N2L3N1N2L2-dimensional matrix,

Fn
18n8n

28,8,n1n2n2,

5wn1

1/2wn2n2

1/2 w,
1/2xn

18
~r n1

!Fn8n
28
~r n2n2

!P,8~q,!

5dn
18 ,n1

wn2n2

1/2 w,
1/2Fn8n

28
~r n2n2

!P,8~q,!. ~14!

F is a sparse matrix of special structure, sincexn
18
(r n1

)

5wn1

21/2dn
18 ,n1

, while wn1
andw, are Gaussian weights, and

wn2n2
were set to one during the computations. One can set

up the S-FBR matrix of the Hamilton operator using Eq.~8!
and settingd51/2, where in this caseK is defined in Eq.
~13! andVn1n2n2,,n

18n
28n

28,8
diag

5V(rn1
,rn2n2

,q,)dn1n2n2,,n
18n28n

28,8 . Pic-

torial representation of the shape of the matricesF @Eq.
~14!#, S @Eq. ~8!#, VFBR @Eq. ~8!#, and H @Eq. ~8!# in the
special case ofN153 andN254 is shown in Fig. 1. The
Hamiltonian matrixH is a symmetric sparse matrix of spe-
cial structure with (N11N2L21)N1N2L nonzero elements
~see Fig. 1!. Therefore, one can compute the required eigen-
values of this Hamiltonian matrix using a Lanczos method43

specialized for sparse matrices. This algorithm is much more
efficient than that described in Sec. III: a computation with
the same basis size has used only a few minutes of CPU time
instead of a couple of days. Note also that we observed no
convergence problems during the Lanczos iterations, and the
number of the iterations did not depend on the size of the
final Hamiltonian matrix@H of Eq. ~8!#. This fast conver-
gence is very pleasing and is due to the fact that theR250
singularity does not degrade the convergence of the Lanczos
technique.12

The VEs of H3
1 between 11 000 and 15 000 cm21 above

the vibrational ground state, starting with the 36th vibrational
eigenvalue, are presented in Table II. Note that the barrier to
linearity on the PES of H3

1 is at about 10 000 cm21. The
VEs have been calculated both by the DVR/FBR algorithm
of this section and by the standard DVR technique termed
DOPI.11,12In Table II and in the forthcoming text the number

of basis functions is given as (N1N2L), whereN1 , N2 , and
L denote the number of theR1-, R2-, andΘ-dependent func-
tions, respectively.

Only a modest portion of the eigenenergies computed
above 11 000 cm21 depend on the proper treatment of the
R250 singularity. Even for high-lying eigenenergies, e.g.,
for the pairsE36,37(E) and E66,67(E), where the symmetry
characterization is given in parentheses, the DOPI algorithm,
with a modest number of basis functions, can yield reason-
able, though sometimes not exceedingly accurate VEs. The
fast convergence of the eigenenergies obtained using the
DVR/FBR algorithm is apparent from the fact that even the
use of a modest 20 Bessel-DVR basis functions result in a
maximum error of only 5 cm21, for the pairE62,63(E) and
compared to ‘‘accurate’’ VEs given in the last column of
Table II, among the first 80 vibrational eigenenergies re-
ported. Convergence of the Bessel-DVR VEs is most pro-
tracted when the result from a small-basis DOPI and the
DVR/FBR treatments deviate substantially, e.g., for the pairs
E45,46(E), E48,49(E), E57,58(E), E62,63(E), E71,72(E), and
E75,76(E). One of the largest deviation coming from the
smallest,~20 20 20!, DOPI calculation reported is 260 cm21

