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Two methods are developed, when solving the related time-independentdi®g®io equation
(TISE), to cope with the singular terms of the vibrational kinetic energy operator of a triatomic
molecule given in orthogonal internal coordinates. The first method provides a mathematically
correct treatment of all singular terms. The vibrational eigenfunctions are approximated by linear
combinations of functions of a three-dimensional nondirect-product basis, where basis functions are
formed by coupling Bessel-DVR functions, where DVR stands for discrete variable representation,
depending on distance-type coordinates and Legendre polynomials depending on angle bending. In
the second method one of the singular terms related to a distance-type coordinate, deemed to be
unimportant for spectroscopic applications, is given no special treatment. Here the basis set is
obtained by taking the direct product of a one-dimensional DVR basis with a two-dimensional
nondirect-product basis, the latter formed by coupling Bessel-DVR functions and Legendre
polynomials. With the basis functions defined, matrix representations of the TISE are set up and
solved numerically to obtain the vibrational energy levels gf.FH'he numerical calculations show

that the first method treating all singularities is computationally inefficient, while the second method
treating properly only the singularities having physical importance is quite efficient20@
American Institute of Physics[DOI: 10.1063/1.1827594

I. INTRODUCTION other, larger species, as well. We note in this respect that
Gottfried, McCall, and OK& recently measured transitions
During the last three decades several solution strategieBom energy levels of the Hmolecular ion above the barrier
were proposed and related codes developed for the accuratg linearity, when the isosceles equilibrium geometry gf H
computation of rovibrational energy levels of smallis flattened by insertion of one of the hydrogens into a H
molecules, sometimes up to the dissociation lifgit The  unit, present on the ground electronic state at about 10 000
most efficient codes seem to employ variants of the discretem™* above the ground vibrational level. These high-energy
variable representatiofDVR) techniqué™’ and the related ~experimental transitions provide a critical test of puraty
quadrature approximatictf® and for triatomic species the initio techniques employed for their calculation, as a prelimi-
use of the Sutcliffe-Tennyson rovibrational Hamiltorian nary analysis by Gottfried, McCall, and GRdndicated.
has become widesprefd! Strategies and codes applicable  Apart from approaches which avoid the introduction of
for the four-1>"'®five-}""*9and six-atomi¢° (ro)vibrational ~ certain  singulariies  during  construction of the
problems have appeared. Nevertheless, accurate computatisiamiltonian?>=2%i.e., a priori, we are aware of only a fea
of rovibrational states of triatomic molecules still provides aposteriori strategies to cope with singular terms in rovibra-
challenge when singularities in the Hamiltonian come intotional Hamiltonians when solving the related time-
play?® independent Schdinger equation by means dfearly
Singularities will always be present in an internal coor-variational techniques.
dinate rovibrational Hamiltonian expressed in the moving  Henderson, Tennyson, and Sutclffeombined a direct-
body-fixed frame&?! Theoretical techniques that do not treat product basis with an analytic formula to calculate the matrix
the singularities in the rovibrational Hamiltonian may resultelements of theRz_2 part of the kinetic energy operatfsee
in sizeable errors for some of the higher-lying rovibrational Eq. (1) below] by using spherical oscillator functiotfsand
wave functions, which have significant amplitude at the sin-extra transformations. Using this algorithati the bound vi-
gularities. Radial singularities in the Hamiltonian becomebrational states of H have been calculated successfully.
relevant especially for Xspecies among triatomic molecules Watsort® employed an artificial wall of 10°cm™* for
but they may lead to eigenvalue convergence problems inndesired linear and nonphysical regions of the potential en-
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ergy surfacg€PES in his calculations, based on three Morse Il. SINGULARITIES IN THE SUTCLIFFE-TENNYSON

coordinates corresponding to H—H bonds, oh.Hrhis pro- ~ TRIATOMIC VIBRATIONAL HAMILTONIAN IN

cedure did not work above the barrier to linearity; conse-ORTHOGONAL COORDINATES

quently, Watson advocated the use of hyperspherical coordi- In the Sutcliffe-Tennyson Hamiltonidhthe vibrational

nates to avoid the radial singularity problem. kinetic energy operator of a triatomic molecule in the or-
Bramley et al® (BTCC) employed an efficient tech- thogonal JacoBl or Radad® coordinatesR;,R;,0) is writ-

nique treating the radial singularity by using two- t€n in atomic units as

dimensional nondirect-product basis functions, which are the 1 # 1 g

analytic eigenfunctions of the spherical harmonic oscillator K=—

Hamiltonian®! which includes a harmoni? potential. After

the Rg potential was added to the kinetic energy operator, the

matrix elements of th&®,- and ®-dependent part of the ki- X

netic energy operatofsee again Eq(1) below] could be

calculated analytically resulting in a diagonal finite basis repwhere ., and u, are appropriately defined mass-dependent