for the pairE62,63(E), again compared to accurate VEs given
in the last column of Table II. At the same time, for this pair
the ~20 20 20! DVR/FBR calculation shows a deviation of
only 5 cm21. The extremely slow convergence ofE62 with
the DOPI scheme is noteworthy: the error of 260 cm21 de-
creases to only 245 cm21 when the basis is increased to
~30 30 30!, while the same basis size results in an error of 0.5
cm21 when the DVR/FBR scheme is employed. A similar
statement holds to all of the pairs mentioned showing the
tremendous difficulty of the simple DOPI scheme in dealing
with theR250 singularity. Obviously, there are intermediate
cases between successes and failures of the DOPI scheme.
There seems to be no problem in predicting the eigenener-
gies of A2 symmetry: all eigenenergies reported, whether
treating theR250 singularity or not, agree to within 0.1
cm21. The situation with theA1-symmetry eigenenergies is
less clearcut. In a few cases, e.g.,E41(A1) and E80(A1),
proper treatment of the singularity makes a rather small dif-
ference, the largest DOPI and DVR/FBR eigenenergies differ
at most by a couple of cm21, in cases only by 0.01 cm21.
Nevertheless, in other cases, e.g., forE54(A1) andE68(A1),
the two algorithms result in considerably different eigenen-
ergies. Again, improving the basis set makes the discrepancy
smaller, e.g., forE54(A1) the difference of 407 cm21 ob-
tained with a basis set of~20 20 20! functions decreases to
212 cm21 when the size of the basis is increased to~30 30

FIG. 1. Pictorial representation of the shape and the
nonzero elements of the matricesF @Eq. ~14!#, S @Eq.
~8!#, VFBR @Eq. ~8!#, and H @Eq. ~8!# relevant for the
algorithm described in Sec. IV~note that in this figure
N153 andN254 and that the black boxes ofF also
have some zero elements!.
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30!. Two examples concerning the convergence of the com-
puted VEs are given on Fig. 2. The eigenvalueE12 is below
the barrier and thus both the DOPI and the Bessel-DVR/FBR
approaches work well and their convergence characteristic is
similar. The eigenvalueE46 is above the barrier and the large

deviations resulting from not treating the singularity is ap-
parent. Note that the convergence behavior of the DVR/FBR
approach is similar for the two eigenvalues.

Using the Hermite-DVR in DOPI one can choose the
smallest grid point,R2

min @see Eq.~12!#. VEs of H3
1 between

TABLE II. All the vibrational eigenenergies of H3
1 , between 11 000 and 15 000 cm21 above the ground

vibrational state, in cm21. The PES of H3
1 is taken from Ref. 40 with the minimum atr e(HH)

51.649 99 bohrs.m(H)51.007 537 2u is used during all the computations. The number of basis functions is
given as (N1 N2 L), whereN1 , N2 , and L denote the number of theR1-, R2-, and Θ-dependent functions,
respectively. Without symmetry analysis of the wave function or symmetrization of the basis functions no
proper symmetry labels can be attached to the degenerate levels; therefore, these labels are omitted here.

Numbera Symmetry

~20 20 20! ~25 25 25! ~30 30 30!