resentatiofFBR) matrix. Consequently, theZ potential had ~ constants? and the volume element of integration is

to be subtracted from the potential energy. The potential end RidR,d(cos®). In a mathematical seng¢é has three sin-

ergy with the harmonie- R2 term had only diagonal nonzero gularities, atR;=0, at R,=0, and at si®=0. The
matrix elements in the}; DVR but off-diagonal nonzero ©-dependent part of Eq1) is always singular if the mol-

elements in theR,,0) FBR, which were calculated by us- ecule v!brates to.the Ilngar geometry or, in a more technical
. o sense, if the basis functions sample the linear geometry.
ing the quadrature approximation.

, A solution strategy of the bending singularity problem is
Instead of the nondirect-product FBR/DVR gpproach Ofoffered by the differential equation
BTCC, Mandelshtam and TayfSradvocated a simple and
efficient direct-product DVR procedure made suitable to 9 d B
treat the singularity numerically by symmetrization of the (;@2+00t@ 0 P¢(C0s@)=£(€+1)P(cosO),
sinc-DVR basis employed and use of an angular momentum 2

cutoff. where the analytic eigenfunctiof®(cos®)}:-3 are the

A simple and efficient regularization technique advo-c|assical orthogonal Legendre polynomials. Therefore, Leg-
cated by Baye and co-workéfscan also be employed to endre polynomials are especially suitable basis functions for
treat terms singular in the Hamiltonian during grid-basedsolving the bending singularity problem and most of the
variational calculations. This approach has been employed teariational (ro)vibrational programs indeed use Legendre-
treat the radial singularities present in triatomic rovibrationalDVR basis® for describing angle-bending motions.
Hamiltonians34 In most cases the radidbtretching-typg singularities

In this paper we describe a FBR strategy based on thBresent in Eq(1) may be ignored because the value of the
use of Bessel-DVR functions, developed recently by Little_Potential energy function is very high and the wave function

john and Cargd® and several resulting implementations for is going to vanish when th&, or R, coordinates closely
. . o . . approach or are equal to zero. In the case of thentblecu-

coping with the radial singularity present, for example, in the,

Sutcliffe-Tennyson triatomic vibrational Hamiltonian ex-

lar ion, however, one must solve the radial singularity prob-
) i ) ) lem as linear geometries, arising from the insertion of the

pressed in orthogonal internal coordinat®A. concise over- third H into a bond between two Hs, are sampled at rela-
view of discrete Bessel representations was published byyely low energies. Clearly, one cannot use the quadrature
Lemoine% in 2003, making their detailed discussion in this approxima’[ion for Computing the matrix elements of Riez
paper unnecessary. and RZ_2 operators when they become singular.

After the Introduction we describe in Sec. Il what type To move forward let us consider the matrix representa-
of singularities are present in the Sutcliffe-Tennyson tri-tion of K using Legendre polynomials
atomic vibrational Hamiltonian expressed in orthogonal in-
ternal coordinates and how we propose to treat the radial
singularity if it becomes important during solution of the where
related time-independent Schilinger equation. In Sec. Il an
implementation of a possible FBR method using three- ___+Lg(€+1) (4)
dimensional nondirect-product basis in orthogonal Radau or : 244 5R12 2 ,2
Jacobi coordinate systems is discussed. The potential energydj =1 or 2. The Bessel-DVR functions developed recently
matrix is set up employing two different FBRs. In Sec. IV anpy Littlejohn and Cargd®
efficient algorithm is described, whereby the singularity N1
problem is solved in the Jacobi coordinate system by using a E. (R)=(— 1)+ K; VZan\/Z_Ri 10R) i
two-dimensional nondirect-product basis. The paper is ended A (ijRj)z_Zin_ VAR :
with ConclusiongSec. \). !
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where v={+1/2 andzan are the zeros of the Bessel func- are TW’e:w%’ng,(qg), where thew,s are the Gaussian
tions J,(z), are suitable to solve the radial singularity prob- quadra_ture weights. Calculation of the function values_ of the
lem as the matrix elements of thes , operators can be normalized Bessel-DVR bask, v (R;) at ther,, radial

evaluated using a simple analytical formtila grid points is more involved. First one needs to determine the
- zeros of thel,.(z) Bessel functions, and then compute the
(Kg; ,e)n, ,nj’:<Fynj|KR]~ ,€|Fvnj’> radial grid points',, , . Whenv' # ; in Fwnj'(fujnj), one has
12 to calculate the function values of the Bessel functions
1 K2 2/ €+ > —1} J,,/(kjy/ryjnj). In the case ofv’ =v; the function values of
=8y o P % 5 the normalized Bessel-DVR basis functions are
1 i ! ’
i Zvni Fv’nj’ (rv'nj) = (_1) ntl kjv’ Zv’nj’ 12 JV' (Zv’nj’) 5nj’ .0y
1 , where the required function values of the Bessel derivative
+(1_5nj,nj’)2_ﬂ_(_1)nj_nj functions J;,(Zvrnj’) can be obtained by using;,(zvrnjr)
i
:‘Jv’fl(zv’nj')'
, L A FBR for the matrix representation of the Sctirger
><8ij(22 _ 2 )2 ) equation of the Hamiltonian can be written as
an an/ )
o : HC=(K+ VR C=(K+ S dFviagrsi-1)C=CE,
The radial grid points can be obtained la,s]njzzmj/kjv, ( )C=( ) (8)

wherek;, = Z,, IR, therefore, all theN; grid points are in

jv

H max
the interval 0<er”]<ij .

whereS=FF", dis a real number, the diagon&land the
C matrices contain the eigenvalues and eigenvectors of the
Hamiltonian matrix(H), respectively, and

diag

Pl Iy
V1n1V2n2€,V1n1V2n2€

Ill. FULL TREATMENTS OF SINGULARITIES IN
ORTHOGONAL COORDINATE SYSTEMS

. . . . (r ngl nrq€)5 n,von €, v/ nlvinler - (9)
The three-dimensional  nondirect-product  basis vt N R

{Fon. (R)F ,n (R Py(cos@) Nt 2 H=1 - \where v=¢  Equation(8) remains valid if one employs more quadrature
1 2 ny.ny, £=0 . . . .

+1/2, can be used for solving the singularity problems botrPoints than the number of basis functions. In this cdSe"

in the Jacobi and the Radau coordinate systems. Using &d consequently the eigenvalues become dependent on the

FBR, the sparse kinetic energy matrix can be obtained anaveight functions. In all the computations reported the

lytically as weightsw, , =1 andw,_, =1 were employed.
(KFER) One can set up different FBRs varying parameten
ninzt.ng ny €' Eq. (8). Settingd=1 andd=1/2 an asymmetrfc(AS-FBR)

_ and a symmetrfc(S-FBR) representation can be defined, re-
= (Kry.Ony 0y Ony.ng 00,00 Oy i (KRy gy St (6) spectively. Using the AS-FBR theN;N,LN;N,L-
The matrix representation of the potential energy operatoflimensional potential energy matrix becomgsymmetric
V(Rl,Rz,cos@) can be set up via different FBR methdds. The advantage of this representation is twoféil:AS-FBR
One can usé;N,L basis functions and the corresponding Corresponds to the optimal-generalized D¥®ihich is the
(N;L)(N,L)L quadrature points, i.e., retaining all radial Most accurate generalized DVR method; ahdwhen AS-
quadrature points corresponding to all possible valueé, of FBR is employed with tQS‘Rsame number of basis functions
{rVlnl};_,l{Nig1®{rVznz};_i'Nf(;l@{%}'Zﬂ: where v, and and _qua.dratur.e pointy and the glgenvalues of the
17 272 . Hamiltonian will not depend on the weights.
v, aref+1/2 andf,+1/2, respectively, and the,s are the Two algorithms were programmed. In both cases (BY.
Zeros 3Of. PL.(COS@)‘ . Therefore, a  NiNoL was employed for the calculation of the kinetic energy ma-
X NyN,L*-dimensional matriJ= can be set up as trix [K in Eq. (8)] elements, while either AS-FBRI=1 in
Eq.(8)] or S-FBR[d=1/2 in Eq.(8)] was used for setting up
the matrix of the potential energy.
=wi’12nlwi’22nzw%’2Fv,ni(r,,lnl)Fy,né(rVan)P(,(qg), (7) The numerical results, on the example of thg Hho-

) lecular ion employing the PES of Polyanséyal.*° are pre-
wherew, ,, W,,n,, andw, are the quadrature weights cor- gented in Table I. The vibrational eigenenergi¥€) have
responding to the,  , I',n, andq, grid points, respec- also been calculated by a standard DVR technique termed
tively. It is straightforward to calculate the function values of DOPI (DVR—Hamiltonian in orthogona{O) coordinates—
the Legendre polynomialB,,(cos®) at theq, quadrature direct product (P) basis—iterative (I) sparse Lanczos
points. One can set up th@ coordinate matrix with matrix eigensolver,'**2which employs analytic formuld3and the
elements Q o+ =(P,(cosO)|cosO|P, (cos@)), and the quadrature approximation during calculation of the kinetic
quadrature point$q€}'g=l are the eigenvalues of th@ ma-  energy matrix elements. While this PES is not the most ac-
trix, while the T transformation matrix is defined by the curate available for l, it has the distinct advantage that its
eigenvectors of th€ matrix. The elements of th€ matrix  dissociative behavior is correct, thus numerical results em-