AccuratedBESSELb DOPIc BESSELb DOPIc BESSELb DOPIc

36 E 11 324.81 11 324.81 11 324.76 11 324.76 11 324.74 11 324.74 11 324.74
37 E 11 325.65 11 325.71 11 324.79 11 324.78 11 324.74 11 324.74 11 324.74
38 A2 11 528.74 11 528.73 11 527.81 11 527.80 11 527.76 11 527.75 11 527.76
39 E 11 657.88 11 654.01 11 656.96 11 653.82 11 656.92 11 654.30 11 656.92
40 E 11 658.18 11 657.85 11 656.98 11 656.96 11 656.93 11 656.92 11 656.93
41 A1 11 814.44 11 813.97 11 813.88 11 813.62 11 813.86 11 813.65 11 813.87
42 E 12 078.77 12 077.24 12 078.21 12 077.53 12 078.19 12 077.72 12 078.20
43 E 12 079.32 12 079.30 12 078.25 12 078.24 12 078.19 12 078.19 12 078.20
44 A1 12 149.74 12 146.94 12 149.41 12 149.39 12 149.38 12 149.37 12 149.38
45 E 12 300.88 12 301.13 12 300.49 12 300.48 12 300.46 12 300.46 12 300.46
46 E 12 301.12 12 149.79 12 300.58 12 197.76 12 300.51 12 225.71 12 300.47
47 A1 12 376.20 12 334.41 12 375.55 12 338.73 12 375.44 12 342.41 12 375.38
48 E 12 374.02 12 474.01 12 473.67 12 473.67 12 473.66 12 473.66 12 473.66
49 E 12 474.57 12 433.12 12 473.88 12 437.94 12 473.75 12 441.78 12 473.67
50 A1 12 590.89 12 587.93 12 589.85 12 587.67 12 589.80 12 587.98 12 589.80
51 E 12 697.22 12 697.18 12 697.31 12 697.31 12 697.29 12 697.29 12 697.29
52 E 12 698.80 12 684.85 12 697.37 12 689.26 12 697.30 12 691.12 12 697.29
53 A2 12 833.33 12 833.27 12 832.27 12 832.26 12 832.21 12 832.21 12 832.21
54 A1 13 289.64 12 882.79 13 288.87 12 992.24 13 288.84 13 076.99 13 288.85
55 E 13 319.50 13 318.29 13 318.40 13 318.17 13 318.35 13 318.25 13 318.35
56 E 13 319.52 13 319.44 13 318.40 13 318.40 13 318.36 13 318.35 13 318.35
57 E 13 391.70 13 290.92 13 390.82 13 291.61 13 390.77 13 292.28 13 390.79
58 E 13 392.36 13 392.31 13 390.97 13 390.81 13 390.88 13 390.76 13 390.82
59 A1 13 399.89 13 393.69 13 398.62 13 393.94 13 398.49 13 394.02 13 398.41
60 E 13 587.28 13 583.32 13 587.36 13 587.15 13 587.31 13 587.31 13 587.31
61 E 13 588.48 13 588.43 13 587.39 13 587.35 13 587.34 13 588.40 13 587.32
62 E 13 686.43 13 432.24 13 691.61 13 439.69 13 691.62 13 446.99 13 691.62
63 E 13 691.68 13 691.68 13 692.65 13 691.61 13 692.17 13 691.62 13 691.67
64 A1 13 714.79 13 709.18 13 717.56 13 709.23 13 717.35 13 709.34 13 717.13
65 A2 13 756.03 13 756.02 13 754.60 13 754.59 13 754.55 13 754.54 13 754.56
66 E 14 056.79 14 056.78 14 056.52 14 055.71 14 056.53 14 055.85 14 056.53
67 E 14 057.87 14 056.89 14 056.58 14 056.57 14 056.53 14 056.53 14 056.53
68 A1 14 191.60 14 116.99 14 191.04 14 147.07 14 190.97 14 158.10 14 190.93
69 E 14 217.58 14 217.49 14 216.95 14 216.94 14 216.93 14 216.93 14 216.94
70 E 14 219.03 14 196.42 14 217.07 14 202.16 14 216.96 14 205.23 14 216.94
71 E 14 474.00 14 474.90 14 473.56 14 473.55 14 473.49 14 473.49 14 473.50
72 E 14 474.97 14 315.00 14 473.58 14 385.39 14 473.54 14 426.67 14 473.51
73 A2 14 565.55 14 565.52 14 565.55 14 565.54 14 565.55 14 565.54 14 565.56
74 A1 14 665.28 14 665.56 14 665.89 14 667.61 14 665.90 14 667.35 14 665.91
75 E 14 880.12 14 880.08 14 879.53 14 879.53 14 879.52 14 879.51 14 879.54
76 E 14 881.00 14 423.87 14 880.29 14 460.92 14 879.86 14 493.08 14 879.56
77 A1 14 883.81 14 579.18 14 889.90 14 650.76 14 889.81 14 702.72 14 889.71
78 E 14 890.59 14 888.44 14 890.51 14 888.61 14 890.59 14 888.66 14 890.61
79 E 14 890.67 14 890.67 14 890.59 14 890.57 14 890.61 14 890.59 14 890.62
80 A1 14 943.71 14 942.70 14 943.06 14 942.96 14 943.01 14 942.93 14 943.01

aThe first 35 eigenvalues, including the zero-point energy, are not reported in this table.
bBESSEL, results obtained by the algorithm described in Sec. IV, where theR1 Hermite-DVR grid points are in
the interval@0.9,4.5# and the radialR2 Bessel grid ponts are 0,r n2n2

<3.51@0.001(n211/2)#, all in bohr.
cDOPI, results obtained by DOPI, where theR1 andR2 Hermite-DVR grid points are in the intervals@0.9,4.5#
and @0.05,3.55# bohrs, respectively.

dConverged results obtained by a large~35 60 35! BESSEL computation.
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11 000 and 13 000 cm21, obtained by varyingR2
min , are pre-

sented in Table III. SettingR2
min to too small of a value, e.g.,

0.01 bohr, results in errors in all the computed VEs. This can
be explained by the failure of the quadrature approximation
when theR250 singularity is present. By setting a higher
R2

min value, converged VEs can be calculated when the sin-
gularity does not come into play. For example, for the pairs
E36,37(E) the same converged VEs were computed by setting
R2

min either to 0.05 or to 0.1. When the singularity comes into
play, differentR2

min choices, employing the same basis size,
result in different unconverged VEs. For example, for the
pairsE45,46(E) settingR2

min either to 0.05 or to 0.1, the same
convergedE45 was obtained; however, in the case ofE46,
where the singularity becomes important, the two~30 30 30!
calculations result in a discrepancy of more than 30 cm21.