! ’
]:V’nlv’nzé”,vlnlvzn2€
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TABLE |. Zero-point energy and the first 13 vibrational eigenenergies pf i cm %, computed by the full

FBR treatment of the singularities as described in Sec. Ill. The PES]ofsHaken from Ref. 40 with the
minimum atr ((HH) = 1.649 99 bohrsm(H) =1.007 537 2 is used during all the computations. The number of
basis functions is given asNg N, L), whereN;, N,, and L denote the number of th&;-, R,-, and
O-dependent functions, respectively. The radial grid points are in the intervals, § <3.5+[0.001(;

+1/2)] and O<rV2n2s 3.0+[0.001(v,+ 1/2)], all in bohr. Without symmetry analysis of the wave function or
symmetrization of the basis functions no proper symmetry labels can be attached to the degenerate levels;
therefore, these labels are omitted here. The zero-point energy @ khe first entry of this table. All other
eigenenergies refer to this energy.

(10 10 10 (16 16 16
Symmetry AS-FBR S-FBR AS-FBR S-FBR Accuraté
A, 4375.95 4375.94 4362.30 4362.30 4362.30
E 2449.29 2449.32 2521.19 2521.19 2521.19
E 2569.12 2569.03 2521.20 2521.20 2521.19
A 3232.63 3232.53 3179.21 3179.21 3179.20
A 4854.15 4854.17 4777.66 4777.66 4777.63
E 4893.82 4893.67 4997.61 4997.61 4997.60
E 5135.71 5135.61 4997.64 4997.64 4997.60
E 5492.34 5492.40 5554.82 5554.82 5554.82
E 5723.98 5723.28 5554.93 5554.93 5554.82
A 6432.95 6432.48 6263.94 6263.94 6263.85
E 6577.50 6577.58 7005.02 7005.02 7005.00
E 7253.74 7252.94 7005.24 7005.24 7005.00
A, 7265.72 7265.79 7284.71 7284.71 7284.60
A, 7613.55 7613.64 7492.57 7492.57 7492.53

aSee text for the definition of AS-FBR.

bSee text for the definition of S-FBR.

‘Converged results obtained by the DOPI algorittitef. 11), where the number of basis functiong3® 30 30
and theR; andR, Hermite-DVR grid points are in the interval6.9,3.9 and[0.05,2.95 bohr, respectively.

ploying quadrature points far from equilibrium are not sub-Therefore, in the Jacobi coordinate system one can use
ject to imprecision. The vibrational calculations have beera two-dimensional {R,,®} nondirect-product basis for
carried out employing the Jacobi coordinate system. Notéreating the remaining radial singularity, as was done, for
that although these coordinates do not carry the full symmeexample, by BTCCP The full three-dimensional basis can

n . . . . N;—1N,—1L-1
Fry_tof II-]!3 , which pogiﬁss?,.per[)rluya.tlonal symmettry, tht;s be given by {x, (R)F,n,(Rz) P€(C°S@)}nf,n2,eio ,
in itself causes no difficulty in obtaining an accurate vibra- Ny —1 . . .
. . . . wher R i ne-dimensional DVR i8.0.
tional eigenspectrum of H, though it clearly hinders sym- ere{xn,(Ru)}n,—o is a one-dimensiona basie.g.,

Vn2

metry classification of the eigenstates. Hermite-DVR basis One can obtain the matrix elements of
In all cases studied the two different representationdhe corresponding differential operator,

have been found to yield almost identical VEsindepen- 1 2

der_mtly of the convergence ofgthe solution. Th|§ can be ex- (KRl)nl’ni:<an(R1)|_ 5 _2|Xni(R1)>a (10)

plained by the use oN;N,L® quadrature points, much R

higher than the number of basis functiomé,N,L. It must

also be noted that the computation of the potential energ

matrix needs a large amount of CPU time. To wit, a rela-,_~, v >

tively small computation, e.g., withl;=N,=L=16, when (R, )“1~_”i_<X“1(R1)|1/(2'“1R1)|X”1_(R1)_> can be calcu-

even the lowest-lying VBOs are only quasiconverged, needited using the quadrature approximation

several days of CPU time on an average personal comffuter.

Therefore, this mathematically rigorous FBR treatment of R-2 —
. . . 1 )nl,n’

the singularity problem proves to be computationally unfea- 1

sible.

sing exact analytical formuld8 The DVR representation of
he Rl_2 part of the kinetic energy operator matrix

1

— 6n, - (11
zﬂlrﬁl T
In the case of a Hermite-DVR basis, employed in the calcu-

lations reported in this paper,
IV. AN EFFICIENT ALGORITHM

IN JACOBI COORDINATES On, R RTin R4 ernin

In the Jacobi coordinate system, wh&te represents a fn,= On, 2 2 ' (12

diatomic distance an®®, the separation of the third atom

from the center of the mass of the diatom, ®e=0 singu- Whereq, s are the appropriate Gaussian quadrature points.
larity will not occur in physically relevant cases because theConsequently, all grid points are defined in the interval
potential energy value is going to be infinite and the wave RT" ,R*®]. This way one can ensure that all grid points are
function is going to vanish near nuclear coalescense pointsn a physically meaningful region.
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NoL? NoL
L

FIG. 1. Pictorial representation of the shape and the
nonzero elements of the matric& [Eq. (14)], S[Eq.
(8)], VPR [Eq. (8)], andH [Eq. (8)] relevant for the
algorithm described in Sec. Ithote that in this figure
N;=3 andN,=4 and that the black boxes ¢F also
have some zero elemepts

* il vrr

Finally, using Eqs(5), (10), and(11) the DVR/FBR rep-  of basis functions is given adN¢N,L), whereN,, N,, and
resentation of the kinetic energy operator can be calculated denote the number of tH;-, R,-, and®-dependent func-
by tions, respectively.
(KDVRIFER) Only a modest portion of the eigenenergies computed
above 11000 cm depend on the proper treatment of the
:(KRl)nl,nianz,néaf,f’+(R1_2)n1,n15n2,né€(€+1)56,6’ R,=0 singularity. Even for high-lying eigenenergies, e.g.,
for the pairsEzs 3{E) and Egs 6{E), where the symmetry
+ 60,01 (KR, 0)ny,n8e,07 - (13)  characterization is given in parentheses, the DOPI algorithm,
In the last section the two different FBRs, AS-FBR, angVith & modest numper of basis func.tions, can yield reason-
S-FBR, were found to yield identical VEs. Therefore, theable’ though sometimes no.t exceedmgly aCCWa‘e VE,S' The
potential energy matrix is set up using the more advantaf@st convergence of the eigenenergies obtained using the
geous S-FBR resulting in a symmetric representation. Defin®VR/FBR algorithm is apparent from the fact that even the

rar
lnzf,nlnzf !

the N;N,L X N;N,L2-dimensional matrix, use of a modest 20 Bessel-DVR basis functions result in a
r maximum error of only 5 cr', for the pairEg, ¢ E) and
ngr'ny€’nyvanyt compared to “accurate” VEs given in the last column of

— 12,172 1/2
- Wnlzva2n2W€ Xni(rnl) Fv’né(rvznz) P(?’(q(’)

Table Il, among the first 80 vibrational eigenenergies re-
ported. Convergence of the Bessel-DVR VEs is most pro-
=60 n W,:Elzn W%/ZFwn'(rV WP (). (14)  tracted when the result from a small-basis DOPI and the
. v e . 2o . _ DVR/FBR treatments deviate substantially, e.g., for the pairs
JF is a sparse matrix of special structure, swuqel(rnl) Eus.4dE), EassdE), Es7sdE), EeredE), E7174E), and
=w;11’25n£,n1, while w, andw, are Gaussian weights, and E;5,{E). One of the largest deviation coming from the
w,,n, Were set to one during the computations. One can seimallest,(20 20 20, DOPI calculation reported is 260 crh
up the S-FBR matrix of the Hamilton operator using E).  for the pairEe; ¢{ E), again compared to accurate VEs given
and settingd=1/2, where in this cas& is defined in Eq. in the last column of Table II. At the same time, for this pair
(13 andvgffznze,nivénéf':V(rnl’ernzl%)5n1v2n2€,n;v§n§€'- Pic- the (20 207120 DVR/FBR calculation shows a deviatign of
torial representation of the shape of the matricEs Eq. only 5 cni™. The e_xtremely slow convergence EBE with
(14)], S [Eq. (8)], VFER [Eq. (8)], andH [Eq. (8)] in the the DOPI scheme is nc_)teworthy: the err_or _of _260 ¢rde-
special case oN,;=3 andN,=4 is shown in Fig. 1. The Creases to only 245 cm when the basis is increased to
Hamiltonian matrixH is a symmetric sparse matrix of spe- (30 30 30, while the same basis size results in an error of 0.5
cial structure with Ny +N,L—1)N;N,L nonzero elements €M * when the DVR/FBR scheme is employed. A similar
(see Fig. 1 Therefore, one can compute the required eigenstatement holds to all of the pairs mentioned showing the
values of this Hamiltonian matrix using a Lanczos meffiod tremendous difficulty of the simple DOPI scheme in dealing
specialized for sparse matrices. This algorithm is much morevith the R,=0 singularity. Obviously, there are intermediate
efficient than that described in Sec. Ill: a computation withcases between successes and failures of the DOPI scheme.
the same basis size has used only a few minutes of CPU timehere seems to be no problem in predicting the eigenener-
instead of a couple of days. Note also that we observed ngjes of A, symmetry: all eigenenergies reported, whether
convergence prpblems dur?ng the Lanczos iteratior?s, and ﬂl?eating theR,=0 singularity or not, agree to within 0.1
number of the iterations did not depend on the size of the,-1 The sjtuation with theh,-symmetry eigenenergies is
final Hgmﬂtonlan m_atnx[H (_)f Eqg. (8)]. This fast conver- less clearcut. In a few cases, €.84(A;) and Egy(Ay),
gence is very pleasing and is due to the fact thatRhe 0 . . .
(?Sroper treatment of the singularity makes a rather small dif-