V. CONCLUSIONS

Appearance of certain singular terms is unavoidable
when the~ro!vibrational Hamiltonian is expressed in internal
coordinates. Two methods have been developed in this paper
to cope with the singular terms of the vibrational kinetic
energy operator of a triatomic molecule given in orthogonal
internal coordinates, such as Jacobi or Radau coordinates
$R1 ,R2 ,Θ%, when solving the related time-independent
Schrödinger equation.

The first method, a FBR algorithm, gives a mathemati-
cally correct treatment of all singular terms. In this technique
the vibrational eigenfunctions are approximated by linear
combinations of functions of a three-dimensional nondirect-
product basis. These basis functions are formed by coupling

FIG. 2. Dependence of the vibrational eigenvaluesE12 at 7005.00 cm21 andE46 at 12300.46 cm21 of H3
1 on the size of the basis@basis 1,~20 20 20!; basis

2, ~25 25 25!; and basis 3,~30 30 30!# and the strategy, DOPI vs BESSEL~see Sec. IV!, employed for the solution of the Schro¨dinger equation, whereDVE
is the difference between the actual and the accurate eigenvalues.

TABLE III. All the vibrational eigenenergies of H3
1 , between 11 000 and 13 000 cm21 above the ground vibrational state, in cm21, computed by the DOPI

algorithm varying the smallestR2 grid point. In all the cases theR1 Hermite-DVR grid points are in the interval@0.9,4.5# bohrs. TheR2 Hermite-DVR grid
points are in the intervals@0.01,3.59#, @0.05,3.55#, and@0.1,3.5# bohrs, respectively. The PES of H3

1 is taken from Ref. 40, andm(H)51.007 537 2u is used
during the computations. The number of basis functions is given as (N1 N2 L), whereN1 , N2 , andL denote the number of theR1-, R2-, andΘ-dependent
functions, respectively.

Number Symmetry

~20 20 20! ~25 25 25! ~30 30 30!

Accurateb0.01 0.05 0.1 0.01a 0.05 0.1 0.01a 0.05 0.1

36 E 11 325.07 11 324.81 11 324.81 11 324.78 11 324.76 11 324.76 11 325.24 11 324.74 11 324.74 11 324.74
37 E 11 325.45 11 325.71 11 325.71 11 328.51 11 324.78 11 324.78 11 328.29 11 324.74 11 324.74 11 324.74
38 A2 11 528.71 11 528.73 11 528.73 11 526.80 11 527.80 11 527.80 11 528.62 11 527.75 11 527.75 11 527.76
39 E 11 653.73 11 654.01 11 654.85 11 655.89 11 653.82 11 654.58 11 656.72 11 654.30 11 655.02 11 656.92
40 E 11 657.92 11 657.85 11 657.86 11 658.60 11 656.96 11 656.96 11 674.61 11 656.92 11 656.92 11 656.93
41 A1 11 814.00 11 813.97 11 814.06 11 812.83 11 813.62 11 813.68 11 816.81 11 813.65 11 813.71 11 813.87
42 E 12 075.61 12 077.24 12 077.97 12 077.14 12 077.53 12 077.81 12 079.58 12 077.72 12 077.90 12 078.20
43 E 12 079.30 12 079.30 12 079.30 12 078.11 12 078.24 12 078.25 12 083.16 12 078.19 12 078.19 12 078.20
44 A1 12 112.14 12 146.94 12 149.51 12 148.50 12 149.39 12 149.40 12 150.58 12 149.37 12 149.37 12 149.38
45 E 12 301.11 12 301.13 12 301.13 12 300.70 12 300.48 12 300.48 12 303.21 12 300.46 12 300.46 12 300.46
46 E 12 149.42 12 149.79 12 199.69 12 212.75 12 197.76 12 238.26 12 305.33 12 225.71 12 258.31 12 300.47
47 A1 12 332.56 12 334.41 12 339.03 12 341.87 12 338.73 12 344.71 12 382.71 12 342.41 12 349.60 12 375.38
48 E 12 474.06 12 474.01 12 474.01 12 473.74 12 473.67 12 473.67 12 476.89 12 473.66 12 473.66 12 473.66
49 E 12 430.84 12 433.12 12 438.64 12 441.97 12 437.94 12 444.08 12 478.42 12 441.78 12 448.55 12 473.67
50 A1 12 586.78 12 587.93 12 588.64 12 591.76 12 587.67 12 588.20 12 590.31 12 587.98 12 588.46 12 589.80
51 E 12 697.03 12 697.18 12 697.20 12 697.88 12 697.31 12 697.31 12 699.52 12 697.29 12 697.29 12 697.29
52 E 12 680.33 12 684.85 12 689.90 12 688.02 12 689.26 12 692.03 12 703.34 12 691.12 12 693.29 12 697.29
53 A2 12 825.06 12 833.27 12 833.31 12 833.24 12 832.26 12 832.27 12 834.25 12 832.21 12 832.21 12 832.21