ingularity d td de th fthe L . . .
'22?#12352 0es hot degrade the convergence of the Lancz erence, the largest DOPI and DVR/FBR eigenenergies differ

The VEs of H between 11000 and 15000 ciabove 2t Most by a couple of cnt, in cases only by 0.01 cni.
the vibrational ground state, starting with the 36th vibrationafN€Vertheless, in other cases, e.g., Bi(A;) andEeg(A4),
eigenvalue, are presented in Table II. Note that the barrier t§€ two algorithms result in considerably different eigenen-
linearity on the PES of Bl is at about 10000 cit. The  ergies. Again, improving the basis set makes the discrepancy
VEs have been calculated both by the DVR/FBR algorithmsmaller, e.g., forEs,(A;) the difference of 407 cm' ob-
of this section and by the standard DVR technique termedained with a basis set ¢20 20 20 functions decreases to
DOPI*2|n Table Il and in the forthcoming text the number 212 cmi'* when the size of the basis is increased36 30
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TABLE II. All the vibrational eigenenergies of H, between 11000 and 15000 chabove the ground
vibrational state, in cm'. The PES of H is taken from Ref. 40 with the minimum at,(HH)
=1.649 99 bohrsm(H) =1.007 537 21 is used during all the computations. The number of basis functions is
given as (N; N, L), whereN;, N,, andL denote the number of the;-, R,-, and ®-dependent functions,
respectively. Without symmetry analysis of the wave function or symmetrization of the basis functions no
proper symmetry labels can be attached to the degenerate levels; therefore, these labels are omitted here.