aThe too smallR2 grid point can result in a ghost eigenvalue and small errors in the vibrational eigenenergies.
bConverged results taken from Table II.
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Bessel-DVR functions35 depending on distance-type coordi-
natesR1 andR2 and Legendre polynomials depending on the
angle bending coordinateΘ.

In the Jacobi coordinate system theR150 singularity
will not occur in physically relevant cases as the potential
energy value is going to be infinite and the wave function is
going to vanish near nuclear coalescense points, thus it is
unimportant for bound vibrational states. A second method
is, therefore, formed by not treating the singular term char-
acterized by the Jacobi coordinateR1 . In this case the basis
set is obtained by taking the direct product of a standard
DVR basis, representingR1 , with a two-dimensional
nondirect-product basis, formed by coupling Bessel-DVR
functions representingR2 and Legendre polynomials de-
pending onΘ.

In the first case, given the basis functions detailed above,
matrix representations of the time-independent Schro¨dinger
equation are set up and solved numerically to obtain the
vibrational energy levels of H3

1 . The matrix elements of the
kinetic energy operator are calculated analytically. The ma-
trix elements of the potential energy operator are calculated
by numerical quadrature. Two different prescriptions of nu-
merical integration corresponding to two special cases of the
finite basis representation related to the generalized discrete
variable representation6 are employed. The theoretically
more accurate scheme gives an asymmetrical FBR, whereas
another treatment,2 gives a symmetrical FBR. With the grid
points employed the symmetric and the asymmetric FBRs
give extremely similar results for all vibrational eigenener-
gies irrespective of the basis size. This suggests that the
quadrature points chosen may be close to optimal though
their number is perhaps larger than needed. It is our intent to
revisit the use of quadrature points and find a numerically
more easily managable set of quadrature points which still
allows an efficient calculation of the potential matrix ele-
ments.

The numerical calculations performed for H3
1 , employ-

ing a published40 potential energy surface, have shown that
the first method, treating all singularities properly, requires a
large amount of CPU time for the construction of the poten-
tial energy matrix and is thus computationally inefficient.
The second method, treating properly only the physically
relevant singularities, is quite efficient. Using the more ad-
vantageous S-FBR to set up a symmetric potential energy
matrix the Hamiltonian matrix becomes a symmetric sparse
matrix of special structure with (N11N2L21)N1N2L non-
zero elements. The desired number of converged energy
eigenstates has been computed by an iterative Lanczos algo-
rithm.

A standard DVR technique termed DOPI~Refs. 11 and
12! has also been used to compute the vibrational eigenen-
ergies of H3

1 employing the same PES. Comparison of the
DVR/FBR eigenvalues with those calculated by the DOPI
scheme, which employs basis functions inappropriate for
handling the singular terms in question, clearly demonstrates
the effect and importance of a proper treatment of singular
terms in the case of H3

1 .
It seems44 certainly appealing to employ the treatment

presented in this paper based on Bessel functions for com-

puting resonances of H3
1 , and this will be investigated in the

near future.
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