(20 20 20 (252525 (303030

Numbe? Symmetry BESSEI® DOPF BESSEI® DOPF BESSEl® DOPF  Accuratéd

36 E 11324.81 11324.81 11324.76 11324.76 11324.74 1132474 11324.74
37 E 11325.65 11325.71 1132479 1132478 11324.74 1132474 11324.74
38 A, 11528.74 11528.73 11527.81 11527.80 11527.76 11527.75 11527.76
39 E 11657.88 11654.01 11656.96 11653.82 11656.92 11654.30 11656.92
40 E 11658.18 11657.85 11656.98 11656.96 11656.93 11656.92 11656.93
41 A 11814.44 11813.97 11813.88 11813.62 11813.86 11813.65 11813.87
42 E 12078.77 12077.24 12078.21 12077.53 12078.19 12077.72 12078.20
43 E 12079.32 12079.30 12078.25 12078.24 12078.19 12078.19 12078.20
44 A, 12149.74 12146.94 12149.41 12149.39 12149.38 12149.37 12149.38
45 E 12300.88 12301.13 12300.49 12300.48 12300.46 12300.46 12300.46
46 E 12301.12 12149.79 12300.58 12197.76 12300.51 12225.71 12300.47
47 A, 12376.20 12334.41 12375.55 12338.73 12375.44 12342.41 12375.38
48 E 12374.02 12474.01 12473.67 12473.67 12473.66 12473.66 12473.66
49 E 1247457 12433.12 12473.88 12437.94 12473.75 12441.78 12473.67
50 A 12590.89 12587.93 12589.85 12587.67 12589.80 12587.98 12589.80
51 E 12697.22 12697.18 12697.31 12697.31 12697.29 12697.29 12697.29
52 E 12698.80 12684.85 12697.37 12689.26 12697.30 12691.12 12697.29
53 A, 12833.33 12833.27 12832.27 12832.26 12832.21 1283221 12832.21
54 A, 13289.64 12882.79 13288.87 12992.24 13288.84 13076.99 13288.85
55 E 13319.50 13318.29 13318.40 13318.17 13318.35 13318.25 13318.35
56 E 13319.52 13319.44 13318.40 13318.40 13318.36 13318.35 13318.35
57 E 13391.70 13290.92 13390.82 13291.61 13390.77 13292.28 13390.79
58 E 13392.36 13392.31 13390.97 13390.81 13390.88 13390.76 13390.82
59 A 13399.89 13393.69 13398.62 13393.94 13398.49 13394.02 1339841
60 E 13587.28 13583.32 13587.36 13587.15 13587.31 13587.31 13587.31
61 E 13588.48 13588.43 13587.39 13587.35 13587.34 13588.40 13587.32
62 E 13686.43 13432.24 13691.61 13439.69 13691.62 13446.99 13691.62
63 E 13691.68 13691.68 13692.65 13691.61 13692.17 13691.62 13691.67
64 A 1371479 13709.18 13717.56 13709.23 13717.35 13709.34 13717.13
65 A, 13756.03 13756.02 13754.60 1375459 1375455 1375454 13754.56
66 E 14056.79 14056.78 14056.52 14055.71 14056.53 14055.85 14056.53
67 E 14057.87 14056.89 14056.58 14056.57 14056.53 14056.53 14056.53
68 A 14191.60 14116.99 14191.04 14147.07 14190.97 14158.10 14190.93
69 E 14217.58 14217.49 14216.95 14216.94 14216.93 14216.93 14216.94
70 E 14219.03 14196.42 14217.07 14202.16 14216.96 14205.23 14216.94
71 E 14474.00 1447490 14473.56 1447355 14473.49 14473.49 14473.50
72 E 1447497 14315.00 14473.58 14385.39 1447354 14426.67 14473.51
73 A, 14565.55 14565.52 14565.55 14565.54 14565.55 14565.54 14565.56
74 A 14665.28 14665.56 14665.89 14667.61 1466590 14667.35 14665.91
75 E 14880.12 14880.08 14879.53 14879.53 14879.52 14879.51 14879.54
76 E 14881.00 14423.87 14880.29 14460.92 14879.86 14493.08 14879.56
77 A 14883.81 14579.18 14889.90 14650.76 14889.81 14702.72 14889.71
78 E 14890.59 14888.44 14890.51 14888.61 14890.59 14888.66 14890.61
79 E 14890.67 14890.67 14890.59 14890.57 14890.61 14890.59 14890.62
80 A, 14943.71 14942.70 14943.06 14942.96 14943.01 14942.93 14943.01

&The first 35 eigenvalues, including the zero-point energy, are not reported in this table.

PBESSEL, results obtained by the algorithm described in Sec. IV, whetR;thiermite-DVR grid points are in
the interval[0.9,4.5 and the radiaR, Bessel grid ponts are<0r,,2n2s3.5+[0.001(1/2+ 1/2)], all in bohr.
°DOPI, results obtained by DOPI, where tRg andR, Hermite-DVR grid points are in the intervel6.9,4.59
and[0.05,3.55 bohrs, respectively.

dConverged results obtained by a lai@s 60 35 BESSEL computation.

30). Two examples concerning the convergence of the comdeviations resulting from not treating the singularity is ap-
puted VEs are given on Fig. 2. The eigenvakig is below  parent. Note that the convergence behavior of the DVR/FBR
the barrier and thus both the DOPI and the Bessel-DVR/FBRpproach is similar for the two eigenvalues.

approaches work well and their convergence characteristic is  Using the Hermite-DVR in DOPI one can choose the
similar. The eigenvalug .4 is above the barrier and the large smallest grid pointRS" [see Eq(12)]. VEs of H; between
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FIG. 2. Dependence of the vibrational eigenvalliggat 7005.00 crm'® andE g at 12300.46 cm'® of H; on the size of the bas[®asis 1,20 20 20; basis
2, (25 25 25; and basis 3(30 30 30] and the strategy, DOPI vs BESSEiee Sec. I, employed for the solution of the Schiinger equation, wherAVE
is the difference between the actual and the accurate eigenvalues.

11000 and 13000 ciit, obtained by varyingRy™, are pre- V. CONCLUSIONS

sented in Table IIl. Settin®3"" to too small of a value, e.g., o _ _

0.01 bohr, results in errors in all the computed VEs. This can  APpearance of certain singular terms is unavoidable
be explained by the failure of the quadrature approximatiorwhen the(ro)vibrational Hamiltonian is expressed in internal
when theR,=0 singularity is present. By setting a higher coordinates. Two methods have been developed in this paper
RJ'" value, converged VEs can be calculated when the sinto cope with the singular terms of the vibrational kinetic
gularity does not come into play. For example, for the pairsenergy operator of a triatomic molecule given in orthogonal
Esg.34E) the same converged VEs were computed by settingnternal coordinates, such as Jacobi or Radau coordinates
R} either to 0.05 or to 0.1. When the singularity comes into{R1,R>,0}, when solving the related time-independent
play, differentR}"™ choices, employing the same basis size,Schralinger equation.

result in different unconverged VEs. For example, for the  The first method, a FBR algorithm, gives a mathemati-
pairsE s 4 E) settingRg"” either to 0.05 or to 0.1, the same cally correct treatment of all singular terms. In this technique
convergedE 5 was obtained; however, in the case Bf;, the vibrational eigenfunctions are approximated by linear
where the singularity becomes important, the 86 30 30  combinations of functions of a three-dimensional nondirect-
calculations result in a discrepancy of more than 30tm  product basis. These basis functions are formed by coupling

TABLE IlI. All the vibrational eigenenergies of H, between 11 000 and 13 000 chabove the ground vibrational state, in tincomputed by the DOPI
algorithm varying the smalle®®, grid point. In all the cases th®; Hermite-DVR grid points are in the intervf0.9,4.5 bohrs. TheR, Hermite-DVR grid

points are in the interval®.01,3.59, [0.05,3.58, and[0.1,3.5 bohrs, respectively. The PES of;Hs taken from Ref. 40, anth(H)=1.007 537 2 is used

during the computations. The number of basis functions is giveiNadN¢ L), whereN;, N,, andL denote the number of th®,;-, R,-, and @-dependent
functions, respectively.

(20 20 20 (252525 (30 30 30
Number  Symmetry  0.01 0.05 0.1 0.01 0.05 0.1 0.0 0.05 0.1 Accuraté
36 E 11325.07 11324.81 1132481 1132478 11324.76 1132476 1132524 11324.74 11324.74 11324.74
37 E 1132545 11325.71 11325.71 1132851 11324.78 11324.78 11328.29 11324.74 11324.74 11324.74
38 A, 11528.71 11528.73 11528.73 11526.80 11527.80 11527.80 11528.62 11527.75 11527.75 11527.76
39 E 11653.73 11654.01 11654.85 11655.89 11653.82 11654.58 11656.72 11654.30 11655.02 11656.92
40 E 1165792 11657.85 11657.86 11658.60 11656.96 11656.96 11674.61 11656.92 11656.92 11656.93
41 A 11814.00 11813.97 11814.06 11812.83 11813.62 11813.68 11816.81 11813.65 11813.71 11813.87
42 E 12075.61 12077.24 12077.97 12077.14 12077.53 12077.81 12079.58 12077.72 1207790 12078.20
43 E 12079.30 12079.30 12079.30 12078.11 12078.24 12078.25 12083.16 12078.19 12078.19 12078.20
44 A, 12112.14 12146.94 1214951 1214850 12149.39 1214940 12150.58 12149.37 12149.37 12149.38
45 E 12301.11 12301.13 12301.13 12300.70 12300.48 12300.48 12303.21 12300.46 12300.46 12300.46
46 E 12149.42 12149.79 12199.69 12212.75 12197.76 12238.26 12305.33 12225.71 12258.31 12300.47
47 A, 1233256 1233441 12339.03 12341.87 12338.73 1234471 12382.71 1234241 12349.60 12375.38
48 E 12474.06 1247401 12474.01 12473.74 12473.67 12473.67 12476.89 12473.66 12473.66 12473.66
49 E 12430.84 12433.12 12438.64 12441.97 1243794 1244408 12478.42 12441.78 1244855 12473.67
50 A 12586.78 12587.93 12588.64 12591.76 12587.67 12588.20 12590.31 12587.98 12588.46 12589.80
51 E 12697.03 12697.18 12697.20 12697.88 12697.31 12697.31 12699.52 12697.29 12697.29 12697.29
52 E 12680.33 12684.85 12689.90 12688.02 12689.26 12692.03 12703.34 12691.12 12693.29 12697.29
53 A, 12825.06 12833.27 12833.31 12833.24 1283226 1283227 12834.25 1283221 1283221 12832.21

#The too smallR, grid point can result in a ghost eigenvalue and small errors in the vibrational eigenenergies.
bConverged results taken from Table II.
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Bessel-DVR functior® depending on distance-type coordi- puting resonances of 4 and this will be investigated in the
nateskR; andR, and Legendre polynomials depending on thenear future.
angle bending coordinat®@.
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